yacTUHHU TpadidHUMH o0pa3aMu, aBTOp BiANOBIAHMX 00Opa3iB 30epirae Ha HHUX
aBTOPCHKI MpaBa, M0 3aIHCYETHCSA y TEXHIYHUX JAHUX PO KHWXKKY, SKi TaKOX €
000B’SI3KOBUMH KOMITOHEHTAaMH KHCTPYKIIT KHUTH 1 KHUTH B IJIOMY.

[epeBaxxo, aBTopH iH(MOPMAIIfHOI YaCTMHM KHWKKH CaMi IPOIOHYIOThH
PO3IIOIN TEKCTY Ha OKpeMi yacTHHU. Lle crocyeTbes, B OCHOBHOMY, XyIOXHBOT
miteparypu. Konm MoBa #ae mpo IUTSdy XyJOXKHIO JIiTeparypy, abo HiIpydHUKH
UIA  TIKOJHW, TO OQOpMICHHA iHpOpMAmiiHOI CKIAJ0BOi, IO CTOCYETHCS
BH3HAYCHHS PO3IUTIB 1, B I[JIOMy, TOAUTy MaTepialy Ha YacTHHHU, CTae
MIPUHITUTIOBUM, OCKIJIBKH, TAKHH PO3IIOALT TICHO 3B’SI3aHUH 3 METOIMKOIO HATAHHS
BIINOBITHOI iH(OpMarii crokuBadaM KHIDKOK. IlepeBaykHO, BiANOBIiTANBHICTH 3a
METOIHKY (opMyBaHHS iH(OpPMAIliifHOI KOMITIOHEHTH MOKIJIAAAl0Th Ha aBTOpa, ajie
XYIOXHIH CyNpoOBiJ MaTepiany, [0 MPeACTaBISIEThCS, 3IHCHOE XYT0KHUK, AKUN
MIOBUHEH 3HATH caM iHpOpMalLiifHHIi MaTepian Ta TOBHHEH OyTH 3HaioMHil 3
BIAMOBIAHUMH METOIMYHUMH BHMOTaMH.

[MpuBenenuii BUIE aHai3 OCHOBHUX KJIACiB KHMKKOBOI MPOIYKLII IOKa3ye,
mo s 3a0e3NedeHHs PHHKOBOTO YCHIXy KHIDKKOBOI MPOJYKIII HE J0CTaTHBO
KOPUCTYBaTHCS OOMEXEHOIO KIJIbKICTIO KpHUTEpiiB, ab0 OJHMM EKOHOMIYHHM
KPHUTEPIiEM CIIPOEKTOBAaHHM B OCHOBHOMY Ha BapTiCTh KHM)KKOBOTO BHIAHHS.
JloLisbHO, TIpH NMPOEKTYBaHHI KHIDKKH, OMHMCPATHCS Ha JOCHTH TIIMOOKUH aHali3
iHpopMamiiHOI CKIaJOBOI, IO IPOIMOHYETHCS aBTOpaMH. Ha OCHOBI Takoro
aHaJi3y MOXKHA BUOMpATH HEOOXiTHI KpUTEPii MPOEKTYBaHHS KOHCTPYKIii KHUKKHI
Ta KHIDKKH B IUTOMY.
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ON CALCULATION ELECTRONIC STATES OF CARBON NANOTUBES

A new approach is development for description of physical properties of carbon
nanotubes h taking into account their real atomic structure have been proposed. On
the basis of the classical polynomial theory we have investigated main quantum of
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studding system. On the basis a functional integral representation for a statistic sum
we have proposed an effective method for building of the closed self-consisted
equations for Green functions of investigating system. The proposed approach is
applicable for calculation of physical properties both single- and multiwall carbon
nanotubes.

1. Introduction

Carbon nanotubes, representing a two-dimensional carbon hexagonal
structure rolling along a given direction and reconnecting the carbon bonds,
possess unusual mechanical, electrical and optical properties. Geometrically such
structures are characterized by a diameter of the order of few nanometers with
large aspect ratio that significantly larger than any other materials. Such cylindrical
carbon molecules have novel physical properties that make them potentially useful
in many applications in nanotechnology, electronics, optics and other fields of
materials science, as well as potential uses in architectural fields. They exhibit
extraordinary strength and unique electrical properties, and are efficient thermal
conductors.

Description of physical phenomena in carbon nanotubes assumes building of
exact, close and self-consistent systems of equations taking into account features of
atomic and electron subsystems and their collective excitations. In known
theoretical —approaches these are realized on the basis of a point and Lattinger
models, Hubbard model and density functional approximation [1]. In the
framework of the mentioned approaches a real cylindrical geometrical structure of
carbon nanotubes for simplicity was substituted by a plane carbon structure though
an electron dynamic in these cases are considerably different. The adequate
approach for description of the carbon nanotubes taking into account their real
structure without anyone geometric simplification have been proposed in [1] on the
basis of the functional; integral method.

In the presented paper we propose the development of the above mentioned
approach based on application of a classical polynomial theory for calculations of
quantum states of nanotubes and a generating functional method for obtaining the
self-consistence of equations for Green functions describing collective electron and
phonon excitations.

2. Quantum states of carbon nanotube

Physical properties of carbon nanotubes depend on its atomic carcass
structure unwrapping of which into a two-dimensional planar sheet, called a
grapheme, is possible along a vector, which is the integer combination of unite
vectors 7; and 7, of the honeycomb carbon lattice: Ry,, = NI, + MT, (N and
M are integer) (Fig.1). Besides, we assume translation symmetry along z with the
translation vector 7, = LT, — KT, (L and K are integer numbers). Therefore the
nanotube properties are characterized by the number pair (N, M) called the chiral
vector.
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Because of the symmetry and unique electronic structure of graphene, the
structure of a nanotube strongly affects its electrical properties. For a given
chirality (N,M) nanotube, if N =M (armchair nanotube), the nanotube is
metallic; if N —M is a multiple of 3, then the nanotube is semiconducting with a
very small band gap, otherwise the nanotube is a moderate semiconductor. Thus all
armchair nanotubes are metallic, and nanotubes (5,0), (6,4), (9,1), etc. are
semiconducting. In theory, metallic nanotubes can carry an electrical current
density of 4 x 10° A/cm® which is more than 1,000 times greater than metals such
as copper.

Insertion the coordinate system with axes z and Og¢,, (0¢,, =Ry, @)

(Fig.1) leads to representation of the electron wave function of the nanotube in the
form ([1])

1 .
Wi (X) = ﬁan (r)expi (k¢¢’xy + kz) )

Here n,m and k are quantum numbers related to radial, azimuthal and
longitudinal modes of the wave function. Due to the invariant properties
k, =2 (m/|Ryy 1), where m=%(0,1,2,..., (N+M)/2)and k,p,, =mp.

KA AT
gRestes

B

Fig.1. The two-dimensional carbon sheet wrapping up of which around the axes z (z || 7,)

along the vector Ry, (T, L Ry, ) results in the nanotube (7} and 7, are two lattice

unite vectorss

Then the electron wave function takes the form
1
Yomi (X) =——=R,,, (r)expi(mp+kz), (1)
0= (mp+h)

where the function R,,, is determined by a model potential for the nanotube
(see [1])
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!
A
Vi = Za—z[exp(—Za(r/Rl- ~1))-2exp(-a(r/R; 1)) ] )
i=1
Here the index i denotes number of walls of the nanotube, R; is a radius of
i th wall of the nanotube, A, =27R,0, o is the charge density of the nanotube
carcass consisting of ions C** . In the case of the single-wall nanotube (4, =0).
Taking into account Eq.1 and Eq.2 in the case of the single-wall nanotube the
Schrodinger equation for the function u,, (7) =\/;an (r) in the terms of
variable x =7/R, can be written as
1 d? . m* —1/4 . k2 .
2R dx*  2R’XT 2L
N { A 2aten ﬁz e-ax-D) } _ Ejunm (x) = 0. 3)

2
a a

The main contribution in Eq.3 is related to a vicinity x = R, , that implies very
slow deviation of the variable x on the value 1 in the nonexponential part of

Eq.3. Then we can transform Eq.3 to the form of the hypergeometric equation
T(é) A, 0(5) -0, )
ag cf o (5) i o (5)

Where 7(&) =1, (&) =&, a(g) =& /4+(t+s—s>+1/2)é. Here the
following denotations are inserted

= (mez)e_a(x_l), s=+-2¢/a,

t=2A/1a%*—(s+1/2), (5)
2 2
R
P L UL Ve
2 8 2r1f

The bound quantum states are described by solutions Eq.4 which are
represented by classical orthogonal polynomials (see [5]). Solving this problem

supposes reducing Eq.4 to the canonical hypergeometric form
2

O'd—z(:y+rdi§y+}ty 0, (4a)
with the help of the substitution u = ¢(&)y , where ¢(&) obey the equation
¢'_ 7
7z = 6
"o TO" (r(é) 7). (6)

The polynomial z(&) is determined by the formula
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" [ 0
ﬂ(§)=027i\/[02 T} —otko, k=A-7'(&). 0

So as 7(&) is polynomial of the first degree in &, the radicand discriminate
in Eq.7 is equals to 0, that determines the constant & . Under consideration case of

the Eq.4 o'-7=0 and the mentioned condition on discriminate is expressed by
the equation

k—(t+s-s+1/2)=0.
Hence k =t+s—s>+1/2 and due to Eq.7 n(£)=+£&/2. Then from Eq.6 we
obtain that 7(£)=1+¢£. Condition of bound states is expressed in a boundedness
of the weight function p(&) (which obeys the equation (op)'=17p ) of polynomial

solutions Eq.4 and the corresponding condition 7'<0 in a solution region.
Therefore the selection 7(£)=1-& corresponds to known solutions and in

accordance with Eq.6 the transformation function ¢(&) is obtained in the
formg(&) =e¢'2.

Due to the above mentioned equation the weight function p(&) will be
described by the expression p(f):e_‘ﬁ. Then in accordance with the Rodrige
formula the polynomial solution Eq.4a can be represented as

r=—% jg” (o p) = B ddgn (£e). ®)
where the constant B is determined by boundary conditionss.

Taking into account Eq.8 the electron wave function can be represented in the
form

I ed” (&7 )t ©)

Ymk = ﬁ d é:n

The spectrum of the polynomial solution is determined by the general
equation od the form
A+nt'+n(n-1)c"/2=0.
Taking into account that due to Eq.7 A=k +7'(§) from the last equation we
can obtain relation
k+7'(&)+nt'+n(n-1)c"2=0 (10)
determining spectral properties polynomial solutions.
Substitution explicit expression for quantities k£, 7 and o into eq.10 yelds
the equation
s?—s—t—(n-1)/2=0.
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Due to Eq.5 t=+24/ a* —(s+1/2) and then from the last equation we ca

obtain the expression
2
&=- 4/£/11/2+a— n+l ,
2 2 2

which describes quantum values of energy.
He last equation takes the form obtai which into this equation the expression

A=k+7'(&) Taking  into  account Eq.7 and the  condition
A+nt'+n(n—1)c"/ 2 =0 related to the solution of polynomial type of the degree

n. Under consideration case the last equation Therefore The corresponding
eigenvalue elfeigenvalue The second equation in Eq.7 determines.

3. Quantum states of carbon nanotube

Description of collective properties of the carbon nanotubes related to
electron and phonon excitations assumes calculation Green’s functions of the
system. The generating function for the Green’s functions can be a corresponding
statistical sum of the quantum system.

The statistical sum Z can be represented in the form of the functional integral

(1]
z =jD1//+Dy/exp(S[y/]), (11)

where S[y/] is determined by the expression

B
Sty 1= [dr [ Yy (rr K Grarw, (5,r) -
0 s

2 B
- %Idrj dxdyp(x,r)V(x—y)p(y,r)+ (12)

0
B
. P, (r)
+J-drz ipp (1)0,q; (r)———| a=a,p.
a a ZMC
0l
Here s is an electron spin, y(x,7) is the two-component wave function of
the nanotube lattice, p; , ¢; and 2M . are a moment, a coordinate and the mass
of anionin /, sublattice cite, V' (x—y)=1/|x—y| is the operator of the Coulomb
interaction. Beside, K(x,r) is the operator of kinetic energy represented in the

form
K, (x, 0
K =| Kot
0 Ky (x,r
where 0, =0/0,, A,/(2m) is kinetic energy for the a th sublattice, x, a
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chemical potential of the a th sublattice.

The charge density o(x,r) is composed of ion (07(x,r)) and electron
(p°(x,r)) parts and equals p(x,r) = p?(x,r)— p°(x,r). Taking into account that
for carbon nanotubes sublattices a and b are identical and
K, (x,r)=K,(x,r)=K(x,7r) we can describe the system by the Green functions
determined by the equation

K'(x,r)G(x,r;y,1,) = 6(x—y)o(r,—1,),

where

Gy (x,733,1,) Gz(x,rx;y,ry)J

G(x,r;p,1,) =
t ! GZ(x’rx;yary) Gl(xarx;yary)
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E®EKTHUBHICTD IIEPEJAYI BITIEOTPA®IKY MPEG
B MEPEXXI MPLS

Berym.

[lepenaua Tpadixy MympTHMeia BUMarae cTaOuIbHOI MPOMYCKHOI 31aTHOCTI
MepeKi, L0 IOCATAETHCS IUIIXOM pe3epByBaHHs. [IpoTOKON pe3epByBaHHs KaHATY
(Resource Reservation Protocol - RSVP) BukopucToByeTbcs cepBepoM JUist
3abe3neueHHs BUMOr HeoOXifHoi sikocti cepsicy (quality of service - QoS) [1].
Xowa konuenuis QoS 3abe3neuye cTabibHY IPOIYCKHY 3AaTHICTH JUIS
MyJbTUMEIHHOrO Tpadiky, BY3bKMM MicleM Tepeiayl Haifyacrime €
MapHIPyTH3aTOPH, SKi EpECUIIal0OTh AKEeTH T0YEProBo.

MPLS (Multiprotocol Label Switching) - ne TexHosoris mBHIKO] KOMyTALii
nakeTiB B 0araTONpPOTOKOJBHUX Mepexkax, 3aCHOBaHA Ha BHKOPHCTaHHI MiTOK.
MPLS po3po0iiseTbes 1 MO3UMIOHYETHCA SIK CIIOCi0 MOOYIOBH BUCOKOIIBHIKICHIX
IP-marictpaneii, mpore o0macTs ii 3acTOCyBaHHS HE 0OMEXKYETHCS IPOTOKOIIOM [P,
a pO3IOBCIOJDKYETBCS Ha Tpadik OyAb-IKOTO MEpexeBOro IPOTOKONY, IO
MapLIPyTU3Y€THCA.

Y ocHoBi MPLS nexures npuHOun oOMiHY MiITOK. DByap-sxuii maker
acoIliloeTbcss 3 TUM abo iHmMM KiacoM MepexeBoro piBHs (Forwarding
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