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обобщенная схема ее жизненного цикла, обозначены некоторые проблемы.  
В дальнейших своих работах мы намерены рассмотреть и определить 

различия между гипотезами, предвидением и прогнозами. В частности, 
значительный интерес, в этом отношении, представляет анализ модели 
«ПАМЯТЬ - ПРЕДСКАЗАНИЕ» Джеффа Хокинса [5], т. к. он, с одной 
стороны, претендует на создание модели мозга, с другой стороны, его 
исследования проводятся с целью разработки систем искусственного 
интеллекта.  
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ELECTRON TUNNELING IN A MULTIBARRIER POTENTIAL  
 

The electron and spin transport in nanoscopical heterostructures taking is 
considered taking into account features of electron spectra. It is shown efficiency of 
effective mass methods for an quantum-mechanical description of electron tunneling 
through potential barriers of the system. It is shown the description of coherent 
electron transport in multibarrier electron potentials.  

 
1. Introduction 
The quantum phenomena of tunneling refers to the possibility that quantum 

particles can traverse regions, which are from a classical point of view 
energetically forbidden. Tunneling is an intimate consequence of the wave 
properties of matter and the probabilistic interpretation of the wave function. 
Quantum tunneling was already considered from the early days of quantum 
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mechanics in connection with the problem of field ionization of atoms and the 
nuclear decay of alpha particles. The concept of tunneling was firstly applied in 
solid state physics to explain the field emission of electrons from metals into 
vacuum [1,2]. Single barrier tunneling has found widespread applications and one 
of the most prominent is the invention of the scanning tunneling microscope 
(STM), in which particles tunnel through a controllable vacuum barrier and which 
made it possible to make images on an atomic scale.  

In the case of tunneling through a single barrier of height 0V , the energy-
dependent transmission probability ( )T E , which is defined as ratio of the 
transmitted to the incident flux, decreases exponentially with the barrier width W : 

( )0( ) exp 2 2 ( ) /T E W m V E∝ − − h , where m  denotes the particle mass. When a 

second barrier of same width is added one might intuitively suggest that, following 
Ohm’s law, the total resistance of the structure is just doubled. This is indeed true 
if the region between the barriers is much larger than the de Broglie wavelength of 
the electrons, which in semiconductors is typically of the order of 10-100 
nanometers.98 However, if the middle region is only a few nanometers in width the 
carrier transport remains phase-coherent and for some incident energies nE  within 
a small energy range of width, the particle is transmitted with a high probability, 
eventually up to one. This enhancement of the transmission probability is known as 
resonant tunneling. The physical explanation is that the resonant energies 
correspond to the energies of the quasibound eigenstates of the electrons, which are 
localized in such a state, can leak out through the barriers with a finite probability. 
Due to the uncertainty principle, the finite lifetime τ  of the electron causes an 
uncertainty in the energy EτΔ ≈ h , which effectively leads to the broadening of 
the resonance /Eγ τ= Δ ≈ h . The whole process of resonant tunneling can be 
understood as a constructive interference between the waves leaking through the 
first barrier and the reflected waves of the second barrier, similar to what happens 
to electromagnetic waves. In a more particle-like picture corresponding to wave 
packets an incident electron at resonant energy tunnels through the first barrier, 
bounces then several times back and forth in the quantum well in a way that adds 
up coherently, and finally tunnels out through the second barrier.  

Such double barrier structures were realized by an epitaxial growth of 
alternating ultrathin films of two semiconductor materials with different band gaps. 
Using GaAs as smaller band gap material and Ga1−xAlxAs as barrier with the 
barrier height controlled by the molecular fraction x of Al, the conduction band 
profile of the layered structure exhibits sharp discontinuities at the heterointerfaces, 
effectively realizing a double barrier structure. The double barrier structure is 
usually surrounded by heavily doped layers, which provide low-resistance emitter 
and collector contacts. To prevent diffusion of the dopants from the high doped 
regions into the inner double-barrier structure usually also thin undoped buffer 
layers are included in experiments. By attaching ohmic contacts to the whole 
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structure an external bias can be applied to the resonant tunneling diode (RTD). 
The N-shaped current-voltage (IV) characteristic exhibits a region of negative 
differential resistance (NDR). 

This NDR-behavior of a RTD can be qualitatively easily understood if we 
recognize that the electrons which are trapped between the two barriers exhibit a 
discrete energy spectrum whose spacing increases if the confinement gets stronger, 
i.e., the quantum well width becomes smaller. Let us assume, for simplicity, that 
the quantum well is thin enough that there is only one quasibound state in the 
energy range of interest. With a positive bias aV  applied to the right (collector) 
lead the resonant energy level is lowered relative to the energy of the incident 
electrons from the left (emitter) lead. In a first approximation one can assume that 
the voltage drops linearly from the emitter to the collector side. The electrons in 
the left (emitter) and right (collector) contact are considered to be always in 
thermal equilibrium which allows to introduce chemical potentials μL, μR for both 
reservoirs and to describe the electrons distribution by the Fermi-Dirac function. 
This means that at low temperatures incident electrons from the emitter with 
energies reaching from the bottom of the conduction band up to the Fermi energy 
are available. However, since the RTD effectively acts as an energy filter only 
electrons with the resonant energy E0 can transmit to the collector side if there are 
unoccupied states at that energy; otherwise the electrons are blocked by the Pauli 
principle. By applying positive bias to the collector the resonant level passes 
through the emitter’s Fermi energy and current starts flowing. Increasing the bias 
leads to higher current magnitudes. However, at a certain voltage (the peak 
voltage) the resonant level becomes energetically aligned with the bottom of the 
emitter’s conduction band. Further bias pushes the resonant level 0E  below this 
edge, which suddenly cuts off the supply of emitter’s electrons causing a sharp 
drop in the current and thereby leading to the phenomenon of NDR 
 

2. Coherent tunneling 
For the purpose of obtaining a more quantitative understanding of resonant 

tunneling and the related NDR-effect in semiconductor heterostructures we assume 
at first that the transport through the structure is fully phase-coherent. This 
assumption allows to apply a wave function treatment of the transport similar to 
what is done in the description of electromagnetic wave propagation in planar 
layers of different permittivity. We restrict our discussion primarily to electrons in 
a parabolic conduction band, e.g., one can think of the Γ -valley ( 0k = ) electrons 
in GaAs. In the case of coherent transport between two contacts the flowing current 
density can be obtained in general from the Landauer-Buttiker formula [1,3,4] 

( )2 ( ) ( ) ( )L R
ej dET E f E f E= −∫h

, 
where the factor 2 takes into account the spin degeneracy, e  is the elementary 
charge, 2h π= h  is Planck’s constant, and , ( )L Rf E  are the electrons distribution 
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function in the left and right reservoir, which are usually assumed to be given by 
Fermi-Dirac functions. The single particle transmission function ( )T E  describes 
physically how likely a single electron of energy E  can transmit through the 
structure and is more rigorously defined as the sum over all transmission 
probabilities ( )n mT E← ) of an electron starting in the input mode m  and ending up 
in the output mode n  of the left and right leads, respectively, which connect the 
reservoirs with the structure. In the specific case of planar heterostructures these 
lead modes are easily identified with the plain wave electron states of fixed in-
plane momentum q , i.e., of a certain momentum component perpendicular to the 
growth direction. If we assume that the in-plane momentum is conserved during 
the transport, which means that there is no scattering from one lead mode to 
another, the transmission function can be written as 

' ',
', ',

( ) ( ) ( ) ( )q q q q q q
q q q q q

T E T E T E T Eδ←= = =∑ ∑ ∑ . 

This assumption is reasonable for elastic scatterers, which do not change the 
electron’s momentum considerably, and as long as inelastic scattering processes 
are not important (which should be actually the case to allow for a phase-coherent 
propagation). 

The transmission function ( )qT E  can be determined from the solution of the 
single-particle Schrodinger equation if the electrons can be treated as independent 
coherently propagating quasiparticles. This demands that the effect of electron-
electron interactions is describable by an effective single-particle potential, which, 
by following the approach of local density functional theory, depends only on the 
local electron density. For simplicity we will include here only the self-consistent 
Hartree terms and neglect the exchange potentials or other electron-electron 
correlations. The influence of the periodic lattice potential of the crystal on the 
electrons is treated in the effective mass approximation. Under these assumptions 
the steady-state envelope function ( , )r zψ of an single electron in the 
heterostructure can be determined from the Schrődinger-like equation 

2 2
21 ( ) ( , ) ( , )

2 ( ) 2 r eff
l t

V z r z E r z
z m z z m

ψ ψ
⎛ ⎞∂ ∂

+ ∇ + =⎜ ⎟∂ ∂⎝ ⎠

h h                  (1) 

Here, r  is the in-plane or transversal position vector and z  denotes the 
growth direction or what we call the longitudinal direction, ( )lm z is the 
longitudinal effective mass perpendicular to the heterointerface, ( )tm z  is the in-
plane effective mass and E denotes the total energy. The kinetic energy operator 
for the longitudinal motion takes into account the z -dependence of the 
longitudinal effective mass and satisfies the requirement of being Hermitian. The 
effective potential ( ) ( ) ( )eff i elV z U z U z= + contains the intrinsic conduction band 
discontinuities ( )iU z  and the electrostatic potential ( )elU z , which depends on the 
fixed ionized impurity density and the electron density profile in the structure. 
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Since the effective potential varies only in the longitudinal direction the in-plane 
motion of the electrons, which is of free electrons plane-wave type, can be 
separated from the growth-direction dynamics, justifying a product ansatz for the 
envelope function: ( , ) exp( ) ( )r z iqr zψ ϕ∝ . With this the lead input and output 
modes can be characterized by the plane wave states exp( )iqr  Eq. (1) can be 
reduced to an effective one-dimensional Schrődinger equation for the growth 
direction motion  

  
2 1 ( ) ( , ) ( , )

2 ( ) eff l
l

V z r z E r z
z m z z

ψ ψ
⎛ ⎞∂ ∂

+ =⎜ ⎟∂ ∂⎝ ⎠

h  (2) 

where we introduce the longitudinal energy 2 2 /(2 )l t tE E q m E E= − = −h , which 
we always measure in the following from the bottom of the emitter’s conduction 
band. From the definition of the longitudinal energy it is evident that tE l is 
conserved during the transport if we assume that the total energy and the in-plane 
momentum q are conserved and that mt is independent of  z . As we will see, these 
assumptions considerably simplify all further calculations, since the transmission 
function ( ) ( )q lT E T E=  will only depend on the longitudinal energy, having no 
explicit dependence on the in-plane momenta q . According to our mean field 
approach for the electron-electron interaction the electrostatic potential elU eφ= −  
can be obtained from the Poisson equation 

   ( )
0

1( ) ( ) ( ) ( )impz z en z z
z z
ε φ ρ

ε
∂ ∂

= −
∂ ∂

 ,    (3) 

where ( )zε denotes the, in general, z -dependent static dielectric constant, 0ε  is 
the permeability of the vacuum, ( )imp zρ  is the fixed impurity charge density of the 
structure, and ( )n z  is the electron density. The Poisson equation (3) is nonlinearly 
coupled to the envelope function equation (2) via the particle density ( )n z , since 
the electron density profile of the structure is established by occupying the energy-
dependent scattering states '(z) according to the distribution 
functions of the electron reservoirs in the emitter and collector leads. Hence, the 
coupled Schrődinger-Poisson system has to be solved in a selfconsistent way, 
which can be done iteratively by alternately solving both equations and using the 
solution of one equation as input for the other, until convergence is reached.  

In order to solve the Schrődinger equation (2) and to find the transmission 
function ( )lT E  we introduce here the transfer matrix technique (see (5-7). The 
basic idea of the method is to divide the z-axis into a sequence of regions where the 
solution can be obtained analytically. These local solutions are then composed to a 
global one by using the continuity conditions of the wave function between the 
different regions. Let us assume that we have n  different layers with different 
effective masses im  and constant effective potentials iV  in each layer. The solution 
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for each individual layer 1i iz z z− ≤ ≤  can then generally be written as the sum of 
left and right moving plane wave states 
   * exp( ) exp( )i i i i i i i iA B A ik z B ik zϕ ϕ ϕ= + = + −    (4) 

with 02 ( ) /ik m V E= − h  and ,i iA B  denoting the amplitudes of right and left 
moving waves, respectively. The continuity of the wave function and the 
conservation of the probability current leads to the system 

    
1

1

( ) ( ),
1 1( ) ( ).

i i i i

i i
i i

z z
d dz z

m dz m dz

ϕ ϕ

ϕ ϕ

+

−

=

=
        (5) 

These relations between neighboring layers can be rewritten in matrix form, 

  1
1

1

( ) ( ) , 1,..., 1i i
i i i i

i i

A A
U z U z i n

B B
+

+
+

⎛ ⎞ ⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
   (6) 

with the matrix 

   ( ) ( )( )
'/ '/

i i
i

i i i i

U z
m m

ϕ ϕ

ϕ ϕ

+ −

+ −

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

,  (7) 

where the prime denotes the derivative with respect to z . Starting with 1i = , Eq. 
(6) allows to express the transition amplitudes of the second layer as a function of 
the amplitudes of the first one, 1

2 2 1 1 1 1( ) ( )C U z U z C−= , using the vector notation 
( , )i i iC A B= . The matrix 1

1 2 1 1 1( ) ( )M U z U z−=  is called a transfer matrix between 
the first and second region since it connects the corresponding amplitudes. 
Repeating successively this procedure for 2,..., 1i n= − finally allows to correlate 
the amplitudes of the last layer with those of the first one: 

    1

1

,n n

n n

A A
M

B B
−

−

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
      (8) 

where we have introduced the composed transfer matrix, 
 1 1

1 1 1 2 2 2 2
1, 1

( ) ( ) ... ( ) ( )n n n n i
i n

M U z U z U z U z M− −
− − −

= −

= ⋅ ⋅ = ∏ . (8’) 

Hence, the total transfer matrix can be composed by the individual transfer 
matrices iM  just by using conventional matrix multiplications. The amplitudes 1C  

are determined by the boundary conditions of the Schrődinger equation. For 
instance, if we assume only impinging electrons from the left we can set 1 1A =  
and 0nB = . Using the relation 1nC MC=  leads to 1 21 22/B M M=  with ijM  

denoting the matrix elements of M . The knowledge of the first layer 
amplitudes 1C  allows to successively calculate all other layer amplitudes 
( 2 1 1 3 2 2, ,...C M C C M C= = ), constructing in this way the envelope function 
throughout the whole structure.  
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The transfer matrix connects the left and right amplitude coefficients of the 
structure. This representation is not unique and it is often more convenient to 
connect the incoming and outgoing amplitudes by the scattering matrix 

   1 1 1'
'n n n

B A Ar t
S

A B Bt r
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 .  (9) 

The S -matrix is a natural representation for scattering problems, since the 
diagonal elements are given by the reflection amplitudes r  and 'r  for waves 
coming from the left and right hand side of the sample, respectively, and the off-
diagonal elements are related to the wave transmission amplitudes t  and 't . This 
physical interpretation of ijS j becomes immediately evident by recognizing that the 
outgoing amplitudes can be always composed by reflected and transmitted parts of 
incoming wave amplitudes of electrons impinging from the same and opposite 
side, e.g., ( 1 11 1 12 1 'n nB S A S B rA t B= + = + . By using Eqs. (8) and (9) the transfer 
matrix can be also expressed in terms of these wave amplitudes 

  
1 1

1 1

'( ') '( ')
( ') ( ')

t r t r r t
M

t r t

− −

− −

⎛ ⎞−
= ⎜ ⎟

−⎝ ⎠
. (10) 

It should be noted that for the general case of N  incoming channels the 
amplitudes 1 1, , ,n nA B A B  become complex vectors of length N  and the 
transmission and reflection amplitudes are replaced by N N×  matrices. The 
elements of the transfer matrix are not independent due to the flux conservation 
and other physical symmetries. For instance, for symmetric structures time reversal 
symmetry leads to the relation ( ')Tt t= , where the superscript T denotes 
transposition of the matrix. In the simple one-dimensional case, as considered here, 
this simplifies to 't t=  confirming the intuitive expectation that the transmission 
amplitude is the same for left and right incident electrons of equal energy, since the 
left-moving electron follows the time-reserved trajectory of the right moving one.  

If the transmission matrix is known, the single particle transmission function 
( )lT E  can be easily obtained as follows. Physically the transmission function is 

defined as the ratio of the transmitted to the incident probability flux of a particle: 
/trans incT f f= . Similarly, the reflection coefficient is defined by /refl incR f f=  with 

frefl denoting the reflected probability flux. Conservation of the total particles flux 
demands that 1T R+ = . The incident probability flux is given by the squared wave 
amplitude times the group velocity of the incident electron, which we assume here 
to impinge from the left, 2

1 1 1| | /incf A k m= h , and the reflected and transmitted 
fluxes are accordingly determined by 2

1 1 1| | /reflf B k m= h  and 2
1| | /trans n nf A k m= h . 

With these definitions the transmission function reads as 
2

1 1
2

1 1

| |
( )

| |
n

l
n

k m A
T E

k m A
= . 
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By applying the corresponding boundary conditions of left incident electrons 
( 1 1, 0nA B= = ) and by using the relation 1nC MC=  we obtain 

1
22

det
n

MA A
M

=  

The determinant of the transfer matrix results in 1 1det /n nM k m k m= , since 
one easily finds 

1 1
1 1 1 1 1 1det[ ( ) ( )] 1, det[ ( ) ( )] /i i i i n n n nU z U z U z U z k m k m− −
− −= =  

 which can be easily verified by using the explicit expressions for M  and iU  

stated in Eq. (8) and (8’), respectively. With this the transmission function can 
finally be written as 

  1
2

1 22

1( )
| |

n
l

m

k m
T E

k m M
= . (11) 

An important point to note here is that the transmission function can also be 
defined as the squared current transmission amplitude 2| |T t= % . The current 

transmission amplitude t%  is related to the wave transmission amplitude t , which 
we have introduced in the definition of the S -matrix in Eq. (9), by /L R L Rt t v v→=% , 
where Lv , Rv  are the left and right side group velocities. The renormalized 

scattering matrix based on current amplitudes, /ij ij i jS S v v=  , has the advantage 
of being unitary due to current flux conservation. With this it follows that 

2( ) ( / ) | |k LT E v v t= , which is consistent with our previous results Eq. (10) and Eq. 

(11) by taking into account that 't t=%  and, hence, ' / /L R R Lt v v t v v=  according 
to time reversal symmetry 
 In order to investigate the basic physics of resonant tunneling we apply these 
general results to the special case of a double barrier structure. The typical 
appearance of the transmission function versus the electron’s incident energy show 
its strongly “spiky” characteristic, the local density of states of the conduction 
electrons, in which the forming of quantum well states and their energetic 
broadening become clearly apparent. Since such a double-barrier structure consists 
of two single barriers in series we can calculate the total transmission matrix M  
by using the composition law 1 2M M M= , where 1M  and 2M  are the transfer 
matrices of the first and second single barrier. Using the general expression given 
in Eq. (10) the composed transmission amplitude t  results in 1 2 1 2( ) /(1 ' )t t t r r= − , 
where ,i it r  and 'ir denote the amplitudes of the single barriers 1,2i = i = 1, 2. The 
transmission function is given by the squared current transition amplitude 
  2 1 2

1 2 1 2

( ) | |
1 2 cos

R
l

L

v T T
T E t

v R R R Rθ
= =

− +
  (12) 



 114 

with 2
1 1/ | |LT v v tω= , 2

2 2/ | |RT v v tω=  with vω  denoting the group velocity in the 
well, 2 2| | | ' | , 1,2i i iR r r i= = =  and  θ  is the phase of 1 2'r r+ . The phase shift  θ  
corresponds to the phase acquired by the electron when it makes one round-trip 
between the two barriers, which means that the electron is reflected once from each 
barrier before transmitting the structure. The analytical form of the transmission 
function 1T , 2T  for the single barriers is easily obtained from the transfer matrix 
technique showing an exponential dependence on the barrier width W  in the limit 
of thick and/or high barriers 1bWk , where 02 ( ) /bk M V E= − h . The 
expression, Eq. (12), for the composed transmission function of the double barrier 
structure can be further simplified if we assume, as is normally the case, that 1T , 

2T , and consequently the reflection coefficients are of the order of unity, 

1 2, 1R R ≈ : 

 ( ) ( )

( )

2 1 2
2

1 2 1 2

1 2
2

1 2

( ) | |
1 2 1 cos

.
[ / 2] 2[1 cos ]

R
l

L
l

l

v T T
T E t

v R R R R E

T T
T T E

θ

θ

= = ≈
− + −

≈
+ + −

 (13) 

Resonance occurs when the denominator becomes very small, which means thatθ  
is a multiple of 2π . At resonance 2

1 2 1 24 /( )resT T T T T= + , which approaches unity 
for the case of symmetric barriers 1 2T T= . In the off-resonant case, 1 2 / 4T T T≈ , 
indicating that the double barrier behaves as two independent barriers. Close to the 
resonance, 0lE E= , we can further simplify Eq. (13) by performing a Taylor series 
expansion of the cosine function  

[ ] ( )
9

2

2
0

1 11 cos[ ( )] ( ) 2
2 2l l l

l E

dE E n E E
dE
θθ θ π

⎛ ⎞
⎜ ⎟− ≈ − ≈ −
⎜ ⎟
⎝ ⎠

 

This yields the known formula for the transmission function near the 
resonance, 

  
0

1 2
2 2

1 0 1 2

( ) , ,
( ) [( ) / 2]

l
l j i

E

dE
T E T

dE E
γ γ

γ
θγ γ

≈ =
− + +

   (14) 

This formula was first derived in studying the decay of resonant states in nuclear 
problems and is often also written in the form, 

1 2
0

1 2

( )lA E E
γ γ

γ
γ γ

= −
+

 

with the Lorentzian function 

1 22 2( ) ,
( / 2)

A γξ γ γ γ
ξ γ

= = +
+
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This analytical expression shows that the transmission function is sharply peaked 
around the resonant energy 0E  and that its broadening is determined by γ , which 
corresponds to the full width at half maximum (FWHM) of ( )A ξ . Physically 1 /γ h  
and 2 /γ h  represents the rate at which an electron leaks out of the quantum well 
through barrier 1 and 2, respectively. To make this more plausible one can roughly 
approximate the acquired round-trip phase by 2k aωθ ≈ , where kω is the 
longitudinal momentum of the electron in the quantum well and a  is the width of 
the well. Hence, 

0
/ (1/ )( / ) | (1/(2 ))( / ) | ( /(2 ))

ri l E l E i idE d dE dk T v a Tω ωγ θ= ≈ =h h h , 
where vω  is the group velocity of the electron in the quantum well at the resonant 
energy level. The attempt frequency /(2 )v aω  tells us the number of escape 
attempts of the electron per second through a single barrier when the electron 
bounces forth and back in the quantum well. Multiplying the attempt frequency by 
the transmission probability of the single barrier gives us the rate of successful 
escapes of the electron per second. Hence, the lifetime of the electron is given by 
the inverse of the total escape rate 1 2/ ( ) /γ γ γ= +h h . Since is the FWHM of the 
resonant transmission peak this again leads to the general result that the energetic 
broadening of the quasibound state 0E  E0 is inversely proportional to the lifetime of 
the electron in this state. If the transmission function is known the current density 
can be calculated by using the Landauer-B¨uttiker formula, represented at the 
beginning of this section. In the case that the transmission depends only on the 
longitudinal energy, as considered here,  

3 3
0 0

4 ( ) [ ( , ) ( , )]
(2 ) l l t L l t R l t

emj dE T E dE f E E f E Eπ
π

∞ ∞

= −∫ ∫h
,        

where we have rewritten the summation over the in-plane momentum q q in the 
usual integral form,  

2( ) ( )
(2 )q x y l

q

ST E T dq dq T E
π

= =∑ ∫  

with S  denoting the cross sectional area of the structure, and transforming to the 
longitudinal and transversal energy as integration variables. Assuming Fermi-Dirac 
distributions in the leads 

( ) 1
, ,1 exp[( ) / ]L R l t L R Bf E E kμ θ

−
= + + −  

where ,L Rμ  are the chemical potentials in the left and right lead ( R L aeVμ μ= − μR 

= μL − eVa), θ  denotes the reservoir temperature to avoid confusion with the 
transmission T , and Bk  is the Boltzmann constant, the integration over the 
transversal energy is easily evaluated to give the Tsu-Esaki formula [6]: 



 116 

  2 3
0

1 exp[( ) /( )]
( ) ln

1 exp[( ) /( )]2
L l BB

l l
R l B

E kemk
j dE T E

E k
μ θθ
μ θπ

∞ ⎛ ⎞+ −
= ⎜ ⎟+ −⎝ ⎠

∫h
  (15) 

The logarithmic term is the so-called supply function which determines the energy 
interval of interest. The range of electron energies, which can contribute to the total 
current, is restricted to the energy window between the left and right chemical 
potentials [ ]L Rμ μ⋅  plus/minus several Bk θ  due to the thermal smearing of the 
Fermi-Dirac functions in the leads. The dominant contributions to the current 
integral are given by the resonant peaks of the transmission function. 

If we assume that there is only one single transmission peak in the energy 
range of interest and that ( )T E  is very sharply peaked around 0E  due to thick 
and/or high barriers we can approximate its Lorentzian form by a Dirac-Delta 
function by using the asymptotic limit 0( )lE Eδ − =  0 0(1/ 2 ) lim ( )lA E Eγπ →= − . 
With this approximation the current density results in 

  1 2
02

1 exp[( ) /( )]
ln

1 exp[( ) /( )]
L l B

B
R l B

E kej k D
E k

μ θγ γ
θ

μ θγπ
⎛ ⎞+ −

= ⎜ ⎟+ −⎝ ⎠h
, (16) 

where we have introduced the constant density of states of a two-dimensional (2D) 
electron gas 2

0 /D m π= h . In the special case of zero temperature, 0θ = , this 
further simplifies to the expression 

 1 2
0 0 02 ( ( )), 0L a

ej D E V E
γ γ

μ μ
γπ

= − < <
h

, (16’) 

where the voltage dependence of the current is “hidden” in the voltage-dependent 
resonant energy level 0 ( )aE V , which is shifted energetically downwards by the 
applied bias aV . If we assume, in a first approximation, that the voltage is equally 
divided between the barriers the voltage dependence of the resonant level can be 
explicitly written as 0 00( ) / 2a aE V E eV= −  with 00 0 ( 0)aE E V= =  denoting the 
resonant level position when no bias is applied. Equation (V.34) shows that the 
current initially increases linearly with the applied voltage, reaching its peak value 

1 2
0p L

ej D
γ γ

μ
γ

=
h

 

corresponding peak voltage of 02peV E= . At higher voltages the quasibound state 
becomes off-resonant causing a sudden cutoff of the current, as long as no other 
higher lying resonant level is pulled down into the energy window of interest 
 

3. Sequential Tunneling 
In our discussion of resonant tunneling so far we assumed that inelastic, 

phase-breaking scattering processes are negligible, which enables us to apply a 
wave function treatment of the underlying electron transport. However, if 
scattering is important the electrons will lose their phase memory during 
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propagation and the transport becomes incoherent. In this case one can use the 
sequential tunneling model introduced by [8]. In a sequential tunneling process 
electrons tunnel through the first barrier, reside some time in the quantum well 
where they lose coherence by phase-randomizing scattering processes and, finally, 
tunnel out through the second barrier by a second uncorrelated tunneling process. 
The regime of sequential tunneling can be characterized by the condition phτ γ h  
saying that the lifetime / γh / of the electrons in the quantum well is much greater 
than the phase breaking time phτ .  

As argued by [8], NDR generally follows from the reduction of the 
dimensionality as the electrons tunnel from a three dimensional Fermi sea in the 
emitter to a 2D electron gas in the quantum well. Assuming an energy and in-plane 
momentum conserving tunneling process leads to the constraining 
condition 2

0/ 2lE k m E= =h , where 0E  is the energy of the resonant level in the 
well, measured from the bottom of the emitter conduction band. Therefore, only 
electrons with the fixed longitudinal momentum 0 02 /zk k mE= = h  can tunnel 
from the emitter Fermi sea into the quantum well. The maximum current is reached 
at the equatorial plane 0 0k = . If 0 0E <  no resonant tunneling from the emitter 
into the well is possible anymore, which leads to an abrupt drop of the current 
giving rise to NDR. This explanation shows that for the occurrence of NDR it does 
not matter if the electrons propagation is coherent or not.  

To calculate the current in the sequential tunneling regime we can use a 
master equation approach, since the in- and out-tunneling processes become 
uncorrelated. For this purpose, we introduce a single particle distribution function 
fα  for the electron states |α >  in the quantum well. The states | | ,m qα >= >  are 

characterized by the in-plane momentum q  of the electrons and the subband index 
m , which enumerates the well quasibound states starting from the ground state 

0m = . In real-space representation the state |α >  reads 
, | exp( ) ( )mr z iqr zα φ< >= , where ( )m zφ  is the quasibound wave function. In the 

leads the electrons occupy plane-wave Bloch states, shortly denoted by | k > . With 
these definitions the master equation for the quantum well distribution function 
reads as 

    , ,
,

(1 ) (1 )j j j j
k k k k

j k

f
f f f

t
α

α α α
∂

= Γ − −Γ −
∂ ∑ ,    (17) 

where j
kf  denotes the electron distribution function in the left and right lead 

( 1, 2 ,j L R= =  and ,
j

kαΓ  denotes the transition rate from state |α >  in the lead j  
to the state |α >  in the quantum well. The physical meaning of the two terms on 
the right hand side of Eq. (17) is easily understood. The first term is the gain term 
which describes the tunneling of the electrons from the leads into the quantum well 
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state |α >  by taking into account the Pauli blocking factor (1 )fα− , where as the 
second term describes all loss processes due to tunneling out of the state |α > . The 
transition rate ,

j
kαΓ  can be calculated by using the transfer Hamiltonian approach 

[9,10], where it  was first developed for describing single barrier tunneling and has 
been extensively used in the context of transport in superconducting tunnel 
junctions.  

In the case of single barrier systems the basic idea of the method is to 
represent the total Hamiltonian of the system by L R TH H H H= + +  , where LH  

and RH  describes the Hamiltonian of the left and right subsystem and TH  is the 
tunneling Hamiltonian describing the transport between the two subsystems. The 
main advantage of the method is that if the coupling between the two subsystems is 
weak, TH  can be treated as a perturbation term, which allows to use perturbative 
techniques developed in many-body theory. In our case of a double barrier 
structure the total Hamiltonian consists of three subsystems: the emitter LH , the 
well Hω , and the collector RH  Hamiltonian, which are connected by two 
tunneling Hamiltonians j

TH  for the left and right barrier: L RH H H= + +  
L R
T TH H Hω+ + + . Assuming a free electron gas in the emitter and collector the 

corresponding Hamiltonians read ,
,

L R
L R k k k

k

H E c c+= ∑ and the well Hamiltonian is 

given by H E c cω α α α
α

+= ∑ with ,kc cα  and ,kc cα
+ +  denoting the annihilation 0E and 

creation operators of the leads and well states, respectively. The 
energies, , 2 2

,( ) / 2 ( ) / 2L R
k t z L RE k m k m U= + +h h , and 2( ) / 2E q mα = +h  Uω+   

include the electrostatic energies of the reservoirs ,L RU  and the wellUω . By 
measuring the energy from the conduction band edge of the emitter it follows that 

0LU =  and RU eVα= − . The electrostatic potential of the well Uω  depends on the 
space charge density in the structure, and has to be calculated in general in a self-
consistent way. The tunneling Hamiltonians are formulated in the standard form, 

,
,

. .j j
T k k

k

H t c c h cα α
α

+= +∑ where . .h c  abbreviates the hermitian conjugate of the first 

term and ,
j

ktα  are the tunneling matrix elements. If we assume that the leads are 
weakly coupled to the well, the tunneling Hamiltonian can be treated as a 
perturbation term and the transition rates between the well and the lead states 

2 2

, ,
2 2| | ( ) ( )j j j

k t k k kk H E E t E Eα α α α
π πα δ δΓ = < > − = −
h h

. 
By assuming that the in-plane momentum is conserved during the tunneling 
process this becomes 

2

, ,(2 / ) ( ) ( )
t

j j
k m z k q kt k E Eα απ δ δΓ = −h with the zk dependent 



 119

tunneling matrix element ( )j
m zt k , which physically corresponds to the overlap of 

the lead and well wave function in the barriers and is given by [9]  
2

* *( ) ( ) ( ) ( ) ( )
2 z z

j j j
m z k m m k

d dt k z z z z
m dz dz

ψ φ φ ψ⎡ ⎤= −⎢ ⎥⎣ ⎦

h . 

Here, 
z

j
kψ  is the longitudinal part of the lead wave function, which is exponentially 

decaying in the barrier regions, the superscript *  denotes complex conjugation, 
and the expression has to be evaluated at some point z0 inside the j th barrier-
region. The total leaking rates from a certain quantum well state | | ,m qα >= >  
through the left and right barriers into the leads are defined by 2

2
, 0

/
z

m
k

k k
αγ

>

= Γ∑h  

2
2

, 0

/
z

m
k

k k
αγ

>

= Γ∑h which can be readily simplified to 2/( 2 )m j
j mmL Eγ = h , 

2| | /(2 )j j
m m m jE k m E U Uω= = + =h  with L  denoting the length of the leads. With 

these definitions and by exploiting  the microscopic reversibility of the tunneling 
processes j j

k kα αΓ = Γ , the master equation Eq. (17) can be written in the form  

[ ( ) ]
j

m
j

j

f
f E f

t
α

α α
γ∂

= −
∂ ∑

h
. 

If we now assume, as before, that jf  are given by Fermi-Dirac distributions and 
that there is only one resonant level 0E   in the energy range of interest we can 
obtain a simple rate equation for the quantum well particle density, which is 
defined by n fα

α

= ∑ . Summation of the master equation over all well states 

| , qα α= >  yields the rate equation  
    1 1 2 2/ ( / ) ( / ) ( / )dn dt n n nγ γ γ= + +h h h .                        (18) 

with 

0( ) ln 1 exp[( ) /( )]j j B j Bn f E D k E kα α
α

θ μ θ⎡ ⎤= = + −⎣ ⎦∑  

and 0
j jγ γ= , 1 2γ γ γ= + . This expression confirms the naive expectation that at 

steady state the quantum well has to establish a “compromise” between the 
opposing efforts of equilibrating with both leads at the same time and, hence, the 
particle density becomes a balanced sum of the lead particle densities weighted 
according to the coupling strengths to the particle reservoirs. The steady state 
particle density n0 follows from the condition / / 0dn dt j dj dt= ∇ = =  whence 

0 1 1 2 2( ) /n n nγ γ γ= + . Therefore, it does not matter at which z -point the current 
density is evaluated, and calculating the current at the first barrier yieldswhich by 
using Eq. (18) results in 
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1 2
0 0

1 exp[( ) /( )]
ln

1 exp[( ) /( )]
L l B

B
R l B

E kej k D
E k

μ θγ γ
θ

γ μ θ
⎛ ⎞+ −

= ⎜ ⎟+ −⎝ ⎠h
. 

which is exactly the same result as we get for the coherent model in Eq. (16) in the 
limit of a delta-like resonant level. This limit is physically reasonable, since in 
order to apply the transfer Hamiltonian formalism we had to assume that the well is 
only very weakly coupled to the reservoirs and accordingly the electrons can stay a 
long time in the well before they tunnel out. A long lifetime in the well 
corresponds to only a very narrow energetic broadening of the quasibound states 
resulting in a delta-like resonance.  

Thus sequential and coherent tunneling models give essentially the same 
values for resonant currents, although the underlying physical pictures are very 
different. In particular the peak current of the IV-characteristic has been shown to 
be insensitive to scattering. This conclusion can be justified by using a more 
general model that includes both a coherent and sequential part of the tunnel 
current (see [11]), showing that scattering processes effectively lead to an 
additional broadening of the resonant level. This broadening hardly influences the 
total current density, bearing in mind that the current is proportional to the folding 
integral of the transmission function with the supply function. In contrast to the 
peak current, the off-resonant valley current depends strongly on the presence of 
inelastic scattering processes.  
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