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Abstract. The article tackles the strongly .4 Z-hard permutation flow shop problem. The
fragmentary structure of the problem is pointed out. The evolutionary fragmentary approach for
optimal solution is proposed. The testing of evolutionary fragmentary algorithm on instances’ set from
the ORLib [1] library is conducted.

INTRODUCTION

In 1954 Selmer Martin Johnson proposed an algorithm for finding optimal solution to
a problem [2|, which has been known since as flow shop problem.

Suppose that n jobs Ji(i=1,...,n) are to be executed on m
machines M;(j =1,...,m). Each job consists of m operations O;i,...,0O;n. Each
operation O;; is associated with the processing time p;;. Every job is processed on all
machines in the order of the machine indexing. It means that the execution of the
operation O;;;1 is not allowed until the execution of the operation O;; is finished. By the
schedule we mean the mapping from the set of the job numbers (i, j) to the completion
times set C;;. In the given problem, we are supposed to find such a schedule in which
comletion time of the last job on the last machine is minimized. Preemption, processing
more than one job on one machine at a time, and execution one job on more than one
machine at a time are not allowed.

According to the notation [3] the problem under consideration is denoted F'||Cyuqs-
The problem has (n!)™ feasible solutions, hence, in the literature the easier case is studied,
which admits n! schedules with the same order of processing on all machines (permutation
schedules) and is denoted F|prmu|Cyu... The latter case is considered in the following.

The exact algorithm proposed by Johnson solves the problem to optimality for m = 2
case and for special case with m = 3. All the efforts to find exact polynomial algorithm
for m > 2 were unsuccessfull. With the advent of the first results in the early 70-s [4, 5, 6] in
computational complexity theory that fact had obtained an explanation. .4 &?-hardness
in the strong sense was proved in [7]. Since then researchers’ efforts have been focused on
approximation and heuristic algorithms design.

Some time after that it has become clear that some problems are hard not only for
solving to optimality but are hard for approximating. It was proved [8| for considered
problem there is no (1 + ¢)-approximation algorithm for 1 + ¢ < 5/4. Furthermore, so far
the problem whether there exist polynomial approximation scheme for Fm||C),., where m
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is fixed is open. Hence, the design of algorithms with no theoretical bounds and worst-
case ratios, which solve complex practical problems, is now urgent. As such we consider
stochastic local search [9] algorithms: evolutionary algorithms, taboo search, simulated
annealing, ant colony systems, variable neighbourhood search.

The survey of local search algorithms for flow shop problem can be found in [10]. The
comparative analysis of the most efficient local search methods from the literature, called
also metaheuristics, was conducted in [11].

The goal of the paper is the inquiry of the new solution approach to combinatorial
problems based on the combination of the evolutionary and the fragmentary approaches.

1. THE FRAGMENTARY STRUCTURE

Definition 1. Fragmentary structure [12] is tuple (27, %, %), where 2~ — a finite set of
the fragments, % — a family of subsets of 2", Z — a combining rule, i.e. the decision rule
for recognizing whether a union of subsets of 2" is a feasible set of %.

F||Cpaz can be considered as the fragmentary structure. By fragmments we will have
any tuples of jobs, respectively by the elementary fragments we will mean jobs. The rule
of combination — no job repetition in the combined tuples. Maximal by inclusion fragment
will be a feasible solution the problem under consideration. So the feasible solution can
be considered as certain fixed permutation of jobs.

In the papers [12, 13] it has been showed that the search of feasible solutions
can considered in the fragmentary structure framework. For the costruction of feasible
solutions the fragmentary algorithm .# is applied. In the general case, the input of .%#
algorithm are a tuple I = (iy,...,4,) and the empty solution set .. The input is looked
through by .# in the machine indexing order. On every step in the tuple .# the first
element is looked for which the combining rule is fulfilled. The found elementary fragment
is added into .. The procedure is repeated until the maximal by inclusion fragment is
built.

2. THE EVOLUTIONARY FRAGMENTARY ALGORITHM

The fragmentary algorithm allows to obtain only some feasible solutions for the
optimization problem. For finding optimal solution of F|prmu|Ci,.. the combination
evolutionary and fragmentary approaches is proposed. A few analogous approaches
grounded on the evolutionary mechanism and performance evaluation of such approaches
are considered in [14, 15].

The description of evolutionary fragmentary algorithm (EVF algorithm), explored
in the work, is the following. The feasible solutions of the problem are presented by job
number permutations, which form the set of all permutations I, ..., I,,;. Each permutation
will be treated as chromosome. The search can be described as the following.

Stage 1. Initialization.

The initial population, consisting of N chromosomes, is generated at random.

Stage 2. Selection.

Select K pairs of parents from the current population for reproduction. The selection
is random without replacement.
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Stage 3. Recombination.

The recombination in the EVF algorithm is implemented by the following n-step
procedure. All the pairs of chromosome-parents’ I-tuples are being looked through. On
every step the minimal element from the first two elements of I-tuples’ pair is chosen and
is inserted into tuple-offspring. The inserted element is deleted from both tuples-parents.
For instance, in the case with m = 5 chromosome-parents [12543] and [53142] yield the
chromosome-offspring [12534].

Stage 4. Mutaion.

The mutation is implemented by transposition of jobs’ indexes from two randomly
selected positions in chromosome.

Stage 5. Replacement.

The chromosomes-offsprings are added in the current population. The shrinking of the
current population to predefiened size is provided by sequential deletion of chromosomes
with maximal criterion’s values, where the criterion’s value is computed by the following
recursive formula: C; ; = maz{Ci_1;,C;;_1} + pij

Stage 6. Termination.

If predefiened termination criterion is achieved, then stop the algorithm, otherwise
go to the second stage. The termination criterion, used by authors, is the number of
generations in evolution, i.e. the number of the search stages repetitions.

3. THE TEST RESULTS

The necessity of test conduction is explained by the difficulties and, sometimes, by
imposibility of theoretical estimation of stochastic local search algorithms performance
derivaton in general, and of evolutionary algorithms, in particular.

For the EVF algorithm performance verification the test was being conducted on
well-known in the Taillard’s [16] problem set. The problem set comprises twelve groups
consisting of ten instances each with the numbers of jobs from 20 to 500 and the number
of machines from five to 20. It is the most used in the literature for F|prmu|Ci,q. testing.
Thus, there appears an opportunity for the comparison of the proposed algorithm with
already existing and tested ones on the given set.

EVF algorithm was tested against random search (RS) algorithm as well as NEH
algorithm [17], which is curently considered the best performing deterministic heuristic.

All the three algorithms were implemented in Visual Basic for Applications and
run on computer with Celeron procesor 1800 Mhz and 256 MB of the main memory.
The termination criterion was chosen to be the number of generations. achieved by the
algorithm during its run.

The algorithms’ performance was measured by relative deviance (RD) from optimum
(OPT) or the least known upper bound [18] of the value (A) found by given algorithm:

_ A-OPT
RD = 49T . 1p.

In Table 1 each group of problems is denoted as n x m, where n is the number of jobs,
m is the number of machines. In it RD for each instance is averaged on the group size. For
EVF algorithm in the table in the parentheses the number of generations during which it
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Group of problems | RS | NEH EVF
20 x 5 6.95 | 2.46 | 1.25 (300)
20 x 10 10.29 | 4.88 | 2.86 (300)
20 x 20 8.52 | 3.72 | 3.28 (300)
50 x 5 5.18 | 0.81 | 0.92 (300)
50 x 10 14.39 | 5.23 | 4.51 (300)
50 x 20 16.71 | 6.21 | 5.85 (300)
100 x 5 4.14 | 0.67 0 73 (500)
100 x 10 10.74 | 2.45 4 (500)
100 x 20 16.85 | 5.72 6 08 (500)
200 x 10 8.74 | 1.8 |1.52 (1000)
200 x 20 15.66 | 4.66 | 4.95 (1000)
500 x 20 11.79 | 2.41 | 3.74 (1000)
Average 10.83 | 3.42 3.17

Tabauya 1. The Test Results for F|prmu|Cla.

was run is pointed out. From Table 1 it can be concluded that in the average evolutionary
fragmentary algorithm has showed the higher results than other two tested algorithms.

CONCLUSION

The basic result of the paper is the new approach to scheduling problems solution. The

fragmentary structure has been showed which allows the application of EVF algorithm.
The testing of the algorithm on the standard problem set is fulfilled.

From the test results, represented in Table 1, it appears promising to apply the

proposed aproach to scheduling problems solution.
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