# ON CHEBYSHEV POLYNOMIALS AND TORUS KNOTS 

A.M. GAVRILIK, A.M. PAVLYUK

PACS 02.10.Kn,02.20.Uw
Bogolyubov Institute for Theoretical Physics, Nat. Acad. Sci. of Ukraine
(C) 2010

(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: omgavr@bitp.kiev.ua; pavlyuk@bitp.kiev.ua)


#### Abstract

In this work, we demonstrate that the $q$-numbers and their twoparameter generalization, the $q, p$-numbers, can be used to obtain some polynomial invariants for torus knots and links. First, we show that the $q$-numbers, which are closely connected with the Chebyshev polynomials, can also be related with the Alexander polynomials for the class $T(s, 2)$ of torus knots, $s$ being an odd integer, and used for finding the corresponding skein relation. Then, we develop this procedure in order to obtain, with the help of $q, p$ numbers, the generalized two-variable Alexander polynomials and to prove their direct connection with the HOMFLY polynomials and the skein relation of the latter.


## 1. Introduction

The relevance of knots and links to many physical [13] and biophysical [4] systems implies the importance of investigating the properties and characteristics of knotlike structures. The concepts of knot theory play the important role in the models of statistical physics [5], quantum field theory [6], quantum gravity [7], and in a number of other physical phenomena. In the preprint of 1975 , it was proposed by L.D. Faddeev that knot-like solitons could be realized in a nonlinear field theory [8], in a definite model defined in $3+1$ dimensions. The model includes the standard nonlinear $O(3) \sigma$-model, which admits static solitons in $2+1$ dimensions, and a Skyrme term. In the Faddeev model, the static solitons are stabilized by the integer-valued Hopf charge. Interest in the model was renewed in 1997 after the article of Faddeev and Niemi in [9]. They have made first attempts at a numerical construction of solitons with the minimal energy in the form of knots. Battye and Sutcliffe demonstrated that, for a higher Hopf charge, the twisted, knotted, and linked configurations occur [10]. In particular, they showed that the minimal energy soliton with Hopf charge seven is a trefoil knot.
R.J. Finkelstein has proposed a field theory model, in which the local $S U(2) \times U(1)$ symmetry group of the standard electroweak theory is combined with the global quantum group $S U_{q}(2)$, the symmetry group of knotted solitons [11, 12]. This allows one to incorporate a $q$ soliton into field theory and to replace point particles by
knotted solitons. The more recent discussion on the role of field theory knots both in superconductivity theory and in the Yang-Mills theory can be found in [13].

In the context of modeling the static properties of hadrons, it was shown in [14] (see also [15]) that global quantum groups $S U_{q}(n), n=2, \ldots, 6$, can be successfully applied to flavor symmetries, and certain torus knots put into correspondence, through Alexander polynomials, with vector quarkonia.

Various polynomial invariants are known to be one of the basic characteristics of knots and links (see e.g. [16]). Among them, the Alexander polynomials, Jones polynomials, and HOMFLY polynomials are the best studied and play the important role in the knot theory and its applications.

To describe some properties and characteristics of knots and links, the classical Chebyshev polynomials can be used. For example, in [17], the Chebyshev polynomials were utilized for the polynomial parametrization of noncompact counterparts of torus knots. It was shown how to construct the Chebyshev model associated with any knot.

In this paper, we concentrate on studying the polynomial invariants such as the Alexander and HOMFLY polynomials and their close connection with the Chebyshev polynomials. We restrict ourselves to the set of torus knots and links and show that a certain rather simple two-variable generalization of the Chebyshev polynomials is well suited for characterizing those knots.

## 2. Alexander Polynomials and a Skein Relation

The Alexander polynomials $A(t)$ for knots and links can be defined (see e.g. [16]) by the skein relation
$A_{+}(t)=\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) A_{O}(t)+A_{-}(t)$
and the condition for the unknot:
$A_{\text {unknot }}=1$.
Using (1) and (2), one can find the Alexander polynomial for any knot or link, by applying to it, in a standard way, the surgery operations of switching and elimination.

From now on, we consider torus knots and links of the type $(s, 2)$, where $s$ is any positive integer. If $s=1$, we have the unknot, the case of $s=2$ corresponds to the Hopf link, $s=3$ to the trefoil knot, and so on. In general, when $s$ is odd, we have the series of torus knots $T(s, 2)$, and if $s$ is even, we have the series of two-component torus links $L(s, 2)$. Here, $s$ equals the minimal number of crossings.

Applying the operation of elimination to $(s, 2)$, one obtains $(s-1,2)$, whereas the switching operation turns $(s, 2)$ into $(s-2,2)$, for $s>2$. This means that $A_{+}(t), A_{O}(t)$ and $A_{-}(t)$ correspond to three successive Alexander polynomials, which allows one to make the following juxtaposition in (1):

$$
\begin{aligned}
& A_{+}(t) \rightarrow \widetilde{A}_{n+1}^{2}(t), \quad A_{O}(t) \rightarrow \widetilde{A}_{n}^{2}(t), \\
& A_{-}(t) \rightarrow \widetilde{A}_{n-1}^{2}(t)
\end{aligned}
$$

Thus, from (1) and (3), one obtains the recurrence relation for the tilded Alexander polynomials for a unified set of torus knots and links of the type $(s, 2)$, (the polynomials are arranged by increasing degrees):
$\widetilde{A}_{n+1}^{2}(t)=\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) \widetilde{A}_{n}^{2}(t)+\widetilde{A}_{n-1}^{2}(t)$.
It is convenient to denote the Alexander polynomials for a subset containing only torus knots (or the subset of torus links) as
$A_{m}^{s, 2}(t) \equiv A_{m}^{s, 2} \equiv A_{m}^{2}$.
Here, $m$ is the degree of the corresponding Alexander polynomial, which has the form of a Laurent polynomial:
$m=\frac{1}{2}(s-1)$.
Since $s=2 m+1$ for both knots and links, the degree $m$ of the Alexander polynomial for knots $T(s, 2)$ is an integer, and $m$ for links $L(s, 2)$ is half-integer. Let us first give the table of the Alexander polynomials $A_{m}^{s, 2}(t)$ for torus knots $T(s, 2) \equiv T(2 m+1,2)$

$$
\begin{align*}
& A_{0}^{1,2}(t)=1 \\
& A_{1}^{3,2}(t)=t-1+t^{-1} \\
& A_{2}^{5,2}(t)=t^{2}-t+1-t^{-1}+t^{-2} \\
& A_{3}^{7,2}(t)=t^{3}-t^{2}+t-1+t^{-1}-t^{-2}+t^{-3} \tag{6}
\end{align*}
$$

$A_{m}^{2 m+1,2}(t)=t^{m}-t^{m-1}+\cdots-t^{-(m-1)}+t^{-m}=$
$=\sum_{i=0}^{m} t^{m-2 i}-\sum_{i=0}^{m-1} t^{m-2 i-1}=\sum_{i=0}^{2 m}(-1)^{i} t^{m-i}$.

The recurrence formula for polynomials (6) looks as (dropping $2 m+1$ in superscript)
$A_{m+1}^{2}(t)=\left(t+t^{-1}\right) A_{m}^{2}(t)-A_{m-1}^{2}(t)$.
Now consider torus links of the type $L(s, 2) \equiv L(2 m+$ $1,2)$, where $s$ is a positive even integer. The degree $m$ of the Alexander polynomial $A_{m}^{s, 2}(q)$ is again as in (5). It is half-integer now. The table shows the Alexander polynomials for these torus links:
$A_{\frac{1}{2}}^{2,2}(t)=t^{\frac{1}{2}}-t^{-\frac{1}{2}}$,
$A_{\frac{3}{2}}^{4,2}(t)=t^{\frac{3}{2}}-t^{\frac{1}{2}}+t^{-\frac{1}{2}}-t^{-\frac{3}{2}}$,
$A_{\frac{5}{2}}^{6,2}(t)=t^{\frac{5}{2}}-t^{\frac{3}{2}}+t^{\frac{1}{2}}-t^{-\frac{1}{2}}+t^{-\frac{3}{2}}-t^{-\frac{5}{2}}$,

$$
\begin{align*}
& A_{m}^{2 m+1,2}(t)=t^{m}-t^{m-1}+\cdots+t^{-(m-1)}-t^{-m}=  \tag{8}\\
& =\sum_{i=0}^{2 m}(-1)^{i} t^{m-i}
\end{align*}
$$

Note that polynomials (8) satisfy the recurrence relation (7) too, though now with half-integer subscripts. So, for torus knots and links of the type ( $s, 2$ ), Eq. (7) describes either three successive torus knots (if $s$ is an odd integer) or three successive torus links (if $s$ is an even integer). Unifying two tables (6) and (8), we have the table of the Alexander polynomials for torus knots $T(s, 2)$ and links $L(s, 2)$, where $s=2 m+1$ is an integer, while $m$ is an integer or half-integer and equals the degree of the Alexander polynomial:

$$
\begin{align*}
\widetilde{A}_{0}^{1,2}(t) & \equiv A_{0}^{1,2}(t)=1 \\
\widetilde{A}_{1}^{2,2}(t) & \equiv A_{\frac{1}{2}}^{2,2}(t)=t^{\frac{1}{2}}-t^{-\frac{1}{2}} \\
\widetilde{A}_{2}^{3,2}(t) & \equiv A_{1}^{3,2}(t)=t-1+t^{-1} \\
\widetilde{A}_{3}^{4,2}(t) & \equiv A_{\frac{3}{2}}^{4,2}(t)=t^{\frac{3}{2}}-t^{\frac{1}{2}}+t^{-\frac{1}{2}}-t^{-\frac{3}{2}} \\
\widetilde{A}_{4}^{5,2}(t) & \equiv A_{2}^{5,2}(t)=t^{2}-t+1-t^{-1}+t^{-2}, \\
\widetilde{A}_{5}^{6,2}(t) & \equiv A_{\frac{5}{2}}^{6,2}(t)=  \tag{9}\\
& =t^{\frac{5}{2}}-t^{\frac{3}{2}}+t^{\frac{1}{2}}-t^{-\frac{1}{2}}+t^{-\frac{3}{2}}-t^{-\frac{5}{2}} \\
\widetilde{A}_{6}^{7,2}(t) & \equiv A_{3}^{7,2}(t)= \\
& =t^{3}-t^{2}+t-1+t^{-1}-t^{-2}+t^{-3},
\end{align*}
$$

$$
\begin{aligned}
& \widetilde{A}_{2 m}^{2 m+1,2}(t) \equiv A_{m}^{2 m+1,2}(t)= \\
& =t^{m}-t^{m-1}+t^{m-2}-\cdots t^{-m}=\sum_{i=0}^{2 m}(-1)^{i} t^{m-i}
\end{aligned}
$$

Two different notations for the Alexander polynomials are related to each other as
$\widetilde{A}_{2 m}^{2 m+1,2}(t)=A_{m}^{2 m+1,2}(t)$.
The recurrence relation for polynomials (9) is given by (4) which immediately follows from the skein relation (1) in view of correspondence (3).

Let us show that (4) can be obtained from (7) as well. To see that, we first write (1) in the general form
$A_{+}(t)=b_{1} A_{O}(t)+b_{2} A_{-}(t)$.
With account of (3), we also have the recursion relation
$\widetilde{A}_{n+1}^{2}(t)=b_{1} \widetilde{A}_{n}^{2}(t)+b_{2} \widetilde{A}_{n-1}^{2}(t)$.
Then we rewrite Eq. (7) in terms of tilded $\widetilde{A}_{n}^{2}(t)$ :
$\widetilde{A}_{n+1}^{2}(t)=\left(t+t^{-1}\right) \widetilde{A}_{n-1}^{2}(t)-\widetilde{A}_{n-3}^{2}(t)$.
The latter in general terms looks as
$\widetilde{A}_{n+1}^{2}(t)=c_{1} \widetilde{A}_{n-1}^{2}(t)+c_{2} \widetilde{A}_{n-3}^{2}(t)$.
From (11) we have
$\widetilde{A}_{n}^{2}(t)=b_{1} \widetilde{A}_{n-1}^{2}(t)+b_{2} \widetilde{A}_{n-2}^{2}(t)$,
$\widetilde{A}_{n-1}^{2}(t)=b_{1} \widetilde{A}_{n-2}^{2}(t)+b_{2} \widetilde{A}_{n-3}^{2}(t)$.
Insert (14) into (11):
$\widetilde{A}_{n+1}^{2}(t)=\left(b_{1}^{2}+b_{2}\right) \widetilde{A}_{n-1}^{2}(t)+b_{1} b_{2} \widetilde{A}_{n-2}^{2}(t)$.
Then we put $\widetilde{A}_{n-2}^{2}(t)$ from (15) into (16)
$\widetilde{A}_{n+1}^{2}(t)=\left(b_{1}^{2}+2 b_{2}\right) \widetilde{A}_{n-1}^{2}(t)-b_{2}^{2} \widetilde{A}_{n-3}^{2}(t)$.
The comparison of (17) and (13) gives
$c_{1}=b_{1}^{2}+2 b_{2}, \quad c_{2}=-b_{2}^{2}$.
From Eq. (18), we have
$b_{1}=\left(c_{1}-2 b_{2}\right)^{\frac{1}{2}}, \quad b_{2}=\left(-c_{2}\right)^{\frac{1}{2}}$.
The latter two formulas which involve general coefficients will be used below (see Section 4). Comparing (12) and (13) yields
$c_{1}=t+t^{-1}, \quad c_{2}=-1$.
With account of (19), this implies
$b_{2}=1, \quad b_{1}=t^{\frac{1}{2}}-t^{-\frac{1}{2}}$,
which coincides with the coefficients in (4). Thus, our statement is proved.

Since formulas (18) and (19) connect arbitrary pairs $b_{1}, b_{2}$ and $c_{1}, c_{2}$, this allows us to gain a general skein relation from the corresponding recurrence relation for the set of torus knots $T(s, 2)$.

## 3. Alexander Polynomials from Chebyshev Polynomials

In this section, we describe the connection between Alexander polynomials and Chebyshev polynomials, using the $q$-numbers. The $q$-number corresponding to the integer $n$ is defined as (see, e.g., $[18,19]$ and $[20]$ )
$[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}$,
where $q$ is a parameter. If $q \rightarrow 1$, then $[n]_{q} \rightarrow n$. Considering $q$ to be variable, we go over to the $q$-polynomials. Some of the $q$-numbers (or $q$-polynomials) are as follows:
$[1]_{q}=1, \quad[2]_{q}=q+q^{-1}$,
$[3]_{q}=q^{2}+1+q^{-2}, \quad[4]_{q}=q^{3}+q+q^{-1}+q^{-3}$,
$[n]_{q}=q^{n-1}+q^{n-3}+\cdots+q^{-(n-1)}=\sum_{i=0}^{n-1} q^{n-1-2 i}$.
The (easily verifiable) recurrence relation for the $q$ numbers (or $q$-polynomials) is
$[n+1]_{q}=\left(q+q^{-1}\right)[n]_{q}-[n-1]_{q}$.
From now on, we rename the variable in the Alexander polynomials:
$t \rightarrow q$.
For the considered class of torus knots, the comparison of the Alexander polynomials and the $q$-polynomials implies that the Alexander polynomials (6) can be expressed through $q$-polynomials (21) in the simple way:
$A_{n}^{2}(q)=[n+1]_{q}-[n]_{q}$.
This relation for the Alexander polynomials was found in $[14,15]$ in the context of their correspondence to the masses of vector quarkonia.

Below, we will need some properties of the classical Chebyshev polynomials in order to formulate the Alexander polynomials in terms of the Chebyshev ones. If $x=2 \cos \theta$, the Chebyshev polynomials of the first kind are defined as
$T_{n}(x)=2 \cos (n \theta)$.

From (24), some first cases read
$T_{0}=2, \quad T_{1}=x, \quad T_{2}=x^{2}-2, \quad T_{3}=x^{3}-3 x, \quad \ldots$.
The recurrence formula is known as
$T_{n+1}=x T_{n}-T_{n-1}$.
Chebyshev polynomials of the second kind are
$V_{n}(x)=\frac{\sin ((n+1) \theta)}{\sin \theta}$.
Polynomials $T_{n}$ and $V_{n}$ are both monic and have the degree $n$. From (26), we have
$V_{0}=1, \quad V_{1}=x, \quad V_{2}=x^{2}-1, \quad V_{3}=x^{3}-2 x, \quad \ldots$,
and the recurrence relation is
$V_{n+1}=x V_{n}-V_{n-1}$.
There is a connection between (24) and (26):
$T_{n}(x)=V_{n}(x)-V_{n-2}(x)$.

## Putting

$q=e^{i \theta}$
into (20), we have
$[n]_{q}=\frac{\sin (n \theta)}{\sin \theta}=V_{n-1}(x)$,
where $V_{n}(x)$ is the Chebyshev polynomial of the second kind, and
$x=2 \cos \theta=q+q^{-1}$.
From (30) and (31), it is seen that
$V_{n}(q)=[n+1]_{q}$.
Therefore, (23) takes the form
$A_{n}^{2}(q)=V_{n}(x)-V_{n-1}(x), \quad x=q+q^{-1}$.
Thus, the Alexander polynomials $A_{n}^{2}(q)$ are obtained from the Chebyshev polynomials of the second kind $V_{n}(x)$ (26) after changing the variables $x \rightarrow q+q^{-1}$ by means of formula (33).

## 4. Generalized Alexander Polynomials and HOMFLY Polynomials

Now let us consider the $q, p$-numbers, a natural generalization of $q$-numbers. With the help of $q, p$-numbers, we will construct a generalization of the Alexander polynomials - $A_{n}^{2}(q, p)$ which now depend on two variables $q, p$. Afterwards, we intend to show that $A_{n}^{2}(q, p)$ turn into the well-known HOMFLY polynomials by an appropriate change of variables.

The $q, p$-number corresponding to the integer number $n$ is defined as (see e.g. [21])
$[n]_{q, p}=\frac{q^{n}-p^{n}}{q-p}$,
where $q, p$ are some complex parameters. If $p=q^{-1}$, then $[n]_{q, p}=[n]_{q}$. Some of the $q, p$-numbers are
$[1]_{q, p}=1, \quad[2]_{q, p}=q+p$,
$[3]_{q, p}=q^{2}+q p+p^{2}, \quad[4]_{q, p}=q^{3}+q^{2} p+q p^{2}+p^{3}$,
$\qquad$
$[n]_{q, p}=q^{n-1}+q^{n-2} p+q^{n-3} p^{2}+\cdots+$
$+q p^{n-2}+p^{n-1}=\sum_{i=0}^{n-1} q^{n-1-i} p^{i}=q^{n-1} \sum_{i=0}^{n-1} q^{-i} p^{i}$.
Considering $q$ and $p$ as variables, we deal with $q, p$ polynomials. Then, the recurrence relation for them is
$[n+1]_{q, p}=(q+p)[n]_{q, p}-q p[n-1]_{q, p}$.
On the base of Eq. (32) and expression (34) or (35) for the $q, p$-polynomials, we introduce a natural generalization of the Chebyshev polynomials of the second kind which now depend on the two variables:
$V_{n}(q, p)=[n+1]_{q, p}$.
From (36) and (37), the recurrence relation does follow:
$V_{n+1}(q, p)=(q+p) V_{n}(q, p)-q p V_{n-1}(q, p)$.
Now, in analogy with (33), we introduce the two-variable generalized Alexander polynomial as a linear combination of polynomials (37). Due to this proposal, the following recurrence formula takes place:
$A_{n+1}^{2}(q, p)=(q+p) A_{n}^{2}(q, p)-q p A_{n-1}^{2}(q, p)$.

This is a direct analog of (7) and reduces to it if $q=t$ and $p=t^{-1}$. To continue the analogy, we take
$A_{0}^{2}(q, p)=1, \quad A_{1}^{2}(q, p)=q-q p+p$.
It is easy to see that (39) with (40) will be valid if

$$
\begin{align*}
& A_{n}^{2}(q, p)=V_{n}(q, p)-q p V_{n-1}(q, p)= \\
& =[n+1]_{q, p}-q p[n]_{q, p} \tag{41}
\end{align*}
$$

## Setting

$q=r e^{i \theta}, \quad p=\bar{q}=r e^{-i \theta}$
into (34), we have
$[n]_{q, p}=\frac{r^{n} \sin (n \theta)}{r \sin \theta}=r^{n-1} V_{n-1}(x)$.
If $r=1$, Eq. (43) turns into (30). Taking (37) and (43) into account, we obtain $V_{n}(q, p)$ with a factorized form of the dependence on the variables $r, x$ :
$V_{n}(r, x)=r^{n} V_{n}(x)$.
Here, $V_{n}(x)$ is the classical Chebyshev polynomial of the second kind, with $x$ as in (31). The corresponding twovariable Chebyshev polynomials of the first kind arise as well:
$T_{n}(r, x)=2 r^{n} \cos (n \theta)$.
In the variables $r, x$, see (42) and (31), the recurrence relation (39) can be written as
$A_{n+1}^{2}(r, x)=r x A_{n}^{2}(r, x)-r^{2} A_{n-1}^{2}(r, x)$.
The first two polynomials (40) become
$A_{0}^{2}(r, x)=1, \quad A_{1}^{2}(r, x)=r x-r^{2}$.
From (41) and (44), we also have
$A_{n}^{2}(r, x)=r^{n}\left(V_{n}(x)-r V_{n-1}(x)\right)$.
Now we make a key proposal: we apply the generalized Alexander polynomials $A_{n}^{2}(r, x)$ given by (45) and (46) for describing the torus knots $T(s, 2)$. From (19) with account of (42), we have
$c_{1}=r x, \quad c_{2}=-r^{2}$,
and then
$b_{2}=r, \quad b_{1}=(r x-2 r)^{\frac{1}{2}}=r^{\frac{1}{2}}(x-2)^{\frac{1}{2}}$.

Hence, as a generalization of (1), from (10), (11) and (48), we obtain the skein relation for the generalized Alexander polynomials:
$A_{+}(r, x)=r^{\frac{1}{2}}(x-2)^{\frac{1}{2}} A_{O}(r, x)+r A_{-}(r, x)$.
Now let us explore the connection between the generalized Alexander skein relation (49) and the HOMFLY skein relation. By definition, the HOMFLY polynomials $H(a, z)$ satisfy the skein relation
$a^{-1} H_{+}(a, z)-a^{1} H_{-}(a, z)=z H_{O}(a, z)$,
or, in equivalent form,
$H_{+}(a, z)=a z H_{O}(a, z)+a^{2} H_{-}(a, z)$,
with $H_{\text {unknot }}=1$. As before, consider the torus knots $T(s, 2)$, where $s$ is an odd integer. For these, the notation for the corresponding HOMFLY polynomials is similar to that for the Alexander ones, namely

$$
H(s, 2)(a, z) \equiv H(2 m+1,2)(a, z) \equiv H_{m}^{2}(a, z) \equiv H_{m}^{2}
$$

The short list of the HOMFLY polynomials for torus

$$
\begin{align*}
& \text { knots } T(s, 2) \equiv T(2 m+1,2) \text { is: } \\
& H_{0}^{1,2}(a, z)=1 \\
& H_{1}^{3,2}(a, z)=2 a^{2}+a^{2} z^{2}-a^{4} \\
& H_{2}^{5,2}(a, z)=3 a^{4}+4 a^{4} z^{2}+a^{4} z^{4}-2 a^{6}-a^{6} z^{2} \\
& H_{3}^{7,2}(a, z)=4 a^{6}+10 a^{6} z^{2}+6 a^{6} z^{4}+a^{6} z^{6}-3 a^{8}- \\
&-4 a^{8} z^{2}-a^{8} z^{4} \tag{51}
\end{align*}
$$

The recurrence relation for (51) reads
$H_{m+1}^{2}(a, z)=a^{2}\left(z^{2}+2\right) H_{m}^{2}(a, z)-a^{4} H_{m-1}^{2}(a, z)$.
If we compare (52) and (45), we see that, through the substitution
$r=a^{2}, \quad x=z^{2}+2$,
the HOMFLY polynomials and the generalized Alexander polynomials coincide:
$H_{n}^{2}(a, z)=A_{n}^{2}(r, x)=r^{n}\left(V_{n}(x)-r V_{n-1}(x)\right)$.
Then, the HOMFLY skein relation (50) in the variables $r, x$, see (53), looks as
$H_{+}(r, x)=r^{\frac{1}{2}}(x-2)^{\frac{1}{2}} H_{O}(r, x)+r H_{-}(r, x)$,
which coincides with (49). In addition,
$A_{0}^{2}(r, x)=H_{0}^{2}(r, x), \quad A_{1}^{2}(r, x)=H_{1}^{2}(r, x)$.
Thus, we have proved that the generalized Alexander polynomials and their skein relation go over into the HOMFLY ones by applying parametrization (53). On the other hand, the HOMFLY skein relation and polynomials turn into the generalized Alexander ones with the help of the inverse substitution
$a=r^{\frac{1}{2}}, \quad z=(x-2)^{\frac{1}{2}}$.

## 5. Concluding Remarks

We have demonstrated that the connection of the Chebyshev polynomials with the Alexander polynomials can be realized in a rather simple way if one uses, as an auxiliary tool, the concept of $q$-numbers. On the other hand, the existence of the $q, p$-numbers, which generalize the $q$-numbers, makes it possible to generalize the Chebyshev polynomials to their two-variable modification and, by exploiting the analogy with the previous one-variable case, also to achieve a two-variable generalization of the Alexander polynomials. Finally, we have found that the two-variable extended Alexander polynomials are mapped onto the HOMFLY polynomials.

We hope that the proposed way to use the Chebyshev polynomials will be helpful for the further investigation of knots and links, not only on the base of the Alexander polynomials (along with their two-variable modification) and the HOMFLY polynomials treated above, but also possibly in connection with Kauffman polynomials and other known polynomial invariants. In addition, it is of interest to study, within the proposed scheme, the more general $(s, r)$ torus knots than those in the particular class $(s, 2)$ considered in this paper. Subsequently, we hope to use the explored polynomial invariants within the framework of some physical models.

This research was partially supported by the Grant 29.1/028 of the State Foundation of Fundamental Research of Ukraine and by the Special Program of the Division of Physics and Astronomy of the NAS of Ukraine.

1. M.F. Atiyah, The Geometry and Physics of Knots (Cambridge Univ. Press, Cambridge, 1990).
2. L.H. Kauffman, Knots and Physics (World Scientific, Singapore, 2001).
3. L.H. Kauffman (editor), The Interface of Knots and Physics, AMS Short Course Lecture Notes, Proc. Symp. App. Math. 51, 1996.
4. M.D. Frank-Kamenetskii, A.V. Vologodskii, Uspekhi Fiz. Nauk 134, 641 (1981).
5. Y. Akutsu and M. Wadati, Comm. Math. Phys. 117, 243 (1988).
6. E. Witten, Comm. Math. Phys. 121, 351 (1989).
7. J.C. Baez (editor), Knots and Quantum Gravity (Oxford Univ. Press, Oxford, 1994).
8. L.D. Faddeev, Preprint IAS-75-QS70 (Institute for Advanced Study, Princeton, 1975).
9. L. Faddeev and A.J. Niemi, Nature 387, 58 (1997).
10. R.A. Battye and P.M. Sutcliffe, Phys. Rev. Lett. 81, 4798 (1998); Proc. R. Soc. Lon. A 455, 4305 (1999).
11. R.J. Finkelstein, arXiv:hep-th/0701124, 2007.
12. R.J. Finkelstein, Int. J. Mod. Phys. A 22, 4467 (2007)
13. L.D. Faddeev, arXiv:0805.1624 [hep-th], 2008.
14. A.M. Gavrilik, J. Phys. A 27, 91 (1994).
15. A.M. Gavrilik, Nuclear Phys. (Proc. Suppl.) B 102-103, 298 (2001).
16. J.S. Birman, Bull. Amer. Math. Soc. 28, 253 (1993).
17. P.-V. Koseleff, D. Pecker, arXiv:0712.2408v1 [math.HO], 2007.
18. L.C. Biedenharn, J. Phys. A: Math. Gen. 22, L873 (1989).
19. A.J. Macfarlane, J. Phys. A: Math. Gen. 22, 4581 (1989).
20. V. Kac and P. Cheung, Quantum Calculus (Springer, Berlin, 2002).
21. A. Chakrabarti and R. Jagannathan, J. Phys. A: Math. Gen. 24, L711 (1991).

Received 22.10.09

## ПРО ПОЛІНОМИ ЧЕБИШОВА I ТОРИЧНІ ВУЗЛИ

О.М. Гаврилик, А.М. Павлюк

## Резюме

У роботі показано, що $q$-числа та їх двопараметричні узагальнення, $q, p$-числа можна використати для отримання деяких поліноміальних інваріантів торичних вузлів і зачеплень. По-перше, показано, що $q$-числа, які тісно пов'язані з поліномами Чебишова, можуть бути пов'язані з поліномами Александера для класу $T(s, 2)$ торичних вузлів, де $s$ - непарне ціле число, і використані для знаходження відповідного скейн-співвідношення. Потім використано цю процедуру для отримання за допомогою $q, p$-чисел, двопараметричних узагальнених поліномів Александера та показано зв'язок останніх із поліноміальними інваріантами HOMFLY та їх скейнспіввідношенням.

