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Using the explicit factorized formulas for matrix elements (form-
factors) of the spin operators between the eigenvectors of the Hamil-
tonian of a finite quantum XY-chain in a transverse field, the spon-
taneous magnetization for σx and σy is re-derived in a simple way.

1. Introduction

The quantum XY-chain is one of the simplest models
which is rich enough from the point of view of physics
and, at the same time, admits a strict mathematical
analysis. The study of this model was started in [1],
where it was rewritten in terms of fermionic operators
by means of the Jordan–Wigner transformation. Now
this relation is a standard mean to study different prop-
erties (the spectrum of Hamiltonian [1, 2], correlation
functions [3–5], emptiness formation probability [6], and
entanglement entropy [7–9]) of the XY-chain. Although
the Hamiltonian of the model is equivalent to the Hamil-
tonian of a free fermion system, the spin operators σx

and σy are expressed in terms of fermionic operators in
a non-local way. This non-locality leads to non-zero av-
erages 〈σx〉 and 〈σy〉 (spontaneous magnetization) in the
ferromagnetic phase of the model in the thermodynamic
limit.

In [10], we propose an alternative way to study corre-
lation functions of the XY-model: we derive the formu-
las for matrix elements of the spin operators σx and σy

between the eigenvectors of the Hamiltonian of a finite
quantum XY-chain in a transverse field. These formu-
las allow one to obtain at least formal expressions for
the multipoint multitime correlation functions at a fi-
nite temperature. In this paper, as an application of
the formulas for form-factors, the value of spontaneous
magnetization for σx and σy is re-derived in a simple
way.

In Section 2 we recall the definition of a finite quantum
XY-chain in a transverse field, its phase diagram, and
eigenvalues of the Hamiltonian and give general com-
ments on matrix elements of the spin operators between

the eigenvectors of the Hamiltonian. Section 3 is de-
voted to the description of a relation between the model
of quantum XY-chain and the Ising model on a 2D lat-
tice. In Section 4, we present formulas for matrix el-
ements (form-factors) of the spin operators σx and σy

between the eigenvectors of the Hamiltonian of a finite
quantum XY-chain derived in [10]. In Section 5, these
formulas are rewritten for the case of an infinite-length
chain. Here, we also re-derive the value of spontaneous
magnetization for σx and σy.

2. The Finite Quantum XY-chain in a
Transverse Field

The Hamiltonian of the XY-chain of length n in a trans-
verse field h is [1, 2]

H = −1
2

n∑
k=1

(
1 + κ

2
σx
kσ

x
k+1 +

1− κ
2

σy
kσ

y
k+1 + hσz

k

)
,

(1)

where σik are Pauli matrices, and κ is the anisotropy. In
the case κ = 0, we get an XX-chain (isotropic case). The
value κ = 1 corresponds to the quantum Ising chain in a
transverse field. In what follows, we restrict ourselves to
the case 0 < κ ≤ 1 and suppose the periodic boundary
condition σik = σik+n.

Now consider the values of h. Due to the relationship
of the XY chain and the 2D Ising model which will be
discussed below, the coupling constant h plays the role
of a temperature-like variable. The value h > 1 cor-
responds to the paramagnetic (disordered) phase. The
value 0 ≤ h < 1 corresponds to the ferromagnetic
(ordered) phase. At h = 1, there is a second-order
phase transition. If 0 ≤ h < (1 − κ2)1/2, it is an os-
cillatory region (because of the oscillatory behavior of
the two-point correlation function). Another peculiar-
ity related to this region is the following. At fixed κ,
0 < κ ≤ 1, in the region where (1 − κ2)1/2 < h < 1,
the NS-vacuum energy is lower than the R-vacuum en-
ergy (asymptotically, if n → ∞, they coincide). In the
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region 0 ≤ h < (1 − κ2)1/2, there are intersections at
special values of h of these vacuum levels even at finite
n. The number of these intersections grows with n. For
a detailed analysis of the oscillatory region, see [3, 11].

In this paper, we consider the ferromagnetic phase
which corresponds to 0 ≤ h < 1 in order to obtain a
non-zero value of spontaneous magnetization.

Using the Jordan–Wigner and Bogoliubov transforma-
tions, the Hamiltonian H of the XY-chain can be rewrit-
ten as the Hamiltonian of a system of free fermions and
can be diagonalized [1, 2]. The relation between the en-
ergies ε and the momenta q of fermionic excitations is

ε(q) =
(
(h− cos q)2 + κ2 sin2 q

)1/2
, q 6= 0, π , (2)

ε(0) = 1− h, ε(π) = h+ 1 .

The Hamiltonian H commutes with the operator V =
σz

1σ
z
2 · · ·σz

n. Since V2 = 1, the eigenvectors are separated
into two sectors with respect to the eigenvalue of V =
σz

1σ
z
2 · · ·σz

n with specific sets of possible momenta (E is
the energy of state, i.e. the eigenvalue of H):

– NS-sector: V→ +1⇒ “half-integer” momenta

q ∈ NS =
{

2π
n

(j + 1/2)
}
⇒ E = −1

2

∑
q∈NS

±ε(q).

Each −ε(q) in the expression for the energy corre-
sponds to a fermionic excitation with momentum
q. The number of excitations is even.

– R-sector: V→ −1⇒ “integer” momenta

q ∈ R =
{

2π
n
j

}
⇒ E = −1

2

∑
q∈R

±ε(q). (3)

The number of excitations is even. In the param-
agnetic phase (h > 1), the energy of the fermionic
excitation ε(0) becomes negative. In this case, we
define ε(0) = h−1 together with the swapping be-
tween the absence/presence of the excitation with
zero momentum. In other words, although the an-
alytical expressions for the energies E in terms of h
and κ are the same in both phases, due to the re-
definition of ε(0) in the case of h > 1, the number
of excitations in the paramagnetic/ferromagnetic
phase is odd/even.

We will denote the eigenvectors by the values of the
excited momenta q corresponding to −ε(q) in the expres-
sion for the energy E .

Formally, in order to calculate any correlation func-
tion for the XY-chain, it is sufficient to insert a reso-
lution of the identity operator as a sum of projectors
to eigenspaces of the Hamiltonian between spin opera-
tors. It is the so-called Lehmann expansion. Then the
problem is reduced to the problem of finding the matrix
elements of the spin operators σx

k, σ
y
k , and σz

k between
eigenstates of the Hamiltonian H.

– Matrix elements of σz
k:

The operator σz
k commutes with V = σz

1σ
z
2 · · ·σz

n.
Therefore, the action of σz

k does not change the
sector. In fact, the operator σz

k can be presented as
a bilinear combination of the operators of creation
and annihilation of fermionic excitations. Thus,
the matrix elements of σz

k between the eigenvectors
of H can be easily calculated (most of them are 0).
We will not consider such matrix elements in this
paper.

– Matrix elements of σx
k and σy

k:

The operators σx
k and σy

k anticommute with V =
σz

1σ
z
2 · · ·σz

n. Therefore, their action changes the
sector. The operators σx

k and σy
k cannot be pre-

sented in terms of fermionic operators in a local
way. All the matrix elements of them between the
eigenvectors of H from different sectors are non-
zero!

The idea of the derivation [10] of form-factors for σx
k

and σy
k of a quantum finite XY-chain was to use the rela-

tions between three models: the model of quantum XY-
chain in a transverse field, the Ising model on a 2D lat-
tice and the N = 2 Baxter–Bazhanov–Stroganov (BBS)
model. The relation between the first and second mod-
els was observed in [12], the relation between the second
and third models was found in [13]. The latter relation
together with the results on the separation of variables
for the BBS model allowed one to prove [14] the formulas
for the matrix elements of a spin operator of the Ising
model found in [15, 16]. In [10], by using these relations
between the models, we transferred the formulas for the
form-factors of the N = 2 BBS model to the model of
quantum XY-chain. A summarizing overview of the re-
sults on the separation of variables of the BBS model is
given in [17].

In the following sections, we describe the relation be-
tween the model of quantum XY-chain in a transverse
field and the Ising model on a 2D lattice. The parame-
ters of the models are (h,κ) and (Kx,Ky), respectively.
Then we present the formulas for the matrix elements
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of the spin operators σx and σy between eigenvectors of
the Hamiltonian of a finite quantum XY-chain derived
in [10] and take the thermodynamic limit of these for-
mulas. The obtained formulas allow us to re-derive the
value of spontaneous magnetization for σx and σy.

3. Relation between a Quantum XY-chain and
the Ising Model on a Lattice

The row-to-row transfer-matrix of the two-dimensional
Ising model with parameters Kx, Ky can be chosen as

tIs = T
1/2
1 T2T

1/2
1 , (4)

where

T1 = exp

(
n∑
k=1

K∗y σ
z
k

)
, T2 = exp

(
n∑
k=1

Kx σ
x
kσ

x
k+1

)
. (5)

The spin configurations of the rows are chosen to be
labeled by the eigenvectors of the operators σx

k, and the
parameter K∗y is dual to Ky, i.e. tanhKy = exp(−2K∗y ).

In [12], M. Suzuki observed that if we choose Kx and
K∗y such that

tanh 2Kx =
√

1− κ2

h
, cosh 2K∗y =

1
κ
, (6)

then Hamiltonian (1) of a XY-chain will commute with
the transfer-matrix of the 2D Ising model (4), and these
two operators have a common set of eigenvectors.

The dispersion relation for the fermions of the 2D Ising
model with energies γ(p) and momenta p is

cosh γ(p) =
(tx + t−1

x )(ty + t−1
y )

2(t−1
x − tx)

−
t−1
y − ty
t−1
x − tx

cos p , (7)

tx = tanhKx, ty = tanhKy. We also have a relation
between ε(p) given by (2) and γ(p):

sinh γ(p) =
√

1− κ2

κ
√

κ2 + h2 − 1
ε(p) . (8)

Relation (8) between the energies of fermionic excita-
tions of these two models seems to be new. The exis-
tence of such a relation is surprising, because the com-
mutativity of Hamiltonian (1) of the XY-chain and the
transfer-matrix (4) of the 2D Ising model does not imply
a priori any relation between their eigenvalues.

4. Formula for the Matrix Elements

We use the Bugrij–Lisovyy formula [15, 16] for the ma-
trix element of a spin operator between the eigenvectors
|Φ0〉Is = |q1, q2, . . . , qK〉NS

Is and |Φ1〉Is = |p1, p2, . . . , pL〉RIs
of the transfer matrix (4) for the finite 2D Ising model

ΞΦ0,Φ1 = |Is〈Φ0|σx
m|Φ1〉Is|2 =

= ξ ξT

(
ty − t−1

y

tx − t−1
x

)(K−L)2/2 ∏
1≤k≤K
1≤l≤L

sinh2 γ(qk)+γ(pl)
2

sin2 qk−pl

2

×

×
K∏
k=1

∏NS
q 6=qk

sinh γ(qk)+γ(q)
2

n
∏R
p sinh γ(qk)+γ(p)

2

L∏
l=1

∏R
p 6=pl

sinh γ(pl)+γ(p)
2

n
∏NS
q sinh γ(pl)+γ(q)

2

×

×
K∏

k<k′

sin2 qk−qk′
2

sinh2 γ(qk)+γ(qk′ )
2

L∏
l<l′

sin2 pl−pl′
2

sinh2 γ(pl)+γ(pl′ )
2

, (9)

ξ4 = 1− (sinh 2Kx sinh 2Ky)−2 =
1− h2

κ2
, (10)

ξ4T =

∏NS
q

∏R
p sinh2 γ(q)+γ(p)

2∏NS
q,q′ sinh γ(q)+γ(q′)

2

∏R
p,p′ sinh γ(p)+γ(p′)

2

, (11)

ty − t−1
y

tx − t−1
x

=
1− κ2

κ
√

κ2 + h2 − 1
, (12)

where we used (6) to write equivalent expressions in
terms of different parameters.

We use the following main result of paper [10]: the
matrix elements of spin operators between the eigenvec-
tors |Φ0〉XY = |q1, q2, . . . , qK〉NS

XY from the NS-sector and
|Φ1〉XY = |p1, p2, . . . , pL〉RXY from the R-sector of Hamil-
tonian (1) of the XY-chain are

|XY〈Φ0|σx
m|Φ1〉XY|2 =

=
κ

2(1 + κ)

(
C

1/2
Φ0,Φ1

+ C
−1/2
Φ0,Φ1

)2

ΞΦ0,Φ1 , (13)

|XY〈Φ0|σy
m|Φ1〉XY|2 =

=
κ

2(1− κ)

(
C

1/2
Φ0,Φ1

− C−1/2
Φ0,Φ1

)2

ΞΦ0,Φ1 , (14)
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where ΞΦ0,Φ1 is given by (9) and

CΦ0,Φ1 =

∏
p∈R e

γ(p)/2∏
q∈NS e

γ(q)/2

∏K
k=1 e

γ(qk)∏L
l=1 e

γ(pl)
. (15)

In the case of the quantum Ising chain (κ = 1), the
formula for the matrix element of the spin operator σx

k

derived in [14] can be expressed in terms of the energies
of excitations ε(q). In the case of a general XY-chain,
we were not able to find an analogous explicit formula
and need to use relation (8).

5. Asymptotics of Form-Factors in the Limit of
Infinite Chain and Spontaneous
Magnetization

In this section, we analyze the asymptotics of different
parts of form-factors in the thermodynamic limit (the
length n→∞) of the XY-chain. They can be obtained
from the integral representations for form-factors at fi-
nite n [16, 18]. We slightly change the method. Our
derivation is based on the following formulas valid for
arbitrary |λ| < 1 and |λ| > 1, respectively:

lim
n→∞

log

∏R
p (λ− eγ(p))∏NS
p (λ− eγ(p))

= 0 . (16)

lim
n→∞

log

∏NS
p (λ− e−γ(p))∏R
p (λ− e−γ(p))

= 0 . (17)

At λ = 0 and λ = eγ(q), they give, respectively,

Λ−1 =
1
2

(∑
q

NS
γ(q)−

∑
p

R
γ(p)

)
→ 0 ,

eη(q) =

∏NS
p

(
1− e−γ(q)−γ(p)

)∏R
p

(
1− e−γ(q)−γ(p)

) → 1 .

In turn, these two formulas yield∏NS
p sinh γ(q)+γ(p)

2∏R
p sinh γ(q)+γ(p)

2

→ 1 .

Using it twice for ξT (see (11)) for fixed q and p, respec-
tively, and taking into account that the left-hand sides
of (16) and (17) vanish exponentionally in n (see the
derivation below), we get∏NS

q

∏R
p sinh γ(q)+γ(p)

2∏NS
q,q′ sinh γ(q)+γ(q′)

2

,

∏NS
q

∏R
p sinh γ(q)+γ(p)

2∏R
p,p′ sinh γ(p)+γ(p′)

2

→ 1.

Therefore, ξT → 1 in the thermodynamic limit.
Finally, in the limit of the infinite XY-chain, formulas

(13), (14) and (9) become

|XY〈Φ0|σx
m|Φ1〉XY|2 =

= ΞΦ0,Φ1

2κ
1 + κ

cosh2

∑K
k=1 γ(qk)−

∑L
l=1 γ(pl)

2
, (18)

|XY〈Φ0|σy
m|Φ1〉XY|2 =

= ΞΦ0,Φ1

2κ
1− κ

sinh2

∑K
k=1 γ(qk)−

∑L
l=1 γ(pl)

2
, (19)

ΞΦ0,Φ1 = ξ

(
ty − t−1

y

tx − t−1
x

)(K−L)2/2 ∏
1≤k≤K
1≤l≤L

sinh2 γ(qk)+γ(pl)
2

sin2 qk−pl

2

×

×
K∏
k=1

1
n sinh γ(qk)

L∏
l=1

1
n sinh γ(pl)

×

×
K∏

k<k′

sin2 qk−qk′
2

sinh2 γ(qk)+γ(qk′ )
2

L∏
l<l′

sin2 pl−pl′
2

sinh2 γ(pl)+γ(pl′ )
2

. (20)

Formulas (18) and (19) at K = L = 0 allow us to
re-obtain the formulas for the spontaneous magnetiza-
tion found in [12]. Indeed, for the quantum XY-chain
in the ferromagnetic phase (0 ≤ h < 1) and in the
thermodynamic limit n → ∞ (when the energies of
|Φ0〉XY = |vac〉NS and |Φ1〉XY = |vac〉R asymptotically
coincide, giving the degeneration of the ground state),
the spontaneous magnetization is

〈σx,y〉XY = XY〈Φ0|σx,y|Φ1〉XY ,

〈σx〉XY =
√

2
(

κ2(1− h2)
(1 + κ)4

)1/8

, 〈σy〉XY = 0 .

At the end of this section, we give the derivation of
(16) and (17). It repeats the derivation of the asymp-
totics of η(q) in [18]. We use the function

T 2(z) =

∏R
q (cosh γ̄(p)− cos q)∏NS
q (cosh γ̄(p)− cos q)

, z = e−ip ,
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where γ̄(p) is defined as γ(p) in (7) but with the in-
terchange tx ↔ ty (i.e. γ̄(p) is the energy of fermionic
excitations corresponding to the evolution in the trans-
verse direction on a 2D Ising lattice). The evaluation of
the products over q gives

T (z) = tanh(nγ̄(p)/2) . (21)

On the other hand, due to the relation

cosh γ̄(p)− cos q =
tx − t−1

x

ty − t−1
y

(cosh γ(q)− cos p),

we have

log T (z) =
1
2

log

( ∏R
q (z − eγ(q))(z − e−γ(q))∏NS
q (z − eγ(q))(z − e−γ(q))

)
.

At |λ| > 1,

1
iπ

∮
|z|=1

dz log T (z)
z − λ

= − 1
iπ

∮
|z|=1

dz log(z− λ)
T ′(z)
T (z)

=

= log

∏NS
q (λ− e−γ(q))∏R
q (λ− e−γ(q))

,

where we have integrated by parts and taken the con-
tribution of the simple poles of T ′(z)/T (z) into account.
Similarly, this integral at |λ| < 1 is

1
iπ

∮
|z|=1

dz log T (z)
z − λ

= log

∏R
q (λ− eγ(q))∏NS
q (λ− eγ(q))

,

where we also took the simple pole at z = λ into account.
Due to (21), we have log T (z)→ 0 if n→∞. This proves
(16) and (17) in both cases of λ.
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СПОНТАННА НАМАГНIЧЕНIСТЬ КВАНТОВОГО
XY-ЛАНЦЮЖКА З ФОРМФАКТОРIВ
ДЛЯ СКIНЧЕННОГО ЛАНЦЮЖКА

М.З. Iоргов

Р е з ю м е

Використовуючи факторизованi формули для матричних еле-
ментiв (формфакторiв) спiнових операторiв мiж власними век-
торами гамiльтонiана скiнченного квантового XY-ланцюжка в
поперечному полi, дано простий вивiд формули для спонтанної
намагнiченостi σx та σy.
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