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We analyze the approximating Hamiltonian method for Bose sys-
tems. Within the framework of this method, the pressure for
the mean field model of an imperfect boson gas is calculated.
The problem is considered by the systematic application of the
Bogolyubov–Ginibre approximation.

1. Introduction

The approximating Hamiltonian method [1], having its
roots in the work of Bogolyubov [2], gives possibility to
provide an elegant way of proving the thermodynami-
cal equivalence of some Hamiltonians. In the main, this
method was applied for fermion models. In boson sys-
tems exhibiting the Bose condensation, we meet certain
difficulties.

Pulé and Zagrebnov [3] considered the mean field bo-
son gas by the approximating Hamiltonian technique
and found the pressure of this model in the thermody-
namic limit. The essential feature of their proof is the
addition of sources, i.e. they used the Bogolyubov con-
cept of quasiaverages. Here, we suggest an alternative
way of applying the approximating Hamiltonian method
for boson models.

Consider a system of identical bosons of mass m con-
fined to a d-dimensional cubic box Λ ⊂ Rd of volume V
centered around the origin. Let EΛ

0 < EΛ
1 ≤ EΛ

2 ≤ . . .
be the eigenvalues of the operator hΛ

.= −Δ/(2m) (we
suppose ~ = 1) on Λ with some linear boundary con-
ditions, and let {ΦΛ

l } with l = 0, 1, 2, . . . be the cor-
responding eigenfunctions. Let FΛ be the symmetric
Fock space constructed from L2(Λ). Let al

.= a(ΦΛ
l ) and

a†l
.= a†(ΦΛ

l ) be the boson annihilation and creation op-
erators on FΛ. Denote, by TΛ, the Hamiltonian of the
free Bose gas on FΛ constructed from hΛ in the usual

manner, that is TΛ =
∑∞
l=0E

Λ
l Nl, where Nl = a†l al. Let

NΛ =
∑∞
l=0Nl be the operator of the number of particles

on FΛ.
The Hamiltonian we consider is

HΛ = TΛ +
a

2V
N2

Λ, (1)

where a is a positive coupling constant. Hamiltonian (1)
is known as the mean field Bose gas model [4].

Let µ0
.= limΛ↑Rd EΛ

0 . Denote, by p0(µ) and ρ0(µ), the
grand-canonical pressure and the density, respectively,
for the free Bose gas at chemical potential µ < µ0, that
is

p0(µ) = −
∫

ln[1− exp(−β(ν − µ))]F (dν),

ρ0(µ) =
∫

1
exp(β(ν − µ))− 1

F (dν),

F being the integrated density of states of hΛ in the limit
Λ ↑ Rd. Let ρc

.= limµ→µ0 ρ0(µ). The grand-canonical
pressure of the mean field Bose gas model is

pΛ(µ) =
1
βV

ln Tr exp[−β(HΛ − µNΛ)]. (2)

We put p(µ) = limΛ↑Rd pΛ(µ).
The main result of work [3] is the following:
Proposition 1. Pressure (2) in the thermodynamic

limit exists and is given by

p(µ) =


1
2
aρ2(µ) + p0(µ− aρ(µ)) if µ ≤ µc,

(µ− µ0)2

2a
+ p0(µ0) if µ > µc,

(3)

where µc = µ0 + aρc, and ρ(µ) is the unique solution of
the equation ρ = ρ0(µ− aρ).
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This result was obtained by many authors for special
boundary conditions (see [3] for references). The inno-
vation of work [3] is in proving Proposition 1 by the
approximating Hamiltonian method.

The main technical ingredient of the approximating
Hamiltonian method is an estimate for the difference of
the appropriate pressures of model and approximating
Hamiltonians obtained by using the Bogolyubov convex-
ity inequality [5]. But, in the case of model (1), the ob-
vious intention to use this inequality for the “natural”
approximating Hamiltonian

Happr
Λ (ρ) = TΛ + aρNΛ −

aρ2

2
V, (4)

where ρ is the self-consistency parameter, meets the fail-
ure. Really, by Bogolyubov’s inequality,

0 ≤ pappr
Λ (ρ̄Λ, µ)− pΛ(µ) ≤

≤ 1
V
〈HΛ −Happr

Λ (ρ̄Λ)〉Happr
Λ (ρ̄Λ), (5)

where

pappr
Λ (ρ, µ) =

1
βV

ln Tr exp[−β(Happr
Λ (ρ)− µNΛ)],

〈. . . 〉Γ denotes the appropriate grand-canonical average
with respect to the Hamiltonian Γ, and ρ̄Λ satisfies the
self-consistency equation

ρ̄Λ =
1
V
〈NΛ〉Happr

Λ (ρ̄Λ).

One can see that the right-hand side of (5) does not tend
to zero as V →∞ for all µ ∈ R. It tends to aρ2

0/2, where
ρ0 is the Bose condensate density. Thus, the thermody-
namical equivalence of the model Hamiltonian (1) and
the approximating Hamiltonian (4) takes place only in
the domain, where there is no Bose condensate. One
easily obtains that this domain is µ ≤ µc, and

p(µ) = inf
α<µ0

[
(µ− α)2

2a
+ p0(α)

]
. (6)

Curiously, that expressions (3) and (6) are equal for
any µ. This fact holds out a hope for the chance to use,
nevertheless, the approximating Hamiltonian method for
the mean field model. It is clearly necessary to construct
a different approximating Hamiltonian. This idea was
realized in [3].

First, the authors of [3] constructed the auxiliary
Hamiltonian for η ∈ C,

HP−Z
Λ (η) = HΛ +

√
V (ηa†0 + η∗a0). (7)

A convenient approximating Hamiltonian has the form

HP−Z
Λ (ρ, η) = TΛ + aρNΛ −

aρ2

2
V+

+
√
V (ηa†0 + η∗a0), (8)

where the self-consistency parameter ρ ∈ R.
Next, to prove Proposition 1, the authors showed that,

for η 6= 0, the pressure

pP−Z
Λ (η, µ) =

1
βV

ln Tr exp[−β(HP−Z
Λ (η)− µNΛ)]

in the thermodynamic limit coincides with the pressure

pP−Z
Λ (ρ, η, µ) =

1
βV

ln Tr exp[−β(HP−Z
Λ (ρ, η)− µNΛ)]

minimized with respect to ρ (Lemmata 1 and 2 in [3])
and that, in turn, this minimization can be performed
after the passage to the limit (Lemma 3 in [3]).

Finally, the authors switched off the source η (η → 0)
in Lemma 4 to obtain the limiting pressure p(µ).

For Hamiltonians (7) and (8), the Bogolyubov’s con-
vexity inequality is

0 ≤ pP−Z
Λ (ρ̄Λ, η, µ)− pP−Z

Λ (η, µ) ≤ 1
2V 2

ΔΛ(η),

where

ΔΛ(η) = a〈(NΛ − V ρ̄Λ)2〉HP−Z
Λ (ρ̄Λ,η)

,

and ρ̄Λ satisfies the equation

ρ̄Λ =
1
V
〈NΛ〉HP−Z

Λ (ρ̄Λ,η)
.

In this case, as distinct from case (5), the authors proved
that

lim
V→∞

1
V 2

ΔΛ(η) = 0

for η 6= 0. Therefore (Lemma 2 of [3]),

lim
Λ↑Rd

pP−Z
Λ (η, µ) = lim

Λ↑Rd
pP−Z
Λ (ρ̄Λ, η, µ) (9)

for η 6= 0. This is the benefit of the Pulé–Zagrebnov
approach.
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2. Application of the Approximating
Hamiltonian Method to the Mean
Field Model

Let us first restrict our discussion to the cases of peri-
odic, Dirichlet, Neumann, and repulsive-wall boundary
conditions. In the case of attractive walls, there are two
negative eigenvalues for the free Bose gas. Owing to
this fact, we have some features in the thermodynam-
ical properties of the model. We consider the case of
attractive boundary conditions separately.

We suggest to take advantage of the macroscopic oc-
cupation of the zero momentum one-particle state to re-
place the corresponding operators a0, a

†
0 by c-numbers

[6–8]. Therefore, we define

HΛ(c) =
∞∑
l=1

[
EΛ
l − µ+ |c|2a

]
Nl +

a

2V
N
′2
Λ +

+
a|c|2

2
+
a|c|4

2
V + (EΛ

0 − µ)|c|2V, (10)

where c ∈ C, N ′Λ =
∑∞
l=1Nl, and the HamiltonianHΛ(c)

contains the term −µNΛ. This is the Bogolyubov ap-
proximation which was proposed as early as 1947 [2, 9].
The replacement is exact in the thermodynamic limit
[10]. Therefore, we have

lim
Λ↑Rd

pΛ(µ) = lim
Λ↑Rd

sup
c
pΛ(c, µ) ≡ p(c̄, µ), (11)

where

pΛ(c, µ) =
1
βV

ln Tr′ exp[−βHΛ(c)],

and |c̄|2 is the density of the Bose condensate. Tr′

means trace in F ′Λ, where F ′Λ is the boson Fock space
constructed on the orthogonal complement of the one-
dimensional subspace of L2(Λ) generated by ΦΛ

0 .
Starting from Hamiltonian (10), we get the following

approximating Hamiltonian for ρ′ ∈ R:

HΛ(c̄, ρ′) =
∞∑
l=1

(
EΛ
l − µ+ |c̄|2a

)
Nl+

+
a|c̄|2

2
+
a|c̄|4

2
V +(EΛ

0 −µ)|c̄|2V +aρ′N ′Λ−
aρ′2

2
V. (12)

Now, we are going to apply the Bogolyubov’s convexity
inequality

0 ≤ pΛ(ρ̄′Λ, c̄, µ)− pΛ(c̄, µ) ≤ 1
2V 2

Δ′Λ(c̄), (13)

where

pΛ(ρ′, c, µ) =
1
βV

ln Tr′ exp [−βHΛ(c, ρ′)] ,

Δ′Λ(c̄) = a〈(N ′Λ − V ρ̄′Λ)2〉HΛ(c̄,ρ̄′Λ),

and ρ̄′Λ satisfies the equation

ρ̄′Λ =
1
V
〈N ′Λ〉HΛ(c̄,ρ̄′Λ).

One calculates

Δ′Λ(c̄) = a

∞∑
l=1

exp(βεΛl )
[exp(βεΛl )− 1]2

,

where εΛl = EΛ
l − µ + a(ρ̄′Λ + |c̄|2). Referring to the in-

equality cothx < 1 + x−1 with x ≥ 0, we get

Δ′Λ(c̄) < a

∞∑
l=1

1
exp(βεΛl )− 1

(
1 +

2
βεΛl

)
. (14)

Use inequality [11]
〈
[A, [H,A†]]

〉
≥ 0 which is valid for

any operator A and for any self-conjugate Hamiltonian
H. Take A = a†l , H = HΛ(c, ρ′). One gets EΛ

0 + a(ρ̄′Λ +
|c̄|2)− µ ≥ 0 for large V . So we obtain that

εΛl > EΛ
1 − EΛ

0 ≥
π2

2m
V −2/3 for l = 1, 2, 3, . . . . (15)

Inserting this estimate into (14), we have

Δ′Λ(c̄) < aρ̄′ΛV

(
1 +

4m
π2β

V 2/3

)
.

Therefore,

lim
V→∞

Δ′Λ(c̄)
V 2

= 0,

and we conclude that

lim
Λ↑Rd

pΛ(µ) = lim
Λ↑Rd

pΛ(ρ̄′Λ, c̄, µ).

Hence, the grand-canonical pressure of the mean field
model is

p(µ) = −a|c̄|
4

2
+ (µ− µ0)|c̄|2+

+ inf
ρ≥0

[
aρ2

2
+ p0(µ− a(|c̄|2 + ρ))

]
.
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Finally, for µ ≤ µc, we have |c̄| = 0, and ρ′(µ) is the
unique solution of ρ′ = ρ0(µ− aρ′); for µ > µc, we have
µ− a(|c̄|2 + ρ′) = µ0. Proposition 1 is proved.

From the very beginning, we consider the case of a
cubic box Λ. If we take a parallelepiped of the same
volume with sides of length Lj = V αj , j = 1, 2, 3,
such that α1 ≥ α2 ≥ α3 > 0 and α1 + α2 + α3 = 1,
the situation changes. We can prove estimate (15) for
α1 < 1/2 only. For a long parallelepiped in the direc-
tion j = 1, there is the generalized condensation in Gi-
rardeau’s sense [12], and the proposed method must be
improved.

Consider the case of attractive walls in the dimension
d = 1. The d > 1 generalization becomes more tedious
but is not hard. The spectrum of the one-dimensional
Schrödinger equation − 1

2mΦ′′ = εΛΦ with attractive
boundary conditions Φ′(−L/2) = σΦ(−L/2),Φ′(L/2) =
−σΦ(L/2), where σ < 0, consists of two negative eigen-
values tending to the same limit (when L→∞) and an
infinite number of positive eigenvalues (for L|σ| > 2),
namely

εΛ0 = − σ
2

2m
−O(e−L|σ|),

εΛ1 = − σ
2

2m
+O(e−L|σ|),

1
2m

(
(k − 1)π

L

)2

< εΛk <
1

2m

(
kπ

L

)2

for k ≥ 2.

We take this fact into account in the Bogolyubov approx-
imation, replacing the operators a#

0 , as well as a#
1 , by

c-numbers. Thus, instead of the approximating Hamil-
tonian (10), we can write

HΛ(c) = (εΛ0 − µ)|c|2L+
a|c|4

2
L+

∞∑
l=2

(
εΛl − µ +

+|c|2a
)
Nl +

a

2L
Ñ2

Λ +
a|c|2

2
+ ΔεΛ|c1|2L, (16)

where ΔεΛ .= εΛ1 − εΛ0 ∼ O(e−L|σ|), ÑΛ =
∑∞
l=2Nl and

|c|2 = |c0|2 + |c1|2 with |ci|2 = 〈a†iai/L〉HΛ(c), i = 0, 1.
Obviously, the last term in (16) is inessential in the
thermodynamic limit. Reiterating our previous con-
sideration, we prove Proposition 1 in the case of at-
tractive walls. The only difference in comparison with
the above-stated cases of boundary conditions is con-
nected with the replacement of the operator N ′Λ by

ÑΛ. Thus, we must begin to sum over l from 2 in
the appropriate formulae, and the main estimate (15)
is

εΛl > εΛ2 − εΛ0 >
σ2

2m

for l = 2, 3, . . . .
In [13], Vandevenne and Verbeure rigorously studied

the imperfect Bose gas with attractive boundary condi-
tions, where

H̃Λ = TΛ +
a

2V
Ñ2

Λ. (17)

The authors gave a proof of the occurrence of Bose
condensation in the one-dimensional case. The con-
densation is equally distributed over the two nega-
tive energy levels and is localized in the same area
as that for the free Bose gas with attractive bound-
ary conditions [14]. Remark that the interaction in
(17) is not of the usual form (1). The reason for
choosing (17) instead of (1) is the breaking of the
spatial translation invariance in the terms with N0

and N1.
The model Hamiltonian (17) can be treated by the

stereotyped approximating Hamiltonian method, so long
as we have

lim
V→∞

〈H̃Λ − H̃appr
Λ (ρ̄Λ)〉H̃appr

Λ (ρ̄Λ) = 0,

where

H̃appr
Λ (ρ) = TΛ + aρÑΛ −

aρ2

2
V,

and ρ̄Λ satisfies the self-consistency equation

ρ̄Λ =
1
V
〈ÑΛ〉H̃appr

Λ (ρ̄Λ).

As distinct from the usual Hamiltonian (1), Hamil-
tonian (17) is not superstable, and µ ≤ µ0 =
−dσ2/(2m). Consequently, one must take this restric-
tion into account in the formula for the pressure of model
(17),

p̃(µ) = lim
Λ↑Rd

p̃appr
Λ (ρ̄, µ) = inf

ρ≥0

[
aρ2

2
+ p0(µ− aρ)

]
,

where

p̃appr
Λ (ρ, µ) =

1
βV

ln Tr exp
[
−β
(
H̃appr

Λ (ρ)− µNΛ

)]
.

We conclude by remarking that, in the case of
attractive boundary conditions, the condensate has
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essentially infinite density and occupies essentially
zero volume near the walls as for the free Bose
gas.

1. N.N. Bogolyubov, jr., A Method for Studying Model
Hamiltonians (Pergamon Press, Oxford, New York,
1972).

2. N.N. Bogolyubov, J. Phys. (USSR) 11, 23 (1947).
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БОГОЛЮБОВСЬКА АПРОКСИМАЦIЯ ДЛЯ БОЗОНОВ

М.М. Боголюбов (мол.), Д.П. Санковiч

Р е з ю м е

Проаналiзовано метод апроксимуючого гамiльтонiана для
бозе-систем. У межах цього методу знайдено тиск для мо-
делi середнього поля неiдеального бозе-газу. Задачу розгля-
нуто за допомогою послiдовного застосування апроксимацiї
Боголюбова–Жiнiбра.
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