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Strongly correlated Fermi systems are among the most intriguing,
best experimentally studied, and fundamental systems in physics.
These are, however, in defiance of theoretical understanding. The
ideas based on the concepts like Kondo lattice and involving quan-
tum and thermal fluctuations at a quantum critical point have
been used to explain the unusual physics. Alas, being suggested
to describe one property, these approaches fail to explain the oth-
ers. This means a real crisis in theory suggesting that there is a
hidden fundamental law of nature, which remains to be recognized.
A theory of fermion condensation quantum phase transition, pre-
serving the extended quasiparticles paradigm and intimately re-
lated to the unlimited growth of the effective mass as a function
of the temperature, magnetic field, etc., is capable to resolve the
problem. We discuss the construction of the theory and show that
it delivers theoretical explanations of the vast majority of experi-
mental results in strongly correlated systems such as heavy-fermion
metals and quasi-two-dimensional Fermi systems. Our analysis is
placed in the context of recent salient experimental results. Our
calculations of the non-Fermi liquid behavior, the scales, and ther-
modynamic and transport properties are in good agreement with
the heat capacity, magnetization, longitudinal magnetoresistance,
and magnetic entropy obtained in remarkable measurements on
the heavy-fermion metal YbRh2Si2. Using two-dimensional 3He

as an example, we demonstrate that the main universal features
of its experimental temperature T - density x phase diagram re-
semble those of the heavy-fermion metals. We propose a simple
expression for the effective mass, describing all diverse experimen-
tal facts on the 3He in the unified manner and demonstrating that
the universal behavior of the effective mass coincides with that
observed in heavy-fermion metals.

1. Introduction

Strongly correlated Fermi systems represented by heavy-
fermion (HF) metals, high-temperature superconduc-
tors, and quasi-two-dimensional 3He are among the most
intriguing, best experimentally studied, and fundamen-

tal systems in physics [1]. This is also a field never far
from applications in the synthesis of novel materials for
cryogenics, rare earth magnets, and applied supercon-
ductivity. Their behavior is so unusual that the tra-
ditional Landau quasiparticles paradigm is not applied
to it. The paradigm states that the properties is de-
termined by quasiparticles, whose dispersion is charac-
terized by the effective mass M∗ which is independent
of the temperature T , number density x, magnetic field
B, and other external parameters. The above systems
are, however, in defiance of the theoretical understand-
ing. The ideas based on the concepts (like Kondo lattice;
see, e.g., [2]) involving quantum and thermal fluctua-
tions at a quantum critical point (QCP) have been used
to explain the unusual physics of these systems known
as non-Fermi liquid (NFL) behavior [1–4]. Alas, being
suggested to describe one property, these approaches fail
to explain the others. This means a real crisis in theory
suggesting that there is a hidden fundamental law of na-
ture, which remains to be recognized [5]. It is widely
believed that utterly new concepts are required to de-
scribe the underlying physics. There is a fundamental
question: how many concepts do we need to describe the
above physical mechanisms? This cannot be answered
on purely experimental or theoretical grounds. Rather,
we have to use both of them.

Usual arguments that quasiparticles in strongly cor-
related Fermi liquids “get heavy and die” at a quantum
critical point commonly employ the well-known formula
based on assumptions that the z-factor (the quasiparticle
weight in the single-particle state) vanishes at the points
of second-order phase transitions [6]. However, it has
been shown that this scenario is problematic [7]. A con-
cept of fermion condensation quantum phase transition
(FCQPT) preserving quasiparticles and intimately re-
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lated to the unlimited growth of M∗ had been suggested
[8–11]. Studies show that it is capable to deliver an ad-
equate theoretical explanation of the vast majority of
experimental results for different HF metals [12–14]. In
contrast to the Landau paradigm based on the assump-
tion that M∗ is a constant, M∗ in FCQPT approach
strongly depends on T , x, B, etc. Therefore, in accord
with numerous experimental facts, the extended quasi-
particles paradigm is to be introduced. The main point
here is that the well-defined quasiparticles determine as
before the thermodynamic and transport properties of
strongly correlated Fermi-systems, while M∗ becomes a
function of T , x, and B, and the dependence of the ef-
fective mass on T , x, and B gives rise to the non-Fermi
liquid (NFL) behavior [10, 12–17].

In this review, we discuss the construction of a theory
based on the above FCQPT approach and its application
to the analysis of a wide variety of experimentally ob-
served phenomena in microscopically different strongly
correlated Fermi systems like heavy-fermion metals and
quasi-two-dimensional 3He. We analyze the NFL behav-
ior of strongly correlated Fermi systems and show that
this is generated by the dependence of the effective mass
on the temperature, number density, and magnetic field
at FCQPT. We demonstrate that the NFL behavior ob-
served in the transport and thermodynamic properties
of HF metals can be described in terms of the scaling
behavior of the normalized effective mass. This allows
us to construct the scaled thermodynamic and transport
properties extracted from experimental facts in a wide
range of the variation of a scaled variable. We show
that “peculiar points” of the normalized effective mass
give rise to the energy scales observed in the thermody-
namic and transport properties of HF metals. Our calcu-
lations of the thermodynamic and transport properties
are in good agreement with the heat capacity, magne-
tization, longitudinal magnetoresistance, and magnetic
entropy obtained in remarkable measurements on the
heavy-fermion metal YbRh2Si2 [18–21].

2. Fermion Condensation Quantum Phase
Transition

We start with visualizing the main properties of FCQPT.
To this end, consider the density functional theory for
superconductors (SCDFT) [22]. SCDFT states that, at
a fixed temperature T , the thermodynamic potential Φ is
a universal functional of the number density n(r) and the
anomalous density (or the order parameter) κ(r, r1) and
provides a variational principle to determine the densi-
ties [22]. At the superconducting transition tempera-

ture Tc, a superconducting state undergoes the second-
order phase transition. Our goal now is to construct
a quantum phase transition which evolves from the su-
perconducting one. In that case, the superconducting
state takes place at T = 0, while there is a normal state
at finite temperatures. This means that the anomalous
density in this state is finite, while the superconducting
gap vanishes. For the sake of simplicity, we consider a
homogeneous Fermi (electron) system.

Let us assume that the coupling constant λ of the pair-
ing interaction vanishes, λ → 0, making vanish the su-
perconducting gap at any finite temperature. Then the
thermodynamic potential reduces to the ground state en-
ergy E which turns out to be a functional of the occupa-
tion number n(p) since κ =

√
n(1− n) [16,17,22,24,25].

Upon minimizing E with respect to n(p), we obtain

δE

δn(p)
= ε(p) = µ, (1)

where µ is the chemical potential. It is seen from Eq. (1)
that, instead of the Fermi step, we have 0 < n(p) < 1 in a
certain range of momenta pi ≤ p ≤ pf with κ to be finite
in this range. Thus, the step-like Fermi filling inevitably
undergoes restructuring and formes the fermion conden-
sate (FC), as soon as Eq. (1) possesses not-trivial solu-
tions at some point x = xc, when pi = pf = pF [8,12,13].
Here, pF is the Fermi momentum, and x = p3

F/3π
2.

At any small but finite temperature, the anomalous
density κ (or the order parameter) decays, and this state
undergoes the first-order phase transition and converts
into a normal state characterized by the thermodynamic
potential Φ0. At T → 0, the entropy S = −∂Φ0/∂T of
the normal state is given by the well-known relation [26]

S0 = −2
∫

[n(p) ln(n(p)) + (1−n(p) ln(1−n(p))]
dp

(2π)3

(2)

which follows from the combinatorial reasoning. Since
the entropy of the superconducting ground state is zero,
it follows from Eq. (2) that the entropy is discontinu-
ous at the phase transition point, with its discontinuity
ΔS = S0. The latent heat q of the transition from the
asymmetric to the symmetric phase is q = TcS0 = 0
since Tc = 0. Because of the stability condition at
the point of the first-order phase transition, we have
Φ0[n(p)] = Φ[κ(p)]. Obviously, the condition is satis-
fied since q = 0.

At T = 0, a quantum phase transition is driven by a
nonthermal control parameter, e.g. the number density
x. To clarify the role of x, consider the effective massM∗
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which is related to the bare electron mass m by the well-
known Landau equation [26] which is also valid, when
M∗ strongly depends on B, T , or x [16]:

1
M∗ =

1
m

+
∫

pFp1

p3
F

F (pF,p1)
∂n(p1, T )
∂p1

dp1

(2π)3
. (3)

Here, we omit the spin indices for simplicity, n(p, T ) is
quasiparticle occupation number, and F is the Landau
amplitude. At T = 0, Eq. (3) reads [27, 28]

M∗

m
=

1
1−N0F 1(x)/3

. (4)

Here, N0 is the density of states of the free electron gas,
and F 1(x) is the p-wave component of the Landau in-
teraction amplitude F . When x = xc at some quantum
critical point (QCP), F 1(x) achieves a certain threshold
value, and the denominator in Eq. (4) tends to zero so
that the effective mass diverges at T = 0 [27, 28]. It
follows from Eq. (4) that, beyond the QCP x = xc, the
effective mass becomes negative. To avoid the unstable
and physically meaningless state with a negative effec-
tive mass, the system must undergo a quantum phase
transition at QCP x = xc defined by Eq. (1) and which
is FCQPT [8, 9, 12, 13].

The schematic phase diagram of the system which is
driven to FC by variation of x is reported in Fig. 1.
Upon approaching the critical density xc, the system re-
mains in the LFL region at sufficiently low temperatures
[12, 13], which is shown by the shadow area. At QCP
xc shown by the arrow in Fig. 1, the system demon-
strates the NFL behavior down to the lowest tempera-
tures. Beyond QCP at finite temperatures, the behav-
ior is remaining the NFL one and is determined by the
temperature-independent entropy S0 [24]. In that case
as T → 0, the system is approaching a quantum crit-
ical line (shown by the vertical arrow and the dashed
line in Fig. 1) rather than a quantum critical point.
Upon reaching the quantum critical line from the above
at T → 0, the system undergoes the first-order quantum
phase transition which is FCQPT taking place at Tc = 0.

At T > 0, the NFL state above the critical line, see
Fig. 1, is strongly degenerated. Therefore, it is cap-
tured by the other states such as the superconducting
(for example, by the superconducting state in CeCoIn5

[23, 29, 30]) or by an AF state (e.g., the AF one in
YbRh2Si2 [16, 21, 31]) lifting the degeneracy. The ap-
plication of a magnetic field B > Bc0 restores the LFL
behavior, where Bc0 is a critical magnetic field such that
the system is driven toward its LFL regime at B > Bc0

[21, 30, 31]. In some cases, for example in HF metal

Fig. 1. Schematic phase diagram of the system driven to the FC
state. The number density x is taken as the control parameter and
depicted as x/xc. The quantum critical point (QCP), x/xc = 1,
of FCQPT is shown by the arrow. At x/xc < 1 and sufficiently
low temperatures, the system is in the Landau Fermi liquid (LFL)
state as shown by the shadow area. At T = 0 and beyond QCP,
x/xc > 1, the system is at the quantum critical line depicted by
the dash line and shown by the vertical arrow. The critical line is
characterized by the FC state with a finite superconducting order
parameter κ. At any finite temperature, the order parameter κ is
destroyed, and the entropy becomes discontinuous at Tc = 0, the
system undergoes the first-order phase transition and exhibits the
NFL behavior at T > 0

CeRu2Si2, Bc0 = 0 (see, e.g., [32]), while Bc0 ' 0.06 T
in YbRh2Si2 [21, 31]. In our simple model, Bc0 is taken
as a parameter.

3. Scaling Behavior of the Effective Mass

The schematic phase diagram of the HF metal YbRh2Si2
is presented in Fig. 2. A magnetic field B is taken as the
control parameter. The FC state and the region lying
at x/xc ≥ 1 (see Fig. 1) can be captured by the su-
perconducting, ferromagnetic, antiferromagnetic (AF),
etc. states lifting the degeneracy [12, 13]. Since we con-
sider the HF metal YbRh2Si2, the AF state takes place
[21, 31], as shown in Fig. 2. As seen from Fig. 2, at ele-
vated temperatures and a fixed magnetic field, the NFL
regime occurs, while rising B again drives the system
from the NFL region to the LFL one. Below, we con-
sider the transition region when the system moves from
the NFL regime to the LFL one along the dash-dot hor-
izontal arrow at rising B, and it moves from the LFL
regime to the NFL one along the solid vertical arrow at
rising T .
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Fig. 2. Schematic phase diagram of the HF metal YbRh2Si2. AF

denotes antiferromagnetic state. At T = 0, Bc0 is the magnetic
field, at which the effective mass diverges, and the AF state van-
ishes. At B > Bc0, the system is in its paramagnetic state. The
vertical arrow shows the transition from the LFL regime to the
NFL one at fixed B along T with M∗ depending on T . The dash-
dot horizontal arrow illustrates the system moving from the NFL
regime to the LFL one along B at fixed T . The inset shows a
schematic plot of the scaling behavior of the normalized effective
mass versus the normalized temperature. The transition regime,
where M∗

N reaches its maximum value M∗
M at T = TM , is shown

by the hatched area both in the main panel and in the inset. The
arrows mark the position of the inflection point in M∗

N and the
transition region

To explore a scaling behavior of M∗, we write the
quasiparticle distribution function as n1(p) = n(p, T )−
n(p), with n(p) is the step function, and Eq. (3) then
becomes

1
M∗(T )

=
1
M∗ +

∫
pFp1

p3
F

F (pF,p1)
∂n1(p1, T )

∂p1

dp1

(2π)3
.

(5)

At QCP, the effective mass M∗ diverges, and Eq. (5)
becomes homogeneous determining M∗ as a function of
the temperature

M∗(T ) ∝ T−2/3, (6)

while the system exhibits the NFL behavior [12, 15]. If
the system is located before QCP, M∗ is finite. At low
temperatures, the system demonstrates the LFL behav-
ior, i.e. M∗(T ) ' M∗ + a1T

2, with a1 being a constant

(see the inset to Fig. 2). Obviously, the LFL behav-
ior takes place when the second term on the right-hand
side of Eq. (5) is small in comparison with the first one.
Then, at rising temperatures, the system enters the tran-
sition regime: M∗ grows, reaching its maximum M∗

M at
T = TM , with the subsequent diminishing. Near tem-
peratures T ≥ TM , the last “traces” of the LFL regime
disappear, the second term starts to dominate. Equation
(5) becomes homogeneous again, and the NFL behavior
restores, manifesting itself in decreasing M∗ as T−2/3,
see Eq. (6). When the system is near QCP, it turns
out that the solution of Eq. (5) M∗(T ) can be well ap-
proximated by a simple universal interpolating function
[12, 15, 30]. The interpolation occurs between the LFL
(M∗ ' M∗ + a1T

2) and NFL (M∗ ∝ T−2/3) regimes,
thus describing the above crossover [12, 15]. Introducing
the dimensionless variable y = TN = T/TM , we obtain
the desired expression

M∗
N (y) ≈ c0

1 + c1y
2

1 + c2y8/3
. (7)

Here, M∗
N = M∗/M∗

M is the normalized effective mass,
and c0 = (1 + c2)/(1 + c1), c1, and c2 are the fitting
parameters parametrizing the Landau amplitude.

The inset to Fig. 2 demonstrates the scaling behavior
of the normalized effective mass M∗

N = M∗/M∗
M versus

the normalized temperature TN = T/TM , where M∗
M

is the maximum value reached by M∗ at T = TM . At
T � TM , the LFL regime takes place. At T � TM ,
the T−2/3 regime takes place. This is marked as the
NFL one, since the effective mass depends strongly on
the temperature. The temperature region T ' TM signi-
fies the transition between the LFL regime with almost
constant effective mass and the NFL behavior given by
T−2/3 dependence. Thus, the temperatures T ∼ TM

can be regarded as the transition region between the
LFL and NFL regimes. The transition temperatures
are not really a phase transition. These necessarily are
broad, very much depending on the criteria for deter-
mination of the point of such a transition, as it is seen
from the inset to Fig. 2. As usual, the transition tem-
perature is extracted from the temperature dependence
of charge transport, for example, from the resistivity
ρ(T ) = ρ0 + AT 2, where ρ0 is the residual resistivity,
and A is the LFL coefficient. The crossover takes place
at temperatures, where the resistance starts to deviate
from the LFL T 2 behavior. Obviously, the measure of
the deviation from the LFL T 2 behavior cannot be de-
fined unambiguously. Therefore, different measures pro-
duce different results.
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It is possible to transport Eq. (5) to the case of the
application of magnetic fields [12, 15, 30]. The applica-
tion of a magnetic field restores the LFL behavior, so
that M∗

M depends on B as

M∗
M ∝ (B −Bc0)−2/3, (8)

while

TM ∝ µB(B −Bc0), (9)

where µB is the Bohr magneton [12, 15, 30]. Employ-
ing Eqs. (8) and (9) to calculate M∗

M and TM , we
conclude that Eq. (7) is valid to describe the normal-
ized effective mass in external fixed magnetic fields with
y = T/(B − Bc0). On the other hand, Eq. (7) is
valid when the applied magnetic field becomes a vari-
able, while the temperature is fixed T = Tf . In that
case, as seen from Eqs. (6), (7), and(8), it is convenient
to rewrite the variable as y = (B−Bc0)/Tf and Eq. (9)
as

µB(BM −Bc0) ∝ Tf . (10)

It follows from Eq. (7) that, in contrast to the Landau
paradigm of quasiparticles, the effective mass strongly
depends on T and B. As we will see, it is this depen-
dence that forms the NFL behavior. It follows also from
Eq. (7) that a scaling behavior of M∗ near QCP is de-
termined by the absence of appropriate external physical
scales to measure the effective mass and the tempera-
ture. At fixed magnetic fields, the characteristic scales
of the temperature and of the function M∗(T,B) are
defined by both TM and M∗

M , respectively. At fixed
temperatures, the characteristic scales are (BM − Bc0)
and M∗

M . It follows from Eqs. (8) and (9) that, at fixed
magnetic fields, TM → 0, and M∗

M →∞, and the width
of the transition region shrinks to zero as B → Bc0,
when these are measured on the external scales. In the
same way, it follows from Eqs. (6) and (10) that, at
fixed temperatures, (BM − Bc0) → 0, and M∗

M → ∞,
and the width of the transition region shrinks to zero
as Tf → 0. Thus, the application of the external scales
obscures the scaling behavior of the effective mass and
of the thermodynamic and transport properties.

A few remarks are in order here. As we shall see, the
magnetic field dependences of the effective mass or some
other observable like the longitudinal magnetoresistance
do not have “peculiar points” like maximum. The nor-
malization are to be performed at the other points like
the inflection point at T = Tinf (or at B = Binf) shown
in the inset to Fig. 2 by the arrow. Such a normalization
is possible, since it is established on the internal scales,
Tinf ∝ TM ∝ (B −Bc0).

Fig. 3. Normalized entropy SN (B/Binf) versus y = B/Binf and
the normalized entropy SN (T/Tinf) versus y = T/Tinf calculated
at a fixed temperature and a fixed magnetic field, respectively,
are represented by the solid lines and shown by the arrows. The
inflection point is depicted by the dash-dot arrow

4. NFL Behavior of the HF Metal YbRh2Si2

In what follows, we compute the effective mass and em-
ploy Eq. (7) for estimations of considered values. To
compute the effective mass M∗(T,B), we solve Eq. (5)
with a special form of the Landau interaction ampli-
tude, see [12, 15] for details. The choice of the ampli-
tude is dictated by the fact that the system has to be
at QCP, which means that the first two p-derivatives
of the single-particle spectrum ε(p) should equal zero.
Since the first derivative is proportional to the recipro-
cal quasiparticle effective mass 1/M∗, its zero just sig-
nifies QCP of FCQPT. A zero of the second derivative
means that the spectrum ε(p) has an inflection point at
pF rather than a maximum. Thus, the lowest term of
the Taylor expansion of ε(p) is proportional to (p−pF )3

[15]. After the solution of Eq. (5), the obtained spec-
trum had been used to calculate the entropy S(B, T ),
which had been recalculated, in turn, to the effective
mass M∗(T,B) by virtue of the well-known LFL rela-
tion M∗(T,B) = S(T,B)/T . The results of our calcu-
lations of the normalized entropy as a function of the
normalized magnetic field B/Binf = y and as a function
of the normalized temperature y = T/Tinf are given in
Fig. 3. Here, Tinf and Binf are the corresponding inflec-
tion points of the function S. We normalize the entropy
by its value at the inflection point SN (y) = S(y)/S(1).
As seen from Fig. 3, our calculations corroborate the
scaling behavior of the normalized entropy. That is,
the curves at different temperatures and magnetic fields
merge into the single one in terms of the variable y. The
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Fig. 4. Normalized effective massM∗
N extracted from the measure-

ments of the specific heat C/T on YbRh2Si2 in magnetic fields B
[19] listed in the legend. The results of our calculations are de-
picted by the solid curve tracing the scaling behavior of M∗

N

inflection point Tinf in S(T ) makes M∗(T,B) have its
maximum as a function of T , while M∗(T,B) versus B
has no maximum. We note that our calculations of the
entropy confirm the validity of Eq. (7) and the scaling
behavior of the normalized effective mass.

4.1. Heat capacity

Exciting measurements of C/T ∝M∗ on samples of the
new generation of YbRh2Si2 in different magnetic fields
B up to 1.5 T [19] allow us to identify the scaling behav-
ior of the effective mass M∗ and to observe the different
regimes of M∗ behavior such as the LFL regime, transi-
tion region from the LFL to the NFL regimes, and the
NFL regime itself. A maximum structure in C/T ∝M∗

M

at TM appears under the application of a magnetic field
B, and TM shifts to higher T , as B is increased. The
value of C/T = γ0 is saturated toward lower temper-
atures, by decreasing at the increasing magnetic field,
where γ0 is the Sommerfeld coefficient [19].

The transition region corresponds to the tempera-
tures, where the vertical arrow in the main panel of Fig. 2
crosses the hatched area. The region width proportional
to TM ∝ (B −Bc0) shrinks, TM moves to the zero tem-
perature, and γ0 ∝ M∗ increases as B → Bc0. These
observations are in accord with the facts [19].

To obtain the normalized effective mass M∗
N , the max-

imum structure in C/T was used to normalize C/T , and
T was normalized by TM . In Fig. 4, M∗

N as a function
of the normalized temperature TN is shown by geomet-
rical figures, our calculations are shown by the solid

line. Figure 4 reveals the scaling behavior of the nor-
malized experimental curves, and the scaled curves at
different magnetic fields B merge into the single one
in terms of the normalized variable y = T/TM . As
seen, the normalized mass M∗

N extracted from the mea-
surements is not a constant, as it would be for LFL.
The two regimes (the LFL regime and the NFL one)
separated by the transition region, as depicted by the
hatched area in the inset to Fig. 2, are clearly seen in
Fig. 4 illuminating a good agreement between the the-
ory and the facts. It is worth noting that the nor-
malization procedure allows us to construct the scaled
function C/T extracted from the facts in a wide range
of variation of the normalized temperature. Indeed, it
integrates measurements of C/T taken at the applica-
tion of different magnetic fields into the unique func-
tion which demonstrates the scaling behavior over three
decades in the normalized temperature as seen from
Fig. 4.

4.2. Magnetization

Consider now the magnetization M as a function of the
magnetic field B at a fixed temperature T = Tf ,

M(B, T ) =

B∫
0

χ(b, T )db, (11)

where the magnetic susceptibility χ is given by [26]

χ(B, T ) =
βM∗(B, T )

1 + F a
0

. (12)

Here, β is a constant, and F a
0 is the Landau amplitude

related to the exchange interaction [26]. In the case of
strongly correlated systems, F a

0 ≥ −0.9 [27, 28]. There-
fore, as seen from Eq. (12), the coefficients β and (1+F a

0 )
drop out from the result due to the normalization, and
χ ∝M∗.

One might suppose that F a
0 can strongly depend on

B. This is not the case, since the Kadowaki–Woods ratio
is conserved [31, 33–35], A(B)/γ2

0(B) ∝ A(B)/χ2(B) ∝
const, we have γ0 ∝ M∗ ∝ χ. Here, A is the coefficient
in the T 2 dependence of the resistivity ρ.

Our calculations show that the magnetization exhibits
a kink at some magnetic field B = Bk. The experimental
magnetization demonstrates the same behavior [20]. We
use Bk and M(Bk) to normalize B and M , respectively.
The normalized magnetization M(B)/M(Bk) extracted
from facts [20] depicted by the geometrical figures and
the calculated magnetization shown by the solid line are
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Fig. 5. Field dependences of the normalized magnetization M col-
lected at different temperatures shown at the right bottom corner
are extracted from measurements collected on YbRu2Si2 [20]. The
kink (shown by the arrow) is clearly seen at the normalized field
BN = B/Bk ' 1. The solid curve represents our calculations

presented in Fig. 5. As seen, the scaled data at different
Tf merge into the single one in terms of the normalized
variable y = B/Tk. It is also seen that these exhibit
the energy scales separated by a kink at the normalized
magnetic field BN = B/Bk = 1. The kink is a crossover
point from the fast to slow growth of M at a rising mag-
netic field. It is seen from Fig. 5 that our calculations
are in good agreement with the facts, and all the data
exhibit the kink (shown by the arrow) at BN ' 1 taking
place as soon as the system enters the transition region
corresponding to the magnetic fields, where the horizon-
tal dash-dot arrow in the main panel of Fig. 2 crosses the
hatched area. Indeed, as seen from Fig. 5, M is a linear
function of B at lower magnetic fields, since M∗ is ap-
proximately independent of B. Then, it follows from
Eqs. (7) and (8) that, at elevated magnetic fields, M∗

becomes a diminishing function of B and generates the
kink in M(B) separating the energy scales discovered in
[18, 20]. Then, as seen from Eq. (10), the magnetic field
Bk, at which the kink appears, Bk ' BM ∝ Tf , shifts
to lower B, as Tf is decreased. This observation is in
accord with the facts [18, 20].

4.3. Longitudinal magnetoresistance

Consider the longitudinal magnetoresistance (LMR)
ρ(T,B) = ρ0 + A(T,B)T 2 as a function of B at fixed
T = Tf . In that case, the classical contribution to
LMR due to the orbital motion of carriers induced by
the Lorentz force is small, while the Kadowaki–Woods

Fig. 6. Magnetic field dependence of the normalized magnetoresis-
tance ρN versus the normalized magnetic field. ρN was extracted
from LMR of YbRh2Si2 at different temperatures [18, 20] listed in
the legend. The inflection point is shown by the arrow, and the
solid line represents our calculations

relation [31, 33–35], K = A/γ2
0 ∝ A/χ2 = const, allows

us to employ M∗ to construct the coefficient A [36], since
γ0 ∝ χ ∝M∗. As a result, ρ(T,B)−ρ0 ∝ (M∗)2. Figure
6 shows the normalized magnetoresistance

ρN (y) =
ρ(y)− ρ0

ρinf
∝ (M∗

N (y))2 (13)

versus the normalized magnetic field y = B/Binf at dif-
ferent temperatures shown in the legend. Here, ρinf and
Binf are the LMR and the magnetic field, respectively,
taken at the inflection point marked by the arrow in Fig.
6. Both theoretical (shown by the solid line) and exper-
imental (marked by the geometrical figures) curves have
been normalized by their inflection points, which also re-
veals the scaling behavior. The scaled curves at different
temperatures merge into the single one as a function of
the variable y and show the scaling behavior over three
decades in the normalized magnetic field. The transi-
tion region, at which LMR starts to decrease, is shown
in the inset to Fig. 2 by the hatched area. Obviously,
as seen from Eq. (10), the width of the transition region
being proportional to BM ' Binf ∝ Tf decreases as the
temperature Tf is lowered. In the same way, the inflec-
tion point of LMR, generated by the inflection point of
M∗ shown in the inset to Fig. 2 by the arrow, shifts to
lower B, as Tf is decreased. All these observations are
in excellent agreement with the facts [18, 20].

It is instructive to demonstrate that the same effec-
tive mass employed to calculate LMR shown in Fig. 6
gives good description of the magnetoresistance (MR)
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Fig. 7. MR versus the temperature T as a function of the magnetic
field B. The experimental data on MR were collected on CeCoIn5

at a fixed magnetic field B [37] shown in the right bottom corner
of the figure. The solid lines represent our calculations

collected in measurements on CeCoIn5. Figure 7 shows
the calculated MR versus the temperature as a function
of the magnetic field B together with the experimental
points from [37]. We note that both the classical con-
tributions to MR due to the orbital motion of carriers
induced by the Lorentz force and ρ0 were omitted. As
seen from Fig. 7, our description of the experiment is
pretty good [38].

4.4. Magnetic entropy

The evolution of the magnetic entropy derivative
dS(B, T )/dB as a function of the magnetic field B
at a fixed temperature Tf is of great importance,
since it allows us to study the scaling behavior of
the derivative of the effective mass TdM∗(B, T )/dB ∝
dS(B, T )/dB, while the scaling properties of the effec-
tive mass M∗(B, T ) can be analyzed via LMR (see Fig.
6).

As seen from Eqs. (7) and (10), at y ≤ 1, the deriva-
tive −dMN (y)/dy ∝ y with y = (B−Bc0)/(Binf−Bc0) ∝
(B − Bc0)/Tf . We note that the effective mass as a
function of B does not have maximum. At elevated y,
the derivative −dMN (y)/dy possesses a maximum at the
inflection point and then becomes a diminishing func-
tion of y. Upon using the variable y = (B − Bc0)/Tf ,
we conclude that, at decreasing temperatures, the lead-
ing edge of the function −dS/dB ∝ −TdM∗/dB be-
comes steeper, and its maximum at (Binf − Bc0) ∝
Tf is higher. These observations are in quantitative

Fig. 8. Normalized magnetization difference divided by the tem-
perature increment (ΔM/ΔT )N versus the normalized magnetic
field at fixed temperatures listed in the legend is extracted from the
facts collected on YbRh2Si2 [21]. The results of our calculations
of the normalized derivative (dS/dB)N ' (ΔM/ΔT )N versus the
normalized magnetic field are shown by the solid line

agreement with striking measurements of the magneti-
zation difference divided by the temperature increment,
−ΔM/ΔT , as a function of the magnetic field at fixed
temperatures Tf collected on YbRh2Si2 [21]. We note
that, according to the well-known thermodynamic equal-
ity, dM/dT = dS/dB and ΔM/ΔT ' dS/dB. To
carry out a quantitative analysis of the scaling behav-
ior of −dM∗(B, T )/dB, we calculate the normalized en-
tropy S shown in Fig. 3 as a function of B/Binf at
a fixed temperature Tf . Figure 8 demonstrates the
normalized (dS/dB)N as a function of the normalized
magnetic field. The scaled function (dS/dB)N is ob-
tained by normalizing (−dS/dB) by its maximum tak-
ing place at BM , and the field B is scaled by BM . The
measurements of −ΔM/ΔT are normalized in the same
way and depicted in Fig. 8 as (ΔM/ΔT )N versus the
normalized field. It is seen from Fig. 8 that our re-
sults shown by the solid line are in good agreement
with the facts, and the scaled functions (ΔM/ΔT )N ex-
tracted from the facts show the scaling behavior in a
wide range of variation of the normalized magnetic field
B/BM .

4.5. Energy scales and T − B phase diagram for
YbRh2Si2

Figure 9 shows Tinf and TM versus B depicted by the
solid and dash-dotted lines, respectively. The bound-
ary between the NFL and LFL regimes is shown by

72 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1



FERMION CONDENSATION

the dashed line, and AF marks the antiferromagnetic
state. The corresponding data are taken from [18–20,31].
It is seen that our calculations are in good agreement
with the facts [17]. In Fig. 9, the solid and dash-
dotted lines corresponding to the functions Tinf and
TM , respectively, represent the positions of the kinks
separating the energy scales in C and M reported in
[18, 20]. It is seen that our calculations are in accord
with facts, and we conclude that the energy scales are
reproduced by Eqs. (9) and (10) and related to the
peculiar points of the normalized effective mass M∗

N .
The points are the inflection point Tinf and the max-
imum point TM , at which the transition region is lo-
cated. These are shown by the arrows in the inset to
Fig. 2.

At B → Bc0, both Tinf → 0 and TM → 0. Thus,
the LFL and the transition regimes of both C/T and
M , as well as these of LMR and the magnetic en-
tropy, are shifted to very low temperatures. There-
fore, due to experimental difficulties, these regimes can-
not be often observed in experiments on HF metals.
As is seen from Figs. 4, 5, 6, 8, and 9, the nor-
malization allows us to construct the unique scaled
thermodynamic and transport functions extracted from
the experimental facts in a wide range of variation
of the scaled variable y. As seen from the above-
mentioned figures, the constructed normalized ther-
modynamic and transport functions show the scaling
behavior over three decades in the normalized vari-
able.

5. Universal Behavior of Two-Dimensional 3He
at Low Temperatures

The bulk liquid 3He is historically the first object, to
which the Landau Fermi-liquid (LFL) theory had been
applied [26]. This substance, being an intrinsically
isotropic Fermi liquid with the negligible spin-orbit inter-
action is ideal to test the LFL theory. It is remarkable
that the same 3He becomes the first 2D homogeneous
Fermi liquid, in which the NFL behavior was detected
[39–41]. 2D 3He has a very important feature: a change
of the number density x of a 3He film drives it toward
QCP, at which the quasiparticle effective mass M∗ di-
verges [39–41]. This peculiarity allows one to plot the
experimental temperature-density phase diagram which
can be directly compared with the theoretical phase di-
agram shown in Fig. 1. As a result, 2D 3He becomes an
ideal system to test a theory describing the NFL behav-
ior. Namely, the neutral atoms of 3He are fermions in-
teracting with one another by van-der-Waals forces with

Fig. 9. T −B phase diagram for YbRh2Si2. Solid circles represent
the boundary between AF and NFL states. The solid squares
denote the boundary of the NFL and LFL regimes [18, 20, 31]
shown by the dotted line which is approximated by

√
B −Bc0

[12]. Diamonds mark the maxima TM of C/T [19] shown in Fig.
2. The dash-dot line is approximated by TM ∝ a(B −Bc0), a is a
fitting parameter, see Eq. (9). Triangles along the solid line denote
Tinf in LMR [18, 20] shown in Fig. 5, the solid line represents the
function Tinf ∝ b(B−Bc0), where b is a fitting parameter, see Eq.
(10)

a strong hardcore repulsion and a weakly attractive tail.
The different character of the interparticle interaction
along with the fact that the mass of 3He atom is 3 or-
ders of magnitude larger than that of an electron makes
3He systems to have drastically different properties than
those of HF metals. Because of this difference, nobody
can be sure that the macroscopic physical properties of
these systems will be more or less similar to each other
at their QCP.

In this section, we show that, in spite of very different
microscopic nature of 2D 3He and 3D HF metals, their
main universal features at their QCP are the same, being
dictated by the extended quasiparticles paradigm. Our
analysis of the experimental measurements has shown
that the behavior of 2D 3He is quite similar to that of HF
compounds with various ground state magnetic proper-
ties. Namely, we demonstrate that the main universal
features of the 3He experimental T -x phase diagram re-
semble those of HF metals and can be well captured, by
utilizing the notion of FCQPT embracing the extended
quasiparticles paradigm and thus by deriving NFL prop-
erties of above systems from the paradigm. We also show
that the universal behavior of the effective mass of 2D
3He coincides with that observed in HF metals.
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Fig. 10. Temperature-number density phase diagram of 2D 3He.
The part for z < 1 corresponds to the HF behavior divided into the
LFL and NFL parts by the line TM (z) ∝ (1− z)3/2, where TM is
the effective mass maximum temperature. The exponent 3/2 = 1.5

coming from Eq. (15) is in good agreement with the experimental
value of 1.7± 0.1 [39]. The dependence M∗(z) ∝ (1− z)−1 shown
by the dashed line points out QCP taking place at z = 1. The
regime for z ≥ 1 consists of the LFL piece (the shadowed region
beginning in the intervening phase z ≤ 1 [39], which is due to the
substrate inhomogeneities, see the text) and the NFL regime at
higher temperatures

5.1. The temperature-number density phase
diagram of 2D 3He

As we have seen in Section I, at QCP x = xc, the effective
mass diverges at T = 0, and the leading term of this
divergence given by Eq. (4) reads

M∗(x)
M

= A+
B

1− z
, z =

x

xc
. (14)

Equation (14) is valid in both 3D and 2D cases, while
the values of factors A and B depend on the dimension-
ality and the interparticle interaction [12]. At x > xc,
the fermion condensation takes place. Here, we confine
ourselves to the case x < xc.

Equation (14) shows that the maximum value of the
effective mass M∗

M ∝ 1/(1 − z), and it follows from (6)
that M∗

M ∝ T−2/3. As a result, we obtain that TM ,
at which the effective mass reaches its maximum value
M∗

M ∝ T−2/3, is given by

TM ∝ (1− z)3/2. (15)

We note that the obtained results are in agreement with
numerical calculations [12, 15].

In Fig. 10, we show the phase diagram of 2D 3He in
the variables T–z (see Eq. (14)). For the sake of compar-
ison, the plot of the effective mass versus z is shown by a

dashed line. The dependence M∗(z) ∝ (1−z)−1 demon-
strates that the effective mass diverges at QCP with
z = 1 in accordance with the general phase diagram dis-
played in Fig. 1. The part of the diagram, where z < 1,
corresponds to the HF behavior and consists of LFL and
NFL parts divided by the line TM (z) ∝ (1 − z)3/2. We
draw attention that our exponents 1 (see Eq. (14)) and
3/2 = 1.5 (see Eq. (15)) are in good agreement with
those from [39]. The good coincidence between the theo-
retical and experimental exponents favors the realization
of our FCQPT scenario in the NFL behavior of both 2D
3He and HF metals, as the former system is similar in
great details to them.

The regime for z > 1 located above the quantum
critical line, see Figs. 10 and 1, consists of the low-
temperature LFL piece, (shown in Fig. 10 by the shad-
owed region beginning in the intervening phase z ≤ 1
[39]) and the NFL regime at higher temperatures. The
former LFL piece is related to the peculiarities of a sub-
strate, on which 2D 3He film is placed. Namely, it is
related to the weak substrate heterogeneity (steps and
edges on its surface), so that quasiparticles, being local-
ized (pinned) on it, give rise to the LFL behavior [39,40].
That is, the peculiarities of the substrate eliminate the
degeneracy generated by the FC state taking place at
z > 1 in the same way as the AF state does in the case
of YbRh2Si2, see Fig. 2. At elevated temperatures, the
competition between the thermal and pinning energies
returns the system back to the unpinned state restoring
the NFL behavior. As HF metals do not have a sub-
strate, the LFL behavior is induced by the AF state lift-
ing the degeneracy. At elevated temperatures, this state
is destroyed and exhibits the NFL behavior, as is shown
in Fig. 2. If the AF state were absent and some disorder
(like point defects, dislocations, etc.) were present in the
lattice, a rather thin LFL piece could take place at low
temperatures.

5.2. NFL behavior of 2D 3He versus that of
HF metals

As we have seen above, M∗(T ) can be measured in ex-
periments on strongly correlated Fermi systems. For ex-
ample, M∗(T ) ∝ C(T )/T ∝ S(T )/T ∝ M0(T ) ∝ χ(T ),
where C(T ) is the specific heat, S(T ) is the entropy,
M0(T ) is the magnetization, and χ(T ) is the AC mag-
netic susceptibility. If the measurements are performed
at fixed x, then, as follows from Eq. (7), the effective
mass reaches the maximum at T = TM . Upon normal-
izing both M∗(T ) by its peak value at each x and the
temperature by TM , we see from Eq. (7) that, in the
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Fig. 11. Dependence of the effective mass M∗(z) on the dimen-
sionless density 1 − z = 1 − x/xc. Experimental data from [41]
are shown by circles and squares and those from [39] are shown by
triangles. The effective mass is fitted as M∗(z)/M ∝ A+B/(1−z)
[see Eq. (14)], while the reciprocal one as M/M∗(z) ∝ A1z, where
A,B and A1 are constants

case of 2D 3He, all the curves also merge into the single
one, by demonstrating a scaling behavior.

In Fig. 11, we show the experimental values of ef-
fective mass M∗(z) obtained by the measurements on
a 3He monolayer [41]. These measurements, in coin-
cidence with those from [39], show the divergence of
the effective mass at x = xc. To show that our FC-
QPT approach is able to describe the above data, we
represent the fit of M∗(z) by the fractional expression
M∗(z)/M ∝ A + B/(1 − z) and the reciprocal effective
mass by the linear fit M/M∗(z) ∝ A1z. We note that
the linear fit has been used to describe the experimental
data for a bilayer of 3He [39], and we use this function
here for the sake of illustration. It is seen from Fig.
11 that the data [39] (3He bilayer) can be equally well
approximated by both linear and fractional functions,
while the data [41] cannot. For instance, both fitting
functions give xc ≈ 9.8 nm−2 for the critical density in
a bilayer, while these values are different for a mono-
layer [41]: xc = 5.56 for a linear fit, and xc = 5.15 for a
fractional fit. It is seen from Fig. 11 that a linear fit is
unable to properly describe the experiment [41] at small
1− z (i.e. near x = xc), while the fractional fit describes
the experiment very well. This means that more detailed
measurements are necessary in the vicinity of x = xc.

We now apply the universal dependence (7) to fit the
experiment not only in 2D 3He but also in 3D HF met-

Fig. 12. Normalized effective mass M∗
N as a function of the nor-

malized temperature T/TM at densities shown in the left bottom
corner. The behavior of M∗

N is extracted from experimental data
obtained in 2D 3He [40] and 3D HF compounds with different mag-
netic ground states such as CeRu2Si2 and CePd1−xRhx [32, 42],
fitted by the solid curve given by (7)

als. The quantity M∗
N (y) extracted from measurements

of the entropy S(T )/T and the magnetization M0 on a
3He film [40] at different densities x < xc is presented
in Fig. 12. In the same figure, the data extracted from
the heat capacity of ferromagnet CePd0.2Rh0.8 [42] and
the AC magnetic susceptibility of paramagnet CeRu2Si2
[32] are plotted for different magnetic fields. It is seen
that the universal behavior of the normalized effective
mass given by Eq. (7) and shown by the solid curve
is in accord with the experimental facts. All 2D 3He
substances are located at x < xc, where the system pro-
gressively disrupts its LFL behavior at elevated temper-
atures. In that case, the control parameter driving the
system toward its QCP xc is merely the number density
x. It is seen that the behavior of M∗

N (y) extracted from
S(T )/T and M0 of 2D 3He (the entropy S(T ) is reported
in Fig. S8 A of [40]) looks very much like that of 3D HF
compounds. As will be seen from Fig. 14 below, the am-
plitude and the positions of the magnetization maxima
M0(T ) and S(T )/T in 2D 3He follow nicely Eqs. (14)
and (15). We conclude that Eq. (7) allows for the re-
duction of a 4D function describing the effective mass to
a single-variable function. Indeed, the effective mass de-
pends on the magnetic field, temperature, number den-
sity, and composition, so that all these parameters can
be merged in the single variable by means of an interpo-
lating function like Eq. (7).

The attempt to fit the available experimental data for
C(T )/T in 2D 3He [41] by the universal function M∗

N (y)
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Fig. 13. Dependence M∗
N (T/TM ) at densities shown in the left

down corner. The behavior M∗
N is extracted from experimental

data for C(T )/T in 2D 3He [41] and for the magnetization M0 in
2D 3He [39]. The solid curve shows the universal function, see the
caption to Fig. 12

is demonstrated in Fig. 13. Here, the data extracted
from the heat capacity C(T )/T for a 3He monolayer [41]
and the magnetization M0 for a bilayer [39], are pre-
sented. It is seen that the effective mass extracted from
these thermodynamic quantities can be well described
by the universal interpolation formula (7). We note the
qualitative and quantitative similarity between the cases
of the double layer [39] and the monolayer [41] of 3He,
as seen from Fig. 13.

In the left panel of Fig. 14, we show the density de-
pendence of TM , extracted from measurements of the
magnetization M0(T ) of a 3He bilayer [39]. The peak
temperature is fitted by Eq. (15). In the same figure,
we have also shown the maximal magnetization Mmax.
It is seen that Mmax is well described by the expression
Mmax ∝ (S/T )max ∝ (1− z)−1, see Eq. (14). The right
panel of Fig. 14 presents the peak temperature TM and
the maximal entropy (S/T )max versus the number den-
sity x. They are extracted from the measurements of
S(T )/T on a 3He bilayer [40]. The fact that both the
left and right panels exhibit the same behavior of the
curves shows once more that there are indeed the quasi-
particles determining the thermodynamic behavior of 2D
3He near its QCP related to FCQPT.

6. Summary

We have analyzed the non-Fermi liquid behavior of heavy
fermion metals and showed that the extended quasipar-
ticles paradigm is strongly valid, while the dependence of

Fig. 14. Left panel, the peak temperatures TM and the peak val-
ues Mmax extracted from measurements of the magnetization M0

in 3He [39]. Right panel shows TM and the peak values (S/T )max

extracted from measurements of S(T )/T in 3He [40]. We approx-
imate TM ∝ (1− z)3/2 and (S/T )max ∝Mmax ∝ A/(1− z)

the effective mass on the temperature, number density,
and applied magnetic fields gives rise to the NFL behav-
ior. We have demonstrated that our theoretical study
of the heat capacity, magnetization, longitudinal mag-
netoresistance, and magnetic entropy is in good agree-
ment with the outstanding recent facts collected on the
HF metal YbRh2Si2. Our normalization procedure has
allowed us to construct the scaled thermodynamic and
transport properties in a wide range of variation of the
scaled variable. For YbRh2Si2, the constructed thermo-
dynamic and transport functions show the scaling behav-
ior over three decades in the normalized variable. The
energy scales in these functions are also explained.

We have described the diverse experimental facts re-
lated to the temperature and number density depen-
dences of the thermodynamic characteristics of 2D 3He
by a single universal function of one argument. The
above universal behavior is also inherent to HF metals
with different magnetic ground states. We obtain the
marvellous coincidence with experiment in the frame-
work of our theory. Moreover, these data could be ob-
tained for 2D 3He only and thus they were inaccessible
for analysis in HF metals. This fact also shows the uni-
versality of our approach. Thus, we have shown that
bringing the experimental data collected on different
strongly correlated Fermi systems to the above form im-
mediately reveals their universal scaling behavior. Thus,
the theory of fermion condensation quantum phase tran-
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sition, preserving the extended quasiparticles paradigm
and intimately related to the unlimited growth of the ef-
fective mass as a function of the temperature, magnetic
field, etc., is capable of describing the strongly correlated
Fermi systems.

This work was supported in part by RFBR No. 09-
02-00056.

1. G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001).
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ФЕРМIОННА КОНДЕНСАЦIЯ: НЕЗВИЧАЙНА IДЕЯ, ЯКА
УСПIШНО ПОЯСНЮЄ ПОВЕДIНКУ РIЗНОМАНIТНИХ
ФIЗИЧНИХ СИСТЕМ У ПРИРОДI

В.Р. Шагинян, М.Я. Амусi, К.Г. Попов

Р е з ю м е

Сильнокорельованi фермi-системи є найбiльш фiзично загад-
ковими фундаментальними та добре вивченими експеримен-
тально системами, за вiдсутностi, у той же час, їх теоретично-
го опису. Iдеї, якi ґрунтуються на ґратцi Кондо та квантових i
термiчних флуктуацiях, використовуються для пояснення не-
звичної фiзики. Однак, будучи запропонованими для поясне-
ння однiєї властивостi, цi iдеї виявилися некорисними для по-
яснення iнших властивостей. Такий стан речей вказує на суча-
сну кризу теорiї, для подолання якої нам треба буде вiдкрити
невiдомий поки що фундаментальний закон. Теорiя фермiон-
конденсатного фазового квантового переходу, яка пiдтримує
розширену парадигму квазiчастинок i допускає необмежене
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зростання ефективної маси як функцiї температури та напру-
женостi магнiтного поля, має змогу вирiшити проблему силь-
нокорельованих систем. Обговорено побудову теорiї i показано,
що вона дозволяє описати широке коло експериментальних да-
них в областi таких сильнокорельованих систем, як метали з
важкими фермiонами та двовимiрнi фермi-системи. Наш роз-
гляд включає в себе опис вартих уваги експериментiв. Проведе-
нi обчислення нефермi-рiдинної поведiнки, термодинамiчних i
транспортних властивостей та вiдповiдних енергетичних шкал
добре узгоджуються з даними. Цi данi вимiру теплоємностi, на-

магнiченостi, поздовжнього магнетоопору i магнiтної ентропiї
одержано в унiкальних вимiрах на металi з важкими фермiона-
ми YbRh2Si2. Продемонстровано, що основнi унiверсальнi вла-
стивостi фазової дiаграми температура–густина двовимiрного
3He збiгається з вiдповiдними властивостями металiв iз важ-
кими фермiонами. Запропоновано просту формулу для ефе-
ктивної маси, яка дозволяє описати унiверсальнi властивостi
сильнокорельованих систем i пояснити рiзноманiтнi експери-
ментальнi данi, зiбранi у вимiрах на 3He i металах з важкими
фермiонами.
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