

МАТЕМАТИЧНІ МЕТОДИ, МОДЕЛІ, ПРОБЛЕМИ І ТЕХНОЛОГІЇ ДОСЛІДЖЕННЯ СКЛАДНИХ СИСТЕМ

UDC 517.9

ON SOME TOPOLOGICAL PROPERTIES FOR SPECIAL CLASSES OF BANACH SPACES. PART 2

P. KASYANOV, V. MEL'NIK

We consider some classes of infinite-dimensional Banach spaces with integrable derivatives. A compactness lemma for nonreflexive spaces is obtained. However some main topological properties for the given spaces are obtained.

This work is continuation of [1].

Theorem 1. $W_0^* \subset C(S; H)$ with continuous embedding. Moreover, for every $y, \xi \in W_0^*$ and $s, t \in S$ the next formula of integration by parts takes place

$$(y(t), \xi(t)) - (y(s), \xi(s)) = \int_{s}^{t} \{ (y'(\tau), \xi(\tau)) + (y(\tau), \xi'(\tau)) \} d\tau. \tag{1}$$

In particular, when $y = \xi$ we have:

$$\frac{1}{2}(\|y(t)\|_{H}^{2}-\|y(s)\|_{H}^{2})=\int_{s}^{t}(y'(\tau),y(\tau))d\tau.$$

Proof. To simplify the proof we consider S = [a, b] for some

$$-\infty < a < b < +\infty$$
.

The validity of formula (1) for $y, \xi \in C^1(S; V)$ is checked by direct calculation. Now let $\varphi \in C^1(S)$ be such fixed that $\varphi(a) = 0$ and $\varphi(b) = 1$. Moreover, for $y \in C^1(S; V)$ let $\xi = \varphi y$ and $\eta = y - \varphi y$. Then, due to (1):

$$(\xi(t), y(t)) = \int_{a}^{t} {\{\varphi'(s)(y(s), y(s)) + 2\varphi(s)(y'(s), y(s))\}} ds,$$

$$-(\eta(t), y(t)) = \int_{t}^{b} {\{-\varphi'(s)(y(s), y(s)) + 2(1 - \varphi(s))(y'(s), y(s))\}} ds,$$

from here for $\xi_i \in L_{q_i}(S; V_i^*)$ and $\eta_i \in L_{r_{i'}}(S; H)$ (i = 1,2) such that $y' = \xi_1 + \xi_2 + \eta_1 + \eta_2$ it follows:

© P. Kasyanov, V. Mel'nik, 2008

$$\begin{aligned} \|y(t)\|_{H}^{2} &= \int_{t}^{b} \{\varphi'(s)(y(s),y(s)) + 2\varphi(s)(y'(s),y(s))\} ds - 2\int_{t}^{b} (y'(s),y(s)) ds \leq \\ &\leq \max_{s \in S} \|\varphi'(s)\| \|y\|_{C(S;V^{*})} \cdot \|y\|_{L_{1}(S;V)} + 2\int_{S} (\varphi(s)-1)(y'(s),y(s)) ds \leq \\ &\leq \max_{s \in S} \|\varphi'(s)\| \|y\|_{C(S;V^{*})} \|y\|_{L_{1}(S;V)} + \\ &+ 2\max_{s \in S} \|\varphi(s)-1\| \bigg(\|\xi_{1}\|_{L_{q_{1}}(S;V_{1}^{*})} \|y\|_{L_{p_{1}}(S;V_{1})} + \|\xi_{2}\|_{L_{q_{2}}(S;V_{2}^{*})} \|y\|_{L_{p_{2}}(S;V_{2})} + \\ &+ \|\eta_{1}\|_{L_{\eta_{1}}(S;H)} \|y\|_{L_{\eta_{1}}(S;H)} + \|\eta_{2}\|_{L_{p_{2}}(S;H)} \|y\|_{L_{p_{2}}(S;V_{2})} + \\ &+ \|\eta_{1}\|_{L_{\eta_{1}}(S;V^{*})} \bigg(\|y\|_{L_{p_{1}}(S;V_{1})} \max(S)^{1/q_{1}} + \|y\|_{L_{p_{2}}(S;V_{2})} \max(S)^{1/q_{2}} \bigg) + \\ &\leq \max_{s \in S} \|\varphi'(s)\| \|y\|_{C(S;V^{*})} \bigg(\|y\|_{L_{p_{1}}(S;V_{1}^{*})} + \|\xi_{2}\|_{L_{q_{2}}(S;V_{2}^{*})} + \|\eta_{1}\|_{L_{\eta_{1}}(S;H)} + \|\eta_{2}\|_{L_{p_{2}}(S;H)} \bigg) \times \\ &\times \bigg(\|y\|_{L_{p_{1}}(S;V_{1})} + \|y\|_{L_{p_{2}}(S;V_{2})} + \|y\|_{C(S;H)} \max(S)^{1/q_{1}} + \|y\|_{C(S;H)} \max(S)^{1/q_{2}} \bigg). \end{aligned}$$

Hence, due to [1, theorem 3], definition of $\|\cdot\|_X$, if we take in last inequality $\varphi(t) = \frac{t-a}{b-a}$ for all $t \in S$ we obtain

$$||y||_{C(S;H)}^{2} \le C_{2} ||y||_{W_{0}^{*}}^{2} + C_{3} ||y||_{W_{0}^{*}} ||y||_{C(S;H)},$$
 (2)

where C_1 is the constant from inequality $||y||_{C(S;V^*)} \le C_1 ||y||_{W_0^*}$ for every $y \in W_0^*$,

$$C_2 = 2 + \frac{C_1}{\min \{ \text{mes}(S)^{1/p_1}, \text{mes}(S)^{1/p_2} \}}, \quad C_3 = 2 \max \{ \text{mes}(S)^{1/\min\{r_1, r_2\}}, 1 \}$$

Remark that
$$\frac{1}{+\infty} = 0$$
, $C_2, C_3 > 0$. From (2) it obviously follows that

$$||y||_{C(S;H)} \le C_4 ||y||_{W_0^*}$$
 for all $y \in C^1(S;V)$, (3)

where
$$C_4 = \frac{C_3 + \sqrt{C_3^2 + 4C_2}}{2}$$
 does not depend on y.

Now let us apply [1, theorem 4]. For arbitrary $y \in W_0^*$ let $\{y_n\}_{n \ge 1}$ be a sequence of elements from $C^1(S;V)$ converging to y in W_0^* . Then in virtue of relation (3) we have

$$||y_n - y_k||_{C(S;H)} \le C_4 ||y_n - y_k||_{W_0^*} \to 0$$
,

therefore, the sequence $\{y_n\}_{n\geq 1}$ converges in C(S;H) and it has only limit $\chi\in C(S;H)$ such that for a.e. $t\in S$ $\chi(t)=y(t)$. So, we have $y\in C(S;H)$ and now the embedding $W_0^*\subset C(S;H)$ is proved. If we pass to limit in (3) with $y=y_n$ as $n\to\infty$ we obtain the validity of the given estimation $\forall\,y\in W_0^*$. It proves the continuity of the embedding W^* into C(S;H).

Now let us prove formula (1). For every $y, \xi \in W_0^*$ and for corresponding approximating sequences $\{y_n, \xi_n\}_{n \geq 1} \subset C^1(S; V)$ we pass to the limit in (1) with $y = y_n$, $\xi = \xi_n$ as $n \to \infty$. In virtue of Lebesgue's theorem and $W_0^* \subset C(S; V^*)$ with continuous embedding formula (1) is true for every $y \in W_0^*$.

The theorem is proved.

In virtue of $W^* \subset W_0^*$ with continuous embedding and due to the latter theorem the next statement is true.

Corollary 1. $W^* \subset C(S; H)$ with continuous embedding. Moreover, for every $y, \xi \in W^*$ and $s, t \in S$ formula (1) takes place.

For every $n \ge 1$ let us define the Banach space $W_n^* = \{ y \in X_n^* \mid y' \in X_n \}$ with the norm

$$||y||_{W_n^*} = ||y||_{X_n^*} + ||y'||_{X_n},$$

where the derivative y' is considered in sense of scalar distributions space $\mathcal{D}^*(S; H_n)$. As far as

$$\mathcal{D}^*(S;H_n) = \mathcal{L}(\mathcal{D}(S);H_n) \subset \mathcal{L}(\mathcal{D}(S);\boldsymbol{V}_{\omega}^*) = \mathcal{D}^*(S;\boldsymbol{V}^*)$$

it is possible to consider the derivative of an element $y \in X_n^*$ in the sense of $\mathcal{D}^*(S; V^*)$. Remark that for every $n \ge 1$ $W_n^* \subset W_{n+1}^* \subset W^*$.

Proposition 1. For every $y \in X^*$ and $n \ge 1$ $P_n y' = (P_n y)'$, where derivative of element $x \in X^*$ is in the sense of the scalar distributions space $\mathcal{D}^*(S; V^*)$.

Remark 1. We pay our attention that in virtue of the previous assumptions the derivatives of an element $x \in X_n^*$ in the sense of $\mathcal{D}(S; V^*)$ and in the sense of $\mathcal{D}(S; H_n)$ coincide.

Proof. It is sufficient to show that for every $\varphi \in \mathcal{D}(S)$ $P_n y'(\varphi) = (P_n y)'(\varphi)$. In virtue of definition of derivative in sense of $\mathcal{D}^*(S; V^*)$ we have

$$\forall \varphi \in \mathcal{D}(S) \quad P_n y'(\varphi) = -P_n y(\varphi') = -P_n \int_S y(\tau) \varphi'(\tau) d\tau =$$

$$= -\int_S P_n y(\tau) \varphi'(\tau) d\tau = -(P_n y)(\varphi') = (P_n y)'(\varphi).$$

The proposition is proved.

Due to [1, propositions 3, 4] it follows the next

Proposition 2. For every $n \ge 1$ $W_n^* = P_n W^*$, i.e.

$$W_n^* = \{ P_n y(\cdot) \mid y(\cdot) \in W^* \}.$$

Moreover, if the triple $(\{H_i\}_{i\geq 1}; V_j; H)$, j=1,2 satisfies condition (γ) with $C=C_j$. Then for every $y\in W^*$ and $n\geq 1$

$$||P_n y(\cdot)||_{W^*} \le \max\{C_1, C_2\} ||y(\cdot)||_{W^*}.$$

Theorem 2. Let the triple $(\{H_i\}_{i\geq 1}; V_j; H)$, j=1,2 satisfy condition (γ) with $C=C_j$. We consider bounded in X^* set $D\subset X^*$ and $E\subset X$ that is bounded in X. For every $n\geq 1$ let us consider

$$D_n := \left\{ y_n \in X_n^* | y_n \in D \text{ and } y_n' \in P_n E \right\} \subset W_n^*.$$

Then

$$||y_n||_{W^*} \le ||D||_+ + C||E||_+ \quad \text{for all } n \ge 1 \text{ and } y_n \in D_n,$$
 (4)

where
$$C = \max\{C_1, C_2\}$$
, $||D||_+ = \sup_{y \in D} ||y||_{X^*}$ and $||E||_+ = \sup_{f \in E} ||f||_X$.

Remark 2. Due to proposition 2 D_n is well-defined and $D_n \subset W_n^*$ is true.

Remark 3. A priori estimates (like (4)) appear at studying of solvability of differential-operator equations, inclusions and evolutional variational inequalities in Banach spaces with maps of w_{λ} -pseudomonotone type by using Faedo-Galerkin method (see [2, 3]) at boundary transition, when it is necessary obtain a priori estimates of approximate solutions y_n in X^* and of its derivatives y'_n in X.

Proof. Due to proposition 2 for every $n \ge 1$ and $y_n \in D_n$

$$||y_n||_{W^*} = ||y_n||_{Y^*} + ||y_n'||_X \le ||D||_+ + ||P_n E||_+ \le ||D||_+ + \max\{C_1, C_2\}||E||_+.$$

The theorem is proved.

Further, let B_0 , B_1 , B_2 be some Banach spaces such, that

$$B_0, B_2$$
 are reflexive $B_0 \subset B_1$ with compacting embedding (5)

$$B_0 \subset B_1 \subset B_2$$
 with compacting embedding. (6)

Lemma 1. ([4] lemma 1.5.1, p.71) Under the assumptions (5), (6) for an arbitrary $\eta > 0$ there exists $C_{\eta} > 0$ such that

$$||x||_{B_1} \le \eta ||x||_{B_0} + C_\eta ||x||_{B_2} \quad \forall \, x \in B_0.$$

Corollary 2. Let the assumptions (5), (6) for the Banach spaces B_0 , B_1 and B_2 are verified, $p_1 \in [1;+\infty]$, S = [0,T] and the set $K \subset L_{p_1}(S;B_0)$ such that

a) K is precompact set in $L_{p_1}(S; B_2)$;

b) K is bounded set in $L_{p_1}(S; B_0)$.

Then K is precompact set in $L_{p_1}(S; B_1)$.

Proof. Due to lemma 1 and to the norm definition in $L_{p_1}(S; B_i)$, $i = \overline{0,2}$ it follows that for an arbitrary $\eta > 0$ there exists such $C_{\eta} > 0$ that

$$||y||_{L_{p_1}(S;B_1)} \le 2\eta ||y||_{L_{p_1}(S;B_0)} + 2C_{\eta} ||y||_{L_{p_1}(S;B_2)} \quad \forall \ y \in L_{p_1}(S;B_0) \quad (7)$$

Let us check inequality (7), when $p_1 \in [0,+\infty)$ (the case $p_1 = +\infty$ is direct corollary of lemma 1):

$$\begin{aligned} \|y\|_{L_{p_{1}}(S;B_{1})}^{p_{1}} &= \int_{S} \|y(t)\|_{B_{1}}^{p_{1}} dt \leq \int_{S} [\eta \|y(t)\|_{B_{0}} + C_{\eta} \|y(t)\|_{B_{2}}]^{p_{1}} dt \leq \\ &\leq 2^{p_{1}-1} \left[\eta^{p_{1}} \int_{S} \|y(t)\|_{B_{0}}^{p_{1}} dt + C_{\eta}^{p_{1}} \int_{S} \|y(t)\|_{B_{2}}^{p_{1}} dt \right] = \\ &= 2^{p_{1}-1} \left[\eta^{p_{1}} \|y\|_{L_{p_{1}}(S;B_{0})}^{p_{1}} + C_{\eta}^{p_{1}} \|y\|_{L_{p_{1}}(S;B_{2})}^{p_{1}} \right] \leq \\ &\leq 2^{p_{1}} \left[\eta \|y\|_{L_{p_{1}}(S;B_{0})} + C_{\eta} \|y\|_{L_{p_{1}}(S;B_{2})}^{p_{1}} \right]^{p_{1}} \quad \forall y \in L_{p_{1}}(S;B_{0}). \end{aligned}$$

The last inequality follows from

$$\frac{a^{p_1} + b^{p_1}}{2} \le (a+b)^{p_1} \le 2^{p_1-1} \left(a^{p_1} + b^{p_1} \right) \quad \forall a, b \ge 0.$$

Now let $\{y_n\}_{n\geq 1}$ be an arbitrary sequence from K. Then by the conditions of the given statement there exists $\{y_{n_k}\}_{k\geq 1}\subset \{y_n\}_{n\geq 1}$ that is a Cauchy subsequence in the space $L_{p_1}(S;B_2)$. So, thanks to inequality (7) for every $k,m\geq 1$

$$\begin{split} & \|y_{n_k} - y_{n_m}\|_{L_{p_1}(S;B_1)} \leq 2\eta \|y_{n_k} - y_{n_m}\|_{L_{p_1}(S;B_0)} + \\ & + 2C_{\eta} \|y_{n_k} - y_{n_m}\|_{L_{p_1}(S;B_2)} \leq \eta C + 2C_{\eta} \|y_{n_k} - y_{n_m}\|_{L_{p_1}(S;B_2)}, \end{split}$$

where C > 0 is a constant that does not depend on m, k, η . Therefore, for every $\varepsilon > 0$ we can choose $\eta > 0$ and $N \ge 1$ such that

$$\eta C < \varepsilon/2$$
 and $2C_{\eta} ||y_{n_k} - y_{n_m}||_{L_{p_1}(S; B_2)} < \varepsilon/2 \quad \forall m, k \ge N$

Thus,

$$\forall \, \varepsilon > 0 \quad \exists \, N \geq 1 \colon \ \| y_{n_k} - y_{n_m} \|_{L_{p_1}(S; B_1)} < \varepsilon \quad \forall \, m, k \geq N \, .$$

This fact means, that $\{y_{n_k}\}_{k\geq 1}$ converges in $L_{p_1}(S;B_1)$. The corollary is proved.

Theorem 3. Let conditions (5), (6) for B_0, B_1, B_2 are satisfied, $p_0, p_1 \in \in [1; +\infty)$, S be a finite time interval and $K \subset L_{p_1}(S; B_0)$ be such, that

- a) K is bounded in $L_{p_1}(S; B_0)$;
- b) for every $\varepsilon > 0$ there exists such $\delta > 0$ that from $0 < h < \delta$ it results in

$$\iint_{S} ||u(\tau) - u(\tau + h)||_{B_2}^{p_0} d\tau < \varepsilon \quad \forall u \in K.$$
 (8)

Then K is precompact in $L_{\min\{p_0, p_1\}}(S; B_1)$.

Furthermore, if for some q > 1 K is bounded in $L_q(S; B_1)$, then K is precompact in $L_p(S; B_1)$ for every $p \in [1,q)$.

Remark 4. Further we consider that every element $x \in (S \to B_i)$ is equal to $\overline{0}$ out of the interval S.

Proof. At the beginning we consider the first case. For our goal it is enough to show, that it is possible to choose a Cauchy subsequence from every sequence $\{y_n\}_{n\geq 1} \subset K$ in $L_{\min\{p_0;p_1\}}(S;B_1)$. Due to corollary 2 it is sufficient to prove this statement for $L_{\min\{p_0;p_1\}}(S;B_2)$.

For every $x \in K \quad \forall h > 0 \quad \forall t \in S$ we put

$$x_h(t) := \frac{1}{h} \int_{t}^{t+h} x(\tau) d\tau,$$

where the integral is regarded in the sense of Bochner integral. We point out that $\forall h > 0 \ x_h \in C(S; B_0) \subset C(S; B_2)$.

Fixing a positive number \mathcal{E} , we construct for a set

$$K \subset L_{p_0}(S; B_0) \subset L_{p_0}(S; B_2)$$

a final ε -web in $L_{p_0}(S; B_2)$. For $\varepsilon > 0$ we choose $\delta > 0$ from (8). Then for every fixed h (0 < h < δ) we have:

$$||x_h(t+u) - x_h(t)||_{B_2} = \frac{1}{h} ||\int_{t+u}^{t+u+h} x(\tau) d\tau - \int_{t}^{t+h} x(\tau) d\tau||_{B_2} =$$

$$= \frac{1}{h} \left\| \int_{t}^{t+h} x(\tau+u) d\tau - \int_{t}^{t+h} x(\tau) d\tau \right\|_{B_{2}} \le \frac{1}{h} \int_{t}^{t+h} \left\| x(\tau+u) - x(\tau) \right\|_{B_{2}} d\tau.$$

Moreover, from the Hölder inequality we obtain

$$\frac{1}{h} \int_{t}^{t+h} ||x(\tau+u) - x(\tau)||_{B_{2}} d\tau \le \left(\frac{1}{h}\right)^{\frac{1}{p_{0}}} \left(\int_{t}^{t+h} ||x(\tau+u) - x(\tau)||_{B_{2}}^{p_{0}} d\tau\right)^{\frac{1}{p_{0}}} \le$$

$$\leq \left(\frac{1}{h}\right)^{\frac{1}{p_0}} \left(\int_{0}^{T} ||x(\tau+u)-x(\tau)||_{B_2}^{p_0} d\tau\right)^{\frac{1}{p_0}} \leq \left(\frac{\varepsilon}{h}\right)^{\frac{1}{p_0}} \quad \forall x \in K, \ \forall \ 0 \leq u \leq \delta, \ \forall \ t \in S.$$

Therefore the family of functions $\{x_h\}_{x \in K}$ is equicontinuous.

Since $\forall x \in K \ \forall t \in S$ it results in

$$\begin{split} \|x_h(t)\|_{B_2} &= \frac{1}{h} \|\int_t^{t+h} x(\tau) d\tau\|_{B_2} \leq \frac{1}{h} \int_t^{t+h} \|x(\tau)\|_{B_2} d\tau \leq \\ &\leq \left(\frac{1}{h}\right)^{\frac{1}{p_1}} \left(\int_t^{t+h} \|x(\tau)\|_{B_2}^{p_1} d\tau\right)^{\frac{1}{p_1}} \leq \left(\frac{1}{h}\right)^{\frac{1}{p_1}} \left(\int_0^T \|x(\tau)\|_{B_2}^{p_1} d\tau\right)^{\frac{1}{p_1}} \leq \left(\frac{C}{h}\right)^{\frac{1}{p_1}}, \end{split}$$

the family of functions $\{x_h\}_{x\in K}$ is uniformly bounded, because of the constant $C\geq 0$ does not depend on $x\in K$. Hence, $\forall\,h:0\leq h\leq \delta$ the family of functions $\{x_h\}_{x\in K}$ is precompact in $C(S;B_2)$, so in $L_{\min\{p_0,p_1\}}(S;B_2)$ too.

On the other hand, $\forall \ 0 < h < \delta$, $\forall \ x \in K$, $\forall \ t \in S$

$$||x(t) - x_h(t)||_{B_2} \le \frac{1}{h} \int_{t}^{t+h} ||x(t) - x(\tau)||_{B_2} d\tau \le$$

$$\leq \frac{1}{h} \int_{0}^{h} ||x(t) - x(t+\tau)||_{B_{2}} d\tau \leq \left(\frac{1}{h}\right)^{\frac{1}{p_{0}}} \left(\int_{0}^{h} ||x(t) - x(t+\tau)||_{B_{2}}^{p_{0}} d\tau\right)^{\frac{1}{p_{0}}}.$$

From here, taking into account inequality (8) we receive:

$$\left(\int_{0}^{T} ||x(t) - x_{h}(t)||_{B_{2}}^{p_{0}} dt\right)^{\frac{1}{p_{0}}} \leq \left(\int_{0}^{T} \frac{1}{h} \int_{0}^{h} ||x(t) - x(t+\tau)||_{B_{2}}^{p_{0}} d\tau dt\right)^{\frac{1}{p_{0}}} =$$

$$= \left(\frac{1}{h} \int_{0}^{hT} ||x(t) - x(t+\tau)||_{B_{2}}^{p_{0}} dt d\tau\right)^{\frac{1}{p_{0}}} \leq \left(\frac{1}{h} \int_{0}^{h} \varepsilon d\tau\right)^{\frac{1}{p_{0}}} = \varepsilon^{\frac{1}{p_{0}}}.$$

Hence, by virtue of the precompactness of system $\{x_h\}_{x\in K}$ in $L_{\min\{p_0,p_1\}}(S;B_2)$ $\forall \ 0 < h < \delta$ we have that K is a precompact set in $L_{\min\{p_0,p_1\}}(S;B_2)$.

Let us consider the second case. Assume that for some q>1 the set K is bounded in $L_q(S;B_1)$. Similarly to the previous case, it is enough to show that for every $p\in [1;q)$ and $\{y_n\}_{n\geq 1}\subset K$ there exists a subsequence $\{y_{n_k}\}_{k\geq 1}\subset C$ $\{y_n\}_{n\geq 1}$ and $y\in L_p(S;B_1)$ so that

$$y_{n_k} \to y$$
 in $L_p(S; B_1)$ as $k \to \infty$.

Because of $y_n \to y$ in $L_{\min\{p_0,p_1\}}(S;B_1)$, up to a subsequence, as $n \to \infty$, we have $\exists \{y_{n_k}\}_{k \ge 1} \subset \{y_n\}_{n \ge 1}$ such that $\lambda(B_{n_k}) \to 0$ as $k \to \infty$, where $B_n := \{t \in S \mid ||y_n(t) - y(t)||_{B_1} \ge 1\}$ for every $n \ge 1$, λ is the Lebesgue measure on S. Then for every $k \ge 1$

$$\iint_{S} |y_{n_{k}}(s) - y(s)|_{B_{1}}^{p} ds = \iint_{A_{n_{k}}} |y_{n_{k}}(s) - y(s)|_{B_{1}}^{p} ds +$$

$$+ \iint_{B_{n_{k}}} ||y_{n_{k}}(s) - y(s)||_{B_{1}}^{p} ds \le \iint_{A_{n_{k}}} ||y_{n_{k}}(s) - y(s)||_{B_{1}}^{p} ds +$$

$$+ \left(\iint_{S} ||y_{n_{k}}(s) - y(s)||_{B_{1}}^{q} ds \right)^{\frac{p}{q}} \left(\lambda(B_{n_{k}})^{\frac{q-p}{q}} = : I_{n_{k}} + J_{n_{k}},$$

where $A_n = S \setminus B_n$ for every $n \ge 1$.

It is clear that $J_{n_k} \to 0$ as $k \to \infty$. Let us consider I_{n_k} . Since $\{y_{n_k}\}_{k \ge 1}$ is precompact in $L_{\min\{p_0,p_1\}}(S;B_1)$, there exists such $\{y_{m_k}\}_{k \ge 1} \subset \{y_{n_k}\}_{k \ge 1}$ that $y_{m_k}(t) \to y(t)$ in B_1 as $k \to \infty$ almost everywhere in S. Setting

$$\forall k \geq 1, \quad \forall t \in S \quad \varphi_{m_k}(t) := \begin{cases} \|y_{m_k}(t) - y(t)\|_{B_1}^p, & t \in A_n, \\ 0, & \text{otherwice,} \end{cases}$$

using definition of A_{m_k} , sequence $\{\varphi_{m_k}\}_{k\geq 1}$ satisfies the conditions of the Lebesgue theorem with the integrable majorant $\phi\equiv 1$. So $\varphi_{m_k}\to \overline{0}$ in $L_1(S)$ as $k\to\infty$. Thus, within to a subsequence, $y_n\to y$ in $L_q(S;B_1)$.

The theorem is proved.

Let Banach spaces B_0 , B_1 , B_2 satisfy all assumptions (5), (6), p_0 , $p_1 \in [1;+\infty)$ be arbitrary numbers. We consider the set with the natural operations

$$W = \{v \in L_{p_0}(S;B_0) | v' \in L_{p_1}(S;B_2)\},$$

where the derivative v' of an element $v \in L_{p_0}(S; B_0)$ is considered in the sense of the scalar distribution space $\mathcal{D}(S; B_2)$. It is clear, that

$$W \subset L_{p_0}(S; B_0)$$
.

Theorem 4. The set W with the natural operations and the graph norm

$$\|v\|_W = \|v\|_{L_{p_0}(S;B_0)} + \|v'\|_{L_{p_1}(S;B_2)}$$

is a Banach space.

Proof. The executing of the norm properties for $\|\cdot\|_W$ immediately follows from its definition. Now we consider the completeness of W referring to just defined norm. Let $\{v_n\}_{n\geq 1}$ be a Cauchy sequence in W. Hence, due to the completeness of $L_{p_0}(S;B_0)$ and $L_{p_1}(S;B_2)$ it follows that for some $y\in L_{p_0}(S;B_0)$ and $v\in L_{p_1}(S;B_2)$

$$y_n \to y$$
 in $L_{p_0}(S; B_0)$ and $y_n' \to v$ in $L_{p_1}(S; B_2)$ as $n \to +\infty$.

Due to [5, lemma IV.1.10] and in virtue of continuous dependence of the derivative by the distribution in $\mathcal{D}^*(S; B_2)$ (see [5, p. 169) it follows, that $y' = v \in L_{p_1}(S; B_2)$.

The theorem is proved.

Theorem 5. Under conditions (5), (6) $W \subset C(S; B_2)$ with the continuous embedding.

Proof. For a fixed $y \in W$ let us show that $y \in C(S; B_2)$. Let us put

$$\xi(t) = \int_{t_0}^t y'(\tau)d\tau \quad \forall t_0, t \in S.$$

The integral is well-defined because $y' \in L_1(S; B_2)$. On the other hand, from the inequality [5, p. 153]

$$\|\xi(t) - \xi(s)\|_{B_2} \le \int_{t}^{s} \|y'(\tau)\|_{B_2} d\tau \quad \forall s \ge t, \ s \in S$$

it follows that $\xi \in C(S; B_2)$. Due to [5] (lemma IV.1.8) $\xi' = y'$, so from [5] (lemma IV.1.9) it follows that

$$y(t) = \xi(t) + z$$
 for a.e. $t \in S$.

for some fixed $z \in B_2$.

Thus the function y also lies in $C(S; B_2)$.

In virtue of the continuous embedding of $L_{p_1}(S; B_2)$ in $L_1(S; B_2)$ we have that for some constant k > 0, which does not depend on y,

$$\|\xi(t)\|_{B_2} \le \iint_S |y'(\tau)|_{B_2} d\tau \le k \|y'\|_{L_{p_1}(S;B_2)} \quad \forall t \in S.$$

From here, due to the continuous embedding $B_0 \subset B_2$, we have

$$\begin{aligned} \|z\|_{B_2} \left(\operatorname{mes}(S) \right)^{1/p_1} &= \left(\int_{S} \|z\|_{B_2}^{p_1} ds \right)^{1/p_1} = \|y - \xi\|_{L_{p_1}(S; B_2)} \le \\ &\leq k_1 \bigg(\|y\|_{L_{p_1}(S; B_2)} + \|\xi\|_{C(S; B_2)} \bigg) \le k_2 \bigg(\|y\|_{L_{p_0}(S; B_0)} + \|y'\|_{L_{p_1}(S; B_2)} \bigg), \end{aligned}$$

where $\operatorname{mes}(S)$ is the "length" (the measure) of S, $k_2 > 0$ is a constant that does not depend on $y \in W$. Therefore, from the last two relations there exists $k_3 \geq 0$ such that

$$||y||_{C(S;B_2)} \le k_3 ||y||_W \quad \forall y \in W.$$

The theorem is proved.

The next result represents a generalization of the compactness lemma [4, theorem 1.5.1, p. 70] into the case $p_0, p_1 \in [1; +\infty)$.

Theorem 6. Under conditions (5), (6), for all $p_0, p_1 \in [1; +\infty)$ the Banach space W is compactly embedded in $L_{p_0}(S; B_1)$.

Proof. At the beginning we prove the compact embedding of W in $L_1(S; B_2)$.

For every $y \in W$ and $h \in \mathbb{R}$ let us take

$$y_h(t) =$$

$$\begin{cases} y(t+h), & \text{if } t+h \in S, \\ \overline{0}, & \text{otherwice.} \end{cases}$$

In virtue of theorem 5 the given definition is correct.

Lemma 2. For every $y \in W$ and $h \in \mathbb{R}$

$$||y - y_h||_{L_1(S; B_2)} \le h||y'||_{L_1(S; B_2)}.$$
 (9)

Proof. Let $y \in W$ be fixed. Then

$$||y - y_h||_{L_1(S; B_2)} = \iint_S |y(t+h) - y(t)||_{B_2} dt = \iint_S \int_t^{t+h} y'(\tau) d\tau||_{B_2} dt.$$

Let us put
$$g_y(t) = \int_{t}^{t+h} y'(\tau)d\tau = y(t+h) - y(t) \quad \forall t \in S, i = 1,2.$$
 Due to

theorem 5 the element $g_y \in C(S; B_2)$. So, as S is a compact set, we have that $g_y \in L_1(S; B_2)$. Therefore, due to proposition [6, p.191] with $X = L_1(S; B_2)$ and to [1, theorem 2] it follows the existence of $h_y \in L_\infty(S; B_2^*) \equiv X^*$ such that

$$\iint_{S} ||g_{y}(t)||_{B_{2}} dt = \iint_{S} \langle h_{y}(t), g_{y}(t) \rangle_{B_{2}} dt \text{ and } ||h_{y}||_{L_{\infty}(S; B_{2}^{*})} = 1$$

Hence.

$$\int_{S} \left\| \int_{t}^{t+h} y'(\tau) d\tau \right\|_{B_{2}} dt = \int_{S} \left\| g_{y}(t) \right\|_{B_{2}} dt = \int_{S} \left\langle h_{y}(t), g_{y}(t) \right\rangle_{B_{2}} dt =$$

$$= \int_{S} \left\langle h_{y}(t), \int_{t}^{t+h} y'(\tau) d\tau \right\rangle_{B_{2}} dt = \int_{S} \int_{t}^{t+h} \left\langle h_{y}(t), y'(\tau) \right\rangle_{B_{2}} d\tau dt =$$

$$\begin{split} &= \int\limits_{S\tau-h}^{\tau} \left\langle h_{y}(t), y'(\tau) \right\rangle_{B_{2}} dt d\tau = \int\limits_{S} \left\langle \int\limits_{\tau-h}^{\tau} h_{y}(t) dt, y'(\tau) \right\rangle_{B_{2}} d\tau \leq \\ &\leq \underset{t \in S}{\operatorname{esssup}} \left\| h_{y}(t) \right\|_{B_{2}^{*}} h \int\limits_{S} \left\| y'(\tau) \right\|_{B_{2}} d\tau \leq h \left\| y' \right\|_{L_{1}\left(S; B_{2}\right)}. \end{split}$$

So, we have obtained necessary estimation (9).

The lemma is proved.

Let us continue the proof of the given theorem. Let $K \subset W$ be an arbitrary bounded set. Then for some C > 0

$$||y||_{L_{p_0}(S;B_0)} \le C, \quad ||y'||_{L_{p_1}(S;B_2)} \le C \quad \forall y \in K.$$
 (10)

In order to prove the precompactness of K in $L_1(S;B_1)$ let us apply theorem 4 with $B_0 = B_0$, $B_1 = B_1$, $B_2 = B_2$, $p_0 = 1$, $p_1 = p_1$. Due to estimates (9) and (10) the all conditions of the given theorem hold. So, the set K is precompact in $L_1(S;B_1)$ and hence in $L_1(S;B_2)$. In virtue of theorem 5 and the Lebesgue theorem it follows that the set K is precompact in $L_{p_0}(S;B_0)$. Hence, due to corollary 2 we obtain the necessary statement.

The theorem is proved.

Proposition 3. Let Banach spaces B_0, B_1, B_2 satisfy conditions (5), (6), $p_0, p_1 \in [1; +\infty)$, $\{u_h\}_{h \in I} \subset L_{p_1}(S; B_0)$, where $I = (0, \delta) \subset \mathbb{R}_+$, S = [a, b] such that

- a) $\{u_h\}_{h\in I}$ is bounded in $L_{p_1}(S; B_0)$;
- b) there exists such $c: I \to \mathbb{R}_+$ that $\varliminf_{n \to \infty} c \left(\frac{b-a}{2^n} \right) = 0$ and

$$\forall h \in I \quad \iint_{S} ||u_{h}(t) - u_{h}(t+h)||_{B_{2}}^{p_{0}} dt \leq c(h)h^{p_{0}}.$$

Then there exists $\{h_n\}_{n\geq 1}\subset I$ $(h_n\searrow 0+$ as $n\to\infty$) so that $\{u_{h_n}\}_{n\geq 1}$ converges in $L_{\min\{p_0,p_1\}}(S;B_1)$.

Remark 5. We assume $u_h(t) = \overline{0}$ when t > b.

Remark 6. Without loss of generality let us consider S = [0,1].

Proof. At first we prove this statement for $L_{p_0}(S; B_2)$. In virtue of Minkowski inequality for every $h = \frac{1}{2^N} \in I$ and $k \ge 1$

$$\left(\int_{0}^{1} ||u_{h}(t) - u_{\frac{h}{2^{k}}}(t)||_{B_{2}}^{p_{0}} dt\right)^{\frac{1}{p_{0}}} \leq \left(\int_{0}^{1} ||u_{h}(t) - u_{h}(t+h)||_{B_{2}}^{p_{0}} dt\right)^{\frac{1}{p_{0}}} +$$

$$\begin{split} &+\left(\int\limits_{0}^{1}\left|u_{h}(t+h)-u_{\frac{h}{2^{k}}}(t+h)\right|_{B_{2}}^{P_{0}}dt\right)^{\frac{1}{p_{0}}} + \left(\int\limits_{0}^{1}\left|u_{\frac{h}{2^{k}}}(t+h)-u_{\frac{h}{2^{k}}}(t)\right|_{B_{2}}^{P_{0}}dt\right)^{\frac{1}{p_{0}}} \leq \\ &\leq c^{\frac{1}{p_{0}}}(h)h + \left(\int\limits_{h}^{1}\left|u_{h}(t)-u_{\frac{h}{2^{k}}}(t)\right|_{B_{2}}^{P_{0}}dt\right)^{\frac{1}{p_{0}}} + \sum_{i=0}^{2^{k}-1}\left(\int\limits_{0}^{1}\left|u_{\frac{h}{2^{k}}}(t+\frac{i+1}{2^{k}}h)-u_{\frac{h}{2^{k}}}(t+\frac{i+1}{2^{k}}h)\right| - \\ &-u_{\frac{h}{2^{k}}}\left(t+\frac{i}{2^{k}}h\right)\right|_{B_{2}}^{p_{0}}dt\right)^{\frac{1}{p_{0}}} \leq c^{\frac{1}{p_{0}}}(h)h + 2^{k}\frac{h}{2^{k}}c^{\frac{1}{p_{0}}}(h/2^{k}) + \\ &+\left(\int\limits_{h}^{1}\left|u_{h}(t)-u_{h}(t+h)\right|_{B_{2}}^{p_{0}}dt\right)^{\frac{1}{p_{0}}} \leq h\left(c^{\frac{1}{p_{0}}}(h)+c^{\frac{1}{p_{0}}}(h/2^{k})\right) + \\ &+\left(\int\limits_{h}^{1}\left|u_{h}(t)-u_{h}(t+h)\right|_{B_{2}}^{p_{0}}dt\right)^{\frac{1}{p_{0}}} + \left(\int\limits_{h}^{1}\left|u_{h}(t+h)-u_{\frac{h}{2^{k}}}(t+h)\right|_{B_{2}}^{p_{0}}dt\right)^{\frac{1}{p_{0}}} + \\ &+\left(\int\limits_{h}^{1}\left|u_{h}(t)-u_{h}(t+h)\right|_{B_{2}}^{p_{0}}dt\right)^{\frac{1}{p_{0}}} \leq \ldots \leq 2^{h}\left(c^{\frac{1}{p_{0}}}(h)+c^{\frac{1}{p_{0}}}(h/2^{k})\right) + \\ &+\left(\int\limits_{2h}^{1}\left|u_{h}(t)-u_{h}(t+h)\right|_{B_{2}}^{p_{0}}dt\right)^{\frac{1}{p_{0}}} \leq \ldots \leq 2^{N}h\left(c^{\frac{1}{p_{0}}}(h)+c^{\frac{1}{p_{0}}}(h/2^{k})\right) = \\ &= c^{\frac{1}{p_{0}}}(h)+c^{\frac{1}{p_{0}}}(h/2^{k}). \end{split}$$

So, for every $N \ge 1$ and $k \ge 1$ it results in

$$\left(\int_{0}^{1} \left\|u_{1/2^{N}}(t) - u_{1/2^{N+k}}(t)\right\|_{B_{2}}^{p_{0}} dt\right)^{\frac{1}{p_{0}}} \leq c^{\frac{1}{p_{0}}} \left(\frac{1}{2^{N}}\right) + c^{\frac{1}{p_{0}}} \left(\frac{1}{2^{N+k}}\right).$$

In virtue of assumption b) we can choose $\{h_n\}_{n\geq 1}\subset \left\{\frac{1}{2^m}\right\}_{m\geq 1}\cap I$ such that $c(h_n)\to 0$ as $n\to\infty$. So, the sequence $\{u_{h_n}\}_{n\geq 1}$ is fundamental in $L_{p_0}(S;B_2)$. Because of $B_0\subset B_1$ with compact embedding, the sequence $\{u_{h_n}\}_{n\geq 1}$ is bounded in $L_{\min\{p_0,p_1\}}(S;B_0)$; due to corollary 2 it follows that $\{u_{h_n}\}_{n\geq 1}$ is fundamental in $L_{\min\{p_0,p_1\}}(S;B_1)$.

The proposition is proved.

Now we combine all results to obtain the necessary a priori estimate.

Theorem 7. Let all conditions of theorem 2 are satisfied and $V \subset H$ with compact embedding. Then (4) be true and the set

$$\bigcup_{n\geq 1} D_n$$
 is bounded in $C(S;H)$ and precompact in $L_p(S;H)$

for every $p \ge 1$.

Proof. Estimation (4) follows from theorem 2. Now we use compactness theorem 6 with $B_0 = V$, $B_1 = H$, $B_2 = V^*$, $p_0 = 1$, $p_1 = 1$. Remark that $X^* \subset L_1(S;V)$ and $X \subset L_1(S;V^*)$ with continuous embedding. Hence, the set

$$\bigcup_{n\geq 1} D_n \text{ is precompact in } L_1(S;H).$$

In virtue of (4) and theorem 1 on continuous embedding of \boldsymbol{W}^* in C(S; H), it follows that the set

$$\bigcup_{n\geq 1} D_n \text{ is bounded in } C(S;H).$$

Further, by using standard conclusions and the Lebesgue theorem we obtain the necessary statement.

The theorem is proved.

Partially Supported by State Fund of Fundamntal Investigations Grant N_{\odot} Φ 25.1/029-2008

REFERENCES

- 1. *Kasyanov P., Mel'nik V.S.* On some topological properties for special classes of Banach spaces. Part 1 // System Research & Information Technologies. 2008. № 1. P. 127–143.
- 2. *Kasyanov P.O.* Galerkin's method for one class differential-operator inclusions // Dopovidi Natcional'noi Academii Nauk Ukraini. 2005. № 9. P. 20–24.
- 3. *Kasyanov P.O., Mel'nik V.S.* Faedo-Galerkin method for differential-operator inclusions in Banach spaces with maps of w_{λ0}-pseudomonotone type // Zbirnik prats institutu mathematiki Nacional'noy Akademiy nauk Ukrainy. Part 2. 2005. № 1. P. 82–105.
- 4. *Lions J.L.* Quelques me' thodes de re' solution des problem e's aux limites non lineaires. Paris: DUNOD GAUTHIER-VILLARS, 1969. 587 p.
- 5. *Gaevsky H., Greger K., Zaharias K.* Nonlinear The operator equations and the operator-differential equations. M.:Myr, 1977. 337 p. (Russian translation).
- 6. Aubin J.P. Ekeland I. Applied Nonlinear Analysis. Moscow: Mir, 1988. p. 510.

Received 05.07.2007

From the Editorial Board: the article corresponds completely to submitted manuscript.