

МАТЕМАТИЧНІ МЕТОДИ, МОДЕЛІ, ПРОБЛЕМИ І ТЕХНОЛОГІЇ ДОСЛІДЖЕННЯ СКЛАДНИХ СИСТЕМ

UDC 517.9

ON SOME TOPOLOGICAL PROPERTIES FOR SPECIAL CLASSES OF BANACH SPACES. PART 2

P. KASYANOV, V. MEL'NIK

We consider some classes of infinite-dimensional Banach spaces with integrable derivatives. A compactness lemma for nonreflexive spaces is obtained. However some main topological properties for the given spaces are obtained.

This work is continuation of [1].

Theorem 1. $W_0^* \subset C(S; H)$ with continuous embedding. Moreover, for every $y, \xi \in W_0^*$ and $s, t \in S$ the next formula of integration by parts takes place

$$
(y(t), \xi(t)) - (y(s), \xi(s)) = \int_{s}^{t} \{ (y'(\tau), \xi(\tau)) + (y(\tau), \xi'(\tau)) \} d\tau.
$$
 (1)

In particular, when $y = \xi$ we have:

$$
\frac{1}{2} (||y(t)||_H^2 - ||y(s)||_H^2) = \int_s^t (y'(\tau), y(\tau)) d\tau.
$$

Proof. To simplify the proof we consider $S = [a, b]$ for some

$$
-\infty < a < b < +\infty.
$$

The validity of formula (1) for $y, \xi \in C^1(S; V)$ is checked by direct calculation. Now let $\varphi \in C^1(S)$ be such fixed that $\varphi(a) = 0$ and $\varphi(b) = 1$. Moreover, for $y \in C^1(S; V)$ let $\xi = \varphi y$ and $\eta = y - \varphi y$. Then, due to (1):

$$
(\xi(t), y(t)) = \int_{a}^{t} {\{\varphi'(s)(y(s), y(s)) + 2\varphi(s)(y'(s), y(s))\} ds} ,
$$

$$
-(\eta(t), y(t)) = \int_{t}^{b} {-\varphi'(s)(y(s), y(s)) + 2(1 - \varphi(s))(y'(s), y(s))} ds,
$$

from here for $\xi_i \in L_{q_i}(S; V_i^*)$ and $\eta_i \in L_{r_i}(S; H)$ $(i=1,2)$ such that $y' =$ $=\xi_1 + \xi_2 + \eta_1 + \eta_2$ it follows:

© *P. Kasyanov, V. Mel'nik* , 2008 88 ISSN 1681–6048 *System Research & Information Technologies,* 2008, № 3

$$
||y(t)||_{H}^{2} = \int_{t}^{b} {\{\varphi'(s)(y(s), y(s)) + 2\varphi(s)(y'(s), y(s))\} ds - 2 \int_{t}^{b} (y'(s), y(s)) ds} \le
$$
\n
$$
\le \max_{s \in S} |\varphi'(s)| \cdot ||y||_{C(S;V^{*})} \cdot ||y||_{L_{1}(S;V)} + 2 \int_{S} (\varphi(s) - 1)(y'(s), y(s)) ds \le
$$
\n
$$
\le \max_{s \in S} |\varphi'(s)|| ||y||_{C(S;V^{*})} ||y||_{L_{1}(S;V)} +
$$
\n
$$
+ 2 \max_{s \in S} |\varphi(s) - 1| \left(||\xi_{1}||_{L_{q_{1}}(S;V^{*})} ||y||_{L_{p_{1}}(S;V_{1})} + ||\xi_{2}||_{L_{q_{2}}(S;V^{*}_{2})} ||y||_{L_{p_{2}}(S;V_{2})} +
$$
\n
$$
+ ||\eta_{1}||_{L_{r_{1}}(S;H)} ||y||_{L_{r_{1}}(S;H)} + ||\eta_{2}||_{L_{r_{2}}(S;H)} ||y||_{L_{r_{2}}(S;H)} \right) \le
$$
\n
$$
\le \max_{s \in S} |\varphi'(s)|| ||y||_{C(S;V^{*})} \left(||y||_{L_{p_{1}}(S;V_{1})} \operatorname{mes}(S)^{1/q_{1}} + ||y||_{L_{p_{2}}(S;V_{2})} \operatorname{mes}(S)^{1/q_{2}} \right) +
$$
\n
$$
+ 2 \max_{s \in S} |\varphi(s) - 1| \left(||\xi_{1}||_{L_{q_{1}}(S;V^{*})} + ||\xi_{2}||_{L_{q_{2}}(S;V^{*}_{2})} + ||\eta_{1}||_{L_{r_{1}}(S;H)} + ||\eta_{2}||_{L_{r_{2}}(S;H)} \right) \times
$$
\n
$$
\times \left(||y||_{L_{p_{1}}(S;V_{1})} + ||y||_{L_{p_{2}}(S;V_{2})} + ||y||_{C(S;H)} \operatorname{mes}(S)^{1/q_{1}} + ||y||_{C(S;H)} \operatorname{mes}(S)^{1/q_{2}} \right).
$$
\nImage, due to the integral

Hence, due to [1, theorem 3], definition of $\|\cdot\|_X$, if we take in last inequality $\varphi(t) = \frac{t-a}{b-a}$ for all $t \in S$ we obtain

$$
||y||_{C(S;H)}^{2} \le C_{2} ||y||_{W_{0}^{*}}^{2} + C_{3} ||y||_{W_{0}^{*}} ||y||_{C(S;H)},
$$
\n(2)

where C_1 is the constant from inequality $||y||_{C(S;V^*)} \leq C_1 ||y||_{W_0^*}$ for every $v \in W_0^*$,

$$
C_2 = 2 + \frac{C_1}{\min{\{mes(S)^{1/p_1},mes(S)^{1/p_2}\}}}, \quad C_3 = 2 \max{\{mes(S)^{1/\min{\{r_1,r_2\}}\}},1\}
$$

Remark that $\frac{1}{+\infty} = 0$, C_2 , $C_3 > 0$. From (2) it obviously follows that

$$
||y||_{C(S;H)} \le C_4 ||y||_{W_0^*} \quad \text{for all } y \in C^1(S;V),
$$
 (3)

where 2 $=\frac{C_3+\sqrt{C_3^2+4C_2}}{2}$ 4 $C_3 + \sqrt{C_3^2 + 4C}$ *C* $+\sqrt{C_3^2+4C_2}$ does not depend on *y*.

Now let us apply [1, theorem 4]. For arbitrary $y \in W_0^*$ let $\{y_n\}_{n \geq 1}$ be a sequence of elements from $C^1(S; V)$ converging to *y* in W_0^* . Then in virtue of relation (3) we have

$$
||y_n - y_k||_{C(S;H)} \le C_4 ||y_n - y_k||_{W_0^*} \to 0,
$$

therefore, the sequence ${ {y_n } }_{n \geq 1}$ converges in $C(S; H)$ and it has only limit $\chi \in C(S; H)$ such that for a.e. $t \in S$ $\chi(t) = y(t)$. So, we have $y \in C(S; H)$ and now the embedding $W_0^* \subset C(S; H)$ is proved. If we pass to limit in (3) with $y = y_n$ as $n \to \infty$ we obtain the validity of the given estimation $\forall y \in W_0^*$. It proves the continuity of the embedding W^* into $C(S; H)$.

Now let us prove formula (1). For every $y, \xi \in W_0^*$ and for corresponding approximating sequences $\{y_n, \xi_n\}_{n \geq 1} \subset C^1(S; V)$ we pass to the limit in (1) with $y = y_n$, $\xi = \xi_n$ as $n \to \infty$. In virtue of Lebesgue's theorem and $W_0^* \subset C(S; V^*)$ with continuous embedding formula (1) is true for every $y \in W_0^*$.

The theorem is proved.

In virtue of $W^* \subset W_0^*$ with continuous embedding and due to the latter theorem the next statement is true.

Corollary 1. $W^* \subset C(S; H)$ with continuous embedding. Moreover, for every $y, \xi \in W^*$ and $s, t \in S$ formula (1) takes place.

For every $n \ge 1$ let us define the Banach space $W_n^* = \{ y \in X_n^* \mid y' \in X_n \}$ with the norm

$$
||y||_{W_n^*} = ||y||_{X_n^*} + ||y'||_{X_n},
$$

where the derivative v' is considered in sense of scalar distributions space $\mathcal{D}^{*}(S; H_n)$. As far as

$$
\mathcal{D}^*(S; H_n) = \mathcal{L}(\mathcal{D}(S); H_n) \subset \mathcal{L}(\mathcal{D}(S); V_\omega^*) = \mathcal{D}^*(S; V^*)
$$

it is possible to consider the derivative of an element $y \in X_n^*$ in the sense of $\mathcal{D}^{*}(S; V^{*})$. Remark that for every $n \geq 1$ $W_{n}^{*} \subset W_{n+1}^{*} \subset W^{*}$.

Proposition 1. For every $y \in X^*$ and $n \ge 1$ $P_n y' = (P_n y)'$, where derivative of element $x \in X^*$ is in the sense of the scalar distributions space $\mathcal{D}^*(S; V^*)$.

Remark 1. We pay our attention that in virtue of the previous assumptions the derivatives of an element $x \in X_n^*$ in the sense of $\mathcal{D}(S; V^*)$ and in the sense of $\mathcal{D}(S; H_n)$ coincide.

Proof. It is sufficient to show that for every $\varphi \in \mathcal{D}(S)$ $P_n y'(\varphi) = (P_n y)'(\varphi)$. In virtue of definition of derivative in sense of $\mathcal{D}^*(S; V^*)$ we have

$$
\forall \varphi \in \mathcal{D}(S) \quad P_n y'(\varphi) = -P_n y(\varphi') = -P_n \int_S y(\tau) \varphi'(\tau) d\tau =
$$

$$
= -\int_S P_n y(\tau) \varphi'(\tau) d\tau = -(P_n y)(\varphi') = (P_n y)'(\varphi).
$$

The proposition is proved.

Due to [1, propositions 3, 4] it follows the next

Proposition 2. For every $n \ge 1$ $W_n^* = P_n W^*$, i.e.

$$
W_n^* = \{P_n y(\cdot) \mid y(\cdot) \in W^*\}.
$$

Moreover, if the triple $({H_i}_{i\geq 1}; V_i; H)$, $j = 1,2$ satisfies condition (γ) with $C = C_j$. Then for every $y \in W^*$ and $n \ge 1$

$$
||P_n y(\cdot)||_{W^*} \le \max\{C_1, C_2\} ||y(\cdot)||_{W^*}.
$$

Theorem 2. Let the triple $({H_i}_{i\geq 1}; V_i; H)$, $j=1,2$ satisfy condition (*γ*) with $C = C_i$. We consider bounded in X^* set $D \subset X^*$ and $E \subset X$ that is bounded in *X*. For every $n \geq 1$ let us consider

$$
D_n := \left\{ y_n \in X_n^* \middle| y_n \in D \text{ and } y_n' \in P_n E \right\} \subset W_n^*.
$$

Then

 $||y_n||_{w^*} \le ||D||_+ + C||E||_+$ for all $n \ge 1$ and $y_n \in D_n$, (4)

where $C = \max\{C_1, C_2\}$, $||D||_+ = \sup_{y \in D} ||y||_{X^*}$ $||D||_+$ = sup $||y||_{X^*}$ and $||E||_+$ = sup $||f||_X$ $||E||_+$ = $\sup_{f \in E} ||f||_X$.

Remark 2. Due to proposition 2 D_n is well-defined and $D_n \subset W_n^*$ is true.

Remark 3. A priori estimates (like (4)) appear at studying of solvability of differential–operator equations, inclusions and evolutional variational inequalities in Banach spaces with maps of w_{λ} -pseudomonotone type by using Faedo– Galerkin method (see [2, 3]) at boundary transition, when it is necessary obtain a priori estimates of approximate solutions y_n in X^* and of its derivatives y'_n in *X* .

Proof. Due to proposition 2 for every $n \ge 1$ and $y_n \in D_n$

$$
||y_n||_{W^*} = ||y_n||_{X^*} + ||y_n'||_X \le ||D||_+ + ||P_nE||_+ \le ||D||_+ + \max \{C_1, C_2\} ||E||_+.
$$

The theorem is proved.

Further, let B_0 , B_1 , B_2 be some Banach spaces such, that

$$
B_0, B_2
$$
 are reflexive $B_0 \subset B_1$ with compacting embedding (5)

$$
B_0 \subset B_1 \subset B_2 \text{ with compacting embedding.}
$$
 (6)

Lemma 1. ($[4]$ lemma 1.5.1, $[p.71]$) Under the assumptions (5) , (6) for an arbitrary $\eta > 0$ there exists $C_{\eta} > 0$ such that

$$
||x||_{B_1} \le \eta ||x||_{B_0} + C_\eta ||x||_{B_2} \quad \forall x \in B_0.
$$

Corollary 2. Let the assumptions (5), (6) for the Banach spaces B_0 , B_1 and *B*₂ are verified, $p_1 \in [1; +\infty]$, $S = [0, T]$ and the set $K \subset L_{p_1}(S; B_0)$ such that

a) *K* is precompact set in $L_{p_1}(S; B_2)$;

b) *K* is bounded set in $L_{p_1}(S; B_0)$.

Then *K* is precompact set in $L_{p_1}(S; B_1)$.

Proof. Due to lemma 1 and to the norm definition in $L_{p_1}(S; B_i)$, $i = 0,2$ it follows that for an arbitrary $\eta > 0$ there exists such $C_{\eta} > 0$ that

$$
||y||_{L_{p_1}(S;B_1)} \le 2\eta ||y||_{L_{p_1}(S;B_0)} + 2C_\eta ||y||_{L_{p_1}(S;B_2)} \quad \forall \ y \in L_{p_1}(S;B_0) \quad (7)
$$

Let us check inequality (7), when $p_1 \in [0, +\infty)$ (the case $p_1 = +\infty$ is direct corollary of lemma 1):

$$
\begin{split} \left\|y\right\|^{p_{1}}_{L_{p_{1}}}(S; B_{1})&=\int\limits_{S}\left\|y(t)\right\|^{p_{1}}_{B_{1}}dt\leq\int\limits_{S}\left[\eta\left\|y(t)\right\|_{B_{0}}+C_{\eta}\left\|y(t)\right\|_{B_{2}}\right]^{p_{1}}dt\leq\\ &\leq 2^{p_{1}-1}\Bigg[\eta^{p_{1}}\int\limits_{S}\left\|y(t)\right\|^{p_{1}}_{B_{0}}dt+C_{\eta}^{p_{1}}\int\limits_{S}\left\|y(t)\right\|^{p_{1}}_{B_{2}}dt\Bigg]=\\ &=2^{p_{1}-1}\Bigg[\eta^{p_{1}}\left\|y\right\|^{p_{1}}_{L_{p_{1}}}(S; B_{0})+C_{\eta}^{p_{1}}\left\|y\right\|^{p_{1}}_{L_{p_{1}}}(S; B_{2})\Bigg]\leq\\ &\leq 2^{p_{1}}\Bigg[\eta\left\|y\right\|_{L_{p_{1}}}(S; B_{0})+C_{\eta}\left\|y\right\|_{L_{p_{1}}}(S; B_{2})\Bigg]^{p_{1}}\quad\forall\,y\in L_{p_{1}}(S; B_{0})\,. \end{split}
$$

The last inequality follows from

$$
\frac{a^{p_1} + b^{p_1}}{2} \le (a+b)^{p_1} \le 2^{p_1-1} \Big(a^{p_1} + b^{p_1} \Big) \quad \forall \, a, b \ge 0.
$$

Now let $\{y_n\}_{n\geq 1}$ be an arbitrary sequence from *K*. Then by the conditions of the given statement there exists $\{y_{n_k}\}_{k\geq 1} \subset \{y_n\}_{n\geq 1}$ that is a Cauchy subsequence in the space $L_{p_1}(S; B_2)$. So, thanks to inequality (7) for every $k, m \geq 1$

$$
\begin{aligned} \left\|y_{n_k} - y_{n_m}\right\|_{L_{p_1}}(S; B_1) &\leq 2\eta \|y_{n_k} - y_{n_m}\|_{L_{p_1}}(S; B_0) + \\ &+ 2C_{\eta}\|y_{n_k} - y_{n_m}\|_{L_{p_1}}(S; B_2) \leq \eta C + 2C_{\eta}\|y_{n_k} - y_{n_m}\|_{L_{p_1}}(S; B_2) \end{aligned},
$$

where $C > 0$ is a constant that does not depend on m, k, η . Therefore, for every $\epsilon > 0$ we can choose $\eta > 0$ and $N \ge 1$ such that

$$
\eta C < \varepsilon/2
$$
 and $2C_{\eta} ||y_{n_k} - y_{n_m}||_{L_{p_1}} (S; B_2) < \varepsilon/2 \quad \forall m, k \ge N$

Thus,

$$
\forall \, \varepsilon \geq 0 \quad \exists \, N \geq 1 \colon \; \left\| \boldsymbol{y}_{n_k} - \boldsymbol{y}_{n_m} \right\|_{L_{p_1}} \hspace{-0.3cm} \left(S ; \boldsymbol{B}_1 \right) \leq \varepsilon \quad \forall \, m, k \geq N \, .
$$

This fact means, that $\{y_{n_k}\}_{k\geq 1}$ converges in $L_{p_1}(S; B_1)$. The corollary is proved.

Theorem 3. Let conditions (5), (6) for B_0, B_1, B_2 are satisfied, $p_0, p_1 \in$ ∈[1;+∞), *S* be a finite time interval and $K \subset L_{p_1}(S; B_0)$ be such, that

a) *K* is bounded in $L_{p_1}(S; B_0)$;

b) for every $\varepsilon > 0$ there exists such $\delta > 0$ that from $0 \le h \le \delta$ it results in

$$
\iint\limits_{S} \left| u(\tau) - u(\tau + h) \right|_{B_2}^{D_0} d\tau < \varepsilon \quad \forall \, u \in K \; . \tag{8}
$$

Then *K* is precompact in $L_{\min\{p_0; p_1\}}(S; B_1)$.

Furthermore, if for some $q > 1$ *K* is bounded in $L_q(S; B_1)$, then *K* is precompact in $L_p(S; B_1)$ for every $p \in [1, q)$.

Remark 4. Further we consider that every element $x \in (S \rightarrow B_i)$ is equal to $\overline{0}$ out of the interval *S*.

Proof*.* At the beginning we consider the first case. For our goal it is enough to show, that it is possible to choose a Cauchy subsequence from every sequence $\{y_n\}_{n\geq 1} \subset K$ in $L_{\min\{p_0; p_1\}}(S; B_1)$. Due to corollary 2 it is sufficient to prove this statement for $L_{\min\{p_0; p_1\}}(S; B_2)$.

For every $x \in K \quad \forall h > 0 \quad \forall t \in S$ we put

$$
x_h(t) := \frac{1}{h} \int\limits_t^{t+h} x(\tau) d\tau,
$$

where the integral is regarded in the sense of Bochner integral. We point out that $\forall h > 0 \; x_h \in C(S; B_0) \subset C(S; B_2)$.

Fixing a positive number ε , we construct for a set

$$
K \subset L_{p_0}(S; B_0) \subset L_{p_0}(S; B_2)
$$

a final ε -web in $L_{p_0}(S; B_2)$. For $\varepsilon > 0$ we choose $\delta > 0$ from (8). Then for every fixed *h* ($0 \le h \le \delta$) we have:

$$
||x_h(t+u) - x_h(t)||_{B_2} = \frac{1}{h} \left\| \int_{t+u}^{t+u+h} x(\tau) d\tau - \int_{t}^{t+h} x(\tau) d\tau \right\|_{B_2} =
$$

$$
= \frac{1}{h} \left\| \int_{t}^{t+h} x(\tau+u) d\tau - \int_{t}^{t+h} x(\tau) d\tau \right\|_{B_2} \le \frac{1}{h} \int_{t}^{t+h} \left\| x(\tau+u) - x(\tau) \right\|_{B_2} d\tau
$$

Moreover, from the H $\ddot{\text{o}}$ lder inequality we obtain

$$
\frac{1}{h}\int_{t}^{t+h} \|x(\tau+u)-x(\tau)\|_{B_2} d\tau \leq \left(\frac{1}{h}\right)^{\frac{1}{p_0}} \left(\int_{t}^{t+h} \|x(\tau+u)-x(\tau)\|_{B_2}^{p_0} d\tau\right)^{\frac{1}{p_0}} \leq
$$

Системні дослідження та інформаційні технології, 2008, № 3 93

.

$$
\leq \left(\frac{1}{h}\right)^{\frac{1}{p_0}}\left(\int\limits_0^T \left\|x(\tau+u)-x(\tau)\right\|_{B_2}^{p_0}d\tau\right)^{\frac{1}{p_0}} \leq \left(\frac{\varepsilon}{h}\right)^{\frac{1}{p_0}} \quad \forall x \in K, \ \forall \ 0 \leq u \leq \delta, \ \forall \ t \in S.
$$

Therefore the family of functions $\{x_h\}_{x \in K}$ is equicontinuous. Since $\forall x \in K \ \forall t \in S$ it results in

$$
||x_h(t)||_{B_2} = \frac{1}{h} ||\int_t^{t+h} x(\tau) d\tau||_{B_2} \le \frac{1}{h} \int_t^{t+h} ||x(\tau)||_{B_2} d\tau \le
$$

$$
\le \left(\frac{1}{h}\right)^{\frac{1}{p_1}} {\binom{t+h}{t}} ||x(\tau)||_{B_2}^{p_1} d\tau \bigg|^{\frac{1}{p_1}} \le \left(\frac{1}{h}\right)^{\frac{1}{p_1}} {\binom{t}{0}} ||x(\tau)||_{B_2}^{p_1} d\tau \bigg|^{\frac{1}{p_1}} \le \left(\frac{C}{h}\right)^{\frac{1}{p_1}},
$$

the family of functions $\{x_h\}_{x \in K}$ is uniformly bounded, because of the constant *C* ≥ 0 does not depend on *x* ∈ *K*. Hence, $\forall h: 0 \le h \le \delta$ the family of functions ${x_h}_{x \in K}$ is precompact in $C(S; B_2)$, so in $L_{\min\{p_0, p_1\}}(S; B_2)$ too.

On the other hand, $\forall 0 \leq h \leq \delta$, $\forall x \in K$, $\forall t \in S$

$$
||x(t) - x_h(t)||_{B_2} \le \frac{1}{h} \int_{t}^{t+h} ||x(t) - x(\tau)||_{B_2} d\tau \le
$$

$$
\le \frac{1}{h} \int_{0}^{h} ||x(t) - x(t + \tau)||_{B_2} d\tau \le \left(\frac{1}{h}\right)^{\frac{1}{p_0}} \left(\int_{0}^{h} ||x(t) - x(t + \tau)||_{B_2}^{p_0} d\tau\right)^{\frac{1}{p_0}}.
$$

From here, taking into account inequality (8) we receive:

$$
\left(\int_{0}^{T} \left\|x(t) - x_{h}(t)\right\|_{B_{2}}^{p_{0}} dt\right)^{\frac{1}{p_{0}}} \leq \left(\int_{0}^{T} \frac{1}{h} \int_{0}^{h} \left\|x(t) - x(t + \tau)\right\|_{B_{2}}^{p_{0}} d\tau dt\right)^{\frac{1}{p_{0}}} =
$$
\n
$$
= \left(\frac{1}{h} \int_{0}^{hT} \left\|x(t) - x(t + \tau)\right\|_{B_{2}}^{p_{0}} dtd\tau\right)^{\frac{1}{p_{0}}} \leq \left(\frac{1}{h} \int_{0}^{h} \epsilon d\tau\right)^{\frac{1}{p_{0}}} = \epsilon^{\frac{1}{p_{0}}}.
$$

Hence, by virtue of the precompactness of system ${x_h}_{x \in K}$ in $L_{\min\{p_0,p_1\}}(S;B_2) \quad \forall \ 0 \le h \le \delta$ we have that *K* is a precompact set in $L_{\min\{p_0, p_1\}}(S; B_2)$.

Let us consider the second case. Assume that for some $q > 1$ the set *K* is bounded in $L_q(S; B_1)$. Similarly to the previous case, it is enough to show that for every $p \in [1; q)$ and $\{y_n\}_{n \geq 1} \subset K$ there exists a subsequence $\{y_{n_k}\}_{k \geq 1} \subset K$ $\subset \{y_n\}_{n\geq 1}$ and $y \in L_p(S; B_1)$ so that

$$
y_{n_k} \to y
$$
 in $L_p(S; B_1)$ as $k \to \infty$.

Because of $y_n \to y$ in $L_{\min\{p_0, p_1\}}(S; B_1)$, up to a subsequence, as $n \to \infty$, we have $\exists \{ y_{n_k} \}_{k \geq 1} \subset \{ y_n \}_{n \geq 1}$ such that $\lambda(B_{n_k}) \to 0$ as $k \to \infty$, where $B_n :=$:= $\{t \in S \mid ||y_n(t) - y(t)||_{B_1} \ge 1\}$ for every $n \ge 1$, λ is the Lebesgue measure on *S*. Then for every $k \geq 1$

$$
\iint_{S} \left\| y_{n_k}(s) - y(s) \right\|_{B_1}^p ds = \int_{A_{n_k}} \left\| y_{n_k}(s) - y(s) \right\|_{B_1}^p ds +
$$
\n
$$
+ \int_{B_{n_k}} \left\| y_{n_k}(s) - y(s) \right\|_{B_1}^p ds \le \int_{A_{n_k}} \left\| y_{n_k}(s) - y(s) \right\|_{B_1}^p ds +
$$
\n
$$
+ \left(\iint_{S} \left\| y_{n_k}(s) - y(s) \right\|_{B_1}^q ds \right)^{\frac{p}{q}} \left(\lambda(B_{n_k}) \right)^{\frac{q-p}{q}} =: I_{n_k} + J_{n_k},
$$

where $A_n = S \setminus B_n$ for every $n \ge 1$.

It is clear that $J_{n_k} \to 0$ as $k \to \infty$. Let us consider I_{n_k} . Since $\{y_{n_k}\}_{k \geq 1}$ is precompact in $L_{\min\{p_0, p_1\}}(S; B_1)$, there exists such $\{y_{m_k}\}_{k \geq 1} \subset \{y_{n_k}\}_{k \geq 1}$ that $y_{m_k}(t) \rightarrow y(t)$ in B_1 as $k \rightarrow \infty$ almost everywhere in *S*. Setting

$$
\forall k \ge 1, \quad \forall t \in S \quad \varphi_{m_k}(t) := \begin{cases} ||y_{m_k}(t) - y(t)||_{B_1}^p, & t \in A_n, \\ 0, & \text{otherwise,} \end{cases}
$$

using definition of A_{m_k} , sequence $\{\varphi_{m_k}\}_{k\geq 1}$ satisfies the conditions of the Lebesgue theorem with the integrable majorant $\phi = 1$. So $\varphi_{m_k} \to 0$ in $L_1(S)$ as $k \to \infty$. Thus, within to a subsequence, $y_n \to y$ in $L_q(S; B_1)$.

The theorem is proved.

Let Banach spaces B_0 , B_1 , B_2 satisfy all assumptions (5), (6), $p_0, p_1 \in [1; +\infty)$ be arbitrary numbers. We consider the set with the natural operations

$$
W = \{ v \in L_{p_0}(S; B_0) | v' \in L_{p_1}(S; B_2) \},
$$

where the derivative *v'* of an element $v \in L_{p_0}(S; B_0)$ is considered in the sense of the scalar distribution space $\mathcal{D}(S; B_2)$. It is clear, that

$$
W\subset L_{p_0}(S;B_0).
$$

Theorem 4. The set *W* with the natural operations and the graph norm

$$
||v||_W = ||v||_{L_{p_0}(S;B_0)} + ||v'||_{L_{p_1}(S;B_2)}
$$

is a Banach space.

Proof. The executing of the norm properties for $|| \cdot ||_W$ immediately follows from its definition. Now we consider the completeness of *W* referring to just defined norm. Let ${v_n}_{n>1}$ be a Cauchy sequence in *W*. Hence, due to the completeness of $L_{p_0}(S; B_0)$ and $L_{p_1}(S; B_2)$ it follows that for some $y \in L_{p_0}(S; B_0)$ and $v \in L_{p_1}(S; B_2)$

$$
y_n \to y
$$
 in $L_{p_0}(S; B_0)$ and $y'_n \to v$ in $L_{p_1}(S; B_2)$ as $n \to +\infty$.

Due to [5, lemma IV.1.10] and in virtue of continuous dependence of the derivative by the distribution in $\mathcal{D}^*(S; B_2)$ (see [5, p. 169) it follows, that $y' = v \in L_{p_1}(S; B_2)$.

The theorem is proved.

Theorem 5. Under conditions (5), (6) $W \subset C(S; B_2)$ with the continuous embedding.

Proof. For a fixed $y \in W$ let us show that $y \in C(S; B_2)$. Let us put

$$
\xi(t) = \int_{t_0}^t y'(\tau) d\tau \quad \forall t_0, t \in S.
$$

The integral is well-defined because $y' \in L_1(S; B_2)$. On the other hand, from the inequality [5, p. 153]

$$
\|\xi(t) - \xi(s)\|_{B_2} \le \int_{t}^{s} \|y'(\tau)\|_{B_2} d\tau \quad \forall \, s \ge t, \, s \in S
$$

it follows that $\xi \in C(S; B_2)$. Due to [5] (lemma IV.1.8) $\xi' = y'$, so from [5] (lemma IV.1.9) it follows that

 $y(t) = \xi(t) + z$ for a.e. $t \in S$.

for some fixed $z \in B_2$.

Thus the function *y* also lies in $C(S; B_2)$.

In virtue of the continuous embedding of $L_{p_1}(S; B_2)$ in $L_1(S; B_2)$ we have that for some constant $k > 0$, which does not depend on y ,

$$
\|\xi(t)\|_{B_2} \le \int_S \|y'(\tau)\|_{B_2} d\tau \le k \|y'\|_{L_{p_1}}(S; B_2) \quad \forall \, t \in S.
$$

From here, due to the continuous embedding $B_0 \subset B_2$, we have

$$
||z||_{B_2} (\operatorname{mes}(S))^{1/p_1} = \left(\int_S ||z||_{B_2}^{p_1} ds\right)^{1/p_1} = ||y - \xi||_{L_{p_1}} (S; B_2) \le
$$

$$
\le k_1 \left(||y||_{L_{p_1}} (S; B_2) + ||\xi||_{C(S; B_2)}\right) \le k_2 \left(||y||_{L_{p_0}} (S; B_0) + ||y'||_{L_{p_1}} (S; B_2)\right),
$$

where mes(*S*) is the "length" (the measure) of *S*, $k_2 > 0$ is a constant that does not depend on $y \in W$. Therefore, from the last two relations there exists $k_3 \ge 0$ such that

$$
||y||_{C(S;B_2)} \le k_3 ||y||_W \quad \forall y \in W.
$$

The theorem is proved.

The next result represents a generalization of the compactness lemma [4, theorem 1.5.1, p. 70] into the case $p_0, p_1 \in [1; +\infty)$.

Theorem 6. Under conditions (5), (6), for all $p_0, p_1 \in [1; +\infty)$ the Banach space *W* is compactly embedded in $L_{p_0}(S; B_1)$.

Proof*.* At the beginning we prove the compact embedding of *W* in $L_1(S; B_2)$.

For every $y \in W$ and $h \in \mathbb{R}$ let us take

$$
y_h(t) = \begin{cases} y(t+h), & \text{if } t+h \in S, \\ \overline{0}, & \text{otherwise.} \end{cases}
$$

In virtue of theorem 5 the given definition is correct.

Lemma 2. For every $y \in W$ and $h \in \mathbb{R}$

$$
||y - y_h||_{L_1(S; B_2)} \le h||y'||_{L_1(S; B_2)}.
$$
\n(9)

Proof. Let $y \in W$ be fixed. Then

$$
||y - y_h||_{L_1(S;B_2)} = \iint_S ||y(t+h) - y(t)||_{B_2} dt = \iint_S \int_t^{t+h} y'(\tau) d\tau ||_{B_2} dt.
$$

Let us put $g_y(t) = \int_t^{t+h} y'(\tau) d\tau = y(t+h) - y(t) \quad \forall t \in S, \ i = 1,2$. Due to

theorem 5 the element $g_y \in C(S; B_2)$. So, as *S* is a compact set, we have that $g_y \in L_1(S; B_2)$. Therefore, due to proposition [6, p.191] with $X = L_1(S; B_2)$ and to [1, theorem 2] it follows the existence of $h_y \in L_\infty(S; B_2^*) = X^*$ such that

$$
\iint_{S} \|g_{y}(t)\|_{B_{2}} dt = \iint_{S} \langle h_{y}(t), g_{y}(t) \rangle_{B_{2}} dt \text{ and } \|h_{y}\|_{L_{\infty}}(S; B_{2}^{*}) = 1
$$

Hence,

$$
\int_{S} \left\| \int_{t}^{t+h} y'(\tau) d\tau \right\|_{B_{2}} dt = \int_{S} \left\| g_{y}(t) \right\|_{B_{2}} dt = \int_{S} \left\langle h_{y}(t), g_{y}(t) \right\rangle_{B_{2}} dt =
$$

$$
= \int_{S} \left\langle h_{y}(t), \int_{t}^{t+h} y'(\tau) d\tau \right\rangle_{B_{2}} dt = \int_{S}^{t+h} \left\langle h_{y}(t), y'(\tau) \right\rangle_{B_{2}} d\tau dt =
$$

$$
= \int_{S\tau-h}^{\tau} \left\langle h_y(t), y'(t) \right\rangle_{B_2} dt d\tau = \int_{S} \left\langle \int_{\tau-h}^{\tau} h_y(t) dt, y'(\tau) \right\rangle_{B_2} d\tau \le
$$

$$
\le \underset{t \in S}{\text{esssup}} \left\| h_y(t) \right\|_{B_2^*} h \iint_{S} \|y'(\tau)\|_{B_2} d\tau \le h \|y'\|_{L_1(S;B_2)}.
$$

So, we have obtained necessary estimation (9).

The lemma is proved.

Let us continue the proof of the given theorem. Let $K \subset W$ be an arbitrary bounded set. Then for some $C > 0$

$$
||y||_{L_{p_0}(S;B_0)} \le C, \quad ||y'||_{L_{p_1}(S;B_2)} \le C \quad \forall \ y \in K. \tag{10}
$$

In order to prove the precompactness of *K* in $L_1(S; B_1)$ let us apply theorem 4 with $B_0 = B_0$, $B_1 = B_1$, $B_2 = B_2$, $p_0 = 1$, $p_1 = p_1$. Due to estimates (9) and (10) the all conditions of the given theorem hold. So, the set *K* is precompact in $L_1(S; B_1)$ and hence in $L_1(S; B_2)$. In virtue of theorem 5 and the Lebesgue theorem it follows that the set *K* is precompact in $L_{p_0}(S; B_0)$. Hence,

due to corollary 2 we obtain the necessary statement.

The theorem is proved.

Proposition 3. Let Banach spaces B_0 , B_1 , B_2 satisfy conditions (5), (6), $p_0, p_1 \in [1; +\infty)$, $\{u_h\}_{h \in I} \subset L_{p_1}(S; B_0)$, where $I = (0, \delta) \subset \mathbb{R}_+$, $S = [a, b]$ such that

a) $\{u_h\}_{h \in I}$ is bounded in $L_{p_1}(S; B_0)$;

b) there exists such
$$
c: I \to \mathbb{R}_+
$$
 that $\lim_{n \to \infty} c\left(\frac{b-a}{2^n}\right) = 0$ and

$$
\forall h \in I \quad \int_{S} \left\| u_h(t) - u_h(t+h) \right\|_{B_2}^{p_0} dt \le c(h)h^{p_0}.
$$

Then there exists ${h_n}_{n \geq 1} \subset I$ $(h_n \setminus 0^+$ as $n \to \infty)$ so that ${u_{h_n}}_{n \geq 1}$ converges in $L_{\min\{p_0, p_1\}}(S; B_1)$.

Remark 5. We assume $u_h(t) = \overline{0}$ when $t > b$.

Remark 6. Without loss of generality let us consider $S = [0,1]$.

Proof. At first we prove this statement for $L_{p_0}(S; B_2)$. In virtue of

Minkowski inequality for every $h = \frac{1}{2^N} \in I$ $=\frac{1}{N} \in I$ and $k \geq 1$

$$
\left(\int_{0}^{1} \left\|u_{h}(t)-u_{h}(t)\right\|_{B_{2}}^{p_{0}}dt\right)^{\frac{1}{p_{0}}} \leq \left(\int_{0}^{1} \left\|u_{h}(t)-u_{h}(t+h)\right\|_{B_{2}}^{p_{0}}dt\right)^{\frac{1}{p_{0}}} +
$$

$$
+\left(\int_{0}^{1} \left||u_{h}(t+h)-u_{\frac{h}{2^{k}}}(t+h)||_{B_{2}}^{p_{0}}dt\right|^{p_{0}} + \left(\int_{0}^{1} \left||u_{\frac{h}{2^{k}}}(t+h)-u_{\frac{h}{2^{k}}}(t)||_{B_{2}}^{p_{0}}dt\right|^{p_{0}} \leq
$$
\n
$$
\leq c^{\frac{1}{p_{0}}}(h)h + \left(\int_{h}^{1} \left||u_{h}(t)-u_{\frac{h}{2^{k}}}(t)||_{B_{2}}^{p_{0}}dt\right|^{p_{0}} + \sum_{i=0}^{2^{k}-1} \left(\int_{0}^{1} \left||u_{\frac{h}{2^{k}}}\left(t+\frac{i+1}{2^{k}}h\right)-u_{\frac{h}{2^{k}}}\left(t+\frac{i}{2^{k}}h\right)\right||_{B_{2}}^{p_{0}}
$$
\n
$$
-u_{\frac{h}{2^{k}}}\left(t+\frac{i}{2^{k}}h\right)\right||_{B_{2}}^{p_{0}}dt + \left(\int_{B_{2}}^{1} \left||u_{h}(t)-u_{\frac{h}{2^{k}}}(t)||_{B_{2}}^{p_{0}}dt\right)^{p_{0}} \leq c^{\frac{1}{p_{0}}}(h)h + 2^{k}\frac{h}{2^{k}}c^{\frac{1}{p_{0}}}(h/2^{k}) + \left(\int_{h}^{1} \left||u_{h}(t)-u_{\frac{h}{2^{k}}}(t)||_{B_{2}}^{p_{0}}dt\right)^{p_{0}} \leq h\left(c^{\frac{1}{p_{0}}}(h) + c^{\frac{1}{p_{0}}}(h/2^{k})\right) + \left(\int_{h}^{1} \left||u_{h}(t)-u_{h}(t+h)||_{B_{2}}^{p_{0}}dt\right)^{p_{0}} + \left(\int_{h}^{1} \left||u_{h}(t+h)-u_{\frac{h}{2^{k}}}(t+h)||_{B_{2}}^{p_{0}}dt\right)^{p_{0}} + \left(\int_{h}^{1} \left||u_{h}(t+h)-u_{\frac{h}{2^{k}}}(t)||_{B_{2}}^{p_{0}}dt\right)^{p_{0}} \leq ... \leq 2h\left(c^{\frac{1}{p_{0}}}(h) + c^{\frac{1}{p_{0}}}(h/2^{k})\right) + \left(\int_{2h}^{1} \left
$$

So, for every $N \ge 1$ and $k \ge 1$ it results in

$$
\left(\int\limits_0^1 \left\|u_{1/2^N}(t)-u_{1/2^{N+k}}(t)\right\|_{B_2}^{p_0}dt\right)^{\frac{1}{p_0}}\leq c^{\frac{1}{p_0}}\bigg(\frac{1}{2^N}\bigg)+c^{\frac{1}{p_0}}\bigg(\frac{1}{2^{N+k}}\bigg).
$$

In virtue of assumption b) we can choose ${h_n}_{n>1} \subset \{\frac{1}{n}\}$ [*I* $\binom{n}{n}$ ≥ 1 $\subset \left\{ \frac{1}{2^m} \right\}$ \cap $1 - \left(\frac{1}{2} \right)$ ${h_n}_{n\geq 1} \subset \frac{1}{n}$ $\geq 1 \subseteq \left\{\frac{1}{2^m}\right\}_{m \geq 1}$ \mathbf{I} \overline{a} ⎨ $\subset \left\{\frac{1}{n}\right\}$ \cap such that $c(h_n) \to 0$ as $n \to \infty$. So, the sequence $\{u_{h_n}\}_{n \geq 1}$ is fundamental in $L_{p_0}(S; B_2)$. Because of $B_0 \subset B_1$ with compact embedding, the sequence $\{u_{h_n}\}_{n\geq 1}$ is bounded in $L_{\min\{p_0, p_1\}}(S; B_0)$; due to corollary 2 it follows that $\{u_{h_n}\}_{n\geq 1}$ is fundamental in $L_{\min\{p_0, p_1\}}(S; B_1)$.

The proposition is proved.

Now we combine all results to obtain the necessary a priori estimate.

Theorem 7. Let all conditions of theorem 2 are satisfied and $V \subset H$ with compact embedding. Then (4) be true and the set

 $\bigcup D_n$ is bounded in $C(S; H)$ and precompact in $L_p(S; H)$ 1 *n* ≥ for every $p \ge 1$.

Proof*.* Estimation (4) follows from theorem 2. Now we use compactness theorem 6 with $B_0 = V$, $B_1 = H$, $B_2 = V^*$, $p_0 = 1$, $p_1 = 1$. Remark that X^* ⊂ *L*₁(*S*;*V*) and X ⊂ *L*₁(*S*;*V*^{*}) with continuous embedding. Hence, the set

> is precompact in $L_1(S; H)$ 1 D_n is precompact in $L_1(S;H)$ *n* ∪ ≥ .

In virtue of (4) and theorem 1 on continuous embedding of W^* in $C(S; H)$, it follows that the set

$$
\bigcup_{n\geq 1} D_n
$$
 is bounded in $C(S;H)$.

Further, by using standard conclusions and the Lebesgue theorem we obtain the necessary statement.

The theorem is proved.

Partially Supported by State Fund of Fundamntal Investigations Grant $N_2 \Phi$ 25.1/029-2008

REFERENCES

- 1. *Kasyanov P., Mel'nik V.S.* On some topological properties for special classes of Banach spaces. Part 1 // System Research & Information Technologies. — 2008. — № 1. — P. 127–143.
- 2. *Kasyanov P.O.* Galerkin's method for one class differential-operator inclusions // Dopovidi Natcional'noi Academii Nauk Ukraini. — 2005. — № 9. — P. 20–24.
- 3. *Kasyanov P.O., Mel'nik V.S.* Faedo-Galerkin method for differential-operator inclusions in Banach spaces with maps of w_{λ_0} -pseudomonotone type // Zbirnik prats institutu mathematiki Nacional'noy Akademiy nauk Ukrainy. Part 2. — 2005. — N_2 1. - P. 82-105.
- 4. *Lions J.L.* Quelques m e′ thodes de r e′solution des problem e′s aux limites non lineaires. — Paris: DUNOD GAUTHIER-VILLARS, 1969. — 587 p.
- 5. *Gaevsky H., Greger K., Zaharias K.* Nonlinear The operator equations and the operator-differential equations. — M.:Myr, 1977. — 337 p. (Russian translation).
- 6. *Aubin J.P.* Ekeland I. Applied Nonlinear Analysis. Moscow: Mir, 1988. p. 510.

Received 05.07.2007

From the Editorial Board: the article corresponds completely to submitted manuscript.