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ON SOME TOPOLOGICAL PROPERTIES FOR SPECIAL 
CLASSES OF BANACH SPACES. PART 2 

P. KASYANOV,  V. MEL'NIK 

We consider some classes of infinite-dimensional Banach spaces with integrable 
derivatives. A compactness lemma for nonreflexive spaces is obtained. However 
some main topological properties for the given spaces are obtained.  

This work is continuation of [1]. 
Theorem 1. );(*

0 HSCW ⊂  with continuous embedding. Moreover, for 

every *
0, Wy ∈ξ  and ,s t S∈  the next formula of integration by parts takes place  
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In particular, when ξ=y  we have:  
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Proof. To simplify the proof we consider ],[ baS =  for some  

 .<<< +∞∞− ba   

The validity of formula (1) for );(, 1 VSCy ∈ξ  is checked by direct 

calculation. Now let )(1 SC∈ϕ  be such fixed that 0=)(aϕ  and 1=)(bϕ . 

Moreover, for );(1 VSCy∈  let yϕξ =  and yy ϕη −= . Then, due to (1): 
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from here for );( *
iiqi VSL∈ξ  and );( HSL
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∈η  ( 1,2=i ) such that =′y  

2121 ηηξξ +++=  it follows: 
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Hence, due to [1, theorem 3], definition of X⋅ , if we take in last inequal-

ity 
ab
att

−
−=)(ϕ  for all St∈  we obtain  
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where 1C  is the constant from inequality *
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Remark that 0=1
∞+

, 0>, 32 CC . From (2) it obviously follows that  
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 does not depend on y . 

Now let us apply [1, theorem 4]. For arbitrary *
0Wy∈  let 1}{ ≥nny  be a 

sequence of elements from 1( ; )C S V  converging to y  in *
0W . Then in virtue of 

relation (3) we have  
 0*

0
4);( →−≤−

WknHSCkn yyCyy , 
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therefore, the sequence 1}{ ≥nny  converges in );( HSC  and it has only limit 
);( HSC∈χ  such that for a.e. St∈  )(=)( tytχ . So, we have );( HSCy∈  and 

now the embedding );(*
0 HSCW ⊂  is proved. If we pass to limit in (3) with 

nyy =  as ∞→n  we obtain the validity of the given estimation *
0Wy∈∀ . It 

proves the continuity of the embedding *W  into );( HSC . 

Now let us prove formula (1). For every *
0, Wy ∈ξ  and for corresponding 

approximating sequences );(},{ 1
1 VSCy nnn ⊂≥ξ  we pass to the limit in (1) with 

nyy = , nξξ =  as ∞→n . In virtue of Lebesgue's theorem and );( **
0 VSCW ⊂  

with continuous embedding formula (1) is true for every *
0Wy ∈ . 

The theorem is proved.  
In virtue of * *

0W W⊂  with continuous embedding and due to the latter 
theorem the next statement is true.  

Corollary 1. * ( ; )W C S H⊂  with continuous embedding. Moreover, for 
every *,y Wξ ∈  and ,s t S∈  formula (1) takes place.  

For every 1≥n  let us define the Banach space { }nnn XyXyW ∈′∈ |= **  
with the norm 
 ,** nX

nXnW
yyy ′+=  

where the derivative y′  is considered in sense of scalar distributions space 

);(*
nHSD . As far as  

 );(=));(());((=);( **** VSVSHSHS nn DDLDLD ω⊂   

it is possible to consider the derivative of an element *
nXy∈  in the sense of 

);( ** VSD . Remark that for every 1≥n  **
1

* WWW nn ⊂⊂ + . 

Proposition 1. For every *Xy∈  and 1≥n  )(= ′′ yPyP nn , where derivative 

of element *x X∈  is in the sense of the scalar distributions space );( ** VSD .  
Remark 1. We pay our attention that in virtue of the previous assumptions 

the derivatives of an element *
nXx∈  in the sense of );( *VSD  and in the sense of 

);( nHSD  coincide. 
Proof. It is sufficient to show that for every )(SD∈ϕ  )()(=)( ϕϕ ′′ yPyP nn . 

In virtue of definition of derivative in sense of );( ** VSD  we have 

 =′−=′−=′∈∀ ∫ ττϕτϕϕϕ dyPyPyPS
S

nnn )()()()()(D  
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The proposition is proved. 
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Due to [1, propositions 3, 4] it follows the next 
Proposition 2. For every 1≥n  ** = WPW nn , i.e. 

 }.)(|)({= ** WyyPW nn ∈⋅⋅  

Moreover, if the triple ( )HVH jii ;;}{ 1≥ , 1,2=j  satisfies condition (γ ) with 

jCC = . Then for every *y W∈  and 1n ≥  

 .)(},{max)( *21* WWn yCCyP ⋅≤⋅  

Theorem 2. Let the triple ( )HVH jii ;;}{ 1≥ , 1,2=j  satisfy condition (γ ) 

with jCC = . We consider bounded in *X  set *XD ⊂  and XE ⊂  that is 
bounded in X . For every 1n ≥  let us consider 

 { } .and|=: **
nnnnnnn WEPyDyXyD ⊂∈′∈∈  

Then  
 ,and1allfor* nnWn DynECDy ∈≥+≤ ++  (4) 

where },{max= 21 CCC , *sup=
XDy

yD
∈

+  and X
Ef

fE
∈

+ sup= . 

Remark 2. Due to proposition 2 nD  is well-defined and *
nn WD ⊂  is true. 

Remark 3. A priori estimates (like (4)) appear at studying of solvability of 
differential–operator equations, inclusions and evolutional variational inequalities 
in Banach spaces with maps of λw -pseudomonotone type by using Faedo–
Galerkin method (see [2, 3]) at boundary transition, when it is necessary obtain a 
priori estimates of approximate solutions ny  in *X  and of its derivatives ny′  
in X . 

Proof. Due to proposition 2 for every 1≥n  and nn Dy ∈   

 .},{max= 21** ++++ +≤+≤′+ ECCDEPDyyy nXnXnWn  

The theorem is proved.  
Further, let 0B , 1B , 2B  be some Banach spaces such, that  

 20 , BB  are reflexive 10 BB ⊂  with compacting embedding  (5) 

 210 BBB ⊂⊂  with compacting embedding.  (6) 

Lemma 1. ([4] lemma 1.5.1, p.71) Under the assumptions (5), (6) for an 
arbitrary 0>η  there exists 0>ηC  such that 

 .0201
BxxCxx BBB ∈∀+≤ ηη   

Corollary 2. Let the assumptions (5), (6) for the Banach spaces 0B , 1B  and 

2B  are verified, ][1;1 +∞∈p , ][0,= TS  and the set );( 01
BSLK p⊂  such that 

a) K  is precompact set in );( 21
BSLp ; 
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b) K  is bounded set in );( 01
BSLp . 

Then K  is precompact set in );( 11
BSLp . 

Proof. Due to lemma 1 and to the norm definition in );(
1 ip BSL , 0,2=i  it 

follows that for an arbitrary 0>η  there exists such 0>ηC  that  

 );();(2);(2);( 01210111
BSLyBSyCBSyBSy ppLpLpL ∈∀+≤ ηη   (7) 

Let us check inequality (7), when )[0,1 +∞∈p  (the case +∞=1p  is direct 
corollary of lemma 1): 
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The last inequality follows from  

 ( ) 0,12)(
2
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≥∀+−≤+≤
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Now let 1}{ ≥nny  be an arbitrary sequence from K . Then by the conditions 
of the given statement there exists 11 }{}{ ≥≥ ⊂ nnkkn yy  that is a Cauchy 

subsequence in the space );( 21
BSLp . So, thanks to inequality (7) for every 

1, ≥mk  
 +−≤− );(2);( 0111

BSyyBSyy
pLmnknpLmnkn η  

 );(2);(2
2121

BSyyCCBSyyC
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where 0>C  is a constant that does not depend on η,, km . Therefore, for every 
0>ε  we can choose 0>η  and 1≥N  such that 

 NkmBSyyCC
pLmnkn ≥∀− ,/2<);(2and/2<

21
εεη η   

Thus, 
 NkmBSyyN

pLmnkn ≥∀−≥∃∀ ,<);(:10>
11

εε . 

This fact means, that 1}{ ≥kkny  converges in );( 11
BSLp . The corollary is 

proved. 



On some topological properties for special classes of Banach spaces. Part 2 

Системні дослідження та інформаційні технології, 2008, № 3 93

Theorem 3. Let conditions (5), (6) for 210 ,, BBB  are satisfied, ∈10 , pp  
)[1;+∞∈ , S  be a finite time interval and );( 01

BSLK p⊂  be such, that  

a) K  is bounded in );( 01
BSL p ; 

b) for every 0>ε  there exists such 0>δ  that from δ<<0 h  it results in  

 Kudphuu B
S

∈∀+−∫ ετττ <)()( 0
2

. (8) 

Then K  is precompact in );(}; 110{min BSpL p . 

Furthermore, if for some 1>q  K  is bounded in );( 1BSLq , then K  is 
precompact in );( 1BSLp  for every )[1,qp∈ . 

Remark 4. Further we consider that every element )( iBSx →∈  is equal to 
0  out of the interval S . 

Proof. At the beginning we consider the first case. For our goal it is enough 
to show, that it is possible to choose a Cauchy subsequence from every sequence 

Ky nn ⊂≥1}{  in );(}; 110{min BSpL p . Due to corollary 2 it is sufficient to prove 

this statement for );(}; 210{min BSpL p . 

For every Kx∈  0>h∀  St∈∀  we put  
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, 

where the integral is regarded in the sense of Bochner integral. We point out that 
0>h∀  );();( 20 BSCBSCxh ⊂∈ . 

Fixing a positive number ε , we construct for a set  
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a final ε -web in );( 20
BSLp . For 0>ε  we choose 0>δ  from (8). Then for 

every fixed h  ( δ<<0 h ) we have: 
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Moreover, from the H o lder inequality we obtain  
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Therefore the family of functions Kxhx ∈}{  is equicontinuous. 
Since Kx∈∀  St∈∀  it results in 
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the family of functions Kxhx ∈}{  is uniformly bounded, because of the constant 
0≥C  does not depend on Kx∈ . Hence, δ<<0: hh∀  the family of functions 

Kxhx ∈}{  is precompact in );( 2BSC , so in );(}, 210{min BSpL p  too. 

On the other hand, δ<<0 h∀ , Kx∈∀ , St∈∀  
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From here, taking into account inequality (8) we receive:  
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Hence, by virtue of the precompactness of system Kxhx ∈}{  in 
);(}, 210{min BSpL p  δ<<0 h∀  we have that K  is a precompact set in 

);(}, 210{min BSpL p . 

Let us consider the second case. Assume that for some 1>q  the set K  is 
bounded in );( 1BSLq . Similarly to the previous case, it is enough to show that 

for every )[1;qp∈  and Ky nn ⊂≥1}{  there exists a subsequence ⊂≥1}{ kkny  

1}{ ≥⊂ nny  and );( 1BSLy p∈  so that 

 ∞→→ kBSLyy pkn as);(in 1 . 
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Because of yyn →  in );(}, 110{min BSpL p , up to a subsequence, as ∞→n , we 

have 11 }{}{ ≥≥ ⊂∃ nnkkn yy  such that 0)( →
knBλ  as ∞→k , where =:nB  

1})()(|{=:
1
≥−∈ Bn tytySt  for every 1≥n , λ  is the Lebesgue measure on S . 

Then for every 1≥k   
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where nn BSA \=  for every 1≥n . 
It is clear that 0→

knJ  as ∞→k . Let us consider 
knI . Since 1}{ ≥kkny  is 

precompact in );(}, 110{min BSpL p , there exists such 11 }{}{ ≥≥ ⊂ kknkkm yy  that 

)()( tyty
km →  in 1B  as ∞→k  almost everywhere in S . Setting  
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using definition of 
kmA , sequence 1}{ ≥kkmϕ  satisfies the conditions of the 

Lebesgue theorem with the integrable majorant 1≡φ . So 0→
kmϕ  in )(1 SL  as 

∞→k . Thus, within to a subsequence, yyn →  in );( 1BSLq . 

The theorem is proved.  
Let Banach spaces 210 ,, BBB  satisfy all assumptions (5), (6), 

)[1;, 10 +∞∈pp  be arbitrary numbers. We consider the set with the natural 
operations  
 )},;(|);({= 2100

BSLvBSLvW pp ∈′∈  

where the derivative v′  of an element );( 00
BSLv p∈  is considered in the sense 

of the scalar distribution space );( 2BSD . It is clear, that 

 );( 00
BSLW p⊂ . 

Theorem 4. The set W  with the natural operations and the graph norm 

 );();(=
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BSvBSvv
pLpLW ′+  

is a Banach space. 
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Proof. The executing of the norm properties for W⋅  immediately follows 
from its definition. Now we consider the completeness of W  referring to just 
defined norm. Let 1}{ ≥nnv  be a Cauchy sequence in W . Hence, due to the 
completeness of );( 00

BSLp  and );( 21
BSLp  it follows that for some 

);( 00
BSLy p∈  and );( 21

BSLv p∈   

 +∞→→′→ nBSLvyBSLyy pnpn as);(inand);(in 2100
. 

Due to [5, lemma IV.1.10] and in virtue of continuous dependence of the 
derivative by the distribution in *

2( ; )S BD  (see [5, p. 169) it follows, that 
);(= 21

BSLvy p∈′ . 

The theorem is proved. 
Theorem 5. Under conditions (5), (6) );( 2BSCW ⊂  with the continuous 

embedding. 
Proof. For a fixed Wy∈  let us show that );( 2BSCy∈ . Let us put  
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The integral is well-defined because );( 21 BSLy ∈′ . On the other hand, from the 
inequality [5, p. 153] 
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it follows that );( 2BSC∈ξ . Due to [5] (lemma IV.1.8) y′′ =ξ , so from 
[5] (lemma IV.1.9) it follows that 

 Stztty ∈+ a.e.for)(=)( ξ . 

for some fixed 2Bz∈ . 
Thus the function y  also lies in );( 2BSC . 
In virtue of the continuous embedding of );( 21

BSLp  in );( 21 BSL  we have 

that for some constant 0>k , which does not depend on y , 
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From here, due to the continuous embedding 20 BB ⊂ , we have  
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where )(mes S  is the “length”' (the measure) of S , 0>2k  is a constant that does 
not depend on Wy∈ . Therefore, from the last two relations there exists 03 ≥k  
such that 
 Wyyky WBSC ∈∀≤ 32;( ) . 

The theorem is proved.  
The next result represents a generalization of the compactness lemma [4, 

theorem 1.5.1, p. 70] into the case )[1;, 10 +∞∈pp . 
Theorem 6. Under conditions (5), (6), for all )[1;, 10 +∞∈pp  the Banach 

space W  is compactly embedded in );( 10
BSLp . 

Proof. At the beginning we prove the compact embedding of W  in 
);( 21 BSL . 

For every Wy∈  and R∈h  let us take 

 ⎜⎜
⎝

⎛ ∈++
.otherwice,0
,if),(

=)(
Shthty

tyh  

In virtue of theorem 5 the given definition is correct. 
Lemma 2. For every Wy∈  and R∈h  

 );();( 2121 BSyhBSyy LLh ′≤− . (9) 

Proof. Let Wy∈  be fixed. Then 

 dtdydttyhtyBSyy B
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S
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. 

Let us put  1,2,)()()(=)( =∈∀−+=′∫
+

iSttyhtydytg
ht

t
y ττ . Due to 

theorem 5 the element );( 2BSCg y ∈ . So, as S  is a compact set, we have that 
);( 21 BSLg y ∈ . Therefore, due to proposition [6, p.191] with );(= 21 BSLX  and 

to [1, theorem 2] it follows the existence of **
2 );( XBSLhy ≡∈ ∞  such that  
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y
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2
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212*
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St
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∈
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So, we have obtained necessary estimation (9). 
The lemma is proved.  
Let us continue the proof of the given theorem. Let WK ⊂  be an arbitrary 

bounded set. Then for some 0>C   

  KyCBSyCBSy
pLpL ∈∀≤′≤ );(,);( 2100

. (10) 

In order to prove the precompactness of K  in );( 11 BSL  let us apply 
theorem 4 with 00 = BB , 11 = BB , 22 = BB , 1=0p , 11 = pp . Due to estimates 
(9) and (10) the all conditions of the given theorem hold. So, the set K  is 
precompact in );( 11 BSL  and hence in );( 21 BSL . In virtue of theorem 5 and the 
Lebesgue theorem it follows that the set K  is precompact in );( 00

BSLp . Hence, 

due to corollary 2 we obtain the necessary statement. 
The theorem is proved. 
Proposition 3. Let Banach spaces 210 ,, BBB  satisfy conditions (5), (6), 

)[1;, 10 +∞∈pp , );(}{ 01
BSLu pIhh ⊂∈ , where +⊂ R)(0,= δI , ],[ baS =  such 

that 
a) Ihhu ∈}{  is bounded in );( 01

BSLp ; 

b) there exists such +→ RIc :  that 0=
2

lim ⎟
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⎞
⎜
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nn
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Then there exists Ih nn ⊂≥1}{  ( +0nh  as ∞→n ) so that 1}{ ≥nnhu  

converges in );(}, 110{min BSpL p . 

Remark 5. We assume 0=)(tuh  when bt > . 
Remark 6. Without loss of generality let us consider [0,1]=S . 
Proof. At first we prove this statement for );( 20

BSLp . In virtue of 

Minkowski inequality for every Ih N ∈
2
1=  and 1≥k  
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So, for every 1≥N  and 1≥k  it results in  

 ⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

++∫ kN
p

N
pp

BkNN ccdtptutu
2

1
2
1)()( 0

1

0

1
0

1

0
21/21/2

1

0

. 

In virtue of assumption b) we can choose Ih
m
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1
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⎨
⎧⊂  such that 

0)( →nhc  as ∞→n . So, the sequence 1}{ ≥nnhu  is fundamental in );( 20
BSLp . 

Because of 10 BB ⊂  with compact embedding, the sequence 1}{ ≥nnhu  is bounded 

in );(}, 010{min BSpL p ; due to corollary 2 it follows that 1}{ ≥nnhu  is fundamental 

in );(}, 110{min BSpL p . 
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The proposition is proved.  
Now we combine all results to obtain the necessary a priori estimate. 
Theorem 7. Let all conditions of theorem 2 are satisfied and HV ⊂  with 

compact embedding. Then (4) be true and the set  

 );(inprecompactand);(inboundedis
1

HSLHSCD pn
n
∪
≥

 

for every 1≥p . 
Proof. Estimation (4) follows from theorem 2. Now we use compactness 

theorem 6 with VB =0 , HB =1 , *
2 VB = , 1=0p , 11 =p . Remark that 

*
1( ; )X L S V⊂  and *

1( ; )X L S V⊂  with continuous embedding. Hence, the set  

 );(inprecompactis 1
1

HSLDn
n
∪
≥

. 

In virtue of (4) and theorem 1 on continuous embedding of *W  in );( HSC , 
it follows that the set  
 ).;(inboundedis

1
HSCDn

n
∪
≥

 

Further, by using standard conclusions and the Lebesgue theorem we obtain 
the necessary statement. 

The theorem is proved. 
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