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We develop the Cartan— Monge geometric approach to the characteristic method for nonlinear partial
differential equations of the first and higher orders. The Hamiltonian structure of characteristic vector
fields related with nonlinear partial differential equations of the first order is analyzed, the tensor fields of
special structure are constructed for defining characteristic vector fields naturally related with nonlinear
partial differential equations of higher orders.

Possunymo zeomempuunuii nioxio Kapmara— Monxca 00 memody xapakmepucmux 0as HeAIHIUHUX
OougepeHyiasbHUX PIBHAHb 3 YACUHHUMU NOXIOHUMU NEPULO20 ma 8UUX Nopaokis. [locaioxcero 2a-
MINLIMOHOBY CIPYKMYPY XaPaAKMePUCUYHUX 8eKMOPHUX NOAI8, NO8 A3AHUX I3 HeATHIUHUMU OUughepeH-
UIANbHUMU PIBHAHHAMU 3 HACMUHHUMU NOXIOHUMU NEPULO20 NOPAOKY, Ma NoOYO008AHO MEH30PHI NOAA
3l CneyianbHow CMPYKMYpo 0AA 8USHAYEHHA XAPAKMEPUCIUYHUX NOAL8, NPUPOOHO NO8 A3AHUX I3
HeAIHIHUMU OuhepeHUiarbHUMU PIBHAHHAMU 3 YACHUHHUMU NOXIOHUMU BULUX NOPAOKIB.
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1. Introduction: geometric backgrounds of the classical characteristic method. The characteris-
tic method [1-4] proposed in XIX century by A. Cauchy was very nontrivially developed by
G. Monge, having introduced the geometric notion of a characteristic surface, related with parti-
al differential equations of the first order. The latter, being augmented with a very important
notion of characteristic vector fields, appeared to be fundamental [4, 5 —7] for the characteristic
method, whose main essence consists in bringing about the problem of studying solutions to our
partial differential equation to an equivalent one of studying some set of ordinary differential
equations. This way of reasoning succeeded later in a development of the Hamilton —Jacobi
theory, making it possible to describe a wide class of solutions to first order partial differential
equations of the form

H(z;u,uy) = 0, (1.1)
where H € C?*(R"! x R™;R), ||H,|| # 0, is called a Hamiltonian function and u € C?(R™;R)

is an unknown function to be found. The equation (1.1) ) is endowed still with a boundary value
condition,

uhﬂv = Uuop, (12)
with uy € C!(I',; R) defined on some smooth almost everywhere hypersurface
Iy = {z e R" : o(z) = 0, |lgal| # 0}, (13)

where ¢ € C*(R";R) is some smooth function on R™.
Following Monge’s ideas, let us introduce the characteristic surface Sy € R"! x R™ as

Su = {(z;u,p) € R"™ x R" : H(x;u,p) = 0}, (14)

where we put, by definition, p := u, € R" for all z € R™. The characteristic surface (1.4) was
effectively described by Monge within his geometric approach by means of the so-called Monge
cones K C T(R"*!) and their duals K* C T*(R""!) [4, 6]. The corresponding differential-
geometric analysis of this Monge scenario was later done by E. Cartan, who reformulated [4,
8] the geometric picture drown by Monge by means of the related compatibility conditions on
dual Monge cones and the notion of an integral submanifold Xz C Sy naturally assigned to
special vector fields on the characteristic surface Sg. In particular, Cartan had introduced on
Sy the differential 1-form

o) = du— < p,dz >, (1.5)

where < -, - > is the usual scalar product in R”, and demanded its vanishing along the dual
Monge cones K* C T*(R"*1), concerning the corresponding integral submanifold imbedding

mapping
m XNy i— Sy. (1.6)

This means that the 1-form
W*Ctgl) = du— < p,dx > |y, =0 (1.7)

for all points (x; u,p) € Xy of a solution surface ¥y defined in such a way that K* = T*(Zp).
The obvious corollary from the condition (1.7) is the second Cartan condition

d?T*Oégl) = W*dagl) = < dp,Ndz > |y, = 0. (1.8)
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These two Cartan’s conditions (1.7) and (1.8) should be still augmented with the characteristic
surface Sy invariance condition for the differential 1-form aél) € Al(S ),

oV = dH|g, = 0. (1.9)

The conditions (1.7), (1.8) and (1.9), when imposed on the characteristic surface Sy C R" ! x
xR", make it possible to construct the proper characteristic vector fields on Sy, whose sui-
table characteristic strips [4, 6] generate the sought solution surface ¥ . Thereby, having solved
the corresponding Cauchy problem related with the boundary value conditions (1.2) and (1.3)
for these characteristic vector fields, considered as ordinary differential equations on Sy, one
can construct a solution to our partial differential equation (1.1). And what is interesting, this
solution in many cases can be represented [1, 9] in exact functional-analytic Hopf—Lax type
form. The latter is a natural consequence from the related Hamilton—Jacobi theory, whose
main ingredient consists in proving the fact that the solution to our equation (1.1) is exactly
the extremal value of some Lagrangian functional, naturally associated [2, 7, 10] with a given
Hamiltonian function.

Below we will construct the proper characteristic vector fields for partial differential equati-
ons of the first order (1.1) on the characteristic surface Sy, generating the solution surface
Yiy as suitable characteristic strips related to the boundary conditions (1.2) and (1.3), and
next generalize the Cartan—Monge geometric approach to partial differential equations of the
second and higher orders.

2. The characteristic vector field method: first order partial differential equations. Consider
on the surface Sy C R™*! x R™ a characteristic vector field K : Sy — T(Sy) in the form

dzx

il ap(x;u,p)
d
% = bu(z;u,p) ¢ = Ku(ziup), 2.1)
du
= cr(z;u,p)
=

where 7 € R is a suitable evolution parameter and (z;u,p) € Sg. Since, owing to the Cartan —
Monge geometric approach, conditions (1.7), (1.8) and (1.9) hold along the solution surface ¥y,
we can satisfy them, applying the interior differentiation i ,,: A(Sy) — A(SH) [10-12] to the

corresponding differential forms agl) and dagl),

ixgol) =0, ig,dal’) =0,
As a result of simple calculations one finds that
CH =< Dp,ag >,

(2.2)
BY = < by,dx > — < ag,dp > |, =0
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for all points (x;u, p) € Sy. The obtained 1-form 1) € A'(Sy) must be, evidently, compatible
with the defining invariance condition (1.9) on Sy . This means that there exists a scalar function
p € CY(Sy;R) such that the condition

,uagl) = gM

holds on Sy. This gives rise to the following final relationships:
OH b 0H n 0H
a = —_— = — —_— —_—

which, together with the first equality of (2.2) complete the search for the structure of the
characteristic vector fields Ky : Sy — T(Sg),

fow = (WPH ) DN (OH | OHNYT
H — u8p7 p?l’Lap b ILL 8{[‘ pau .
Now we can pose a suitable Cauchy problem for the equivalent set of ordinary differential
equations (2.1) on Sy as follows:

dz OH

ar  Fop z| o = mo(z) € T, x’T:t(z) =z € RM\Iy,

d oH

ﬁ — <p,u82)> : u‘T:O = UO(IQ(.T)), U‘T:t(x) — u(:[;), (23)
dp _ _, (9H  0HY . _ Ouo(o(2))
dr M(@x +pau> Pl = drg

where zg(xz) € I'y is the intersection point of the corresponding vector field orbit, starting
at a fixed point x € R"™\I'y,, with the boundary hypersurface I'; C R™ at the moment of
"time"r = t(z) € R. As a result of solving the corresponding "inverse"Cauchy problem (2.3)
one finds the following exact functional-analytic expression for a solution v € C?(R";R) to the
boundary-value problem (1.2) and (1.3):

u() = wo(ao(x)) + / £ (s, p)dr, (2.4)
0

where, by definition,

for all (z;u,p) € Sy. If the Hamiltonian function H : R"*! x R” — R is nondegenerate, that
is HessH := det(0?H/0pdp} # 0 for all (x;u,p) € Sg, then the first equation of (2.3) can be
solved with respect to the variable p € R" as

p = Y(z,;u)
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for (z,z) € T(R™), where ¢ : T(R™) x R — R" is some smooth mapping. This gives rise to the
following canonical expression of the Lagrangian function

L(J:? T u) = E(.I, U»]))‘p:d)(z,j:;u),
and to the resulting solution (2.4),
t(z)

u(z) = ug(zo(x)) + / L(x,z;u)dr. (2.5)
0

The functional-analytic form (2.5) is already proper for constructing its equivalent Hopf - Lax
type form, being very important for finding so called generalized solutions [1, 5, 13] to the
partial differential equation (1.1). This aspect of the Cartan—Monge geometric approach we
suppose to analyze in detail elsewhere.

3. The characteristic vector field method: second order partial differential equations. Assume
we are given a second order partial differential equation

H(z;u,ug, Uge) = 0, (3.1)
where the solution is u € C?(R™;R) and the generalized "Hamiltonian"function satisfies H €

c € C*(R™! x R" x(R" ® R"); R). Putting p(!) := wu,, p@ := u,,, = € R", one can construct
within the Cartan —Monge generalized geometric approach the characteristic surface

S = {(@u,p®,p?) € R xR x (R"@R") : H(wu,pW,p®) =0} (32)
and a suitable Cartan’s set of differential one- and two-forms:

a§1) = du— < p(l),dm > |n, =0,

dagl) = < dz, AdpP) > v, = 0,
(3.3)
ay’ = dpV— < p@ dz > s, = 0,

dol? = < dz, Adp® > |5, = 0,

vanishing on a corresponding solution submanifold Xy C Spy. The set of differential forms
(3.3) should be augmented with the characteristic surface Sy invariance differential 1-form

alV = dH|g, = 0, (3.4)
vanishing, respectively, an the characteristic surface Sy.
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Let the characteristic vector field Ky : Sy — T'(Sg) on Sy be given by the expressions

Z—x = ap(z;u,p, p?)
-

du

E - CH(«T;’U/,p(l),p@))

= KH(I‘?uap(l)ap@))J (35)

dp(l) B b(1)($.u p(l) p(2))

dr — Vg 5 Wy )
p® ) e

dT - bH (xau7p 7p ) )

for all (z;wu, pM), p(2)) € Sp. To find the vector field (3.5) it is necessary to satisfy the Cartan
compatibility conditions in the following geometric form:

iKHOégl)‘EH = 0, Z'KHdagl)’z;H = 0,
(3.6)
Z'KHOAS)‘EH = O, Z'KHdaél)’ZH = O,

where, as above, ig, : A(Sy) — A(Sp) is the internal differentiation of differential forms
along the vector field K : Sy — T'(Si). As aresult of conditions (3.6) one finds that

cn =< pWag > WY =< p@ ay >,

Y =< ag,dp® > — < b)) do > |g, =0, (3.7)

ﬂél) =< ag,dp? > — < bg),dx > lsu =0,

being satisfied on S identically. The conditions (3.7) must be augmented still with the characteri-
stic surface invariance condition (3.4). Notice now that BF) = 0 owing to the second condition
of (3.7) and the third condition of (3.3). Thus, we need now to make compatible the basic scalar

1-form (3.4) with the vector-valued 1-form 551) € A(Syx) ® R™. To do this let us construct,
making use of the ﬂél), the following parametrized set of, respectively, scalar 1-forms:

BV =< 1Y @ ay, dp® > — < P, 110 @ da > |g, = 0, (3-8)

where (19 € C1(Sy;R™) is any smooth vector-valued function on Sy. The compatibility
condition for (3.8) and (3.4) gives rise to the next relationships:

oOH
—(110) _ OH
1% ®CLH - 8])(2)7
(3.9)
o) @ o (9H  O0H [/ OH
< gt by > ((% +p 8u+ 8p(1),p )
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holding on Sy . Take now a dual vector function x(119 € C'(Sy;R") such that < p(10),
719 > = 1 for all points of Sz . Then from (3.9) one easily finds that

OH
_ 1|0
ag = </’L( | )7 8p(2)> ’

@ _ o (90 0H [/ OH

(3.10)

Combining now the first two relationships of (3.7) with the found above relations (3.10) we get
a final form for the characteristic vector field (3.5),

KH - (G/Hv < p(l)ua/H >7 < p(2)7aH >7 _:u(l‘O),*@

OH OH OH T
(M 2)
o (G5 15 + (o r®))) G11)

where ay = < p19 0H/9p? > and p119 e C'(Sy;R") is some smooth vector-valued
function on Sy. Thereby, we can construct, as before, solutions to our partial second order
differential equation (3.1) by means of solving the equivalent Cauchy problem for the set of
ordinary differential equations (3.5) on the characteristic surface Sy.

4. The characteristic vector field method: partial differential equations of higher orders.
Consider a general nonlinear partial differential equation of higher order m € Z_,

H(z;u, Uy, Uggy ooy Unz) = 0, (4.1)

where it is assumed that H € CZ(R"+! x (R")®m(m+1)/2. R). Within the generalized Cartan—
Monge geometric characteristic method, we need to construct the related characteristic surface
Sy as

Sy = {(x;u,p(”,p@),---,p(m)) €
€ R™ s (RM)&™m D2 H (250, pM, p@) L pl™)) = 0}, (4.2)

where we put p(l) := u, € R*, p® := u,, € R*@R", ..., p™ € (R")®™ for z € R™. The
corresponding solution manifold ¥y C Sy is defined naturally as the integral submanifold of
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the following set of one- and two-forms on Sy :
049) = du— < pW,dz > s, = 0,
dagl) =< dx,/\dp(l) > s, =0,
ay) = dpM— < p@ dx > |y, = 0,

dagl) = < dz, Adp? > |5, =0, (4.3)

ol = dpm=V_ < p(M gy > |5, =0,

da%) = < dx, Adp™ > s, =0,

vanishing on X ;. The set of differential forms (4.3) is augmented with the determining characteri-
stic surface Sy invariance condition

oM = dH|s, = 0. (4.4)

Proceed now to constructe the characteristic vector field K7 : Sy — T'(Sg) on the hypersurface
Sy within the developed above generalized characteristic method. Take the expressions

dx
E = CLH(.’E;U,p(l)7p(2),...,p(m))
du
dr = CH('r;uvp(l)ap(2)7"'>p(m)
'V )
= bH (xau7p( )7p( )7 )p(m))
dd(TQ) = Kp(z;u,p, p1?), (4.5)
ZT = bg{)(xauap(l)vp(m? ,p(m))
dp(™)
P @i, p, ™)

for (z;u,p™,p?, .., p™) € Sy and satisfy the corresponding Cartan compatibility conditions
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in the following geometric form:
iKHagl)‘zH = 0, Z'KHdagl)’ZH = 0,

iKHOzél)‘zH = 0, Z'KHdOzgl)’ZH = O,

(4.6)
ikgasy = 0, iggdaVls, = 0.
As aresult of suitable calculations in (4.6) one gets the following expressions:
cg =< p(l),aH >, bg) =< p(2),aH >,
Y =< ag,dp®D > — < b)) do > |g, =0,
Y =< ag,dp® > — < vD da > |g, =0,
.............................................................. (4.7)

ﬂ,(,p =< aH,dp(m) > — < bg]n)

Jdx > |g, =0,
being satisfied on Sy identically.

It is now easy to see that all of 1-forms BJ(-I) € AY(Sy) ® RM®I, j = 1,m — 1, are vani-
shing identically on Sy owing to the relationships (4.3). Thus, as a result, we obtain the only
relationship

(U = < ap, dp™ > — < ™ dz > g, = 0, (4.8)

which should be compatibly combined with that of (4.4). To do this suitably with the tensor
structure of the 1-forms (4.8), we take a smooth tensor function (=19 ¢ C1(Sy; (R™)2(m—1)
on Sy and construct the parametrized set of scalar 1-forms

BD[] =< g ) @ ay, dp™ > — < B G0 @ dy > g, = 0, (4.9)

m

which can be now identified with the 1-form (4.4). This gives rise right away to the relationships

OH
—(m—10) _
lu’ ®CLH — ap(m)a
(4.10)
Cm—1j0) ym) o _ _ (OH  yOH [ OH (5 _OH )
< K A <8a: TPas TP ) T T g P ’
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holding on Sz. Now we can take a dual tensor-valued function px(™~10 ¢ C1(Sy; (R?)®(m—1)
on Sy such that < (™= ;(m=10) > — 1 for all points of S . Then from (4.10) we easily get
the sought unkown expressions

OH
o (m—1|0)
ag = <:U’ ; ap(m) > )

(m) _ oy o (OH  0H [ OH _OH ()
by’ = —p ®<a$ +p 8u+ 8p(1),p +...+ 6p(m71),p .

(4.11)

The obtained above result (4.11), combined with suitable expressions from (4.7), gives rise to
the following final form for the characteristic vector field (4.5):

KH = (ClH;<p(1),aH >,<p(2),(IH >y < p(m)aaH >,

9z TP ou +

ox

V(O N 9w '
op0’ T\ Gpm ’

where ay = < p™ 19 9H/0p(™ > and pm=10 ¢ C1(Sy; (R™)®(™1) is some smooth
tensor-valued function on Sy. The resulting set (4.5) of ordinary differential equations on
Sy allows to construct exact solutions to our partial differential equation (4.1) in a suitable
functional-analytic form, being often very useful for analyzing its properties important for
applications. On these and related questions we plan to stop in detail elsewhere later.

=10 <8H w9H

5. Acknowledgements. The authors are very grateful to their friends and collegues from
Dept. of Mathematics at AGH, Krakow, for helpful and constructive discussions of the problems
treated in the article.

1. Evans L. C. Partial differential equations. — Amer. Math. Soc., 1998. — 632 p.

2. Arnold V. I. Lectures on partial differential equationsv (in Russian). — Moscow: Fazis, 1999. — 175 p.

3. Kamont Z. Réwnania rézniczkowe czastkowe pierwszego rzedu. — Gdansk: Univ. Publ., 2003. — 303 p.
4

. Weinberg B. R. Asymptotical methods in equations of mathematical physics. — Moscow: Moscow. Univ.
Publ., 1982. — 294 p.

5. John E Partial differential equations. — Berlin: Springer, 1970. — 457 p.

6. Prykarpatska N. K. On the structure of characteristic surfaces related with partial differential equations of
first and higher orders. Pt 2 // Nonlinear Oscillations. — 2005. — 8, Ne 4. — P. 137-145.

7. Mitropolski Yu. A., Bogoliubov N. N. (Jr), Prykarpatsky A. K., Samoilenko V. Hr. Integrable dynamical
systems: differential-geometric and spectral aspects (in Russian). — Kiev: Naukova Dumka, 1987 — 296 p.

8. Cartan E. Systems of differential forms. — Paris: Herman, 1934. — 260 p.

ISSN 1562-3076. Heainitini koausanns, 2007 m. 10, N2 1



36

10.
11.

12.

13.

D.L. BLACKMORE, N.K. PRYKARPATSKA, V.HR. SAMOYLENKO, E. WACHNICKI, M. PYTEL-KUDELA

Prykarpatska N. K., Blackmore D. L., Prykarpatsky A. K., Pytel-Kudela M. On the inf-type extremality soluti-
ons to Hamilton —Jacobi equations, their regularity properties and some generalizations // Miskolc Math.
Notes. — 2003. — 4. — P. 157-180.

Abracham R., Marsden J. Foundations of mechanics. — New York: Cummings, 1978. — 806 p.

Hentosh O. Ye., Prytula M. M., Prykarpatsky A. K. Differential-geometric integrability undamentals of nonli-
near dynamical systems on functional menifolds. — Lviv: Lviv Univ. Publ., 2005. — 408 p.

Prykarpatsky A. K., Mykytyuk I. V. Algebraic integrability of nonlinear dynamical systems on manifolds:
classical and quantum aspects. — Kluwer Acad. Publ., 1998. — 287 p.

Crandall M. G., Ishii H., Lions P. L. User’s guide to viscosity solutions of second order partial differential
equations // Bull. Amer. Math. Soc. — 1992. — Ne1. — P 1-67

Received 25.09.2006

ISSN 1562-3076. Heainitini koausanns, 2007 m. 10, N2 1



