Збірник праць

Volodymyr Lyubashenko

Institute of Mathematics, NAS of Ukraine, Kyiv
E-mail: lub@imath.kiev.ua

Oleksandr Manzyuk

Institute of Mathematics, NAS of Ukraine, Kyiv
E-mail: manzyuk@mathematik.uni-kl.de

Unital A_{∞}-categories

Ми доводимо, що три означення унітальності для A_{∞}-категорій запропоновані Любашенком, Концевичем і Сойбельманом, та Фукая є еквівалентними.

We prove that three definitions of unitality for A_{∞}-categories suggested by Lyubashenko, by Kontsevich and Soibelman, and by Fukaya are equivalent.

Keywords: A_{∞}-category, unital A_{∞}-category, weak unit

1. Introduction

Over the past decade, A_{∞}-categories have experienced a resurgence of interest due to applications in symplectic geometry, deformation theory, non-commutative geometry, homological algebra, and physics.

The notion of A_{∞}-category is a generalization of Stasheff's notion of A_{∞}-algebra [11]. On the other hand, A_{∞}-categories generalize differential graded categories. In contrast to differential graded categories, composition in A_{∞}-categories is associative only up to homotopy that satisfies certain equation up to another homotopy, and so on. The notion of A_{∞}-category appeared in the work of Fukaya on Floer homology [1] and
(c) Volodymyr Lyubashenko, Oleksandr Manzyuk, 2006
was related to mirror symmetry by Kontsevich [5]. Basic concepts of the theory of A_{∞}-categories have been developed by Fukaya [2], Keller [4], Lefèvre-Hasegawa [7], Lyubashenko [8], Soibelman [10].

The definition of A_{∞}-category does not assume the existence of identity morphisms. The use of A_{∞}-categories without identities requires caution: for example, there is no a sensible notion of isomorphic objects, the notion of equivalence does not make sense, etc. In order to develop a comprehensive theory of A_{∞}-categories, a notion of unital A_{∞}-category, i.e., A_{∞}-category with identity morphisms (also called units), is necessary. The obvious notion of strictly unital A_{∞}-category, despite its technical advantages, is not quite satisfactory: it is not homotopy invariant, meaning that it does not translate along homotopy equivalences. Different definitions of (weakly) unital A_{∞}-category have been suggested by Lyubashenko [8, Definition 7.3], by Kontsevich and Soibelman [6, Definition 4.2.3], and by Fukaya [2, Definition 5.11]. We prove that these definitions are equivalent. The main ingredient of the proofs is the Yoneda Lemma for unital (in the sense of Lyubashenko) A_{∞}-categories proven in [9, Appen$\operatorname{dix} \mathrm{A}]$.

2. Preliminaries

We follow the notation and conventions of [8], sometimes without explicit mentioning. Some of the conventions are recalled here.

Throughout, \mathbb{k} is a commutative ground ring. A graded \mathbb{k}-module always means a \mathbb{Z}-graded \mathbb{k}-module.

A graded quiver \mathcal{A} consists of a set $\operatorname{Ob} \mathcal{A}$ of objects and a graded \mathbb{k}-module $\mathcal{A}(X, Y)$, for each $X, Y \in \operatorname{Ob} \mathcal{A}$. A morphism of graded quivers $f: \mathcal{A} \rightarrow \mathcal{B}$ of degree n consists of
a function $\operatorname{Obf}: \operatorname{Ob} \mathcal{A} \rightarrow \operatorname{ObB}, X \mapsto X f$, and a \mathbb{k}-linear $\operatorname{map} f=f_{X, Y}: \mathcal{A}(X, Y) \rightarrow \mathcal{B}(X f, Y f)$ of degree n, for each $X, Y \in \operatorname{Ob} \mathcal{A}$.

For a set S, there is a category \mathscr{Q} / S defined as follows. Its objects are graded quivers whose set of objects is S. A morphism $f: \mathcal{A} \rightarrow \mathcal{B}$ in \mathscr{Q} / S is a morphism of graded quivers of degree 0 such that $\operatorname{Ob} f=\mathrm{id}_{S}$. The category \mathscr{Q} / S is monoidal. The tensor product of graded quivers \mathcal{A} and \mathcal{B} is a graded quiver $\mathcal{A} \otimes \mathcal{B}$ such that

$$
(\mathcal{A} \otimes \mathcal{B})(X, Z)=\bigoplus_{Y \in S} \mathcal{A}(X, Y) \otimes \mathcal{B}(Y, Z), \quad X, Z \in S
$$

The unit object is the discrete quiver $\mathbb{k} S$ with $\mathrm{Ob} \mathbb{k} S=S$ and

$$
(\mathbb{k} S)(X, Y)=\left\{\begin{array}{ll}
\mathbb{k} & \text { if } X=Y, \\
0 & \text { if } X \neq Y,
\end{array} \quad X, Y \in S\right.
$$

Note that a map of sets $f: S \rightarrow R$ gives rise to a morphism of graded quivers $\mathbb{k} f: \mathbb{k} S \rightarrow \mathbb{k} R$ with $\operatorname{Obk} f=f$ and $(\mathbb{k} f)_{X, Y}=$ $\operatorname{id}_{\mathbb{k}}$ is $X=Y$ and $(\mathbb{k} f)_{X, Y}=0$ if $X \neq Y, X, Y \in S$.

An augmented graded cocategory is a graded quiver \mathcal{C} equipped with the structure of on augmented counital coassociative coalgebra in the monoidal category $\mathscr{Q} / \mathrm{ObC}$. Thus, \mathcal{C} comes with a comultiplication $\Delta: \mathcal{C} \rightarrow \mathcal{C} \otimes \mathcal{C}$, a counit $\varepsilon: \mathcal{C} \rightarrow \mathbb{k} O b \mathcal{C}$, and an augmentation $\eta: \mathbb{k} \mathrm{ObC} \rightarrow \mathcal{C}$, which are morphisms in $\mathscr{Q} / \mathrm{ObC}$ satisfying the usual axioms. A morphism of augmented graded cocategories $f: \mathcal{C} \rightarrow \mathcal{D}$ is a morphism of graded quivers of degree 0 that preserves the comultiplication, counit, and augmentation.

The main example of an augmented graded cocategory is the following. Let \mathcal{A} be a graded quiver. Denote by $T \mathcal{A}$ the direct sum of graded quivers $T^{n} \mathcal{A}$, where $T^{n} \mathcal{A}=\mathcal{A}^{\otimes n}$ is the n-fold tensor product of \mathcal{A} in $\mathscr{Q} / \operatorname{Ob} \mathcal{A}$; in particular,
$T^{0} \mathcal{A}=\mathbb{k} \operatorname{Ob} \mathcal{A}, T^{1} \mathcal{A}=\mathcal{A}, T^{2} \mathcal{A}=\mathcal{A} \otimes \mathcal{A}$, etc. The graded quiver $T \mathcal{A}$ is an augmented graded cocategory in which the comultiplication is the so called 'cut' comultiplication Δ_{0} : $T \mathcal{A} \rightarrow T \mathcal{A} \otimes T \mathcal{A}$ given by

$$
f_{1} \otimes \cdots \otimes f_{n} \mapsto \sum_{k=0}^{n} f_{1} \otimes \cdots \otimes f_{k} \bigotimes f_{k+1} \otimes \cdots \otimes f_{n}
$$

the counit is given by the projection $\mathrm{pr}_{0}: T \mathcal{A} \rightarrow T^{0} \mathcal{A}=$ $\mathbb{k} \operatorname{Ob} \mathcal{A}$, and the augmentation is given by the inclusion in_{0} : $\mathbb{k} \operatorname{Ob} \mathcal{A}=T^{0} \mathcal{A} \hookrightarrow T \mathcal{A}$.

The graded quiver $T \mathcal{A}$ admits also the structure of a graded category, i.e., the structure of a unital associative algebra in the monoidal category $\mathscr{Q} / \mathrm{Ob} \mathcal{A}$. The multiplication $\mu: T \mathcal{A} \otimes$ $T \mathcal{A} \rightarrow T \mathcal{A}$ removes brackets in tensors of the form $\left(f_{1} \otimes \cdots \otimes\right.$ $\left.f_{m}\right) \otimes\left(g_{1} \otimes \cdots \otimes g_{n}\right)$. The unit $\eta: \mathbb{k} \operatorname{Ob} \mathcal{A} \rightarrow T \mathcal{A}$ is given by the inclusion $\mathrm{in}_{0}: \mathbb{k} \operatorname{Ob} \mathcal{A}=T^{0} \mathcal{A} \hookrightarrow T \mathcal{A}$.

For a graded quiver \mathcal{A}, denote by $s \mathcal{A}$ its suspension, the graded quiver given by $\operatorname{Obs} \mathcal{A}=\operatorname{Ob} \mathcal{A}$ and $(s \mathcal{A}(X, Y))^{n}=$ $\mathcal{A}(X, Y)^{n+1}$, for each $n \in \mathbb{Z}$ and $X, Y \in \operatorname{Ob} \mathcal{A}$. An A_{∞}-category is a graded quiver \mathcal{A} equipped with a differential b : $T s \mathcal{A} \rightarrow T s \mathcal{A}$ of degree 1 such that $\left(T s \mathcal{A}, \Delta_{0}, \mathrm{pr}_{0}, \mathrm{in}_{0}, b\right)$ is an augmented differential graded cocategory. In other terms, the equations

$$
b^{2}=0, \quad b \Delta_{0}=\Delta_{0}(b \otimes 1+1 \otimes b), \quad b \operatorname{pr}_{0}=0, \quad \mathrm{in}_{0} b=0
$$

hold true. Denote by

$$
b_{m n} \stackrel{\text { def }}{=}\left[T^{m} s \mathcal{A} \xrightarrow{\mathrm{in}_{m}} T s \mathcal{A} \xrightarrow{b} T s \mathcal{A} \xrightarrow{\mathrm{pr}_{n}} T^{n} s \mathcal{A}\right]
$$

matrix coefficients of b, for $m, n \geqslant 0$. Matrix coefficients $b_{m 1}$ are called components of b and abbreviated by b_{m}. The above equations imply that $b_{0}=0$ and that b is unambiguously
determined by its components via the formula

$$
b_{m n}=\sum_{\substack{p+k+q=m \\ p+1+q=n}} 1^{\otimes p} \otimes b_{k} \otimes 1^{\otimes q}: T^{m} s \mathcal{A} \rightarrow T^{n} s \mathcal{A}, \quad m, n \geqslant 0 .
$$

The equation $b^{2}=0$ is equivalent to the system of equations

$$
\sum_{p+k+q=m}\left(1^{\otimes p} \otimes b_{k} \otimes 1^{\otimes q}\right) b_{p+1+q}=0: T^{m} s \mathcal{A} \rightarrow s \mathcal{A}, \quad m \geqslant 1 .
$$

For A_{∞}-categories \mathcal{A} and \mathcal{B}, an A_{∞}-functor $f: \mathcal{A} \rightarrow \mathcal{B}$ is a morphism of augmented differential graded cocategories f : $T s \mathcal{A} \rightarrow T s \mathcal{B}$. In other terms, f is a morphism of augmented graded cocategories and preserves the differential, meaning that $f b=b f$. Denote by

$$
f_{m n} \stackrel{\text { def }}{=}\left[T^{m} s \mathcal{A} \xrightarrow{\mathrm{in}_{m}} T s \mathcal{A} \xrightarrow{f} T s \mathcal{B} \xrightarrow{\mathrm{pr}_{n}} T^{n} s \mathcal{B}\right]
$$

matrix coefficients of f, for $m, n \geqslant 0$. Matrix coefficients $f_{m 1}$ are called components of f and abbreviated by f_{m}. The condition that f is a morphism of augmented graded cocategories implies that $f_{0}=0$ and that f is unambiguously determined by its components via the formula

$$
f_{m n}=\sum_{i_{1}+\cdots+i_{n}=m} f_{i_{1}} \otimes \cdots \otimes f_{i_{n}}: T^{m} s \mathcal{A} \rightarrow T^{n} s \mathcal{B}, \quad m, n \geqslant 0 .
$$

The equation $f b=b f$ is equivalent to the system of equations

$$
\begin{aligned}
\sum_{i_{1}+\cdots+i_{n}=m} & \left(f_{i_{1}} \otimes \cdots \otimes f_{i_{n}}\right) b_{n} \\
& =\sum_{p+k+q=m}\left(1^{\otimes p} \otimes b_{k} \otimes 1^{\otimes q}\right) f_{p+1+q}: T^{m} s \mathcal{A} \rightarrow s \mathcal{B},
\end{aligned}
$$

for $m \geqslant 1$. An A_{∞}-functor f is called strict if $f_{n}=0$ for $n>1$.

3. Definitions

3.1. Definition (cf. $[2,4])$. An A_{∞}-category \mathcal{A} is strictly unital if, for each $X \in \operatorname{Ob} \mathcal{A}$, there is a \mathbb{k}-linear map $X_{\mathbf{i}_{0}^{\mathcal{A}}}^{\mathcal{A}}$: $\mathbb{k} \rightarrow(s \mathcal{A})^{-1}(X, X)$, called a strict unit, such that the following conditions are satisfied: ${ }_{X} \mathbf{i}_{0}^{\mathcal{A}} b_{1}=0$, the chain maps $\left(1 \otimes{ }_{Y} \mathbf{i}_{0}^{\mathcal{A}}\right) b_{2},-\left({ }_{X} \mathbf{i}_{0}^{\mathcal{A}} \otimes 1\right) b_{2}: s \mathcal{A}(X, Y) \rightarrow s \mathcal{A}(X, Y)$ are equal to the identity map, for each $X, Y \in \operatorname{Ob} \mathcal{A}$, and $\left(\cdots \otimes \mathbf{i}_{0}^{\mathcal{A}} \otimes\right.$ $\cdots) b_{n}=0$ if $n \geqslant 3$.

For example, differential graded categories are strictly unital.
3.2. Definition (Lyubashenko [8, Definition 7.3]). An A_{∞}-category \mathcal{A} is unital if, for each $X \in \operatorname{Ob} \mathcal{A}$, there is a \mathbb{k}-linear $\operatorname{map} X_{\mathbf{i}_{0}^{\mathcal{A}}}^{\mathcal{A}}: \mathbb{k} \rightarrow(s \mathcal{A})^{-1}(X, X)$, called a unit, such that the following conditions hold: $x_{\mathbf{i}_{0}^{\mathcal{A}}} b_{1}=0$ and the chain maps $\left(1 \otimes_{Y} \mathbf{i}_{0}^{\mathcal{A}}\right) b_{2},-\left({ }_{X} \mathbf{i}_{0}^{\mathcal{A}} \otimes 1\right) b_{2}: s \mathcal{A}(X, Y) \rightarrow s \mathcal{A}(X, Y)$ are homotopic to the identity map, for each $X, Y \in \operatorname{Ob} \mathcal{A}$. An arbitrary homotopy between $\left(1 \otimes_{Y} \mathbf{i}_{0}^{\mathcal{A}}\right) b_{2}$ and the identity map is called a right unit homotopy. Similarly, an arbitrary homotopy between $-\left({ }_{x} \mathbf{i}_{0}^{\mathcal{A}} \otimes 1\right) b_{2}$ and the identity map is called a left unit homotopy. An A_{∞}-functor $f: \mathcal{A} \rightarrow \mathcal{B}$ between unital A_{∞}-categories is unital if the cycles ${ }_{X} \mathbf{i}_{0}^{\mathcal{A}} f_{1}$ and ${ }_{X f} \mathbf{i}_{0}^{\mathcal{B}}$ are cohomologous, i.e., differ by a boundary, for each $X \in \operatorname{Ob} \mathcal{A}$.

Clearly, a strictly unital A_{∞}-category is unital.
With an arbitrary A_{∞}-category \mathcal{A} a strictly unital A_{∞}-category $\mathcal{A}^{\text {su }}$ with the same set of objects is associated. For each $X, Y \in \operatorname{Ob} \mathcal{A}$, the graded \mathbb{k}-module $s \mathcal{A}^{\text {su }}(X, Y)$ is given by

$$
s \mathcal{A}^{\text {su }}(X, Y)= \begin{cases}s \mathcal{A}(X, Y) & \text { if } X \neq Y \\ s \mathcal{A}(X, X) \oplus \mathbb{k}_{X} \mathbf{i}_{0}^{\mathcal{A}^{\text {su }}} & \text { if } X=Y\end{cases}
$$

where ${ }_{X} \mathbf{i}_{0}^{\text {fsu }}$ is a new generator of degree -1 . The element ${ }_{x} \mathbf{i}_{0}^{\mathcal{A}^{\text {su }}}$ is a strict unit by definition, and the natural embedding $e: \mathcal{A} \hookrightarrow \mathcal{A}^{\text {su }}$ is a strict A_{∞}-functor.
3.3. Definition (Kontsevich-Soibelman [6, Definition 4.2.3]). A weak unit of an A_{∞}-category \mathcal{A} is an A_{∞}-functor $U: \mathcal{A}^{\text {su }} \rightarrow$ \mathcal{A} such that

$$
\left[\mathcal{A} \stackrel{e}{\hookrightarrow} \mathcal{A}^{\text {su }} \xrightarrow{U} \mathcal{A}\right]=\operatorname{id}_{\mathcal{A}}
$$

3.4. Proposition. Suppose that an A_{∞}-category \mathcal{A} admits a weak unit. Then the A_{∞}-category \mathcal{A} is unital.

Proof. Let $U: \mathcal{A}^{\text {su }} \rightarrow \mathcal{A}$ be a weak unit of \mathcal{A}. For each $X \in \operatorname{Ob} \mathcal{A}$, denote by $X_{\mathbf{i}_{0}^{\mathcal{A}}}^{\mathcal{A}}$ the element $X_{\mathbf{i}_{0}}^{\mathcal{A}^{\text {su }}} U_{1} \in \operatorname{si}(X, X)$ of degree -1 . It follows from the equation $U_{1} b_{1}=b_{1} U_{1}$ that ${ }_{x} \mathbf{i}_{0}^{\mathcal{A}} b_{1}=0$. Let us prove that ${ }_{x} \mathbf{i}_{0}^{\mathcal{A}}$ are unit elements of \mathcal{A}.

For each $X, Y \in \operatorname{Ob} \mathcal{A}$, there is a \mathbb{k}-linear map

$$
h=\left(1 \otimes_{Y} \mathbf{i}_{0}\right) U_{2}: s \mathcal{A}(X, Y) \rightarrow s \mathcal{A}(X, Y)
$$

of degree -1 . The equation

$$
\begin{equation*}
\left(1 \otimes b_{1}+b_{1} \otimes 1\right) U_{2}+b_{2} U_{1}=U_{2} b_{1}+\left(U_{1} \otimes U_{1}\right) b_{2} \tag{3.1}
\end{equation*}
$$

implies that

$$
-b_{1} h+1=h b_{1}+\left(1 \otimes_{Y} \dot{\mathbf{i}}_{0}^{\mathcal{A}}\right) b_{2}: s \mathcal{A}(X, Y) \rightarrow s \mathcal{A}(X, Y)
$$

thus h is a right unit homotopy for \mathcal{A}. For each $X, Y \in \operatorname{Ob} \mathcal{A}$, there is a \mathbb{k}-linear map

$$
h^{\prime}=-\left({ }_{x} \mathbf{i}_{0} \otimes 1\right) U_{2}: s \mathcal{A}(X, Y) \rightarrow s \mathcal{A}(X, Y)
$$

of degree -1 . Equation (3.1) implies that

$$
b_{1} h^{\prime}-1=-h^{\prime} b_{1}+\left(X_{\mathbf{i}_{0}^{\mathcal{A}}}^{\mathcal{A}} \otimes 1\right) b_{2}: s \mathcal{A}(X, Y) \rightarrow s \mathcal{A}(X, Y)
$$

thus h^{\prime} is a left unit homotopy for \mathcal{A}. Therefore, \mathcal{A} is unital.
3.5. Definition (Fukaya [2, Definition 5.11]). An A_{∞}-category \mathcal{C} is called homotopy unital if the graded quiver

$$
\mathcal{C}^{+}=\mathcal{C} \oplus \mathbb{k} \mathcal{C} \oplus s \mathbb{k} \mathcal{C}
$$

(with $\mathrm{ObC}^{+}=\mathrm{ObC}$) admits an A_{∞}-structure b^{+}of the following kind. Denote the generators of the second and the third direct summands of the graded quiver $s \mathfrak{C}^{+}=s \mathcal{C} \oplus s \mathbb{k} \mathcal{C} \oplus s^{2} \mathbb{k} \mathfrak{C}$ by ${ }_{X} \mathbf{i}_{0}^{\text {esu }}=1 s$ and $\mathbf{j}_{X}^{e}=1 s^{2}$ of degree respectively -1 and -2 , for each $X \in$ ObC. The conditions on b^{+}are:
(1) for each $X \in \mathrm{ObC}$, the element $X \mathbf{i}_{0}^{\mathrm{e}} \stackrel{\text { def }}{=} X_{0}^{\mathbf{i}}{ }_{0}^{\text {su }}-\mathbf{j}_{X}^{\mathrm{e}} b_{1}^{+}$is contained in $s \mathcal{C}(X, X)$;
(2) C^{+}is a strictly unital A_{∞}-category with strict units $X_{\mathbf{i}_{0}^{\text {esu }}}^{\text {es }}, X \in \mathrm{ObC}$
(3) the embedding $\mathcal{C} \hookrightarrow \mathcal{C}^{+}$is a strict A_{∞}-functor;
(4) $\left(s \mathcal{C} \oplus s^{2} \mathbb{k} \mathcal{C}\right)^{\otimes n} b_{n}^{+} \subset s \mathcal{C}$, for each $n>1$.

In particular, C^{+}contains the strictly unital A_{∞}-category $\mathcal{C}^{\text {su }}=\mathcal{C} \oplus \mathbb{k} \mathcal{C}$. A version of this definition suitable for filtered A_{∞}-algebras (and filtered A_{∞}-categories) is given by Fukaya, Oh, Ohta and Ono in their book [3, Definition 8.2].

Let \mathcal{D} be a strictly unital A_{∞}-category with strict units $\mathbf{i}_{0}^{\mathcal{D}}$. Then it has a canonical homotopy unital structure $\left(\mathcal{D}^{+}, b^{+}\right)$. Namely, $\mathbf{j}_{X}^{\mathcal{D}} b_{1}^{+}={ }_{X} \mathbf{i}_{0}^{D^{\text {su }}}-{ }_{X} \mathbf{i}_{0}^{\mathcal{D}}$, and b_{n}^{+}vanishes for each $n>1$ on each summand of $\left(s \mathcal{D} \oplus s^{2} \mathbb{k} \mathcal{D}\right)^{\otimes n}$ except on $s \mathcal{D}^{\otimes n}$, where it coincides with $b_{n}^{\mathcal{D}}$. Verification of the equation $\left(b^{+}\right)^{2}=0$ is a straightforward computation.
3.6. Proposition. An arbitrary homotopy unital A_{∞}-category is unital.

Proof. Let $\mathcal{C} \subset \mathfrak{C}^{+}$be a homotopy unital category. We claim that the distinguished cycles $x \mathbf{i}_{0}^{\mathrm{e}} \in \mathcal{C}(X, X)[1]^{-1}, X \in \mathrm{Ob} \mathcal{C}$, turn \mathcal{C} into a unital A_{∞}-category. Indeed, the identity

$$
\left(1 \otimes b_{1}^{+}+b_{1}^{+} \otimes 1\right) b_{2}^{+}+b_{2}^{+} b_{1}^{+}=0
$$

applied to $s \mathcal{C} \otimes \mathbf{j}^{\mathfrak{C}}$ or to $\mathbf{j}^{\mathfrak{C}} \otimes s \mathcal{C}$ implies

$$
\begin{aligned}
& \left(1 \otimes \mathbf{i}_{0}^{\mathfrak{C}}\right) b_{2}^{\mathfrak{C}}=1+\left(1 \otimes \mathbf{j}^{\mathfrak{C}}\right) b_{2}^{+} b_{1}^{\mathfrak{C}}+b_{1}^{\mathfrak{C}}\left(1 \otimes \mathbf{j}^{\mathfrak{C}}\right) b_{2}^{+} \quad: s \mathfrak{C} \rightarrow s \mathcal{C}, \\
& \left(\mathbf{i}_{0}^{\mathfrak{e}} \otimes 1\right) b_{2}^{\mathfrak{C}}=-1+\left(\mathbf{j}^{\mathfrak{C}} \otimes 1\right) b_{2}^{+} b_{1}^{\mathfrak{C}}+b_{1}^{\mathfrak{C}}\left(\mathbf{j}^{\mathfrak{C}} \otimes 1\right) b_{2}^{+}: s \mathcal{C} \rightarrow s \mathcal{C} .
\end{aligned}
$$

Thus, $\left(1 \otimes \mathbf{j}^{\mathfrak{C}}\right) b_{2}^{+}: s \mathcal{C} \rightarrow s \mathcal{C}$ and $\left(\mathbf{j}^{\mathfrak{C}} \otimes 1\right) b_{2}^{+}: s \mathcal{C} \rightarrow s \mathfrak{C}$ are unit homotopies. Therefore, the A_{∞}-category \mathcal{C} is unital.

The converse of Proposition 3.6 holds true as well.
3.7. Theorem. An arbitrary unital A_{∞}-category \mathcal{C} with unit elements $\mathbf{i}_{0}^{\mathfrak{e}}$ admits a homotopy unital structure $\left(\mathrm{C}^{+}, b^{+}\right)$with $\mathbf{j}^{\mathrm{C}} b_{1}^{+}=\mathbf{i}_{0}^{\text {esu }}-\mathbf{i}_{0}^{\mathrm{e}}$.

Proof. By [9, Corollary A.12], there exists a differential graded category \mathcal{D} and an A_{∞}-equivalence $\phi: \mathcal{C} \rightarrow \mathcal{D}$. By $[9$, Remark A.13], we may choose \mathcal{D} and ϕ such that $\mathrm{ObD}=\mathrm{ObC}$ and $\operatorname{Ob} \phi=$ id $_{\text {Obe }}$. Being strictly unital \mathcal{D} admits a canonical homotopy unital structure $\left(\mathcal{D}^{+}, b^{+}\right)$. In the sequel, we may assume that \mathcal{D} is a strictly unital A_{∞}-category equivalent to \mathcal{C} via ϕ with the mentioned properties. Let us construct simultaneously an A_{∞}-structure b^{+}on \mathcal{C}^{+}and an A_{∞}-functor $\phi^{+}: \mathrm{C}^{+} \rightarrow \mathcal{D}^{+}$that will turn out to be an equivalence.

Let us extend the homotopy isomorphism $\phi_{1}: s \mathcal{C} \rightarrow s \mathcal{D}$ to a chain quiver map $\phi_{1}^{+}: s \mathcal{C}^{+} \rightarrow s \mathcal{D}^{+}$. The A_{∞}-equivalence $\phi: \mathcal{C} \rightarrow \mathcal{D}$ is a unital A_{∞}-functor, i.e., for each $X \in \mathrm{ObC}$, there exists $v_{X} \in \mathcal{D}(X, X)[1]^{-2}$ such that $X_{0} \mathbf{i}_{0}^{\mathcal{D}}-{ }_{X} \mathbf{i}_{0}^{\mathbf{e}} \phi_{1}=v_{X} b_{1}$. In order that ϕ^{+}be strictly unital, we define $X_{X} \mathbf{i}_{0}^{\text {csu }} \phi_{1}^{+}={ }_{X} \mathbf{i}_{0}^{D^{\text {su }}}$. We should have

$$
\begin{aligned}
\mathbf{j}_{X}^{\mathrm{e}} \phi_{1}^{+} b_{1}^{+}= & \mathbf{j}_{X}^{\mathrm{e}} b_{1}^{+} \phi_{1}^{+}={ }_{X} \mathbf{i}_{0}^{\text {esu }} \phi_{1}^{+}-{ }_{X} \mathbf{i}_{0}^{\mathrm{e}} \phi_{1} \\
& ={ }_{x} \mathbf{i}_{0}^{\text {Du }}-{ }_{X} \mathbf{i}_{0}^{\mathcal{D}}+{ }_{X} \mathbf{i}_{0}^{\mathcal{D}}-{ }_{x} \mathbf{i}_{0}^{\mathrm{e}} \phi_{1}=\left(\mathbf{j}_{X}^{\mathrm{e}}+v_{X}\right) b_{1}^{+},
\end{aligned}
$$

so we define $\mathbf{j}_{X}^{\mathrm{e}} \phi_{1}^{+}=\mathbf{j}_{X}^{\mathcal{D}}+v_{X}$.

We claim that there is a homotopy unital structure (C^{+}, b^{+}) of \mathcal{C} satisfying the four conditions of Definition 3.5 and an A_{∞}-functor $\phi^{+}: \mathrm{C}^{+} \rightarrow \mathcal{D}^{+}$satisfying four parallel conditions:
(1) the first component of ϕ^{+}is the quiver morphism ϕ_{1}^{+} constructed above;
(2) the A_{∞}-functor ϕ^{+}is strictly unital;
(3) the restriction of ϕ^{+}to \mathcal{C} gives ϕ;
(4) $\left(s \mathcal{C} \oplus s^{2} \mathbb{k} \mathcal{C}\right)^{\otimes n} \phi_{n}^{+} \subset s \mathcal{D}$, for each $n>1$.

Notice that in the presence of conditions (2) and (3) the first condition reduces to $\mathbf{j}_{X}^{\mathcal{C}}\left(\phi^{+}\right)_{1}=\mathbf{j}_{X}^{\mathcal{D}}+v_{X}$, for each $X \in \mathrm{ObC}$.

Components of the (1,1)-coderivation $b^{+}: T s \mathrm{C}^{+} \rightarrow T s \mathrm{C}^{+}$of degree 1 and of the augmented graded cocategory morphism $\phi^{+}: T s \mathrm{C}^{+} \rightarrow T s \mathcal{D}^{+}$are constructed by induction. We already know components b_{1}^{+}and ϕ_{1}^{+}. Given an integer $n \geqslant 2$, assume that we have already found components b_{m}^{+}, ϕ_{m}^{+}of the sought b^{+}and ϕ^{+}for $m<n$ such that the equations

$$
\begin{array}{ll}
\left(\left(b^{+}\right)^{2}\right)_{m}=0 & : T^{m} s \mathcal{C}^{+}(X, Y) \rightarrow s \mathcal{C}^{+}(X, Y), \\
\left(\phi^{+} b^{+}\right)_{m}=\left(b^{+} \phi^{+}\right)_{m}: T^{m} s \mathcal{C}^{+}(X, Y) \rightarrow s \mathcal{D}^{+}(X f, Y f) \tag{3.3}
\end{array}
$$

are satisfied for all $m<n$. Define b_{n}^{+}, ϕ_{n}^{+}on direct summands of $T^{n} s \mathrm{C}^{+}$which contain a factor $\mathbf{i}_{0}^{\text {csu }}$ by the requirement of strict unitality of \mathcal{C}^{+}and ϕ^{+}. Then equations (3.2), (3.3) hold true for $m=n$ on such summands. Define b_{n}^{+}, ϕ_{n}^{+}on the direct summand $T^{n} s \mathcal{C} \subset T^{n} s \mathcal{C}^{+}$as $b_{n}^{\mathcal{C}}$ and ϕ_{n}. Then equations (3.2), (3.3) hold true for $m=n$ on the summand $T^{n} s \mathcal{C}$. It remains to construct those components of b^{+}and ϕ^{+}which have \mathbf{j}^{C} as one of their arguments.

Extend $b_{1}: s \mathcal{C} \rightarrow s \mathcal{C}$ to $b_{1}^{\prime}: s \mathfrak{C}^{+} \rightarrow s \mathfrak{C}^{+}$by $\mathbf{i}_{0}^{\text {esu }} b_{1}^{\prime}=0$ and $\mathbf{j}^{\mathrm{C}} b_{1}^{\prime}=0$. Define $b_{1}^{-}=b_{1}^{+}-b_{1}^{\prime}: s \mathfrak{C}^{+} \rightarrow s \mathfrak{C}^{+}$. Thus, $\left.b_{1}^{-}\right|_{s \mathrm{e}^{\text {su }}}=0$, $\mathbf{j}^{\mathrm{e}} b_{1}^{-}=\mathbf{i}_{0}^{\text {esu }}-\mathbf{i}_{0}^{\mathrm{e}}$ and $b_{1}^{+}=b_{1}^{\prime}+b_{1}^{-}$. Introduce for $0 \leqslant k \leqslant n$
the graded subquiver $\mathcal{N}_{k} \subset T^{n}\left(s \mathcal{C} \oplus s^{2} \mathbb{k} \mathcal{C}\right)$ by

$$
\mathcal{N}_{k}=\bigoplus_{p_{0}+p_{1}+\cdots+p_{k}+k=n} T^{p_{0}} s \mathcal{C} \otimes \mathbf{j}^{\mathfrak{C}} \otimes T^{p_{1}} s \mathcal{C} \otimes \cdots \otimes \mathbf{j}^{\mathfrak{C}} \otimes T^{p_{k}} s \mathfrak{C}
$$

stable under the differential $d^{\mathcal{N}_{k}}=\sum_{p+1+q=n} 1^{\otimes p} \otimes b_{1}^{\prime} \otimes 1^{\otimes q}$, and the graded subquiver $\mathcal{P}_{l} \subset T^{n} s \mathcal{C}^{+}$by

$$
\mathcal{P}_{l}=\bigoplus_{p_{0}+p_{1}+\cdots+p_{l}+l=n} T^{p_{0}} s \mathcal{C}^{\text {su }} \otimes \mathbf{j}^{\mathrm{C}} \otimes T^{p_{1}} s \mathcal{C}^{\text {su }} \otimes \cdots \otimes \mathbf{j}^{\mathfrak{C}} \otimes T^{p_{l}} s \mathcal{C}^{\text {su }}
$$

There is also the subquiver

$$
Q_{k}=\bigoplus_{l=0}^{k} \mathcal{P}_{l} \subset T^{n} s \mathcal{C}^{+}
$$

and its complement

$$
\mathrm{Q}_{k}^{\perp}=\bigoplus_{l=k+1}^{n} \mathcal{P}_{l} \subset T^{n} s \mathrm{C}^{+}
$$

Notice that the subquiver Q_{k} is stable under the differential $d^{Q_{k}}=\sum_{p+1+q=n} 1^{\otimes p} \otimes b_{1}^{+} \otimes 1^{\otimes q}$, and Q_{k}^{\perp} is stable under the differential $d^{Q \frac{\perp}{k}}=\sum_{p+1+q=n} 1^{\otimes p} \otimes b_{1}^{\prime} \otimes 1^{\otimes q}$. Furthermore, the image of $1^{\otimes a} \otimes b_{1}^{-} \otimes 1^{\otimes c}: \mathcal{N}_{k} \rightarrow T^{n} s \mathcal{C}^{+}$is contained in Q_{k-1} for all $a, c \geqslant 0$ such that $a+1+c=n$.

Firstly, the components b_{n}^{+}, ϕ_{n}^{+}are defined on the graded subquivers $\mathcal{N}_{0}=T^{n} s \mathcal{C}$ and $\mathcal{Q}_{0}=T^{n} s \mathcal{C}^{\text {su }}$. Assume for an integer $0<k \leqslant n$ that restrictions of b_{n}^{+}, ϕ_{n}^{+}to \mathcal{N}_{l} are already found for all $l<k$. In other terms, we are given $b_{n}^{+}: Q_{k-1} \rightarrow$ $s \mathfrak{C}^{+}, \phi_{n}^{+}: Q_{k-1} \rightarrow s \mathcal{D}$ such that equations (3.2), (3.3) hold on \mathcal{Q}_{k-1}. Let us construct the restrictions $b_{n}^{+}: \mathcal{N}_{k} \rightarrow s \mathcal{C}$, $\phi_{n}^{+}: \mathcal{N}_{k} \rightarrow s \mathcal{D}$, performing the induction step.

Introduce a (1,1)-coderivation $\tilde{b}: T s \mathcal{C}^{+} \rightarrow T s \mathcal{C}^{+}$of degree 1 by its components $\left(0, b_{1}^{+}, \ldots, b_{n-1}^{+},\left.\mathrm{pr}_{\mathrm{Q}_{k-1}} \cdot b_{n}^{+}\right|_{Q_{k-1}}, 0, \ldots\right)$. Introduce also a morphism of augmented graded cocategories
$\tilde{\phi}: T s \mathfrak{C}^{+} \rightarrow T s \mathcal{D}^{+}$with $\operatorname{Ob} \tilde{\phi}=\mathrm{Ob} \phi$ by its components $\left(\phi_{1}^{+}, \ldots, \phi_{n-1}^{+},\left.\operatorname{pr}_{Q_{k-1}} \cdot \phi_{n}^{+}\right|_{Q_{k-1}}, 0, \ldots\right)$. Here $\operatorname{pr}_{Q_{k-1}}: T^{n} s \mathfrak{C}^{+} \rightarrow$ ${\underset{\sim}{Q}}^{Q_{k-1}}$ is the natural projection, vanishing on Q_{k-1}^{\perp}. Then $\lambda \stackrel{\text { def }}{=}$ $\tilde{b}^{2}: T s \mathcal{C}^{+} \rightarrow T s \mathcal{C}^{+}$is a (1,1)-coderivation of degree 2 and $\nu \stackrel{\text { def }}{=}-\tilde{\phi} b^{+}+\tilde{b} \tilde{\phi}: T s \mathrm{C}^{+} \rightarrow T s \mathcal{D}^{+}$is a $(\tilde{\phi}, \tilde{\phi})$-coderivation of degree 1. Equations (3.2), (3.3) imply that $\lambda_{m}=0, \nu_{m}=0$ for $m<n$. Moreover, λ_{n}, ν_{n} vanish on Q_{k-1}. On the complement the n-th components equal

$$
\begin{aligned}
\lambda_{n} & =\sum_{a+r+c=n}^{1<r<n}\left(1^{\otimes a} \otimes b_{r}^{+} \otimes 1^{\otimes c}\right) b_{a+1+c}^{+} \\
& +\sum_{a+1+c=n}^{1<r \leqslant n}\left(1^{\otimes a} \otimes b_{1}^{-} \otimes 1^{\otimes c}\right) \tilde{b}_{n}: Q_{k-1}^{\perp} \rightarrow s \mathcal{C}^{+} \\
\nu_{n} & =-\sum_{i_{1}+\cdots+i_{r}=n}^{1<r<n}\left(\phi_{i_{1}}^{+} \otimes \cdots \otimes \phi_{i_{r}}^{+}\right) b_{r}^{+} \\
& \left.+\sum_{a+r+c=n}^{1<a} \otimes 1_{r}^{+} \otimes 1^{\otimes c}\right) \phi_{a+1+c}^{+} \\
& +\sum_{a+1+c=n}\left(1^{\otimes a} \otimes b_{1}^{-} \otimes 1^{\otimes c}\right) \tilde{\phi}_{n}: Q_{k-1}^{\perp} \rightarrow s \mathcal{D} .
\end{aligned}
$$

The restriction $\lambda_{n} \mid \mathcal{N}_{k}$ takes values in $s \mathcal{C}$. Indeed, for the first sum in the expression for λ_{n} this follows by the induction assumption since $r>1$ and $a+1+c>1$. For the second sum this follows by the induction assumption and strict unitality if $n>2$. In the case of $n=2, k=1$ this is also straightforward. The only case which requires computation is $n=2, k=2$:
$\left(\mathbf{j}^{\mathrm{C}} \otimes \mathbf{j}^{\mathrm{e}}\right)\left(1 \otimes b_{1}^{-}+b_{1}^{-} \otimes 1\right) \tilde{b}_{2}=\mathbf{j}^{\mathrm{e}}-\left(\mathbf{j}^{\mathrm{e}} \otimes \mathbf{i}_{0}^{\mathrm{e}}\right) b_{2}^{+}-\mathbf{j}^{\mathrm{e}}-\left(\mathbf{i}_{0}^{\mathrm{e}} \otimes \mathbf{j}^{\mathrm{C}}\right) b_{2}^{+}$, which belongs to $s \mathcal{C}$ by the induction assumption.

Equations (3.2), (3.3) for $m=n$ take the form

$$
\begin{align*}
& (3.4) \quad-b_{n}^{+} b_{1}-\sum_{a+1+c=n}\left(1^{\otimes a} \otimes b_{1}^{\prime} \otimes 1^{\otimes c}\right) b_{n}^{+}=\lambda_{n}: \mathcal{N}_{k} \rightarrow s \mathcal{C}, \tag{3.4}\\
& (3.5) \tag{3.5}\\
& \phi_{n}^{+} b_{1}-\sum_{a+1+c=n}\left(1^{\otimes a} \otimes b_{1}^{\prime} \otimes 1^{\otimes c}\right) \phi_{n}^{+}-b_{n}^{+} \phi_{1}=\nu_{n}: \mathcal{N}_{k} \rightarrow s \mathcal{D} .
\end{align*}
$$

For arbitrary objects X, Y of \mathcal{C}, equip the graded \mathbb{k}-module $\mathcal{N}_{k}(X, Y)$ with the differential $d^{\mathcal{N}_{k}}=\sum_{p+1+q=n} 1^{\otimes p} \otimes b_{1}^{\prime} \otimes 1^{\otimes q}$ and denote by u the chain map

$$
\begin{aligned}
\underline{\mathrm{C}}_{k}\left(\mathcal{N}_{k}(X, Y), s \mathcal{C}(X, Y)\right) & \rightarrow \underline{\mathrm{C}}_{k}\left(\mathcal{N}_{k}(X, Y), s \mathcal{D}(X \phi, Y \phi)\right), \\
\lambda & \mapsto \lambda \phi_{1} .
\end{aligned}
$$

Since ϕ_{1} is homotopy invertible, the map u is homotopy invertible as well. Therefore, the complex Cone (u) is contractible, e.g. by [8, Lemma B.1], in particular, acyclic. Equations (3.4) and (3.5) have the form $-b_{n}^{+} d=\lambda_{n}, \phi_{n}^{+} d+b_{n}^{+} u=\nu_{n}$, that is, the element $\left(\lambda_{n}, \nu_{n}\right)$ of

$$
\begin{array}{r}
\underline{C}_{k}^{2}\left(\mathcal{N}_{k}(X, Y), s \mathcal{C}(X, Y)\right) \oplus \underline{C}_{k}^{1}\left(\mathcal{N}_{k}(X, Y), s \mathcal{D}(X \phi, Y \phi)\right) \\
=\operatorname{Cone}^{1}(u)
\end{array}
$$

has to be the boundary of the sought element $\left(b_{n}^{+}, \phi_{n}^{+}\right)$of

$$
\begin{aligned}
& \underline{C}_{k}^{1}\left(\mathcal{N}_{k}(X, Y), s \mathcal{C}(X, Y)\right) \oplus \underline{\mathrm{C}}_{\mathrm{k}}^{0}\left(\mathcal{N}_{k}(X, Y), s \mathcal{D}(X \phi, Y \phi)\right) \\
&=\operatorname{Cone}^{0}(u) .
\end{aligned}
$$

These equations are solvable because $\left(\lambda_{n}, \nu_{n}\right)$ is a cycle in Cone $^{1}(u)$. Indeed, the equations to verify $-\lambda_{n} d=0, \nu_{n} d+$
$\lambda_{n} u=0$ take the form

$$
\begin{aligned}
-\lambda_{n} b_{1}+\sum_{p+1+q=n}\left(1^{\otimes p} \otimes b_{1}^{\prime} \otimes 1^{\otimes q}\right) \lambda_{n}=0: \mathcal{N}_{k} \rightarrow s \mathcal{C} \\
\nu_{n} b_{1}+\sum_{p+1+q=n}\left(1^{\otimes p} \otimes b_{1}^{\prime} \otimes 1^{\otimes q}\right) \nu_{n}-\lambda_{n} \phi_{1}=0: \mathcal{N}_{k} \rightarrow s \mathcal{D} .
\end{aligned}
$$

Composing the identity $-\lambda \tilde{b}+\tilde{b} \lambda=0: T^{n} s \mathrm{C}^{+} \rightarrow T s \complement^{+}$with the projection $\mathrm{pr}_{1}: T s \mathrm{C}^{+} \rightarrow s \mathcal{C}^{+}$yields the first equation. The second equation follows by composing the identity $\nu b^{+}+$ $\tilde{b} \nu-\lambda \tilde{\phi}=0: T^{n} s \mathcal{C}^{+} \rightarrow T s \mathcal{D}^{+}$with $\operatorname{pr}_{1}: T s \mathcal{D}^{+} \rightarrow s \mathcal{D}^{+}$.

Thus, the required restrictions of b_{n}^{+}, ϕ_{n}^{+}to \mathcal{N}_{k} (and to Q_{k}) exist and satisfy the required equations. We proceed by induction increasing k from 0 to n and determining b_{n}^{+}, ϕ_{n}^{+} on the whole $Q_{n}=T^{n} s \mathrm{C}^{+}$. Then we replace n with $n+1$ and start again from $T^{n+1} s \mathfrak{C}$. Thus the induction on n goes through.
3.8. Remark. Let $\left(\mathrm{C}^{+}, b^{+}\right)$be a homotopy unital structure of an A_{∞}-category \mathcal{C}. Then the embedding A_{∞}-functor ι : $\mathcal{C} \rightarrow \mathcal{C}^{+}$is an equivalence. Indeed, it is bijective on objects. By [8, Theorem 8.8] it suffices to prove that $\iota_{1}: s \mathcal{C} \rightarrow s \mathcal{C}^{+}$ is homotopy invertible. And indeed, the chain quiver map $\pi_{1}: s \mathfrak{C}^{+} \rightarrow s \mathcal{C},\left.\pi_{1}\right|_{s \mathcal{C}}=\mathrm{id},{ }_{X}{ }_{0}^{\mathbf{i}_{0}^{\text {su }}} \pi_{1}={ }_{X} \mathbf{i}_{0}^{\mathrm{C}}, \mathbf{j}_{X}^{\mathrm{e}} \pi_{1}=0$, is homotopy inverse to ι_{1}. Namely, the homotopy $h: s \mathrm{C}^{+} \rightarrow$ $s \mathfrak{C}^{+},\left.h\right|_{s \mathcal{C}}=0, X_{\mathbf{i}_{0}^{\text {ⓢu }}} h=\mathbf{j}_{X}^{\mathcal{C}}, \mathbf{j}_{X}^{\mathcal{C}} h=0$, satisfies the equation $\mathrm{id}_{s \mathrm{C}^{+}}-\pi_{1} \cdot \iota_{1}=h b_{1}^{+}+b_{1}^{+} h$.

The equation between A_{∞}-functors

$$
\left[\mathrm{C} \xrightarrow{\iota^{\mathrm{C}}} \mathrm{C}^{+} \xrightarrow{\phi^{+}} \mathcal{D}^{+}\right]=\left[\mathrm{C} \xrightarrow{\phi} \mathcal{D} \xrightarrow{\iota^{\mathcal{D}}} \mathcal{D}^{+}\right]
$$

obtained in the proof of Theorem 3.7 implies that ϕ^{+}is an A_{∞}-equivalence as well. In particular, ϕ_{1}^{+}is homotopy invertible.

The converse of Proposition 3.4 holds true as well, however its proof requires more preliminaries. It is deferred until Section 5.

4. Double coderivations

4.1. Definition. For A_{∞}-functors $f, g: \mathcal{A} \rightarrow \mathcal{B}$, a double (f, g)-coderivation of degree d is a system of \mathbb{k}-linear maps

$$
r:(T s \mathcal{A} \otimes T s \mathcal{A})(X, Y) \rightarrow T s \mathcal{B}(X f, Y g), \quad X, Y \in \operatorname{Ob} \mathcal{A}
$$

of degree d such that the equation

$$
\begin{equation*}
r \Delta_{0}=\left(\Delta_{0} \otimes 1\right)(f \otimes r)+\left(1 \otimes \Delta_{0}\right)(r \otimes g) \tag{4.1}
\end{equation*}
$$

holds true.
Equation (4.1) implies that r is determined by a system of \mathbb{k}-linear maps $r \operatorname{pr}_{1}: T s \mathcal{A} \otimes T s \mathcal{A} \rightarrow s \mathcal{B}$ with components of degree d

$$
\begin{aligned}
r_{n, m}: s \mathcal{A}\left(X_{0}, X_{1}\right) \otimes \cdots \otimes s \mathcal{A}\left(X_{n+m-1}\right. & \left., X_{n+m}\right) \\
& \rightarrow s \mathcal{B}\left(X_{0} f, X_{n+m} g\right)
\end{aligned}
$$

for $n, m \geqslant 0$, via the formula

$$
r_{n, m ; k}=\left(\left.r\right|_{T^{n} s \mathcal{A} \otimes T^{m} s \mathcal{A}}\right) \operatorname{pr}_{k}: T^{n} s \mathcal{A} \otimes T^{m} s \mathcal{A} \rightarrow T^{k} s \mathcal{B}
$$

$$
\begin{equation*}
r_{n, m ; k}=\sum_{\substack{i_{1}+\cdots+i_{p}+i=n, j_{1}+\cdots+j_{q}+j=m}}^{p+1+q=k} f_{i_{1}} \otimes \cdots \otimes f_{i_{p}} \otimes r_{i, j} \otimes g_{j_{1}} \otimes \cdots \otimes g_{j_{q}} \tag{4.2}
\end{equation*}
$$

This follows from the equation

$$
\begin{align*}
& r \Delta_{0}^{(l)}=\sum_{p+1+q=l}\left(\Delta_{0}^{(p+1)} \otimes \Delta_{0}^{(q+1)}\right)\left(f^{\otimes p} \otimes r \otimes g^{\otimes q}\right): \tag{4.3}\\
& T s \mathcal{A} \otimes T s \mathcal{A} \rightarrow(T s \mathcal{B})^{\otimes l}
\end{align*}
$$

which holds true for each $l \geqslant 0$. Here $\Delta_{0}^{(0)}=\varepsilon, \Delta_{0}^{(1)}=\mathrm{id}$, $\Delta_{0}^{(2)}=\Delta_{0}$ and $\Delta_{0}^{(l)}$ means the cut comultiplication iterated $l-1$ times.

Double (f, g)-coderivations form a chain complex, which we are going to denote by $\left(\mathscr{D}(\mathcal{A}, \mathcal{B})(f, g), B_{1}\right)$. For each $d \in \mathbb{Z}$, the component $\mathscr{D}(\mathcal{A}, \mathcal{B})(f, g)^{d}$ consists of double (f, g)-coderivations of degree d. The differential B_{1} of degree 1 is given by

$$
r B_{1} \stackrel{\text { def }}{=} r b-(-)^{d}(1 \otimes b+b \otimes 1) r
$$

for each $r \in \mathscr{D}(\mathcal{A}, \mathcal{B})(f, g)^{d}$. The component $\left[r B_{1}\right]_{n, m}$ of $r B_{1}$ is given by

$$
\begin{align*}
& \sum_{\substack{i_{1}+\cdots+i_{p}+i=n, j_{1}+\cdots+j_{q}+j=m}}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{p}} \otimes r_{i j} \otimes g_{j_{1}} \otimes \cdots \otimes g_{j_{q}}\right) b_{p+1+q} \tag{4.4}\\
& \quad-(-)^{r} \sum_{a+k+c=n}\left(1^{\otimes a} \otimes b_{k} \otimes 1^{\otimes c+m}\right) r_{a+1+c, m} \\
& \\
& \quad-(-)^{r} \sum_{u+t+v=m}\left(1^{\otimes n+u} \otimes b_{t} \otimes 1^{\otimes v}\right) r_{n, u+1+v},
\end{align*}
$$

for each $n, m \geqslant 0$. An A_{∞}-functor $h: \mathcal{B} \rightarrow \mathcal{C}$ gives rise to a chain map

$$
\mathscr{D}(\mathcal{A}, \mathcal{B})(f, g) \rightarrow \mathscr{D}(\mathcal{A}, \mathcal{C})(f h, g h), \quad r \mapsto r h .
$$

The component $[r h]_{n, m}$ of $r h$ is given by

$$
\begin{equation*}
\sum_{\substack{i_{1}+\cdots+i_{p}+i=n, j_{1}+\cdots+j_{q}+j=m}}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{p}} \otimes r_{i, j} \otimes g_{j_{1}} \otimes \cdots \otimes g_{j_{q}}\right) h_{p+1+q} \tag{4.5}
\end{equation*}
$$

for each $n, m \geqslant 0$. Similarly, an A_{∞}-functor $k: \mathcal{D} \rightarrow \mathcal{A}$ gives rise to a chain map

$$
\mathscr{D}(\mathcal{A}, \mathcal{B})(f, g) \rightarrow \mathscr{D}(\mathcal{D}, \mathcal{B})(k f, k g), \quad r \mapsto(k \otimes k) r .
$$

The component $[(k \otimes k) r]_{n, m}$ of $(k \otimes k) r$ is given by

$$
\begin{equation*}
\sum_{\substack{i_{1}+\cdots+i_{p}=n \\ j_{1}+\cdots+j_{q}=m}}\left(k_{i_{1}} \otimes \cdots \otimes k_{i_{p}} \otimes k_{j_{1}} \otimes \cdots \otimes k_{j_{q}}\right) r_{p, q} \tag{4.6}
\end{equation*}
$$

for each $n, m \geqslant 0$. Proofs of these facts are elementary and are left to the reader.

Let \mathcal{C} be an A_{∞}-category. For each $n \geqslant 0$, introduce a morphism

$$
\nu_{n}=\sum_{i=0}^{n}(-)^{n-i}\left(1^{\otimes i} \otimes \varepsilon \otimes 1^{\otimes n-i}\right):(T s \mathrm{C})^{\otimes n+1} \rightarrow(T s \mathcal{C})^{\otimes n}
$$

in $\mathscr{Q} /$ ObC. In particular, $\nu_{0}=\varepsilon: T s \mathcal{C} \rightarrow \mathbb{k} O b \mathcal{C}$. Denote $\nu=\nu_{1}=(1 \otimes \varepsilon)-(\varepsilon \otimes 1): T s \mathcal{C} \otimes T s \mathcal{C} \rightarrow T s \mathcal{C}$ for the sake of brevity.
4.2. Lemma. The map $\nu: T s \mathcal{C} \otimes T s \mathcal{C} \rightarrow T s \mathcal{C}$ is a double $(1,1)$-coderivation of degree 0 and $\nu B_{1}=0$.

Proof. We have:

$$
\begin{aligned}
& \left(\Delta_{0} \otimes 1\right)(1 \otimes \nu)+\left(1 \otimes \Delta_{0}\right)(\nu \otimes 1) \\
& \quad=\left(\Delta_{0} \otimes 1\right)(1 \otimes 1 \otimes \varepsilon)-\left(\Delta_{0} \otimes 1\right)(1 \otimes \varepsilon \otimes 1) \\
& \quad+\left(1 \otimes \Delta_{0}\right)(1 \otimes \varepsilon \otimes 1)-\left(1 \otimes \Delta_{0}\right)(\varepsilon \otimes 1 \otimes 1) \\
& =\left(\Delta_{0} \otimes \varepsilon\right)-\left(\varepsilon \otimes \Delta_{0}\right)=((1 \otimes \varepsilon)-(\varepsilon \otimes 1)) \Delta_{0}=\nu \Delta_{0},
\end{aligned}
$$

due to the identities

$$
\begin{aligned}
\left(\Delta_{0} \otimes 1\right)(1 \otimes \varepsilon \otimes 1)=1 \otimes 1= & \left(1 \otimes \Delta_{0}\right)(1 \otimes \varepsilon \otimes 1): \\
& T s \mathcal{C} \otimes T s \mathcal{C} \rightarrow T s \mathcal{C} \otimes T s \mathcal{C} .
\end{aligned}
$$

This computation shows that $\nu: T s \mathcal{C} \otimes T s \mathcal{C} \rightarrow T s \mathcal{C}$ is a double (1,1)-coderivation. Its only non-vanishing components are $X, Y \nu_{1,0}=1: s \mathcal{C}(X, Y) \rightarrow s \mathcal{C}(X, Y)$ and ${ }_{X, Y} \nu_{0,1}=1:$ $s \mathcal{C}(X, Y) \rightarrow s \mathcal{C}(X, Y), X, Y \in \operatorname{ObC}$.

Since νB_{1} is a double $(1,1)$-coderivation of degree 1 , the equation $\nu B_{1}=0$ is equivalent to its particular case $\nu B_{1} \operatorname{pr}_{1}=$ 0 , i.e., for each $n, m \geqslant 0$

$$
\begin{aligned}
& \sum_{\substack{0 \leqslant i \leqslant n, 0 \leqslant j \leqslant m}}\left(1^{\otimes n-i} \otimes \nu_{i, j} \otimes 1^{\otimes m-j}\right) b_{n-i+1+m-j} \\
& \quad-\sum_{a+k+c=n}\left(1^{\otimes a} \otimes b_{k} \otimes 1^{\otimes c+m}\right) \nu_{a+1+c, m} \\
& \quad-\sum_{u+t+v=m}\left(1^{\otimes n+u} \otimes b_{t} \otimes 1^{\otimes v}\right) \nu_{n, u+1+v}=0: \\
& \quad T^{n} s \mathcal{C} \otimes T^{m} s \mathcal{C} \rightarrow s \mathcal{C}
\end{aligned}
$$

It reduces to the identity

$$
\begin{aligned}
\chi(n>0) b_{n+m}-\chi(m>0) b_{n+m} & \\
& -\chi(m=0) b_{n}+\chi(n=0) b_{m}=0
\end{aligned}
$$

where $\chi(P)=1$ if a condition P holds and $\chi(P)=0$ if P does not hold.

Let \mathcal{C} be a strictly unital A_{∞}-category. The strict unit $\mathbf{i}_{0}^{\mathcal{C}}$ is viewed as a morphism of graded quivers $\mathbf{i}_{0}^{\mathbb{C}}: \mathbb{k} \operatorname{ObC} \rightarrow s \mathcal{C}$ of degree -1 , identity on objects. For each $n \geqslant 0$, introduce a morphism of graded quivers

$$
\begin{aligned}
\xi_{n}= & {\left[(T s \mathcal{C})^{\otimes n+1} \xrightarrow{1 \otimes \mathbf{i}_{0}^{\mathcal{e}} \otimes 1 \otimes \cdots \otimes \mathrm{i}_{0}^{\mathrm{e}} \otimes 1}\right.} \\
& \left.T s \mathcal{C} \otimes s \mathcal{C} \otimes T s \mathcal{C} \otimes \cdots \otimes s \mathcal{C} \otimes T s \mathcal{C} \xrightarrow{\mu^{(2 n+1)}} T s \mathcal{C}\right],
\end{aligned}
$$

of degree $-n$, identity on objects. Here $\mu^{(2 n+1)}$ denotes composition of $2 n+1$ composable arrows in the graded category $T s \mathcal{C}$. In particular, $\xi_{0}=1: T s \mathrm{C} \rightarrow T s \mathcal{C}$. Denote $\xi=\xi_{1}=\left(1 \otimes \mathbf{i}_{0}^{\mathfrak{C}} \otimes 1\right) \mu^{(3)}: T s \mathcal{C} \otimes T s \mathcal{C} \rightarrow T s \mathcal{C}$ for the sake of brevity.
4.3. Lemma. The map $\xi: T s \mathcal{C} \otimes T s \mathcal{C} \rightarrow T s \mathcal{C}$ is a double $(1,1)$-coderivation of degree -1 and $\xi B_{1}=\nu$.

Proof. The following identity follows directly from the definitions of μ and Δ_{0} :

$$
\begin{aligned}
& \mu \Delta_{0}=\left(\Delta_{0} \otimes 1\right)(1 \otimes \mu)+\left(1 \otimes \Delta_{0}\right)(\mu \otimes 1)-1: \\
& T s \mathcal{C} \otimes T s \mathcal{C} \rightarrow T s \mathcal{C} \otimes T s \mathcal{C} .
\end{aligned}
$$

It implies

$$
\begin{gather*}
\mu^{(3)} \Delta_{0}=\left(\Delta_{0} \otimes 1 \otimes 1\right)\left(1 \otimes \mu^{(3)}\right)+\left(1 \otimes 1 \otimes \Delta_{0}\right)\left(\mu^{(3)} \otimes 1\right) \tag{4.7}\\
+\left(1 \otimes \Delta_{0} \otimes 1\right)(\mu \otimes \mu)-(1 \otimes \mu)-(\mu \otimes 1): \\
T s \mathcal{C} \otimes T s \mathcal{C} \otimes T s \mathcal{C} \rightarrow T s \mathcal{C} \otimes T s \mathcal{C} .
\end{gather*}
$$

Since $\mathbf{i}_{0}^{\mathfrak{C}} \Delta_{0}=\mathbf{i}_{0}^{\mathfrak{C}} \otimes \eta+\eta \otimes \mathbf{i}_{0}^{\mathfrak{C}}: \mathbb{k} \mathrm{ObC} \rightarrow T s \mathcal{C} \otimes T s \mathcal{C}$, it follows that

$$
\begin{array}{r}
\left(1 \otimes \mathbf{i}_{0}^{\mathfrak{e}} \Delta_{0} \otimes 1\right)(\mu \otimes \mu)-\left(1 \otimes\left(\mathbf{i}_{0}^{\mathfrak{C}} \otimes 1\right) \mu\right)-\left(\left(1 \otimes \mathbf{i}_{0}^{\mathfrak{C}}\right) \mu \otimes 1\right)=0: \\
T s \mathcal{C} \otimes T s \mathcal{C} \rightarrow T s \mathcal{C} \otimes T s \mathcal{C} .
\end{array}
$$

Equation (4.7) yields

$$
\begin{aligned}
& \left(1 \otimes \mathbf{i}_{0}^{\mathfrak{e}} \otimes 1\right) \mu^{(3)} \Delta_{0} \\
= & \left(\Delta_{0} \otimes 1\right)\left(1 \otimes\left(1 \otimes \mathbf{i}_{0}^{\mathfrak{e}} \otimes 1\right) \mu^{(3)}\right)+\left(1 \otimes \Delta_{0}\right)\left(\left(1 \otimes \mathbf{i}_{0}^{\mathrm{e}} \otimes 1\right) \mu^{(3)} \otimes 1\right),
\end{aligned}
$$

i.e., $\xi=\left(1 \otimes \mathbf{i}_{0}^{\mathrm{C}} \otimes 1\right) \mu^{(3)}: T s \mathcal{C} \otimes T s \mathcal{C} \rightarrow T s \mathcal{C}$ is a double $(1,1)$-coderivation. Its the only non-vanishing components are ${ }_{x} \xi_{0,0}={ }_{x} \mathbf{i}_{0}^{\mathcal{C}} \in s \mathcal{C}(X, X), X \in$ ObC.

Since both ξB_{1} and ν are double $(1,1)$-coderivations of degree 0 , the equation $\xi B_{1}=\nu$ is equivalent to its particular
case $\xi B_{1} \operatorname{pr}_{1}=\nu \operatorname{pr}_{1}$, i.e., for each $n, m \geqslant 0$

$$
\begin{aligned}
& \sum_{\substack{0 \leqslant p \leqslant n \\
0 \leqslant q \leqslant m}}\left(1^{\otimes n-p} \otimes \xi_{p, q} \otimes 1^{\otimes m-q}\right) b_{n-p+1+m-q} \\
& \quad+\sum_{a+k+c=n}\left(1^{\otimes a} \otimes b_{k} \otimes 1^{\otimes c+m}\right) \xi_{a+1+c, m} \\
& \quad+\sum_{u+t+v=m}\left(1^{\otimes n+u} \otimes b_{t} \otimes 1^{\otimes v}\right) \xi_{n, u+1+v}=\nu_{n, m}: \\
& \quad T^{n} s \mathcal{C} \otimes T^{m} s \mathcal{C} \rightarrow s \mathcal{C} .
\end{aligned}
$$

It reduces to the the equation

$$
\left(1^{\otimes n} \otimes \mathbf{i}_{0}^{\mathfrak{C}} \otimes 1^{\otimes m}\right) b_{n+1+m}=\nu_{n, m}: T^{n} s \mathcal{C} \otimes T^{m} s \mathcal{C} \rightarrow s \mathcal{C}
$$

which holds true, since $\mathbf{i}_{0}^{\mathbb{e}}$ is a strict unit.
Note that the maps ν_{n}, ξ_{n} obey the following relations:
$\xi_{n}=\left(\xi_{n-1} \otimes 1\right) \xi, \quad \nu_{n}=\left(1^{\otimes n} \otimes \varepsilon\right)-\left(\nu_{n-1} \otimes 1\right), \quad n \geqslant 1$.
In particular, $\xi_{n} \varepsilon=0:(T s \mathcal{C})^{\otimes n+1} \rightarrow \mathbb{k} O b \mathcal{C}$, for each $n \geqslant 1$, as $\xi \varepsilon=0$ by equation (4.3).
4.4. Lemma. The following equations hold true:

$$
\begin{array}{r}
\xi_{n} \Delta_{0}=\sum_{i=0}^{n}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-i}\right)\left(\xi_{i} \otimes \xi_{n-i}\right), \quad n \geqslant 0, \\
\xi_{n} b-(-)^{n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}\right) \xi_{n}=\nu_{n} \xi_{n-1}, \quad n \geqslant 1 . \tag{4.10}
\end{array}
$$

Proof. Let us prove (4.9). The proof is by induction on n. The case $n=0$ is trivial. Let $n \geqslant 1$. By (4.8) and Lemma 4.3,
$\xi_{n} \Delta_{0}=\left(\xi_{n-1} \otimes 1\right) \xi \Delta_{0}=\left(\xi_{n-1} \Delta_{0} \otimes 1\right)(1 \otimes \xi)+\left(\xi_{n-1} \otimes \Delta_{0}\right)(\xi \otimes 1)$.

By induction hypothesis,

$$
\xi_{n-1} \Delta_{0}=\sum_{i=0}^{n-1}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-1-i}\right)\left(\xi_{i} \otimes \xi_{n-1-i}\right)
$$

therefore

$$
\begin{aligned}
\xi_{n} \Delta_{0}= & \sum_{i=0}^{n-1}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-i}\right)\left(\xi_{i} \otimes \xi_{n-1-i} \otimes 1\right)(1 \otimes \xi) \\
& +\left(1^{\otimes n} \otimes \Delta_{0}\right)\left(\left(\xi_{n-1} \otimes 1\right) \xi \otimes 1\right) \\
= & \sum_{i=0}^{n}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-i}\right)\left(\xi_{i} \otimes \xi_{n-i}\right),
\end{aligned}
$$

since $\left(\xi_{n-1-i} \otimes 1\right) \xi=\xi_{n-i}$ if $0 \leqslant i \leqslant n-1$.
Let us prove (4.10). The proof is by induction on n. The case $n=1$ follows from Lemma 4.3. Let $n \geqslant 2$. By (4.8) and Lemma 4.3,

$$
\begin{aligned}
& \xi_{n} b-(-)^{n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}\right) \xi_{n} \\
& =\left(\xi_{n-1} \otimes 1\right) \xi b-(-)^{n} \sum_{i=0}^{n-1}\left(\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}\right) \xi_{n-1} \otimes 1\right) \xi \\
& \quad-(-)^{n}\left(1^{\otimes n} \otimes b\right)\left(\xi_{n-1} \otimes 1\right) \xi \\
& =-\left(\xi_{n-1} b \otimes 1\right) \xi-\left(\xi_{n-1} \otimes b\right) \xi+\left(\xi_{n-1} \otimes 1\right) \nu \\
& +(-)^{n-1} \sum_{i=0}^{n-1}\left(\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}\right) \xi_{n-1} \otimes 1\right) \xi+\left(\xi_{n-1} \otimes b\right) \xi \\
& =\left(\xi_{n-1} \otimes 1\right) \nu \\
& - \\
& -\left(\left[\xi_{n-1} b-(-)^{n-1} \sum_{i=0}^{n-1}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}\right) \xi_{n-1}\right] \otimes 1\right) \xi
\end{aligned}
$$

By induction hypothesis

$$
\xi_{n-1} b-(-)^{n-1} \sum_{i=0}^{n-1}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}\right) \xi_{n-1}=\nu_{n-1} \xi_{n-2}
$$

therefore
$\xi_{n} b-(-)^{n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}\right) \xi_{n}=\left(\xi_{n-1} \otimes 1\right) \nu-\left(\nu_{n-1} \xi_{n-2} \otimes 1\right) \xi$.
Since by (4.8),

$$
\begin{aligned}
& \left(\xi_{n-1} \otimes 1\right) \nu-\left(\nu_{n-1} \xi_{n-2} \otimes 1\right) \xi \\
& \quad=\left(\xi_{n-1} \otimes \varepsilon\right)-\left(\xi_{n-1} \varepsilon \otimes 1\right)-\left(\nu_{n-1} \otimes 1\right) \xi_{n-1} \\
& \quad=\left(1^{\otimes n} \otimes \varepsilon\right) \xi_{n-1}-\left(\nu_{n-1} \otimes 1\right) \xi_{n-1}=\nu_{n} \xi_{n-1},
\end{aligned}
$$

equation (4.10) is proven.

5. An augmented differential graded cocategory

Let now $\mathcal{C}=\mathcal{A}^{\text {su }}$, where \mathcal{A} is an A_{∞}-category. There is an isomorphism of graded \mathbb{k}-quivers, identity on objects:

$$
\zeta: \bigoplus_{n \geqslant 0}(T s \mathcal{A})^{\otimes n+1}[n] \rightarrow T s \mathcal{A}^{\text {su }}
$$

The morphism ζ is the sum of morphisms

$$
\begin{align*}
\zeta_{n}=\left[(T s \mathcal{A})^{\otimes n+1}[n]\right. & \xrightarrow{s^{-n}}(T s \mathcal{A})^{\otimes n+1} \tag{5.1}\\
& \left.\xrightarrow{e^{\otimes n+1}}\left(T s \mathcal{A}^{\text {su }}\right)^{\otimes n+1} \xrightarrow{\xi_{n}} T s \mathcal{A}^{\text {su }}\right],
\end{align*}
$$

where $e: \mathcal{A} \hookrightarrow \mathcal{A}^{\text {su }}$ is the natural embedding. The graded quiver

$$
\mathcal{E} \stackrel{\text { def }}{=} \bigoplus_{n \geqslant 0}(T s \mathcal{A})^{\otimes n+1}[n]
$$

admits a unique structure of an augmented differential graded cocategory such that ζ becomes an isomorphism of augmented differential graded cocategories. The comultiplication $\widetilde{\Delta}$: $\mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{E}$ is found from the equation

$$
\begin{aligned}
{\left[\mathcal{E} \stackrel{\zeta}{\longrightarrow} T s \mathcal{A}^{\text {su }} \xrightarrow{\Delta_{0}} T s \mathcal{A}^{\text {su }}\right.} & \left.\otimes T s \mathcal{A}^{\text {su }}\right] \\
& =\left[\mathcal{E} \xrightarrow{\widetilde{\Delta}} \mathcal{E} \otimes \mathcal{E} \xrightarrow{\zeta \otimes \zeta} T s \mathcal{A}^{\text {su }} \otimes T s \mathcal{A}^{\text {su }}\right] .
\end{aligned}
$$

Restricting the left hand side of the equation to the summand $(T s \mathcal{A})^{\otimes n+1}[n]$ of \mathcal{E}, we obtain

$$
\begin{aligned}
\zeta_{n} \Delta_{0}= & s^{-n} e^{\otimes n+1} \xi_{n} \Delta_{0} \\
= & s^{-n} \sum_{i=0}^{n}\left(e^{\otimes i} \otimes e \Delta_{0} \otimes e^{\otimes n-i}\right)\left(\xi_{i} \otimes \xi_{n-i}\right): \\
& (T s \mathcal{A})^{\otimes n+1}[n] \rightarrow T s \mathcal{A}^{\text {su }} \otimes T s \mathcal{A}^{\text {su }},
\end{aligned}
$$

by equation (4.9). Since e is a morphism of augmented graded cocategories, it follows that

$$
\begin{array}{r}
\zeta_{n} \Delta_{0}=s^{-n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-i}\right)\left(e^{\otimes i+1} \xi_{i} \otimes e^{\otimes n-i+1} \xi_{n-i}\right) \\
=s^{-n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-i}\right)\left(s^{i} \otimes s^{n-i}\right)\left(\zeta_{i} \otimes \zeta_{n-i}\right): \\
(T s \mathcal{A})^{\otimes n+1}[n] \rightarrow T s \mathcal{A}^{\text {su }} \otimes T s \mathcal{A}^{\text {su }} .
\end{array}
$$

This implies the following formula for $\widetilde{\Delta}$:

$$
\begin{align*}
& \text { 2) } \left.\left.\widetilde{\Delta}\right|_{(T s \mathcal{A})}\right)^{\otimes n+1}[n] \tag{5.2}\\
& =s^{-n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-i}\right)\left(s^{i} \otimes s^{n-i}\right): \\
& (T s \mathcal{A})^{\otimes n+1}[n] \rightarrow \bigoplus_{i=0}^{n}(T s \mathcal{A})^{\otimes i+1}[i] \bigotimes(T s \mathcal{A})^{\otimes n-i+1}[n-i] .
\end{align*}
$$

The counit of \mathcal{E} is $\widetilde{\varepsilon}=\left[\mathcal{E} \xrightarrow{\mathrm{pr}_{0}} T s \mathcal{A} \xrightarrow{\varepsilon} \mathbb{k} \mathrm{Ob} \mathcal{A}=\mathbb{k} \mathrm{Ob} \mathcal{E}\right]$. The augmentation of \mathcal{E} is $\widetilde{\eta}=\left[\mathbb{k} O b \mathcal{E}=\mathbb{k} \operatorname{Ob} \mathcal{A} \xrightarrow{\eta} T s \mathcal{A} \xrightarrow{\mathrm{in}_{0}} \mathcal{E}\right]$. The differential $\widetilde{b}: \mathcal{E} \rightarrow \mathcal{E}$ is found from the following equation:

$$
\left[\varepsilon \xrightarrow{\zeta} T s \mathcal{A}^{\text {su }} \xrightarrow{b} T s \mathcal{A}^{\text {su }}\right]=\left[\varepsilon \xrightarrow{\widetilde{b}} \mathcal{E} \xrightarrow{\zeta} T s \mathcal{A}^{\text {su }}\right] .
$$

Let $\widetilde{b}_{n, m}:(T s \mathcal{A})^{\otimes n+1}[n] \rightarrow(T s \mathcal{A})^{\otimes m+1}[m], n, m \geqslant 0$, denote the matrix coefficients of \widetilde{b}. Restricting the left hand side of the above equation to the summand $(T s \mathcal{A})^{\otimes n+1}[n]$ of \mathcal{E}, we obtain

$$
\begin{aligned}
& \zeta_{n} b= s^{-n} e^{\otimes n+1} \xi_{n} b \\
&=s^{-n} e^{\otimes n+1} \nu_{n} \xi_{n-1}+(-)^{n} s^{-n} \sum_{i=0}^{n}\left(e^{\otimes i} \otimes e b \otimes e^{\otimes n-i}\right) \xi_{n}: \\
&(T s \mathcal{A})^{\otimes n+1}[n] \rightarrow T s \mathcal{A}^{\text {su }},
\end{aligned}
$$

by equation (4.10). Since e preserves the counit, it follows that

$$
e^{\otimes n+1} \nu_{n}=\nu_{n} e^{\otimes n}:(T s \mathcal{A})^{\otimes n+1} \rightarrow\left(T s \mathcal{A}^{\text {su }}\right)^{\otimes n} .
$$

Furthermore, e commutes with the differential b, therefore

$$
\begin{array}{r}
\zeta_{n} b=s^{-n} \nu_{n} s^{n-1}\left(s^{-(n-1)} e^{\otimes n} \xi_{n-1}\right) \\
+(-)^{n} s^{-n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}\right) s^{n}\left(s^{-n} e^{\otimes n+1} \xi_{n}\right) \\
=s^{-n} \nu_{n} s^{n-1} \zeta_{n-1}+(-)^{n} s^{-n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}\right) s^{n} \zeta_{n}: \\
(T s \mathcal{A})^{\otimes n+1}[n] \rightarrow T s \mathcal{A}^{\text {su }} .
\end{array}
$$

We conclude that

$$
\begin{align*}
& \widetilde{b}_{n, n}=(-)^{n} s^{-n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}\right) s^{n}: \tag{5.3}\\
&(T s \mathcal{A})^{\otimes n+1}[n] \rightarrow(T s \mathcal{A})^{\otimes n+1}[n],
\end{align*}
$$

for $n \geqslant 0$, and

$$
\begin{equation*}
\widetilde{b}_{n, n-1}=s^{-n} \nu_{n} s^{n-1}:(T s \mathcal{A})^{\otimes n+1}[n] \rightarrow(T s \mathcal{A})^{\otimes n}[n-1], \tag{5.4}
\end{equation*}
$$

for $n \geqslant 1$, are the only non-vanishing matrix coefficients of \widetilde{b}.
Let $g: \mathcal{E} \rightarrow T s \mathcal{B}$ be a morphism of augmented differential graded cocategories, and let $g_{n}:(T s \mathcal{A})^{\otimes n+1}[n] \rightarrow T s \mathcal{B}$ be its components. By formula (5.2), the equation $g \Delta_{0}=\widetilde{\Delta}(g \otimes g)$ is equivalent to the system of equations

$$
\begin{aligned}
& g_{n} \Delta_{0}=s^{-n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-i}\right)\left(s^{i} g_{i} \otimes s^{n-i} g_{n-i}\right): \\
& \quad(T s \mathcal{A})^{\otimes n+1}[n] \rightarrow T s \mathcal{B} \otimes T s \mathcal{B}, \quad n \geqslant 0 .
\end{aligned}
$$

The equation $g \varepsilon=\widetilde{\varepsilon}(\mathbb{k} \mathrm{Ob} g)$ is equivalent to the equations $g_{0} \varepsilon=\varepsilon\left(\mathbb{k} \operatorname{Ob} g_{0}\right), g_{n} \varepsilon=0, n \geqslant 1$. The equation $\widetilde{\eta} g=(\mathbb{k} \mathrm{Ob} g) \eta$ is equivalent to the equation $\eta g_{0}=\left(\mathbb{k} \mathrm{Ob} g_{0}\right) \eta$. By formulas (5.3) and (5.4), the equation $g b=\widetilde{b} g$ is equivalent to
$g_{0} b=b g_{0}: T s \mathcal{A} \rightarrow T s \mathcal{B}$ and

$$
\begin{array}{r}
g_{n} b=(-)^{n} s^{-n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}\right) s^{n} g_{n}+s^{-n} \nu_{n} s^{n-1} g_{n-1}: \\
(T s \mathcal{A})^{\otimes n+1}[n] \rightarrow T s \mathcal{B}, \quad n \geqslant 1 .
\end{array}
$$

Introduce \mathbb{k}-linear maps $\phi_{n}=s^{n} g_{n}:(T s \mathcal{A})^{\otimes n+1}(X, Y) \rightarrow$ $T s \mathcal{B}(X g, Y g)$ of degree $-n, X, Y \in \operatorname{Ob} \mathcal{A}, n \geqslant 0$. The above equations take the following form:

$$
\begin{align*}
\phi_{n} \Delta_{0}= & \sum_{i=0}^{n}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-i}\right)\left(\phi_{i} \otimes \phi_{n-i}\right): \tag{5.5}\\
& (T s \mathcal{A})^{\otimes n+1} \rightarrow T s \mathcal{B} \otimes T s \mathcal{B}
\end{align*}
$$

for $n \geqslant 1$;

$$
\begin{align*}
\phi_{n} b=(-)^{n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}\right) \phi_{n}+\nu_{n} \phi_{n-1} & : \tag{5.6}\\
(T s \mathcal{A})^{\otimes n+1} & \rightarrow T s \mathcal{B}
\end{align*}
$$

for $n \geqslant 1$;

$$
\begin{gather*}
\phi_{0} \Delta_{0}=\Delta_{0}\left(\phi_{0} \otimes \phi_{0}\right), \quad \phi_{0} \varepsilon=\varepsilon, \quad \phi_{0} b=b \phi_{0} \tag{5.7}\\
\phi_{n} \varepsilon=0, \quad n \geqslant 1 . \tag{5.8}
\end{gather*}
$$

Summing up, we conclude that morphisms of augmented differential graded cocategories $\mathcal{E} \rightarrow T s \mathcal{B}$ are in bijection with collections consisting of a morphism of augmented differential graded cocategories $\phi_{0}: T s \mathcal{A} \rightarrow T s \mathcal{B}$ and of \mathbb{k}-linear maps $\phi_{n}:(T s \mathcal{A})^{\otimes n+1}(X, Y) \rightarrow T s \mathcal{B}\left(X \phi_{0}, Y \phi_{0}\right)$ of degree $-n, X, Y \in \operatorname{Ob} \mathcal{A}, n \geqslant 1$, such that equations (5.5), (5.6), and (5.8) hold true.

In particular, A_{∞}-functors $f: \mathcal{A}^{\text {su }} \rightarrow \mathcal{B}$, which are augmented differential graded cocategory morphisms $T s \mathcal{A}^{\text {su }} \rightarrow$
$T s \mathcal{B}$, are in bijection with morphisms $g=\zeta f: \mathcal{E} \rightarrow T s \mathcal{B}$ of augmented differential graded cocategories. With the above notation, we may say that to give an A_{∞}-functor $f: \mathcal{A}^{\text {su }} \rightarrow \mathcal{B}$ is the same as to give an A_{∞}-functor $\phi_{0}: \mathcal{A} \rightarrow \mathcal{B}$ and a system of \mathbb{k}-linear maps $\phi_{n}:(T s \mathcal{A})^{\otimes n+1}(X, Y) \rightarrow T s \mathcal{B}\left(X \phi_{0}, Y \phi_{0}\right)$ of degree $-n, X, Y \in \operatorname{Ob} \mathcal{A}, n \geqslant 1$, such that equations (5.5), (5.6) and (5.8) hold true.
5.1. Proposition. The following conditions are equivalent.
(a) There exists an A_{∞}-functor $U: \mathcal{A}^{\text {su }} \rightarrow \mathcal{A}$ such that

$$
\left[\mathcal{A} \stackrel{e}{\hookrightarrow} \mathcal{A}^{\text {su }} \xrightarrow{U} \mathcal{A}\right]=\operatorname{id}_{\mathcal{A}}
$$

(b) There exists a double (1,1)-coderivation $\phi: T s \mathcal{A} \otimes$ $T s \mathcal{A} \rightarrow T s \mathcal{A}$ of degree -1 such that $\phi B_{1}=\nu$.

Proof. (a) \Rightarrow (b) Let $U: \mathcal{A}^{\text {su }} \rightarrow \mathcal{A}$ be an A_{∞}-functor such that $e U=\operatorname{id}_{\mathcal{A}}$, in particular $\operatorname{Ob} U=\mathrm{id}: \operatorname{Ob} \mathcal{A}^{\text {su }}=\operatorname{Ob} \mathcal{A} \rightarrow \operatorname{Ob} \mathcal{A}$. It gives rise to the family of \mathbb{k}-linear maps $\phi_{n}=s^{n} \zeta_{n} U$: $(T s \mathcal{A})^{\otimes n+1}(X, Y) \rightarrow T s \mathcal{B}(X, Y)$ of degree $-n, X, Y \in \operatorname{Ob} \mathcal{A}$, $n \geqslant 0$, that satisfy equations (5.5), (5.6) and (5.8). In particular, $\phi_{0}=e U=\operatorname{id}_{\mathcal{A}}$. Equations (5.5) and (5.6) for $n=1$ read as follows:

$$
\begin{aligned}
& \phi_{1} \Delta_{0}=\left(\Delta_{0} \otimes 1\right)\left(\phi_{0} \otimes \phi_{1}\right)+\left(1 \otimes \Delta_{0}\right)\left(\phi_{1} \otimes \phi_{0}\right) \\
& \quad=\left(\Delta_{0} \otimes 1\right)\left(1 \otimes \phi_{1}\right)+\left(1 \otimes \Delta_{0}\right)\left(\phi_{1} \otimes 1\right), \\
& \phi_{1} b=(1 \otimes b+b \otimes 1) \phi_{1}+\nu_{1} \phi_{0}=(1 \otimes b+b \otimes 1) \phi_{1}+\nu .
\end{aligned}
$$

In other words, ϕ_{1} is a double (1,1)-coderivation of degree -1 and $\phi_{1} B_{1}=\nu$.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$ Let $\phi: T s \mathcal{A} \otimes T s \mathcal{A} \rightarrow T s \mathcal{A}$ be a double $(1,1)$ coderivation of degree -1 such that $\phi B_{1}=\nu$. Define \mathbb{k}-linear maps

$$
\phi_{n}:(T s \mathcal{A})^{\otimes n+1}(X, Y) \rightarrow T s \mathcal{A}(X, Y), \quad X, Y \in \mathrm{Ob} \mathcal{A}
$$

of degree $-n, n \geqslant 0$, recursively via $\phi_{0}=\mathrm{id}_{\mathcal{A}}$ and $\phi_{n}=$ $\left(\phi_{n-1} \otimes 1\right) \phi, n \geqslant 1$. Let us show that ϕ_{n} satisfy equations (5.5), (5.6) and (5.8). Equation (5.8) is obvious: $\phi_{n} \varepsilon=\left(\phi_{n-1} \otimes\right.$ 1) $\phi \varepsilon=0$ as $\phi \varepsilon=0$ by (4.3). Let us prove equation (5.5) by induction. It holds for $n=1$ by assumption, since $\phi_{1}=\phi$ is a double (1,1)-coderivation. Let $n \geqslant 2$. We have:

$$
\begin{aligned}
\phi_{n} \Delta_{0}= & \left(\phi_{n-1} \otimes 1\right) \phi_{1} \Delta_{0} \\
= & \left(\phi_{n-1} \otimes 1\right)\left(\left(\Delta_{0} \otimes 1\right)\left(1 \otimes \phi_{1}\right)+\left(1 \otimes \Delta_{0}\right)\left(\phi_{1} \otimes 1\right)\right) \\
= & \left(\phi_{n-1} \Delta_{0} \otimes 1\right)\left(1 \otimes \phi_{1}\right) \\
& \quad+\left(1^{\otimes n} \otimes \Delta_{0}\right)\left(\left(\phi_{n-1} \otimes 1\right) \phi_{1} \otimes 1\right) .
\end{aligned}
$$

By induction hypothesis,

$$
\phi_{n-1} \Delta_{0}=\sum_{i=0}^{n-1}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-1-i}\right)\left(\phi_{i} \otimes \phi_{n-1-i}\right),
$$

so that

$$
\begin{aligned}
\phi_{n} \Delta_{0}= & \sum_{i=0}^{n-1}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-i}\right)\left(\phi_{i} \otimes \phi_{n-1-i} \otimes 1\right)\left(1 \otimes \phi_{1}\right) \\
& \quad+\left(1^{\otimes n} \otimes \Delta_{0}\right)\left(\left(\phi_{n-1} \otimes 1\right) \phi_{1} \otimes 1\right) \\
= & \sum_{i=0}^{n}\left(1^{\otimes i} \otimes \Delta_{0} \otimes 1^{\otimes n-i}\right)\left(\phi_{i} \otimes \phi_{n-i}\right),
\end{aligned}
$$

since $\left(\phi_{n-1-i} \otimes 1\right) \phi_{1}=\phi_{n-i}, 0 \leqslant i \leqslant n-1$.

Let us prove equation (5.6) by induction. For $n=1$ it is equivalent to the equation $\phi B_{1}=\nu$, which holds by assumption. Let $n \geqslant 2$. We have:

$$
\begin{aligned}
& \phi_{n} b-(-)^{n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}\right) \phi_{n} \\
& =\left(\phi_{n-1} \otimes 1\right) \phi b-(-)^{n} \sum_{i=0}^{n-1}\left(\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}\right) \phi_{n-1} \otimes 1\right) \phi \\
& \quad-(-)^{n}\left(1^{\otimes n} \otimes b\right)\left(\phi_{n-1} \otimes 1\right) \phi \\
& =-\left(\phi_{n-1} b \otimes 1\right) \phi-\left(\phi_{n-1} \otimes b\right) \phi+\left(\phi_{n-1} \otimes 1\right) \nu \\
& +(-)^{n-1} \sum_{i=0}^{n-1}\left(\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}\right) \phi_{n-1} \otimes 1\right) \phi+\left(\phi_{n-1} \otimes b\right) \phi \\
& =\left(\phi_{n-1} \otimes 1\right) \nu \\
& -\left(\left[\phi_{n-1} b-(-)^{n-1} \sum_{i=0}^{n-1}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}\right) \phi_{n-1}\right] \otimes 1\right) \phi .
\end{aligned}
$$

By induction hypothesis,

$$
\phi_{n-1} b-(-)^{n-1} \sum_{i=0}^{n-1}\left(1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}\right) \phi_{n-1}=\nu_{n-1} \phi_{n-2}
$$

therefore

$$
\begin{aligned}
\phi_{n} b-(-)^{n} \sum_{i=0}^{n}\left(1^{\otimes i} \otimes b\right. & \left.\otimes 1^{\otimes n-i}\right) \phi_{n} \\
& =\left(\phi_{n-1} \otimes 1\right) \nu-\left(\nu_{n-1} \phi_{n-2} \otimes 1\right) \phi
\end{aligned}
$$

Since by (4.8)

$$
\begin{aligned}
& \left(\phi_{n-1} \otimes 1\right) \nu-\left(\nu_{n-1} \phi_{n-2} \otimes 1\right) \phi \\
& \quad=\left(\phi_{n-1} \otimes \varepsilon\right)-\left(\phi_{n-1} \varepsilon \otimes 1\right)-\left(\nu_{n-1} \otimes 1\right) \phi_{n-1} \\
& \quad=\left(1^{\otimes n} \otimes \varepsilon\right) \phi_{n-1}-\left(\nu_{n-1} \otimes 1\right) \phi_{n-1}=\nu_{n} \phi_{n-1},
\end{aligned}
$$

and equation (5.6) is proven.
The system of maps $\phi_{n}, n \geqslant 0$, corresponds to an A_{∞}-functor $U: \mathcal{A}^{\text {su }} \rightarrow \mathcal{A}$ such that $\phi_{n}=s^{n} \zeta_{n} U, n \geqslant 0$. In particular, $e U=\phi_{0}=\operatorname{id}_{\mathcal{A}}$.
5.2. Proposition. Let \mathcal{A} be a unital A_{∞}-category. There exists a double (1,1)-coderivation $h: T s \mathcal{A} \otimes T s \mathcal{A} \rightarrow T s \mathcal{A}$ of degree -1 such that $h B_{1}=\nu$.

Proof. Let \mathcal{A} be a unital A_{∞}-category. By [9, Corollary A.12], there exist a differential graded category \mathcal{D} and an A_{∞}-equivalence $f: \mathcal{A} \rightarrow \mathcal{D}$. The functor f is unital by $[8$, Corollary 8.9]. This means that, for every object X of \mathcal{A}, there exists a \mathbb{k}-linear map ${ }_{x} v_{0}: \mathbb{k} \rightarrow(s \mathcal{D})^{-2}(X f, X f)$ such that ${ }_{x} \mathbf{i}_{0}^{\mathcal{A}} f_{1}={ }_{x f} \mathbf{i}_{0}^{\mathcal{D}}+{ }_{x} v_{0} b_{1}$. Here ${ }_{x f} \mathbf{i}_{0}^{\mathcal{D}}$ denotes the strict unit of the differential graded category \mathcal{D}.

By Lemma $4.3, \xi=\left(1 \otimes \mathbf{i}_{0}^{\mathcal{D}} \otimes 1\right) \mu^{(3)}: T s \mathcal{D} \otimes T s \mathcal{D} \rightarrow T s \mathcal{D}$ is a $(1,1)$-coderivation of degree -1 . Let ι denote the double (f, f)-coderivation $(f \otimes f) \xi$ of degree -1 . By Lemma 4.3,

$$
\iota B_{1}=(f \otimes f)\left(\xi B_{1}\right)=(f \otimes f) \nu=\nu f
$$

By Lemma 4.2, the equation $\nu B_{1}=0$ holds true. We conclude that the double coderivations $\nu \in \mathscr{D}(\mathcal{A}, \mathcal{A})\left(\mathrm{id}_{\mathcal{A}}, \mathrm{id}_{\mathcal{A}}\right)^{0}$ and $\iota \in$ $\mathscr{D}(\mathcal{A}, \mathcal{D})(f, f)^{-1}$ satisfy the following equations:

$$
\begin{array}{r}
\nu B_{1}=0, \\
\iota B_{1}-\nu f=0 . \tag{5.10}
\end{array}
$$

We are going to prove that there exist double coderivations $h \in \mathscr{D}(\mathcal{A}, \mathcal{A})\left(\mathrm{id}_{\mathcal{A}}, \mathrm{id}_{\mathcal{A}}\right)^{-1}$ and $k \in \mathscr{D}(\mathcal{A}, \mathcal{D})(f, f)^{-2}$ such that the following equations hold true:

$$
\begin{aligned}
h B_{1} & =\nu, \\
h f & =\iota+k B_{1} .
\end{aligned}
$$

Let us put ${ }_{X} h_{0,0}={ }_{x} \mathbf{i}_{0}^{\mathcal{A}},{ }_{X} k_{0,0}={ }_{x} v_{0}$, and construct the other components of h and k by induction. Given an integer $t \geqslant 0$, assume that we have already found components $h_{p, q}, k_{p, q}$ of the sought h, k, for all pairs (p, q) with $p+q<t$, such that the equations
(5.11) $\quad\left(h B_{1}-\nu\right)_{p, q}=0$:

$$
s \mathcal{A}\left(X_{0}, X_{1}\right) \otimes \cdots \otimes s \mathcal{A}\left(X_{p+q-1}, X_{p+q}\right) \rightarrow s \mathcal{A}\left(X_{0}, X_{p+q}\right)
$$

(5.12) $\left(k B_{1}+\iota-h f\right)_{p, q}=0$:

$$
s \mathcal{A}\left(X_{0}, X_{1}\right) \otimes \cdots \otimes s \mathcal{A}\left(X_{p+q-1}, X_{p+q}\right) \rightarrow s \mathcal{D}\left(X_{0} f, X_{p+q} f\right)
$$

are satisfied for all pairs (p, q) with $p+q<t$. Introduce double coderivations $\widetilde{h} \in \mathscr{D}(\mathcal{A}, \mathcal{A})\left(\operatorname{id}_{\mathcal{A}}, \operatorname{id}_{\mathcal{A}}\right)$ and $\widetilde{k} \in \mathscr{D}(\mathcal{A}, \mathcal{D})(f, f)$ ${\underset{\sim}{r}}^{\text {of }}$ degree -1 resp. -2 by their components: $\widetilde{h}_{p, q}=h_{p, q}$, $\widetilde{k}_{p, q}=k_{p, q}$ for $p+q<t$, all the other components vanish. Define a double $(1,1)$-coderivation $\lambda=\widetilde{h} B_{1}-\nu$ of degree 0 and a double (f, f)-coderivation $\kappa=\widetilde{k} B_{1}+\iota-\widetilde{h} f$ of degree -1 . Then $\lambda_{p, q}=0, \kappa_{p, q}=0$ for all $p+q<t$. Let non-negative integers n, m satisfy $n+m=t$. The identity $\lambda B_{1}=0$ implies that

$$
\lambda_{n, m} b_{1}-\sum_{l=1}^{n+m}\left(1^{\otimes l-1} \otimes b_{1} \otimes 1^{\otimes n+m-l}\right) \lambda_{n, m}=0
$$

The (n, m)-component of the identity $\kappa B_{1}+\lambda f=0$ gives

$$
\kappa_{n, m} b_{1}+\sum_{l=1}^{n+m}\left(1^{\otimes l-1} \otimes b_{1} \otimes 1^{\otimes n+m-l}\right) \kappa_{n, m}+\lambda_{n, m} f_{1}=0
$$

The chain map $f_{1}: \mathcal{A}\left(X_{0}, X_{n+m}\right) \rightarrow s \mathcal{D}\left(X_{0} f, X_{n+m} f\right)$ is homotopy invertible as f is an A_{∞}-equivalence. Hence, the chain map Φ given by

$$
\begin{aligned}
\underline{\mathrm{C}}_{\mathfrak{k}}^{\cdot}\left(N, s \mathcal{A}\left(X_{0}, X_{n+m}\right)\right) & \rightarrow \underline{\mathrm{C}}_{\mathfrak{k}}^{\cdot}\left(N, s \mathcal{D}\left(X_{0} f, X_{n+m} f\right)\right), \\
\lambda & \mapsto \lambda f_{1},
\end{aligned}
$$

is homotopy invertible for each complex of \mathbb{k}-modules N, in particular, for $N=s \mathcal{A}\left(X_{0}, X_{1}\right) \otimes \cdots \otimes s \mathcal{A}\left(X_{n+m-1}, X_{n+m}\right)$. Therefore, the complex Cone (Φ) is contractible, e.g. by [8, Lemma B.1]. Consider the element $\left(\lambda_{n, m}, \kappa_{n, m}\right)$ of

$$
\underline{\mathrm{C}}_{\mathfrak{k}}^{0}\left(N, s \mathcal{A}\left(X_{0}, X_{n+m}\right)\right) \oplus \underline{\mathrm{C}}_{\mathbb{k}}^{-1}\left(N, \mathcal{D}\left(X_{0} f, X_{n+m} f\right)\right)
$$

The above direct sum coincides with Cone $^{-1}(\Phi)$. The equations $-\lambda_{n, m} d=0, \kappa_{n, m} d+\lambda_{n, m} \Phi=0$ imply that $\left(\lambda_{n, m}, \kappa_{n, m}\right)$ is a cycle in the complex Cone (Φ). Due to acyclicity of Cone (Φ), $\left(\lambda_{n, m}, \kappa_{n, m}\right)$ is a boundary of some element $\left(h_{n, m},-k_{n, m}\right)$ of Cone $^{-2}(\Phi)$, i.e., of

$$
\underline{\mathrm{C}}_{\mathrm{k}}^{-1}\left(N, s \mathcal{A}\left(X_{0}, X_{n+m}\right)\right) \oplus \underline{\mathrm{C}}_{\mathrm{k}}^{-2}\left(N, \mathcal{D}\left(X_{0} f, X_{n+m} f\right)\right)
$$

Thus, $-k_{n, m} d+h_{n, m} f_{1}=\kappa_{n, m},-h_{n, m} d=\lambda_{n, m}$. These equations can be written as follows:

$$
\begin{aligned}
&-h_{n, m} b_{1}-\sum_{u+1+v=n+m}\left(1^{\otimes u} \otimes b_{1} \otimes 1^{\otimes v}\right) h_{n, m} \\
&=\left(\widetilde{h} B_{1}-\nu\right)_{n, m}, \\
&-k_{n, m} b_{1}+\sum_{u+1+v=n+m}\left(1^{\otimes u} \otimes b_{1} \otimes 1^{\otimes v}\right) k_{n, m}+h_{n, m} f_{1} \\
&=\left(\widetilde{k} B_{1}+\iota-\widetilde{h} f\right)_{n, m} .
\end{aligned}
$$

Thus, if we introduce double coderivations \bar{h} and \bar{k} by their components: $\bar{h}_{p, q}=h_{p, q}, \bar{k}_{p, q}=k_{p, q}$ for $p+q \leqslant t$ (using just found maps if $p+q=t$) and 0 otherwise, then these coderivations satisfy equations (5.11) and (5.12) for each p, q such that $p+q \leqslant t$. Induction on t proves the proposition.
5.3. Theorem. Every unital A_{∞}-category admits a weak unit.

Proof. The proof follows from Propositions 5.1 and 5.2.

6. Summary

We have proved that the definitions of unital A_{∞}-category given by Lyubashenko, by Kontsevich and Soibelman, and by Fukaya are equivalent.

References

[1] Fukaya K. Morse homotopy, A_{∞}-category, and Floer homologies // Proc. of GARC Workshop on Geometry and Topology '93 (H. J. Kim, ed.), Lecture Notes, no. 18, Seoul Nat. Univ., Seoul, 1993, P. 1-102.
[2] Fukaya K. Floer homology and mirror symmetry. II // Minimal surfaces, geometric analysis and symplectic geometry (Baltimore, MD, 1999), Adv. Stud. Pure Math., vol. 34, Math. Soc. Japan, Tokyo, 2002, P. 31-127.
[3] Fukaya K., Oh Y.-G., Ohta H., Ono K. Lagrangian intersection Floer theory - anomaly and obstruction -, book in preparation, March 23, 2006.
[4] Keller B. Introduction to A-infinity algebras and modules // Homology, Homotopy and Applications 3 (2001), no. 1, P. 1-35.
[5] Kontsevich M. Homological algebra of mirror symmetry // Proc. Internat. Cong. Math., Zürich, Switzerland 1994 (Basel), vol. 1, P. 120-139.
[6] Kontsevich M., Soibelman Y. S. Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I // 2006, math.RA/0606241.
[7] Lefèvre-Hasegawa K. Sur les A_{∞}-catégories // Ph.D. thesis, Université Paris 7, U.F.R. de Mathématiques, 2003, math.CT/0310337.
[8] Lyubashenko V. V. Category of A_{∞}-categories // Homology, Homotopy Appl. 5 (2003), no. 1, 1-48.
[9] Lyubashenko V. V., Manzyuk O. Quotients of unital A_{∞}-categories, Max-Planck-Institut fur Mathematik preprint, MPI 04-19, 2004, math.CT/ 0306018.
[10] Soibelman Y. S. Mirror symmetry and noncommutative geometry of $A_{\infty^{-}}$ categories // J. Math. Phys. 45 (2004), no. 10, 3742-3757.
[11] Stasheff J. D. Homotopy associativity of H-spaces I \& II // Trans. Amer. Math. Soc. 108 (1963), 275-292, 293-312.

