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We prove that three definitions of unitality for A.-categories suggested by
Lyubashenko, by Kontsevich and Soibelman, and by Fukaya are equivalent.
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1. INTRODUCTION

Over the past decade, A.-categories have experienced a
resurgence of interest due to applications in symplectic geom-
etry, deformation theory, non-commutative geometry, homo-
logical algebra, and physics.

The notion of A,-category is a generalization of Stasheff’s
notion of A-algebra [11]. On the other hand, A.-categories
generalize differential graded categories. In contrast to differ-
ential graded categories, composition in A..-categories is asso-
ciative only up to homotopy that satisfies certain equation up
to another homotopy, and so on. The notion of A..-category
appeared in the work of Fukaya on Floer homology [1| and
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was related to mirror symmetry by Kontsevich [5]. Basic con-
cepts of the theory of A.-categories have been developed by
Fukaya [2], Keller 4], Lefevre-Hasegawa |7], Lyubashenko [§],
Soibelman [10].

The definition of A.-category does not assume the exis-
tence of identity morphisms. The use of A..-categories with-
out identities requires caution: for example, there is no a sen-
sible notion of isomorphic objects, the notion of equivalence
does not make sense, etc. In order to develop a comprehen-
sive theory of A, -categories, a notion of unital A, -category,
i.e., Ay -category with identity morphisms (also called units),
is necessary. The obvious notion of strictly unital A..-cate-
gory, despite its technical advantages, is not quite satisfac-
tory: it is not homotopy invariant, meaning that it does
not translate along homotopy equivalences. Different defi-
nitions of (weakly) unital A..-category have been suggested
by Lyubashenko [8, Definition 7.3], by Kontsevich and Soibel-
man |6, Definition 4.2.3|, and by Fukaya |2, Definition 5.11].
We prove that these definitions are equivalent. The main in-
gredient of the proofs is the Yoneda Lemma for unital (in the
sense of Lyubashenko) A..-categories proven in |9, Appen-
dix Al.

2. PRELIMINARIES

We follow the notation and conventions of [8], sometimes
without explicit mentioning. Some of the conventions are re-
called here.

Throughout, k is a commutative ground ring. A graded
k-module always means a Z-graded k-module.

A graded quiver A consists of a set ObA of objects and a
graded k-module A(X,Y), for each X,Y € ObA. A mor-
phism of graded quivers f : A — B of degree n consists of
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a function Obf : ObA — ObB, X — X f, and a k-linear
map f = fxy : AX,Y) — B(Xf,Y[) of degree n, for each
X,Y € ObA.

For a set S, there is a category 2/S defined as follows.
Its objects are graded quivers whose set of objects is S. A
morphism f: A — B in Z/S is a morphism of graded quiv-
ers of degree 0 such that Obf = idg. The category 2/ is
monoidal. The tensor product of graded quivers A and B is
a graded quiver A ® B such that

(AeB)X, Z)=PAX.Y)2B(Y,Z), X, Z€S.
Yes

The unit object is the discrete quiver kS with ObkS = S and

k ifX=Y,

X,Y €8.
0 fXAY,

(kS)(X,Y) = {

Note that a map of sets f : S — R gives rise to a morphism of
graded quivers kf : kS — kR with Obkf = f and (kf)xy =
idk is X =Y and (kf))gy =0if X #Y, X,Y eSs.

An augmented graded cocategory is a graded quiver C equip-
ped with the structure of on augmented counital coassociative
coalgebra in the monoidal category 2/0bC. Thus, € comes
with a comultiplication A : € — C®RC, a counit € : € — kObC,
and an augmentation 7 : kObC — €, which are morphisms
in 2/0bC satisfying the usual axioms. A morphism of aug-
mented graded cocategories f : € — D is a morphism of graded
quivers of degree 0 that preserves the comultiplication, counit,
and augmentation.

The main example of an augmented graded cocategory is
the following. Let A be a graded quiver. Denote by TA
the direct sum of graded quivers T"A, where T"A = A®"
is the n-fold tensor product of A in 2/ObA; in particular,
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T°A = kObA, T'A = A, T?A = A® A, etc. The graded
quiver T'A is an augmented graded cocategory in which the

comultiplication is the so called ‘cut’ comultiplication A :
TA — TA ®TA given by

@@ fa= Y [0S @@ fo,
k=0

the counit is given by the projection pr, : TA — T°A =
kODbA, and the augmentation is given by the inclusion ing :
kObA = TA — TA.

The graded quiver T'A admits also the structure of a graded
category, i.e., the structure of a unital associative algebra in
the monoidal category 2/ObA. The multiplication p : TA ®
TA — TA removes brackets in tensors of the form (fi ®---®
fm) (g1 ® -+ - ® ¢,). The unit n : kObA — TA is given by
the inclusion ing : kKObA = T°A — TA.

For a graded quiver A, denote by sA its suspension, the
graded quiver given by ObsA = ObA and (sA(X,Y))" =
A(X, V)" for each n € Z and X,Y € ObA. An A -cat-
egory is a graded quiver A equipped with a differential b :
TsA — TsA of degree 1 such that (T'sA, Ay, pry, ing, b) is an
augmented differential graded cocategory. In other terms, the
equations

b2:0, bAOZAo(b®1+1®b), pr‘OZO, iIlobZO

hold true. Denote by

def
bmn -

[T7sA 22 TsA 5 TsA 2 T s A

matrix coefficients of b, for m,n > 0. Matrix coefficients b,
are called components of b and abbreviated by b,,. The above
equations imply that by = 0 and that b is unambiguously
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determined by its components via the formula

by = E 1P @ b, ® 197 : T™sA — T"sA, m,n = 0.
ptk+q=m
p+1+g=n

The equation b = 0 is equivalent to the system of equations

S O @b @15y = 0: T"sA — sA, m > 1.
ptk+g=m

For A..-categories A and B, an A, -functor f: A — Bis a
morphism of augmented differential graded cocategories f :
TsA — TsB. In other terms, f is a morphism of augmented
graded cocategories and preserves the differential, meaning
that fb=0bf. Denote by

Jon &
matrix coefficients of f, for m,n > 0. Matrix coefficients f,,1
are called components of f and abbreviated by f,,. The con-
dition that f is a morphism of augmented graded cocategories
implies that fy = 0 and that f is unambiguously determined
by its components via the formula

Frnn = Z fao®---@fi, :T"sA—T"sB, m,n > 0.

[Tms.A s A ER TsB 2o, T”SB}

The equation fb = bf is equivalent to the system of equations

= ) (IR0 ®1%) fyig: T"sA — 5B,
ptk+q=m

for m > 1. An A,-functor f is called strict if f, = 0 for
n > 1.
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3. DEFINITIONS

3.1. Definition (cf. [2,4]). An A-category A is strictly uni-
tal if, for each X € ObA, there is a k-linear map xif' :
k — (sA)"H(X,X), called a strict unit, such that the fol-
lowing conditions are satisfied: Xi{]{bl = 0, the chain maps
(1 ® yig )by, —(xift @ )by : SA(X,Y) — sA(X,Y) are equal
to the identity map, for each X,Y € ObA, and (-+- ® if' ®
)b, =01if n > 3.

For example, differential graded categories are strictly uni-
tal.

3.2. Definition (Lyubashenko [8, Definition 7.3|). An A.-ca-
tegory A is unital if, for each X € ObA, there is a k-linear
map xif' : k — (sA)71(X, X), called a unit, such that the
following conditions hold: xif'b; = 0 and the chain maps
(1@ yighby, —(xift @ 1)by : SA(X,Y) — sA(X,Y) are homo-
topic to the identity map, for each X,Y € ObA. An arbi-
trary homotopy between (1 ® yig')by and the identity map is
called a right unit homotopy. Similarly, an arbitrary homo-
topy between —(xiy' ® 1)by and the identity map is called a
left unit homotopy. An A-functor f : A — B between uni-
tal A.-categories is unital if the cycles Xiélf 1 and Xfi(? are
cohomologous, i.e., differ by a boundary, for each X € ObA.

Clearly, a strictly unital A.-category is unital.

With an arbitrary A.-category A a strictly unital A..-cat-
egory A* with the same set of objects is associated. For each
X,Y € ObA, the graded k-module sA*(X,Y) is given by

sA(X,Y) if X A£Y,

AS(X,Y) = .
AT Y) &MXXMMﬂﬁ itX =Y,
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where xif"™ is a new generator of degree —1. The element
xi?*" is a strict unit by definition, and the natural embedding
e: A — A" is a strict A,-functor.

3.3. Definition (Kontsevich-Soibelman [6, Definition 4.2.3]).
A weak unit of an A,.-category A is an A,.-functor U : A% —
A such that

(A5 a* LAl =ida.
3.4. Proposition. Suppose that an A.-category A admits a
weak unit. Then the A, -category A is unital.

Proof. Let U : A — A be a weak unit of A. For each

X € ObA, denote by xif' the element xif"U; € sA(X, X)

of degree —1. It follows from the equation U,;b; = b U; that

xigtby = 0. Let us prove that xif' are unit elements of A.
For each X,Y € ObA, there is a k-linear map

h=(1®yiy)lUs: sA(X,Y) — sA(X,Y)
of degree —1. The equation
(3.1) (1®b;+b @ 1)U+ byUy = Ushy + (U @ Uy)by
implies that
—~bih +1=hb + (1®yigHby : sA(X,Y) — sA(X,Y),

thus h is a right unit homotopy for A. For each X,Y € ObA,
there is a k-linear map

h' = —(xip®@ 1)Uy : sA(X,Y) — sA(X,Y)
of degree —1. Equation (3.1) implies that
bih —1=—hb + (xif @ )by : sA(X,Y) — sA(X,Y),

thus A’ is a left unit homotopy for A. Therefore, A is unital.
O
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3.5. Definition (Fukaya [2, Definition 5.11]). An A.-cate-
gory C is called homotopy unital if the graded quiver

CT=CakCa® sk

(with ObCT = ObC) admits an A.-structure b* of the follow-
ing kind. Denote the generators of the second and the third
direct summands of the graded quiver sCT = sC @ skC @ s?kC
by xi$" = 1s and j§ = 152 of degree respectively —1 and —2,
for each X € ObC. The conditions on b* are:

(1) for each X € ObE, the element xi ¥ i — jSb} is
contained in sC(X, X);

(2) CF is a strictly unital A,-category with strict units
(i€, X € Obe;

(3) the embedding € < €t is a strict A,-functor;

(4) (sC @ s*kC)®"b C sC, for each n > 1.

In particular, €* contains the strictly unital A.-category
G = C k€. A version of this definition suitable for filtered
A.-algebras (and filtered A..-categories) is given by Fukaya,
Oh, Ohta and Ono in their book [3, Definition 8.2].

Let D be a strictly unital A.-category with strict units i2.
Then it has a canonical homotopy unital structure (DT, b7).
Namely, j2b7 = xiy" — xif’, and b, vanishes for each n > 1
on each summand of (sD @ s’kD)®" except on sD®", where
it coincides with b2. Verification of the equation (b*)% = 0 is
a straightforward computation.

3.6. Proposition. An arbitrary homotopy unital A, -cate-
gory is unital.

Proof. Let € C €1 be a homotopy unital category. We claim
that the distinguished cycles xi§ € C(X, X)[1]7!, X € ObC,
turn € into a unital A.-category. Indeed, the identity

(1@bf +b] @1)bg +b3b] =0
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applied to s€ ® j° or to j® ® sC implies
(1@iHS =1+ (1@ + (1 ®j%by  : s€ — sC,
(i @ 1)bS = =1+ (G @ 1)b b€ 4+ bE(¢ @ 1)b] : s€ — sC.

Thus, (1®j%)b : s€ — sC and (j*® 1)b] : s€C — sC are unit
homotopies. Therefore, the A,.-category C is unital. 0

The converse of Proposition 3.6 holds true as well.

3.7. Theorem. An arbitrary unital A.,-category C with unit
elements i admits a homotopy unital structure (C*,b") with
% =i —i§.
Proof. By |9, Corollary A.12|, there exists a differential graded
category D and an A, -equivalence ¢ : € — D. By [9, Re-
mark A.13], we may choose D and ¢ such that ObD = ObC
and Ob¢ = idppe. Being strictly unital D admits a canonical
homotopy unital structure (DT,b%). In the sequel, we may
assume that D is a strictly unital A,.-category equivalent to
C via ¢ with the mentioned properties. Let us construct si-
multaneously an A..-structure b* on € and an A..-functor
¢T : €T — DT that will turn out to be an equivalence.

Let us extend the homotopy isomorphism ¢; : s€ — sD to
a chain quiver map ¢; : sC* — sD*. The A.-equivalence
¢ : € — D is a unital A,-functor, i.e., for each X € ObC,
there exists vy € D(X, X)[1]72 such that xi} — xiS¢1 = vxb;.
In order that ¢T be strictly unital, we define xi$ ¢ = xi3".
We should have

@ @ . @ :C
JX¢IL51L = .]berﬁ— = X1y ¢f— — xly¢y
«Psu <D <D .C @
= xly — xly + xiy — xigP1 = (JX + Ux)bfr>

so we define j$of =j% + vx.
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We claim that there is a homotopy unital structure (€, b")
of C satisfying the four conditions of Definition 3.5 and an
Aqo-functor ¢t : €T — DT satisfying four parallel conditions:

(1) the first component of ¢* is the quiver morphism ¢
constructed above;

(2) the A-functor ¢ is strictly unital;

(3) the restriction of ¢t to € gives ¢;

(4) (sC @ s*kC)®"¢" C sD, for each n > 1.

Notice that in the presence of conditions (2) and (3) the first
condition reduces to j$(¢1); = j% + vx, for each X € ObC.

Components of the (1,1)-coderivation b* : T'sCt — T'sC* of
degree 1 and of the augmented graded cocategory morphism
¢ : TsCT — TsDT are constructed by induction. We already
know components b; and ¢; . Given an integer n > 2, assume
that we have already found components b} . ¢ of the sought
bT and ¢t for m < n such that the equations

(3.2) ((b")Hm =0 :T"sCT(X,Y) — sCH(X,Y),
(@70 )m = (070 )m: T"sCT(X,Y) — sDT(X [, Y f)

are satisfied for all m < n. Define bJr ¢+ on direct summands
of T"sC* which contain a factor i5 by the requirement of
strict unitality of C* and ¢*. Then equations (3.2), (3.3)
hold true for m = n on such summands. Define b}, ¢ on the
direct summand T"sC C T"sCT as b and ¢,,. Then equations
(3.2), (3.3) hold true for m = n on the summand 7"sC. It
remains to construct those components of b* and ¢ which
have j¢ as one of their arguments.

Extend by : s€ — s€ to b} : s€T — sC* by i{ ¥, = 0 and
i, = 0. Deﬁne by = b —b, : sCT — sCT. Thus b;\sesu =0,
ebl =i$ — i and b = b] + by . Introduce for 0 < k < n
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the graded subquiver Ny C T"(sC & s’kC€) by
Ny, = £ T"sCRi¢@TrsC® - ®j%® TP sC
po+p1t+-+pg+k=n
stable under the differential d™ = Y ptitqen
and the graded subquiver P; C T"sCT by
P, = D TPsCU i@ TPsCY ®- - @) @ TP sC.
po+p1++pH=n

197 @ by @ 199,

There is also the subquiver

k
Q=P P cTsC
1=0
and its complement

Q= P cTset
I=k+1
Notice that the subquiver Q, is stable under the differential
d% = D piirqen 1P ®@ b ® 199, and Qi is stable under the
differential d% = D pitiqen 1P @Y ® 1%9. Furthermore, the
image of 19* ® b ® 1%°: N, — T"sC* is contained in Qj_;
for all a,c > 0 such that a + 1+ ¢ = n.

Firstly, the components b, ¢." are defined on the graded
subquivers Ny = T"sC and 9, = T"sC". Assume for an
integer 0 < k < n that restrictions of b, ¢, to N; are already
found for all [ < k. In other terms, we are given b} : Q;_; —
sCt, ¢f : Q1 — sD such that equations (3.2), (3.3) hold
on Q1. Let us construct the restrictions b : Ny — sC,
ot : Ny — sD, performing the induction step.

Introduce a (1,1)-coderivation b : TsCT — T'sC* of degree
1 by its components (0,b7,...,b5 1,pro, , - btlo, ,,0,...).
Introduce also a morphism of augmented graded cocategories
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¢ . TsCt — TsD* with Obd = Ob¢ by its components
(61, by 1,prg, - dflo,1,0,...). Here prg  :T"sC*T —
Qy._1 is the natural projection, vanishing on Qz ;. Then A oo

b> : TsCt — TsCt is a (1,1)-coderivation of degree 2 and

y et —gbt +bg : TsCT — TsDV is a (q;, $)-coderivation of

degree 1. Equations (3.2), (3.3) imply that A, = 0, v,,, = 0 for
m < n. Moreover, \,, v, vanish on Q;_;. On the complement
the n-th components equal

1<r<n
A= > (1% @b @19)b) .
a+r+c=n
+ 3 1@l ® 19, : 9, — se7,
a+14c=n
1<r<n
v, = — Z (6F @ --- @ ¢ )bf
114+ ir=n
1<r<n
+ > (1% ®1%)¢),,,.
a+r+c=n
+ Y (1% @b ®1%)¢, 1 9, — sD.

a+14c=n

The restriction A, |, takes values in sC. Indeed, for the first
sum in the expression for A, this follows by the induction
assumption since r > 1 and a+1+c¢ > 1. For the second sum
this follows by the induction assumption and strict unitality if
n > 2. In the case of n = 2, k = 1 this is also straightforward.
The only case which requires computation is n = 2, k = 2:

(°®i%A@by +by @1)b =i~ (°®if )by —j°— (5 ®@j%)b7,

which belongs to s€ by the induction assumption.
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Equations (3.2), (3.3) for m = n take the form

(34) —bibi— > (1% @V @1%) = A, : Ny — sC,
a+1+c=n
(3.5)
Gibi— Y (1%°@U @199, — bi¢y = v, : Ny, — sD.

a+14c=n

For arbitrary objects X, Y of €, equip the graded k-module
Ni(X,Y) with the differential d™ = D piiiqgen 1P @D @191
and denote by u the chain map

gk(Nk(Xv Y),SG(X, Y)) - gk(Nk(Xv Y)7S(D(X¢7 Y¢))7
A= Aoy

Since ¢; is homotopy invertible, the map u is homotopy invert-
ible as well. Therefore, the complex Cone(u) is contractible,
e.g. by [8, Lemma B.1|, in particular, acyclic. Equations (3.4)
and (3.5) have the form —bfd = \,,, ¢;"d + b}u = v, that is,
the element (A, v,) of

GNK(X,Y), sC(X,Y) ® (N (X, Y), sD(X ¢, Y¢))

= Cone' (u)
has to be the boundary of the sought element (b, ¢;") of

gﬂlg(Nk(Xv Y)v SG(X7 Y)) ) QE(N]@(X, Y)? S(D(X¢7 Y¢))

= Cone(u).

These equations are solvable because (\,,v,) is a cycle in
Cone'(u). Indeed, the equations to verify —\,d = 0, v,d +
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Au = 0 take the form
bt Y (1P @Y @ 1%\, =0: N — sC,

p+1+g=n

anl + Z (1®p X bll ® 1®q)Vn - /\n¢1 =0: Nk — sD.

pt+1l+g=n

Composing the identity —Ab+ b\ = 0 : T"sC@T — T'sC* with
the projection pr; : T'sCT — sC* yields the first equation.
The second equation follows by composing the identity vb™ +
bv — \p =0 : T"sC* — T'sD+ with pr, : TsDt — sDt.
Thus, the required restrictions of b}, ¢! to Ni (and to
Q) exist and satisfy the required equations. We proceed by
induction increasing k from 0 to n and determining b, ¢
on the whole Q, = T"sCt. Then we replace n with n + 1
and start again from 7"*1sC. Thus the induction on n goes
through. 0

3.8. Remark. Let (C*,b") be a homotopy unital structure
of an A,.-category C. Then the embedding A.-functor ¢ :
C — @' is an equivalence. Indeed, it is bijective on objects.
By [8, Theorem 8.8] it suffices to prove that ¢; : s€ — sC*
is homotopy invertible. And indeed, the chain quiver map
1 sCT — 5@ mle = id, xi§ ™ = xi§, j$m = 0, is
homotopy inverse to ¢;. Namely, the homotopy h : sCT —
sCt, hlse = 0, xi$ h = j$, j$h = 0, satisfies the equation
idseJr — Tl = hbi’— + bi’—h
The equation between A.-functors

eSer Lo =[el Dl

obtained in the proof of Theorem 3.7 implies that ¢* is an
Aqo-equivalence as well. In particular, ¢ is homotopy invert-
ible.
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The converse of Proposition 3.4 holds true as well, how-
ever its proof requires more preliminaries. It is deferred until
Section 5.

4. DOUBLE CODERIVATIONS

4.1. Definition. For A_-functors f,g : A — B, a double
(f, g)-coderivation of degree d is a system of k-linear maps

r: (TsARTsA)X,Y) = TsB(Xf,Yg), X,Y € ObA,
of degree d such that the equation
(41)  rAo=(A@(fr)+ (1@ A)(r®yg)

holds true.

Equation (4.1) implies that r is determined by a system of
k-linear maps rpr; : T'sA ® TsA — sB with components of
degree d

T SA(Xo, X1) @ -+ @ SA(Xptm—1, Xntm)
— $B(Xof, Xntm9),
for n,m > 0, via the formula
Tk = (T|7nsaermsn)pry : T"8A @ T™sA — T*sB,

(4.2)
pt+lt+g=k

Tnmsk = § fi1®'“®fip®ri7]’®gj1®.“®gjq‘
i1+ tipti=n,
Jit-+jgti=m

This follows from the equation

(143) ral = > (AFT AT (T er @ g™
p+14+q=l

TsA® TsA — (TsB)®,
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which holds true for each [ > 0. Here A((]O) = ¢, A((]l) = id,

A((]2) = Ay and A(()l) means the cut comultiplication iterated
[ — 1 times.

Double (f, g)-coderivations form a chain complex, which we
are going to denote by (Z(A, B)(f,g), B1). For each d € Z,
the component Z(A, B)(f, g)? consists of double (f, g)-coderi-
vations of degree d. The differential B; of degree 1 is given
by

rBy b — ()1 @b+be 1),
for each r € 2(A, B)(f,g)? The component [rBi], ., of B
is given by
(4.4)

Z (fi,® - ® fi, ®7i; ® gjy ® -+ ® gj,)bpt144

i1 tipti=n,
Jrt-tigti=m

- (_)T Z (1®a & bk ® 1®C+m)7ﬂa+1+c,m
a+k4c=n

- (_)T Z (1®n+u ® bt ® ]-®U)Tn,u+1+w
u+t+v=m
for each n,m > 0. An A,-functor h : B — C gives rise to a
chain map

DA, B)(f,9) — 2(A,C)(fh,gh), 1+ rh.

The component [rh, ,, of rh is given by

(4.5) Z ([ ® - ®f,®7;®79; @ - ®7j, ) hpt14q,

i1+ ipti=n,
Juttigti=m

for each n,m > 0. Similarly, an A,-functor k& : D — A gives
rise to a chain map

(A, B)(f,9) = Z(D,B)(kf, kg), 1 (kQk)r
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The component [(k ® k)7]nm of (k@ k)r is given by
(4.6) > (k@ @k, ®kj, @ @ kj)rpg,

i1t tip=n
J1+etig=m

for each n,m > 0. Proofs of these facts are elementary and
are left to the reader.

Let € be an A.-category. For each n > 0, introduce a
morphism

v, = Z(_)nfi(l@)i Re® 1®n7i) . (Tse)®n+1 N (TS€)®n,

i=0

in 2/0bC. In particular, vy = ¢ : Ts€ — kObC. Denote
v=u=(1®e)—(e®1): TsC®TsC — TsC for the sake of
brevity.

4.2. Lemma. The map v : TsC ® TsC — TsC is a double
(1, 1)-coderivation of degree 0 and vB, = 0.

Proof. We have:

(A )(1ev)+ (1 A)(rel)
=A@ 1)(1®1®e)— (A1) (1®e®1)
+(108)(1®exl) - (12A)(E®1®1)
=(Ag®e)— (@A) =((1®e) = (e®1))A¢ = VA,

due to the identities

(A21)(1Re]1)=101=(10A)(1®:®1):
TsC®TsC — TsC®TsC.

This computation shows that v : TsC ® Ts€C — TsC is a
double (1, 1)-coderivation. Its only non-vanishing components
are xyr1p = 1 : sC(X,Y) — sC(X,Y) and xyvp; = 1 :
sC(X,Y) — sC(X,Y), X,Y € ObC.
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Since vB; is a double (1,1)-coderivation of degree 1, the
equation vB; = 0 is equivalent to its particular case vBypr; =
0, i.e., for each n,m > 0

Z (1" @i @ 1% )by iy 14mj

0<ign,
0jsm

o Z (1®a ® by @ 1®C+m)’/a+1+0,m
a+k+c=n

_ Z (1®n+u ® bt ® 1®v)7/n,u+1+v =0:

u+t+v=m

T"sC® T™sC — sC.
It reduces to the identity

x(n > 0)byim — x(m > 0)byim
- X(m = O)bn + X(n = O)bm =0,
where x(P) = 1 if a condition P holds and x(P) = 0 if P
does not hold. [l

Let € be a strictly unital A,-category. The strict unit i$
is viewed as a morphism of graded quivers i$ : kOb€ — sC of
degree —1, identity on objects. For each n > 0, introduce a
morphism of graded quivers

onil 1®I§e18--®ifel

& = [(TSG)
Ts€®SG®Ts€®--~®s€®Ts€&Ts(ﬂ,

of degree —n, identity on objects. Here ;1) denotes com-
position of 2n + 1 composable arrows in the graded cate-
gory T'sC. In particular, § = 1 : T'sC — TsC. Denote
E=6=10i5e1)u® : TsC® T'sC — TsC for the sake of
brevity.
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4.3. Lemma. The map £ : TsC ® T's€C — T'sC is a double
(1,1)-coderivation of degree —1 and {B; = v.

Proof. The following identity follows directly from the defini-
tions of p and Ag:

pAo= (Mo (1@ u) + (1@ A)(p®1)—1:
TsC® TsC — TsC® TsC.

It implies

(4.7)
PPN = (2210 1)(1® )+ (1010 A)E® @1)
+(1A @) (u@u)—1leop) —(pel):
TsC®TsC®TsC— TsC® TsC.

Since iSAg = i @ n + 1 ®@i$ : kObC — T'sC ® T'sC, it follows
that

(1®ifA@1)(nop) — (1@ (if@1)p) - (1®if)pe1) =0 :
TsCRTsC — TsC®TsC.

Equation (4.7) yields

(leif® Hu®A,
= (A1) (1o (1eifel)u®)+(1oA)(1eifel)pP ®1),

e, & = (1®if @ 1)u® : TsC @ TsC — TsC is a double
(1,1)-coderivation. Its the only non-vanishing components
are x& o = xi§ € s€(X, X), X € ObC.

Since both By and v are double (1, 1)-coderivations of de-
gree 0, the equation £¢B; = v is equivalent to its particular
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case {Bipr; = vpry, i.e., for each n,m > 0

D (P @6, @ 1% Dy pyrimyg

0<p<n
0<gsm

+ Z (1®a & bk‘ & 1®C+m)§a+1+am
a+k+4c=n

+ Z (1®n+u ® bt ® 1®U>§n,u+l+v = Upm :
uttt+v=m

T"sC® T™sC — sC.
It reduces to the the equation

(1" @15 @ 1%™)Vbp i1 1m = Vnm : T"sC @ T™sC — €,

which holds true, since i is a strict unit. O

Note that the maps v,, &, obey the following relations:
(4.8)
&=(Ga®lE =010~ (Ba®l), n>Ll
In particular, &, = 0 : (T'sC)®" ™! — kODC, for each n > 1,
as £ = 0 by equation (4.3).
4.4. Lemma. The following equations hold true:

n

(49) LA =) (1¥®@A20 @19 )(&E® &), n =0,
=0

(4.10) &b —(=)"> (1 @b@ 1" g, = vpbpoy, n > 1.

1=0

Proof. Let us prove (4.9). The proof is by induction on n. The
case n = 0 is trivial. Let n > 1. By (4.8) and Lemma 4.3,

£nlo = (§n1®1)EA¢ = (§,-140®1)(1RE)+(§n-1@A0) (E@1).
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By induction hypothesis,

n—1
EiaBo =Y (19 ® Ay @ 1" )(& ® &),
i=0
therefore
n—1
£l = (1% @ Ag @ 15" ) (& @ 1@ 1)1 ©6)
i=0

+ (17" @ Ao)((§u-1® 1)E@ 1)

=) (1 @80 @19"7)(& @ &),
i=0
since (§-1, @ 1)=&, if0<i<n—1
Let us prove (4.10). The proof is by induction on n. The
case n = 1 follows from Lemma 4.3. Let n > 2. By (4.8) and
Lemma 4.3,
&b — (=" (1 @b 19",

1=0

—_

n—

= (@1~ (-)" ) (1T @be 1% 17)E, 1 ®1)¢

7

Il
o

— (9)"(1®" @ b) (&1 @ 1)€
= —(£1b®@ 1) = (§1 @ D)+ (§1 @ v

n—1

H(=)"DY (AT @b 19 )g L @ 1)E + (§umt @ D)E
=0
= (fnfl & 1)7/

—_

n—

- ([Sn—lb — (=) (1¥ebe 1®n_1_i)§n—1} ® 1)5~

Il
o

7
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By induction hypothesis

—_

gnflb - (_)nil (1®Z ® b & 1®n717i)§n71 = Vn71€n727

i

Il
o

therefore

n

fnb—(_)n Z(1®Z®b®1®nil)§n = (€n71®1)7/—(1/n71§n72®1)§'

=0

Since by (4.8),

(gn—l ® 1)7/ - (Vn—lgn—2 ® 1)5
= (fnfl ® 8) - (fnflg ® 1) - (anl ® 1)67171
= (1®n ® 8)6,1,1 - (anl ® 1)67171 = annfla

equation (4.10) is proven. O

5. AN AUGMENTED DIFFERENTIAL GRADED COCATEGORY

Let now € = A*, where A is an A,-category. There is an
isomorphism of graded k-quivers, identity on objects:

C: @(Tsﬂ)®"+1[n] — TsA™.
n>0
The morphism ( is the sum of morphisms

—-n

(5.1) Cu = [(TsA)E™[n] 5 (TsA)=m+!

e®n+1 1 &n

s (TsA™)E"H 25 Ts A,
where e : A — A® is the natural embedding. The graded
quiver

&= P(TsA)* ]

n=0
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admits a unique structure of an augmented differential graded
cocategory such that ¢ becomes an isomorphism of augmented
differential graded cocategories. The comultiplication A :
& — & ® € is found from the equation

[€ & TsA™ 2% TsA™ @ TsA™]
—[e L ewe S TsAv @ TsA™).

Restricting the left hand side of the equation to the summand
(TsA)®" 1 n] of €, we obtain

CnAO = Sin6®n+1§nAO
=g " Z(e@)i ® ey ® e®”_i)(§i ®&ni):
i=0
(TsA)®" 1 n] — TsA™ @ TsA™,

by equation (4.9). Since e is a morphism of augmented graded
cocategories, it follows that

CnAO —g " Z(]_@z ® AO ® 1®n—i)(€®i+1£i ® 6®n_i+lfn—i)
=0
— g Z(1®i ® AO ® 1®n—z‘)(8i ® Sn—i)(ci ® Cn—z) :
=0
(TsA)®" 1 n] — TsA™ @ TsA™.
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This implies the following formula for A:

n

(5.2) Algsayorsipg =5 (1% ® A @ 1°"7)(s' @ ") -
=0

(TsA)®"*[n] — @(TM)@Z‘H[@] Q)(TsA)= " n — ).

The counit of € is & = [ 2% TsA < kObA = kOb€]. The
augmentation of € is 7 = [kOb& = kObA L TsA 2% €]. The
differential b : € — € is found from the following equation:

(&5 TsA™ b TsA] = [e L e S Taan].

Let by, ¢ (TsA)®" n] — (T'sA)*™[m], n,m > 0, denote
the matrix coeflicients of b. Restricting the left hand side of
the above equation to the summand (T'sA)®"[n] of &, we
obtain

Cub = 57D

= 5" L+ ()T Y (€T @eb® e g, :
=0

(TsA)®" 1 [n] — TsA™,

by equation (4.10). Since e preserves the counit, it follows
that

ey, = 1,e®" : (TsA)" T — (Ts A",
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Furthermore, e commutes with the differential b, therefore

Cnb = anynsnfl(87(n71)6®n§n71)
+(—=)"s " Z(l@ ®b® 15" (s ¥ HE,)
i=0

= 5 "8y + (=) Z(l@ ®b® 195",
i=0
(TsA)®" 1 [n] — TsA™.
We conclude that
(53) by =(—)"s" Y (19 @b@ 1" 75" :
i=0
(T'sA)®"H[n] — (TsA)*"n],
for n > 0, and

(5.4) bpp_1 =58 "v,s" " (TsA)®" T [n] — (T'sA)®"[n — 1],

for n > 1, are the only non-vanishing matrix coefficients of b.

Let g : € — T'sB be a morphism of augmented differential
graded cocategories, and let g, : (T'sA)*" " [n] — TsB be its
components. By formula (5.2), the equation gAy = E(g ®g)
is equivalent to the system of equations

gnAO —g " Z(1®z‘ ® Ay ® 1®n—i)(8igi ® Sn—ign_i) :
i=0
(TsA)®" 1 [n] — TsB®TsB, n>0.
The equation ge = £(kObg) is equivalent to the equations
goe = £(kObgp), gne = 0, n = 1. The equation 77g = (kObg)n
is equivalent to the equation ngy = (kObgg)n. By formu-
las (5.3) and (5.4), the equation gb = bg is equivalent to
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gob = bgy : TsA — TsB and

gub=(=)"s" Y (1¥ @b @17 )s"gy + 5 "vps" gy :
i=0
(TsA)®" 1 [n] — TsB, n>1.
Introduce k-linear maps ¢, = s"g, : (TsA)®"T(X,Y) —
TsB(Xg,Yg) of degree —n, X, Y € ObA, n > 0. The above
equations take the following form:

n

(5.5) dnlo =Y (1% ® A @ 1%" ) (¢ ® prs) :
=0
(TsA)®" ' — TsB @ T'sB,
forn > 1;

n

(5.6) b= (=)"> (1% @bR 1" )d, + vydn_1 :

i=0
(TsA)®" T — TsB,
forn > 1;
(5.7) Bolo = No(o ® Bo), doc =€, Bob = by,
(5.8) bne =0, n>1.

Summing up, we conclude that morphisms of augmented dif-
ferential graded cocategories & — T'sB are in bijection with
collections consisting of a morphism of augmented differen-
tial graded cocategories ¢g : T'sA — TsB and of k-linear
maps ¢, : (TsA)®"T(X,Y) — TsB(X¢pg,Yy) of degree
—n, X,Y € ObA, n > 1, such that equations (5.5), (5.6),
and (5.8) hold true.

In particular, A, -functors f : A* — B, which are aug-
mented differential graded cocategory morphisms T'sA% —
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T'sB, are in bijection with morphisms g = (f : € — T'sB of
augmented differential graded cocategories. With the above
notation, we may say that to give an A,-functor f : A — B
is the same as to give an A, -functor ¢y : A — B and a system
of k-linear maps ¢, : (T'sA)*"™(X,Y) — TsB(X¢o, Y ¢g) of
degree —n, X, Y € ObA, n > 1, such that equations (5.5),
(5.6) and (5.8) hold true.

5.1. Proposition. The following conditions are equivalent.
(a) There exists an An-functor U : A* — A such that

[A St DAl = ida.

(b) There exists a double (1,1)-coderivation ¢ : TsA ®
TsA — TsA of degree —1 such that ¢ B, = v.

Proof. (a)=-(b) Let U : A** — A be an A.-functor such that
eU = idy, in particular ObU = id : ObA* = ObA — ObA.
It gives rise to the family of k-linear maps ¢, = s"C,U :
(TsA)*"THX,Y) — TsB(X,Y) of degree —n, X,Y € ObA,
n > 0, that satisfy equations (5.5), (5.6) and (5.8). In par-
ticular, ¢g = eU = id4. Equations (5.5) and (5.6) for n = 1
read as follows:

180 = (Ao ® 1)(do ® ¢1) + (1 ® Ao)(d1 @ o)
= (Ao @1)(1®@¢1) + (1 ®Ay)(P1 ®1),
p1b=(1b+b@ 1)1+ 1199 = (1Rb+b®D 1)y + 1.
In other words, ¢, is a double (1, 1)-coderivation of degree —1
and d)lBl = V.
(b)=(a) Let ¢ : TsA ® T'sA — TsA be a double (1,1)-

coderivation of degree —1 such that ¢ B; = v. Define k-linear
maps

bp : (TsA)P"THXY) — TsA(X,Y), X,Y € ObA,
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of degree —n, n > 0, recursively via ¢g = idy and ¢, =
(pn—1®1)p, n > 1. Let us show that ¢, satisfy equations (5.5),
(5.6) and (5.8). Equation (5.8) is obvious: ¢ne = (¢p_1 ®
1)gpe = 0 as ¢ = 0 by (4.3). Let us prove equation (5.5) by
induction. It holds for n = 1 by assumption, since ¢; = ¢ is
a double (1, 1)-coderivation. Let n > 2. We have:

Pnlo = (Pn-1 @ 1)p1A¢
= (Gp—1 @ D)((Ao @ 1)1 ® 1) + (1@ Ag)(p1 @ 1))
= (Pn-1D0® 1)(1 ® ¢1)
+ (17" @ Ao) ((pn1 @ 1)1 @ 1).

By induction hypothesis,

n—1
G180 =Y (17 @ Ag @ 1" ) (1 ® dp14),
=0
so that
n—1
Bnlo =Y (19 @A) @ 1% 7)(¢i ® dp 1 @ 1)(1® 1)
=0

+ (1" @ Ao) (-1 @ 1)y @ 1)

= (1@ A0 @ 1"7) (¢ ® dn_i),

1=0

since (¢n_1- ® 1)1 = ¢pp—, 0 <3 < — 1.
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Let us prove equation (5.6) by induction. For n = 1 it is
equivalent to the equation ¢ B; = v, which holds by assump-
tion. Let n > 2. We have:

n

b — (=" Y (17 @b@ 17" )¢,

1=0

—_

n—

= (o1 @ 1)gb— ()" ) (17 @b@ 1" )1 @ 1)¢

%

I
o

— (9)"A®" @ b)(pp1 @ 1)
= —(¢pn-1b@ 1) — (pn_1 @ b)p + (Ppp_1 ® 1)1/

n—1

+ ()" (T @b 1 g1 @ 1) + (¢t @ b)o
=0
= (anfl X 1)7/

—_

n—

([t T sbe 1m0, ] @ 1)

%

I
o

By induction hypothesis,

[y

n—

¢nflb - (_)nil (1®Z ® b & 1®n717i>¢n71 = Vn71¢n727

%

I
o

therefore

oub— (=) Y (17 @b@1°" )¢,
1=0
= (Pp-1 @ 1)V = (Vy_1Pp—2 ® 1)0.
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Since by (4.8)

(an,l ® 1)V - (anlqsan ® 1)¢
- (¢n—1 ® 5) - (¢n—15 ® 1) - (Vn—l ® 1)¢n—1
= (1®n ® €)¢n71 - (anl ® 1)¢n71 = ansnfla

and equation (5.6) is proven.

The system of maps ¢,,, n > 0, corresponds to an A, -func-
tor U : A — A such that ¢, = s"(,U, n > 0. In particular,
elU = ¢g = id 4. O

5.2. Proposition. Let A be a unital A..-category. There ex-
ists a double (1,1)-coderivation h : TsA ® TsA — TsA of
degree —1 such that hB; = v.

Proof. Let A be a unital A,-category. By |9, Corollary A.12|,
there exist a differential graded category D and an A..-equiv-
alence f : A — D. The functor f is unital by [8, Corol-
lary 8.9]. This means that, for every object X of A, there
exists a k-linear map xvo : k — (sD)"2(X f, X f) such that
xitfi = x4 + xvobi. Here x;i’ denotes the strict unit of
the differential graded category D.

By Lemma 4.3, £ = (1®i @ u® : TsD @ TsD — TsD
is a (1, 1)-coderivation of degree —1. Let ¢ denote the double
(f, f)-coderivation (f ® f)¢& of degree —1. By Lemma 4.3,

Br=(f@ [)EB) =(fe flr=vf
By Lemma 4.2, the equation vB; = 0 holds true. We conclude
that the double coderivations v € Z(A, A)(ida,1d4)° and ¢« €
PD(A,D)(f, f)! satisfy the following equations:
(59) l/Bl = O,
(5.10) 1By —vf=0.
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We are going to prove that there exist double coderivations
h e P(A,A)(idg,ida)"! and k € 2(A,D)(f, f)~? such that
the following equations hold true:

hBl =V,
hf =1+ ]CBl

Let us put xhoo = xi', xkoo = xvo, and construct the other
components of h and £ by induction. Given an integer ¢t > 0,
assume that we have already found components hy,,, k,, of
the sought h, k, for all pairs (p,q) with p + ¢ < t, such that
the equations

(5.11) (hB1 —v)p, =0
SA(Xo, X1) @ - -+ @ SA(Xpyg-1, Xprg) = sA(Xo, Xpig),

(5.12) (kBi+t—hf)ps=0:
sA(Xo, X1) @ -+ @ SA(Xprg—1, Xptqg) = sD(Xof, Xptef)

are satisfied for all pairs (p, ¢) with p+¢ < t. Introduce double
coderivations i € Z(A, A)(ida,id4) and k € 2(A, D)(f, f)
of degree —1 resp. —2 by their components: Ep,q = hpg,
Ep,q = kypq4 for p 4+ ¢ < t, all the other components vanish.
Define a double (1, 1)-coderivation A = hB; — v of degree 0
and a double (f, f)-coderivation x = kBy + 1 — Ef of degree
—1. Then A\, , =0, K, , = 0 for all p+¢q < t. Let non-negative
integers n, m satisfy n+m = t. The identity AB; = 0 implies
that

n+m

Anmbi = Y (1971 @ by @ 19"\, = 0.

=1
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The (n, m)-component of the identity kB; + Af = 0 gives

n+m

Hn,mbl + Z(1®l_1 X b1 X 1®n+m—l)ﬁn7m + /\n,mfl =0.
=1

The chain map f; : A(Xo, Xpim) — $D(Xof, Xpimf) is ho-
motopy invertible as f is an A, .-equivalence. Hence, the chain
map ¢ given by

GL(N, sA(Xo, Xnim)) = CGN, sD(Xof, Xpsm f)),
A= )\fla

is homotopy invertible for each complex of k-modules N, in
particular, for N = sA(X, X1) @ -+ @ sA(Xpim—1, Xntm)-
Therefore, the complex Cone(®) is contractible, e.g. by [8,
Lemma B.1]. Consider the element (A, fnm) Of

gﬂg(Nv S‘A(X07 Xn-l—m)) D gﬂzl(]\h (D(Xofa Xn+mf))

The above direct sum coincides with Cone™*(®). The equa-
tions — A, ;md = 0, Ky md+Ay @ = 01imply that (A, , Knm) 1S
a cycle in the complex Cone(®). Due to acyclicity of Cone(®),
(Anms Knm) 1s @ boundary of some element (hy, ., —kpnm) of
Cone %(®), i.e., of

gﬂzl(]\h S‘A(X()? Xn-l—m)) S QJIQQ(Nv D(XOfu Xn-l—mf))
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Thus, =k, md + by f1 = Enm, —hnmd = Ay . These equa-
tions can be written as follows:

- hn,mbl - Z (1®u ® bl &® 1®U)hn,m
u+1+v=n+m
= (hB1 = V)nm,
— b+ Y (1% @b @ 1)k + b fi
u+1+v=n+m

= (kBy + ¢ — hf)nm.

Thus, if we introduce double coderivations h and k by their
components: h,, = hy4 kpg = kp, for p+q < t (using
just found maps if p + ¢ = t) and 0 otherwise, then these
coderivations satisfy equations (5.11) and (5.12) for each p, ¢

such that p+q < t. Induction on ¢ proves the proposition. [
5.3. Theorem. Every unital A, -category admits a weak unit.

Proof. The proof follows from Propositions 5.1 and 5.2. [

6. SUMMARY

We have proved that the definitions of unital A..-category
given by Lyubashenko, by Kontsevich and Soibelman, and by
Fukaya are equivalent.
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