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MYKHAYLO BRATYK AND YULIYA MISHURA

THE GENERALIZATION OF THE QUANTILE
HEDGING PROBLEM FOR PRICE PROCESS
MODEL INVOLVING FINITE NUMBER OF

BROWNIAN AND FRACTIONAL BROWNIAN
MOTIONS

The paper is devoted to the problem of quantile hedging of contingent
claims in the framework of a model defined by the finite number of
independent Brownian and fractional Brownian motions. The maxi-
mal success probability depending on initial capital is estimated.

1. Introduction

The problem of hedging of contingent claims is well known in the case of
complete non-arbitrage models. Consider an investor, who wants to ensure
that a claim H will be hedged and operates with an asset, whose price is
modeled by a semimartingale. Necessary and sufficient condition for such
successful hedging is the availability of capital H0 = EP ∗(H), where EP ∗ is
the expectation w.r.t. the unique martingale measure P ∗, i.e. the measure
w.r.t. which the price process Xt is a martingale. If investor is unwilling or
unable to use the whole amount H0 and wants or is able to use a certain
amount ν < H0, it follows from the absence of arbitrage that he cannot
supply the replication of claim H in all possible scenario, i.e. he cannot
hedge the claim H with probability 1.

In this case the problem of quantile hedging for investor can be reduced
to maximization of success probability, i.e. the probability to hedge the
claim H .

In paper [4] the general principles concerning such type of hedging are
considered in the case where the price process is a semimartingale.

In paper [6] the special case of jump-diffusion market is considered, the
stochastic differential equation for hedging strategy is deduced, the hedging
strategy and the price of European option are obtained.
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In paper [2] the model with so called long-range dependence, more ex-
actly, with the unique fractional Brownian and independent Brownian mo-
tion is considered and maximal possible success probability on the available
initial capital ν < H0 is estimated. The market is complete there.

In this paper our aim is to consider incomplete market with several
fractional Brownian motions and independent Brownian motions and to
construct the set on which the investor can hedge the contingent claim and
find the dependence of the estimation of maximal success probability on the
initial capital ν. For technical simplicity we restrict ourselves to the case of
two pairs of such processes.

In Section 2 we sketch the solution of the quantile hedging problem on
the complete non-arbitrage financial market.

In Section 3 we prove the incompleteness of the price process model
defined by two Wiener processes and two fractional Brownian motions and
estimate the successful probability for quantile hedging for this case.

In Section 4 we consider the results of Section 3 for European call option
and illustrate the dependence of the probability of successful hedge on the
initial capital ν.

Let Bi
t (i = 1, 2) be Wiener processes and BHi

t (i = 1, 2) be normalized
fractional Brownian motions (fBm) with Hurst index Hi consequently on
a probability space (Ω, F, P ). The last means that BHi

t is a continuous
Gaussian process with zero mean and stationary increments, which has the
covariance function of the form

EBHi
t B

Hi
s =

1

2

(
s2Hi + t2Hi − |s− t|2Hi

)
, i = 1, 2.

we suppose everywhere that Hi ∈ (1/2, 1), since exactly this case corre-
sponds to the long-range dependence of the model. Consider the so-called
mixed model, where the price process is defined as

Xt = X0 exp
{
mt+ σ1B

1
t + σ2B

2
t + μ1B

H1
t + μ2B

H2
t

}
=

= X0 exp

{
mt+ σ1

(
B1
t +

μ1

σ1

BH1
t

)
+ σ2

(
B2
t +

μ2

σ2

BH2
t

)}
= X0 exp

{
mt+ σ1

(
B1
t + δ1B

H1
t

)
+ σ2

(
B2
t + δ2B

H2
t

)}
, (1)

where δi = μi

σi
, i = 1, 2, X0 > 0 is some constant.

The processes B1
t , B

2
t , B

H1
t , BH2

t are supposed to be mutually indepen-
dent.

The absence of arbitrage in this model follows from existence of at least
one martingale measure for the process (1), i.e. such measure w.r.t. which
the discounted price process will be a martingale. The set of martingale
measures for the price process model is constructed in Section 3.
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2. Quantile hedging on the complete non-arbitrage market

We consider complete stochastic basis (Ω, F, Ft, t ≥ 0, P ). The problem
of quantile hedging is to maximize the probability P {VT ≥ H} over all self-
financing strategies ξ with initial capital equal to fixed V0 ≤ ν, admissible
in the sense that the capital process

Vt = V0 +

t∫
0

ξsdXs (2)

for the strategy ξ is non-negative a.s. for all 0 ≤ t ≤ T , and VT evidently is
a capital at maturity date.

In paper [4] this optimization problem is solved with the help of Neumann-
Pearson lemma. Below we sketch the solution of this problem.

We call the set A = {VT ≥ H} the success set corresponding to chosen
strategy. Define such measure Q∗ that

dQ∗

dP ∗ =
H

H0
. (3)

Then the optimization problem is reduced to maximization of probability
P {A} over all FT -measurable sets A satisfying the condition

V0

H0

=
EP ∗ [HIA]

H0

= EQ∗ [IA] ≤ α :=
ν

H0

. (4)

Put ā = inf
{
a : Q∗ [ dP

dP ∗ > ā ·H] ≤ α
}
. Suppose that

Q∗
[
dP

dP ∗ = ā ·H
]

= 0. (5)

Then by the Neumann-Pearson lemma the optimal set is

A = Aā :=

{
dP

dP ∗ > ā ·H
}
. (6)

Moreover, due to the choice of ā for initial capital ν there exists a strategy
which permits to hedge almost surely the claim H̄ = HIAā, i.e. to hedge H
with probability P (Aā). It is the strategy that maximizes the probability
P (VT ≥ H).

If we consider the simplest case, where the claim H depends only on the
final asset price, i.e. H = HT = f (XT ), then in terms of the Neumann-
Pearson lemma, the problem is reduced to finding such constant ā that the
probability P of the set A = Aa :=

{
dP
dP ∗ > a ·H}

is maximal given that
Q∗ (A) ≤ α = ν

H0
.



30 MYKHAYLO BRATYK AND YULIYA MISHURA

Unfortunately, as it is shown in [2], in case of a so-called mixed Brownian-
fractional-Brownian motion model this set has rather complicated structure,
in particular it depends on the trajectory of the Wiener process Wt on the
whole interval [0, T ], and thus the probabilities Q∗ (A) and P (A) are hardly
computable, which does not permit to use directly the approach, introduced
in [4] even for the simplest payoff functions f (XT ) (e.g., European call
option).

Using the procedure of re-discounting, another type of set was obtained
in [2], and this permits us to avoid aforementioned difficulty. Put

Ãa =

{
a <

XT

X0 · f (XT )

}
, (7)

and let the claim H be hedged on this set, if the initial capital is equal to
ν.

The set Ãā is not necessarily the maximal success probability set for

initial capital ν, nevertheless P
(
Ãā

)
is lower estimate for the maximal

probability. Therefore, one can guarantee successful hedge of the claim

with probability not smaller than P
(
Ãā

)
.

3. Quantile hedging in incomplete case

In the incomplete case the equivalent martingale measure is no longer
unique. The following lemma states the incompleteness of the market de-
fined by price process (1). Note that the processes Bi

t + δiB
Hi
t , i = 1, 2,

consequently Xt, are not semimartingales w.r.t. the filtration generated by
processes B1

t , B
2
t , B

H1
t , BH2

t . Nevertheless, as it is shown in [3], for Hi >
3
4
,

i = 1, 2, the random process Y i
t = Bi

t+δiB
Hi
t is equivalent in distribution to

Wiener process. Moreover, according to [5], there exists the representation

Y i
t = W i

t −
t∫

0

s∫
0

rδi (s, u) dW i
uds, (8)

where W i
t is Wiener process w.r.t. P , r = rδi is Volterra kernel, that is, the

unique solution of equation

r (t, s) +

s∫
0

r (t, x) r (s, x) dx = δ2
iHi (2Hi − 1) · |t− s|2Hi−2, (9)

0 ≤ s ≤ t ≤ T,

which satisfies
t∫

0

s∫
0

(rδi (s, u))2 duds <∞, i = 1, 2. Thus, Y i
t is a semimartin-

gale w.r.t. the natural filtration F Y , generated by the processes Y i
t , i = 1, 2.

In what follows we fix this filtration and we will consider only it.
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Lemma 3.1. Let Hi >
3
4
, i = 1, 2, m̃1(s) is predictable process with respect

to natural filtration F Y , m̃2(s) = m − m̃1(s) and the following conditions
hold: E

∫ t
0
m2
i (s)ds <∞ and

E exp
(
−

T∫
0

(m̃i(s)

σi
+

1

2
σi −

s∫
0

rδi(s, u)dW
i
u

)
dW i

s−

1

2

T∫
0

(m̃i(s)

σi
+

1

2
σi −

s∫
0

rδi(s, u)dW
i
u

)2

ds
)

= 1, i = 1, 2.

Then the model for the process Xt of the form (1) is incomplete since
there exists a family of the martingale measures P ∗ depending on m̃1 and
m̃2, with Radon-Nykodym derivatives of the form

dP ∗

dP

∣∣∣
FY

t

=

2∏
i=1

exp

⎛⎝−
t∫

0

⎛⎝m̃i(s)

σi
+

1

2
σi −

s∫
0

rδi (s, u) dW i
u

⎞⎠ dW i
s−

−1

2

t∫
0

⎛⎝m̃i(s)

σi
+

1

2
σi −

s∫
0

rδi (s, u) dW i
u

⎞⎠2

ds

⎞⎠ . (10)

Proof. The price of asset Xt can be rewritten in the form

Xt = X0 exp
(
mt+ σ1Y

1
t + σ2Y

2
t

)
=

= X0 exp

⎛⎝mt+ σ1W
1
t − σ1

t∫
0

s∫
0

rδ1 (s, u) dW 1
uds +

+σ2W
2
t − σ2

t∫
0

s∫
0

rδ2 (s, u) dW 2
uds

⎞⎠ =

= X0

2∏
i=1

exp

⎛⎝σiW i
t −

1

2
σ2
i t+

t∫
0

(m̃i(s) +
1

2
σ2
i )ds

−σi
t∫

0

s∫
0

rδi (s, u) dW i
uds

⎞⎠ .

Denote

Ŵ i
t = W i

t +

t∫
0

⎛⎝m̃i(s)

σi
+

1

2
σi −

s∫
0

rδi (s, u) dW i
u

⎞⎠ ds, i = 1, 2. (11)
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By the Girsanov theorem this process is Wiener process w.r.t. the measure
P ∗ of the form (10) and then w.r.t. P ∗ the process Xt has the form

Xt = X0

2∏
i=1

exp

(
σiŴ

i
t −

1

2
σ2
i t

)
, (12)

i.e. it is a martingale. (We suppose everywhere that non-risky asset identi-
cally equals 1.)

Correspondingly to the choice of m̃1 and m̃2 we obtain different martin-
gale measures. Thus the martingale measure is not unique and the market
is incomplete. �

Remark. Considering another filtration than F Y , we can obtain another
martingale measures for the process Xt, not defined in Lemma 3.1.

Example 3.1. Let we define the processes

B̃1
t (α) = B1

t cosα− B2
t sinα,

B̃2
t (α) = B1

t sinα +B2
t cosα.

These processes are uncorrelated and, thus, independent. We have

B1
t (α) = B̃1

t cosα + B̃2
t sinα,

B2
t (α) = −B̃1

t sinα + B̃2
t cosα,

and

Xt = X0 exp
{
mt+ σ1

(
B1
t + δ1B

H1
t

)
+ σ2

(
B2
t + δ2B

H2
t

)}
=

= X0 exp
{
mt+ σ1

(
B̃1
t (α) cosα + B̃2

t (α) sinα + δ1B
H1
t

)
+

+σ2

(
−B̃1

t (α) sinα + B̃2
t (α) cosα + δ2B

H2
t

)}
=

= X0 exp
{
mt+ (σ1 cosα− σ2 sinα)B̃1

t (α) + (σ1 sinα + σ2 cosα)B̃2
t (α)+

+μ1B
H1
t + μ2B

H2
t

}
=

= X0 exp
{
mt+ σ̃1B̃

1
t (α) + σ̃2B̃

2
t (α) + μ1B

H1
t + μ2B

H2
t

}
=

= X0 exp

{
mt+ σ̃1

(
B̃1
t (α) +

μ1

σ̃1
BH1
t

)
+ σ̃2

(
B̃2
t (α) +

μ2

σ̃2
BH2
t

)}
=

= X0 exp
{
mt+ σ̃1

(
B̃1
t (α) + δ̃1B

H1
t

)
+ σ̃2

(
B̃2
t (α) + δ̃2B

H2
t

)}
=
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= X0 exp
{
mt+ σ̃1Ỹ

1
t + σ̃2Ỹ

2
t

}
, (13)

where σ̃1 = σ1 cosα − σ2 sinα, σ̃2 = σ1 sinα + σ2 cosα, δ̃i = μi

σ̃i
, Ỹ i

t =

B̃i
t(α) + δ̃iB

Hi
t , i = 1, 2.

Note that in general case we have δ̃i 
= δi, i = 1, 2. Thus, the processes
Ỹ i
t and Y i

t have different Volterra kernels, which are the solutions of (9). It
means that corresponding martingale measures for the process Xt, which
satisfy (10), are different.

Remark. Although the martingale measures, mentioned above, are differ-
ent, the following equality holds:

σ2
1 + σ2

2 = σ̃2
1 + σ̃2

2. (14)

If the contingent claim in incomplete model is not attainable, it is pos-
sible to hedge the claim almost surely by means of superhedging strategy.
As it is mentioned in [4], in such case the least amount of capital, which is
needed to be on the safe side, is given by

inf

⎧⎨⎩V0| ∃ξ : (V0, ξ) admissible, V0 +

T∫
0

ξsdXs ≥ H P − a.s.

⎫⎬⎭.
(15)

Thus, the least needed amount is equal to the largest arbitrage-free price:

U0 := sup
P ∗∈P

E∗[H ] <∞ (16)

where P is the set of all equivalent martingale measures P ∗ satisfying the
conditions of lemma 3.1.

If investor is not able to use whole amount U0 and is willing to use
only amount ν < U0, then he cannot hedge the claim H with probability 1
because of the absence of arbitrage. But if the following inequality holds:

sup
P ∗∈P

EP ∗
[
HIÃa

] ≤ ν, (17)

where Ãa has the form introduced in (7), then an investor with initial capital
ν is able to hedge HIÃa

almost surely, i.e., to hedge H with probability

P
(
Ãa

)
.

We make use of the form (7) of the set Ãa.

Remark. When a increases, the sets Ãa decrease.
So, we look for minimal a, for which the inequality (17) holds. Let consider
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any of martingale measures P ∗ of the form of (10) and find the minimal a,
for which the following inequality holds:

EP ∗
[
HIÃa

] ≤ ν. (18)

In this case an investor with initial capital ν is able to hedge HIÃa
al-

most surely, i.e., to hedge H with probability P
(
Ãa

)
.

Theorem 3.1. Let the function f (x) satisfy the condition ∀z ∈ R :

λ

({
x

f (x)
= z

})
= 0, (19)

where λ is the Lebesgue measure.
Then the probability of successful hedge of the claim H = f(XT ) is at

least P
(
Ãā

)
, where ā is determined by the equation∫

Cā

f

(
X0e

√
Tσy− 1

2
σ2T

)
1√
2π
e−

y2

2 dy = ν (20)

and

Ca =

⎧⎨⎩y
∣∣∣∣∣∣a <

exp
(√

Tσy − 1
2
σ2T

)
f
(
X0 exp

(√
Tσy − 1

2
σ2T

))
⎫⎬⎭ , (21)

where

σ =
√
σ2

1 + σ2
2 . (22)

Proof. With respect to any of the martingale measures P ∗ of the form of
(10) the price process XT has the form (12) and it can be re-written in the
following way:

XT = X0

2∏
i=1

exp

(
σiŴT − σ2

i

2
· T

)
=

= X0 exp(
√
Tσ1ξ1 − σ2

1

2
T +

√
Tσ2ξ1 − σ2

2

2
T ),

= X0 exp(
√
Tσξ − σ2

2
T ), (23)

where ξ1, ξ2 ∼ N (0, 1) and ξ = σ1ξ1 + σ2ξ2 ∼ N (0, σ2
1 + σ2

2).

Remark. For another representation for Xt in the form of (13) the equality
(14) holds and, thus, the representation (23) for XT is true.
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Then

XT

X0f(XT )
=

exp
(√

Tσy − 1
2
σ2T

)
f
(
X0 exp

(√
Tσy − 1

2
σ2T

))
and

EP ∗
[
HIÃa

]
=

∫
Ca

f
(
X0 exp

(√
Tσy − 1

2
σ2T

)) 1√
2π
e−

y2

2 dy . (24)

Thanks to assumptions of the theorem for all a ∈ R we have

λ

⎛⎝⎧⎨⎩y
∣∣∣∣∣∣a <

exp
(√

Tσy − 1
2
σ2T

)
f
(
X0 exp

(√
Tσy − 1

2
σ2T

)) = a

⎫⎬⎭
⎞⎠ = 0,

thus it follows from (24) that EP ∗
[
HIÃa

]
is continuous and non-decreasing

function of a. This implies that for ā = inf
{
a
∣∣EP ∗

[
HIÃa

] ≤ ν
}

one has
EP ∗

[
HIÃā

]
= ν, which is (20).

The set Ãā is not necessarily the maximal success probability set for

initial capital ν, nevertheless P
(
Ãā

)
is lower estimate for the maximal

probability. Therefore, one can guarantee successful hedge of the claim

with probability not smaller than P
(
Ãā

)
. �

4. Quantile hedging for European call option

Let consider European call option

f (XT ) = (XT −K)+ , (25)

where K > 0, and find the representation for the set Ãa =
{
a < XT

X0·f(XT )

}
in this case.

Note that for XT ≤ K the inequality a < XT

X0·f(XT )
= ∞ holds.

For XT ≥ K, the inequality a < XT

X0·f(XT )
takes the form:

XT

X0 (XT −K)
> a,

XT > (XT −K) aX0,

KaX0 > XT (aX0 − 1) . (26)

If aX0 ≤ 1, then (26) is always true, i.e. Ãa = Ω. Thus, when a ≤ 1
X0

we have that Ãa = Ω, but this cannot be true, because by the problem
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formulation it is impossible to hedge the claim almost surely, but on Ãa it
will be hedged.

If aX0 > 1, i.e. a > 1
X0

, then Ãa =
{
XT <

KaX0

aX0−1

}
, at that K < KaX0

aX0−1
.

That is, the set Ãa can be presented in the following form:

Ãa =

{
Ω, a ≤ 1

X0
,{

XT <
KaX0

aX0−1

}
, a > 1

X0
.

(27)

Theorem 4.1. For European call option (25) the maximal probability
of successful hedge is at least Φ (U), where U is given by the equation

X0

(
Φ
(
U − σ

√
T
)
− Φ

(
L− σ

√
T
))

−K (Φ (U) − Φ (L)) = ν, (28)

where

L =
ln K

X0
+ σ2

2
T

σ
√
T

. (29)

and Φ - is standard normal distribution function.

Proof. The function f (XT ) = (XT −K)+, where K > 0, clearly satisfies
the assumptions of Theorem 3.1. Then there exists ā, for which (20) holds
or, equivalently, the inequality (18) turns to equality.

Since in this case the set Ãa has form (27), then the left-hand side (18)
takes the form:

EP ∗ [HIÃ] =

∫
Ã

(XT −K)+ dP
∗ =

∫
	
K<XT<

KaX0
aX0−1


 (XT −K) dP ∗. (30)

Accounting for (23) the inequality K < XT <
KaX0

aX0−1
can be rewritten as:

K < X0e
σ
√
Tξ−σ2

2
T < K

aX0

aX0 − 1
;

ln K
X0

+ σ2

2
T

σ
√
T

< ξ <
ln Ka

aX0−1
+ σ2T

2

σ
√
T

. (31)

Denote:

U = U (a) =
ln Ka

aX0−1
+ σ2

2
T

σ
√
T

. (32)

The inequality (31) takes the form L < ξ < U (a), and equation (20) can
be rewritten as:

EP ∗ [HIÃ] =

U(ā)∫
L

(
X0e

σ
√
Ty−σ2

2
T −K

) 1√
2π
e−

y2

2 dy =
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=

U(ā)∫
L

X0e
σ
√
Ty−σ2

2
T− y2

2√
2π

dy −K (Φ (U (ā)) − Φ (L)) =

= X0

(
Φ
(
U (ā) − σ

√
T
)
− Φ

(
L− σ

√
T
))

−K (Φ (U (ā)) − Φ (L)) = ν,

which means the equality (28).

Now compute P
(
Ãā

)
:

P
(
Ãā

)
= P

(
X0e

σ
√
Tξ−σ2

2
T <

KāX0

āX0 − 1

)
= (33)

= P

(
ξ <

ln Kā
āX0−1

+ σ2T
2

σ
√
T

)
= Φ (U (ā))

If we find U (ā) from equation (28), we can find P
(
Ãā

)
.

Note that to compute P
(
Ãā

)
it is enough to find U = U (ā), and it is

not needed to evaluate ā. �

Example 4.1. For European call option (25) formulae (28), (33) allow

for wishful value of P
(
Ãa

)
to compute U = Ua and, correspondingly, the

necessary capital ν, or vice versa: having ν to compute the success prob-

ability P
(
Ãa

)
. Note that hedge always succeeds with probability at least

P (XT < K) = Φ (L), where L is given by formula (29), thus for XT < K
there is nothing to pay for the claim, which means that it will be hedged
with the void strategy. On the other hand, when the success probability

P
(
Ãa

)
increases from Φ (L) to 1 the necessary capital ν increases from 0

to option’s fair value H0.
Let H = 0, 8, X0 = 1, T = 10, m = 2, σ1 = σ2 = μ2 = μ2 = 1

2
√

2
,

then for different (depending on K ) European calls, fixing P
(
Ãa

)
, we can

compute corresponding values ν.

5. Conclusion

The model defined by two independent Brownian and two fractional
Brownian motions is considered. But all obtained results may be general-
ized for the model defined by the finite number of independent Brownian
and fractional Brownian motions. The set of martingale measures for the
price process model is constructed, which proves the absence of arbitrage
and incompleteness of the financial market. The set Ãā depending on the
available initial investor’s capital ν on which the contingent claim is hedged
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K Φ (L) P
(
Ãa

)
ν H0

5 0,964733 0,99 0,055677 0,23375

2 0,890456
0,9 0,000807

0,418561
0,99 0,210488

1 0,785402
0,9 0,053051

0,570805
0,99 0,352732

0,5 0,63765
0,9 0,141527

0,709281
0,99 0,486208

0,1 0,252797
0,9 0,305201

0,912955
0,99 0,685882

0,01 0,016919
0,9 0,373309

0,990063
0,99 0,76209

with probability 1 is constructed. The maximal success probability of con-
tingent claim hedging is estimated from below by P (Ãā). For different
parameters of the European call option the probability P (Ãā) is computed.
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