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SERGEY V. NAGAEV

ASYMPTOTIC FORMULAS FOR PROBABILITIES

OF LARGE DEVIATIONS OF LADDER HEIGHTS

Asymptotic formulas for large-deviation probabilities of a ladder height in a random
walk generated by a sequence of sums of i.i.d. random variables are deduced.

Two cases are considered:

a) the distribution F (x) of summands is normal with a zero mean.
b) F (x) belongs to the domain of the normal attraction of a stable law with

the exponent 0 < α < 1.

The method of Laplace transforms is applied in proofs.

1. Introduction

Let X,X1, X2, . . . , Xn, . . . be i.i.d. variables with the distribution function F (x), not
degenerate at zero. Put

Sn =
n∑

i=1

Xi, Fn(D) = P(Sn ∈ D).

Introduce the notation

N+ = min
{
n : Sn > 0

}
, N− = min

{
n : Sn ≤ 0

}
.

Let Z+ := SN+ , Z− := SN− be respectively ascending and descending ladder heights,
and

F+(x) = P(Z+ < x), F−(x) = P(Z− > x).
Denote, by H+(x), the renewal function corresponding to the distribution F+ of the
ascending ladder height,

H+(x) =
∞∑

n=0

F+
n (x),

where F+
n , n ≥ 1, is the n-th convolution of F+, F0 is the degenerate distribution

concentrated at zero. Similarly, the renewal function H−(x) is defined by F−.
Notice that

H+(x) = F0(x) +
∞∑

n=1

P
(

min
0<k≤n−1

Sk > 0, 0 < Sn < x
)
,

H−(x) = F0(x) +
∞∑

n=1

P
(

max
0≤k≤n−1

Sk ≤ 0, x < Sn ≤ 0
)

(see [1], Ch.12, § 2).
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Hence,

P(Z+ > x) = −
∫ 0+

−∞
P(X > x− y)dH−(y) =

∫ ∞

x

H−(x− y)dF (y), (1)

if x > 0, and

P(Z− > x) =
∫ ∞

0+

P(X < x− y)dH+(y) =
∫ x

−∞
H+(x− y)dF (y), (2)

if x < 0.
The measure

ν(D) =
∞∑

n=1

Fn(D)
n

(3)

is called the harmonic renewal measure.
Since

Fn(x+ l)− Fn(x) < c(F )
l + 1√
n

(4)

(see, e.g., [2]), the measure ν is σ-finite. Harmonic renewal measures were studied in
[3–7].

For every x > 0, put G+(x) = ν((0, x)). Evidently,

G+(x) =
∞∑

n=1

n−1[Fn(x) − Fn(0+)] <∞.

Similarly, define G−(x) = ν((x, 0]) for x ≤ 0. Harmonic renewal measures are of interest
for us, first of all, because∫ ∞

0

e−sxdH+(x) = exp
{
−
∫ ∞

0+

e−sxdG+(x)
}

(5)

and ∫ 0

−∞
esxdH−(x) = − exp

{
−
∫ 0+

−∞
esxdG−(x)

}
, (6)

which provides the possibility of studying the asymptotic behaviour of H±(±x) as x→
∞.
Proposition. Let

a := EX = 0, 0 < σ2 := EX2 <∞. (7)
Then

lim
s↓0

(∫ ∞

0−
e−sxdG+(x) + ln s

)
= Q− 1

2
ln
σ2

2
, (8)

where

Q =
∞∑

n=1

n−1

[
P(Sn ≥ 0)− 1

2

]
is the Spitzer series, and

lim
s↓0

(
−
∫ 0+

−∞
esxdG−(x) + ln s

)
= −Q− 1

2
ln
σ2

2
. (9)

Hence, by using the refinement of Karamata’s Tauberian theorem given in [8], we
immediately obtain
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Corollary 1. If conditions (7) hold, then

lim
x→±∞

(
G±(x) − ln |x|

)
= C0 ±Q− 1

2
ln
σ2

2
, (10)

where C0 is the Euler constant.

This result is obtained in [7] by using direct probabilistic arguments. Laplace trans-
forms are used in [3,4], however, in the case where the distribution F is concentrated on
a semiaxis or stable. In paper [5], the representation for ν([−x, x]) is obtained under the
condition that EX = 0, E|X |3 < ∞, and some convolution of F (x) has an absolutely
continuous component. In that representation, the Spitzer series Q is absent, which is
quite explainable since, by (8) and (9),∫ ∞

−∞
e−h|x|ν(dx) = −

(
ln s+ ln

σ2

2

)
.

Instead of Laplace transforms, the generalized Fourier transforms are used in [5].
Combining (5) and (8) and then (5) and (9), we obtain

Corollary 2. If conditions (7) are fulfilled, then

lim
s↓0

s

∫ ∞

0−
e−sxdH+(x) =

√
2
σ
eQ (11)

and

lim
s↓0

s

∫ 0+

−∞
e−sxdH−(x) = −

√
2
σ
e−Q. (12)

The Karamata’s Tauberian theorem makes it possible to obtain the asymptotics of
H+(x) for x→∞, namely,

Corollary 3. If conditions (7) hold, then

lim
x→±∞ |x|

−1H±(x) =
√

2
σ
e±Q. (13)

It is known that, under conditions (7) and (8), EZ+ < ∞, EZ− < −∞ (see [9]).
Therefore, by the renewal theorem,

lim
|x|→∞

|x|−1H±(x) =
1
|m±| , (14)

where m± = EZ±. Comparing (13) and (14), we conclude that

m± = ± σ√
2
e−Q. (15)

We say that the distribution F has a long right tail if, for any l > 0,

lim
x→∞

F (x+ l)− F (x)
F (x)

= 0. (16)

Respectively F has a long left tail if

lim
x→−∞

F (x+ l)− F (x)
F (x)

= 0. (17)
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Theorem 1. If conditions (7) and (17) hold, then, for x→ −∞,

P(Z− < x) ∼ ω−
∫ x

−∞
F (y)dy, (18)

where ω− =
√

2
σ eQ.

If conditions (7) and (16) hold, then, for x→∞,

P(Z+ > x) ∼ ω+

∫ ∞

x

(1− F (y))dy, (19)

where ω+ =
√

2
σ e−Q.

Here and below, a(x) ∼ b(x) means that lim
x→∞ a(x)/b(x) = 1. We use c, c(·), c(·, ·)

to denote constants which may be different in different contexts.
An asymptotics of large deviation probabilities is studied in [10–13]. The formula

P(Z+ > x) ∼ 1
m−

∫ ∞

x

(1 − F (y))dy (20)

is obtained, in particular, in [13], and is valid if

A :=
∞∑

n=1

1
n
P(Sn ≤ x) =∞, E|Z−| <∞.

As we have already noticed above, E|Z−| <∞ under conditions (7) and (8). In addition,
A = ∞ in this case. On the other hand, as it is shown above (see (15)), m− = σ√

2
e−Q.

The additional information which is contained in (19) as compared with (20) consists
namely in this fact. Notice also that (19) is deduced by the quite different method by
comparison with (20).

Theorem 2. Let, for x→∞,

F (−x) ∼ q

xα
, 1− F (x) ∼ p

xα
, (21)

where 0 < α < 1, p ≥ 0, q ≥ 0. Then there exists the slowly varying function L(x), x > 0,
such that, for x→ −∞,

H−(x) ∼ |x|γL(|x|), (22)
where

γ =
α

2
− c(α, β)

π
, c(α, β) = arctan

(
β tan

πα

2

)
, β =

p− q
p+ q

.

The analogous result takes place for H+(x).
We see that the greatest value γ = α and the least γ = 0 are achieved, respectively, for

β = −1 and for β = 1. These values of β correspond to the extreme types of stable laws
with the exponent α which F is attracted to. If β = 0, then evidently γ = α

2 . Letting
α = 2 in the last equality, we obtain the value 1 for γ.

It is not improbable that the function L(x) in Theorem 2 is in fact constant. This is
the case if the distribution F is concentrated on the negative semiaxis (see [3]).

The analysis of the proof of Theorem 2 shows that L(x) = const in the case of
symmetric F .

Theorem 3. If conditions (16) and (21) are fulfilled, then there exists the slowly varying
function l(x) such that, for x→∞,

1− F+(x) ∼ xγ−αl(x), (23)

where

γ =
α

2
− c(α, β)

π
, c(α, β) = arctan

(
β tan

πα

2

)
.
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Notice that L(x) and l(x), generally speaking, do not satisfy the condition L(x) ∼
cl(x). However, if L(x) equals a constant, then it is true for l(x) as well. The result
similar to Theorem 3 is also valid for F−(x).

2. Proof of Proposition

Denote, by f(t), the characteristic function of the random variable X . The starting
point is the next formula deduced in [14] (see also [15])

∞∑
n=1

1
n

∫ ∞

0+

e−hxdFn(x) +
1
2

∞∑
n=1

(Fn(0+)− Fn(0))n−1

= −h
π

∫ ∞

0

ln |1− f(t)|
h2 + t2

dt− 1
π

∫ ∞

0

t arg (1− f(t))
h2 + t2

dt (24)

with
h

π

∫ ∞

0

ln |1− f(t)|
h2 + t2

dt = −1
2

∫
|x|�=0

e−h|x|dG(x), (25)

1
π

∫ ∞

0

t arg (1− f(t))
h2 + t2

dt =
1
2

∫
x<0

ehxdG(x) − 1
2

∫
x>0

e−hxdG(x). (26)

First, we show that the right-hand side of equality (26) goes to

1
2

∞∑
n=1

(P(Sn < 0)−P(Sn > 0))

as h ↓ 0.
We need several lemmas to proof it.

Lemma 2.1. If a = 0 and σ2 <∞, then

P(Sn > 0)−E
{
e−hSn ;Sn > 0

}
≤ hσ√n, (27)

and
P(Sn < 0)−E

{
ehSn ;Sn < 0

}
< hσ

√
n. (28)

Proof. Applying the inequalities 1− e−x < x, x > 0, and E|Sn| ≤ σ√n, we have

P(Sn > 0)−E
{
e−hSn ;Sn > 0

}
= E
{
1− e−hSn ;Sn > 0

}
< hE

{
Sn;Sn > 0

}
< hσ

√
n.

In just the same way, (28) is proved. �
Put

Δn(h) =
∫

x>0

e−hxdFn(x)−
∫

x<0

ehxdFn(x) + P(Sn < 0)−P(Sn > 0). (29)

Lemma 2.2. Under conditions of Lemma 2.1,

lim
n→∞ sup

h>0

∣∣Δn(h)
∣∣ = 0. (30)

Proof. Integrating by parts on the right-hand side of formula (29), we find that

Δn(h) = h

∫ ∞

0

(1 − Fn(x) − Fn(−x))e−hxdx.

Consequently,

|Δn(h)| < h sup
x

∣∣∣1− Fn(x)− Fn(−x)
∣∣∣ ∫ ∞

0

e−hxdx.

By CLT,
lim

n→∞

(
1− Fn(x)− Fn(−x)

)
= 0.
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The assertion of the lemma follows from two previous relations. �
Lemma 2.3. If the distribution F is not degenerate at zero, then

E
{
e−hSn ;Sn > 0

}
<
c(F )
h
√
n
, (31)

E
{
e−hSn ;Sn < 0

}
<
c(F )
h
√
n
. (32)

Proof. We restrict ourselves to proving (31). Obviously,∫ ∞

0+

e−hxdFn(x) <
∞∑

k=0

e−hkP(k < Sn ≤ k + 1).

Since, by (4),

P(k < Sn ≤ k + 1) <
c(F )√
n
,∫ ∞

0+

e−hxdFn(x) <
c(F )√
n

∞∑
k=0

e−hk.

On the other hand,
∞∑

k=0

e−hk =
1

1− e−h
<

1
h
.

The desired result follows from these two inequalities. �
Consider the series

Σ(h) =
∞∑

n=1

n−1
∣∣∣Δn(h)

∣∣∣
=
∑

n< ε2
h2

n−1
∣∣∣Δn(h)

∣∣∣+ ∑
ε2
h2 <n≤ 1

h2ε2

n−1
∣∣∣Δn(h)

∣∣∣+ n−1∑
n> 1

h2ε2

n−1
∣∣∣Δn(h)

∣∣∣ =∑
1
+
∑

2
+
∑

3
.

(33)
Applying Lemma 2.1, we find that∑

1
< h

∑
n≤ ε2

h2

1√
n
< 3ε. (34)

Further, ∑
2
< sup

ε2
h2 <n≤ 1

h2ε2

Δn(h)

(
h2

ε2
+
∫ 1

ε2h2

ε2
h2

dx

x

)
.

Since ∫ 1
ε2h2

ε2
h2

dx

x
= −4 ln ε,

we have, by (30),

lim
h↓0

∑
2

= 0. (35)

Notice that, by Lemma 2.3, ∣∣∣Δn(h)
∣∣∣ < c(F )

h
√
n

+ |2Fn(0)− 1|.
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Therefore, ∑
3
<
c(F )
h

∑
n> 1

ε2h2

1
n3/2

+
∑

n> 1
(εh)2

n−1|2Fn(0)− 1|.

Further, ∑
n> 1

(εh)2

1
n3/2

< h3ε3 +
∫ ∞

u>(εh)−2

du

u3/2
< h3ε3 + 2εh.

The series ∞∑
1

n−1(2Fn(0)− 1)

absolutely converges (see [16]). Thus,

lim
h↓0

∑
3
< 2ε. (36)

It follows from (33) - (36) that
lim
h↓0

Σ(h) < 5ε.

It means by (29) that

lim
h↓0

(∫
x>0

e−hxdG(x) −
∫

x<0

ehxdG(x)
)

=
∞∑

n=1

n−1
(
P(Sn > 0)−P(Sn < 0)

)
. (37)

Proceed now to the left-hand side of equality (25). Choose δ in the partition∫ ∞

0

ln |1− f(t)|
t2 + h2

dt =
(∫ δ

0

+
∫ ∞

δ

) ln |1− f(t)|
t2 + h2

dt = I1(h) + I2(h) (38)

in such a way as the function f(t) �= 1 in the interval (0, δ). Put

f1(t) = 2
1− f(t)
σ2t2

.

Then

I1(h) =
∫ δ

0

ln f1(t)
t2 + h2

dt

+ ln
σ2

2

∫ δ

0

dt

t2 + h2
+ 2
∫ δ

0

ln t
t2 + h2

dt = I11(h) + ln
(σ2

2

)
I12(h) + I13(h). (39)

Since f1(0) = 1,
lim
h↓0

hI11(h) = 0. (40)

Further,
lim
h↓0

hI12(h) =
π

2
. (41)

It is easily seen that

lim
h↓0

h

∫ ∞

δ

ln t
t2 + h2

dt = 0.

Consequently, for h ↓ 0,

hI13(h) = h

∫ ∞

0

ln t
t2 + h2

dt+ o(1).

On the other hand,∫ ∞

0

ln t
t2 + h2

dt =
lnh
h

∫ ∞

0

dt

1 + t2
+

1
h

∫ ∞

0

ln t
1 + t2

dt =
π

2h
lnh. (42)
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We use the equality ∫ ∞

0

ln t
1 + t2

dt = 0

(see [17], p. 546, Section 4.231, formula 8). Thus, for h ↓ 0,

hI13(h) =
π

2
lnh+ o(1). (43)

It follows from (39) - (43) that

hI1(h) = π
(
lnh+

1
2

ln
σ2

2

)
+ o(1). (44)

Estimate now I2(h). First of all,∣∣∣ln |1− f(t)|
∣∣∣ < ∞∑

n=1

n−1|fn(t)|.

Consequently,

I2(h) <
∞∑

n=1

1
n

∫ ∞

δ

|f(t)|n
t2

dt.

The next bound ∫
|t−v|≤0.65�σ2(L)

�β3(L)

|fn(t)| dt ≤ c

σ̃(L)
√
n

(45)

holds, where σ̃2(L) =
∫
|x|≤L x

2 dF̃ (x), β̃3(L) =
∫
|x|≤L |x|3 dF̃ (x), c < 7.61579, F̃ (x)

is the symmetrization of X (see [14], Lemma 2.1.)
Splitting the interval (δ,∞) into intervals of the length 1.3σ2(L)

β3(L) and applying bound
(45), it is not hard to show that ∫ ∞

δ

|f(t)|n
t2

dt <
c(F )√
n
.

Consequently, uniformly in h > 0,

I2(h) < c(F ). (46)

Returning now to (38) and taking (44) and (45) into account, we obtain that, for h ↓ 0

h

π

∫ ∞

0

ln |1− f(t)|
t2 + h2

dt = lnh+
1
2

ln
σ2

2
+ o(1). (47)

Combining (24), (37), and (47), we arrive at formula (8). Formula (9) is deduced in the
same way. �

3. Proof of Theorem 1

Without loss of generality, we may assume that F (x) is continuous. By (13) for any
x < x(ε) < 0,

−(1− ε) < x
σ√
2
H−(x) < (1 + ε)x. (48)

Using (1), we have

P(Z+x) =
∫ ∞

x−x(ε)

H−(x− y)dF (y) +
∫ x−x(ε)

x

H−(x− y)dF (y) = I1(x) + I2(x). (49)

Obviously, by (48),

(1− ε) σ√
2

∫ ∞

x−x(ε)

(y − x)dF (y) < I1(x) <
σ√
2

∫ ∞

x−x(ε)

(y − x)dF (y)(1 + ε). (50)
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Further,
I2(x) < H−(x(ε))(F (x(ε)) − F (x)).

Hence, by condition (16) for x→∞,

I2(x) = o(1 − F (x)). (51)

By the same reason for x→∞,∫ x−x(ε)

x

dF (y) = o(1− F (x)). (52)

Put
F (x) =

∫ ∞

x

(y − x)dF (y) =
∫ ∞

x

(1− F (y))dy.

It is easily seen that
1− F (x) = o(F (x)). (53)

It follows from (51) and (53) that

I2(x) = o(F (x)), (54)

and from (52), (53) ∫ ∞

x−x(ε)

(y − x)dF (y) ∼ F (x). (55)

By (50) and (55),
σ√
2
(1 − ε) ≤ lim

x→∞ inf I1(x)/F (x) ≤ lim
x→∞ sup I2(x)/F (x) ≤ σ√

2
(1 + ε). (56)

Combining (49), (54), and (56), we get the desired result. �

4. Proof of Theorem 2

Previously, we prove several lemmas.

Lemma 4.1. Let, for x→∞, 1− F (x) ∼ c
xα , 0 < α < 1. Then for t ↓ 0∫ ∞

0

sin(tx)dF (x) ∼ ctα
∫ ∞

0

cosx
xα

dx. (57)

Proof. Clearly,∫ ∞

0

sin(tx)dF (x) =
∫ M/t

0

sin(tx)dF (x) +
∫ ∞

M/t

sin(tx)dF (x). (58)

There exists the constant K such that

1− F (x) <
Kc

xα
. (59)

Therefore, for any M > 0,∣∣∣ ∫ ∞

M/t

sin(tx)dF (x)
∣∣∣ < 1− F (M/t) <

Kc

Mα
tα. (60)

Integrating by parts, we have∫ M/t

0

sin(tx)dF (x) = t

∫ M/t

0

(1− F (x)) cos(tx)dx + (1− F (M/t)) sin(M/t).

Hence, by (59),∣∣∣ ∫ M/t

0

sin(tx)dF (x) − t
∫ M/t

0

(1− F (x)) cos(tx)dx
∣∣∣ < Kc

Mα
tα. (61)
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Further,∫ M/t

0

(1 − F (x)) cos(tx)dx =
∫ M/t

ε/t

(1 − F (x)) cos(tx)dx +
∫ ε/t

0

(1− F (x)) cos(tx)dx.

Hence, by (59),∣∣∣ ∫ ε/t

0

(1 − F (x)) cos(tx)dx
∣∣∣ < Kc

∫ ε/t

0

dx

xα
<
Kcε1−α

1− α tα−1.

For M and ε fixed,∫ M/t

ε/t

(1− F (x)) cos(tx)dx =
c

t1−α

(∫ M

ε

cosx
xα

dx+ o(1)
)
.

As a result, we obtain, for every fixed M and ε,∫ M/t

0

(1−F (x)) cos(tx)dx = ctα−1
(∫ M

ε

cosx
xα

dx+o(1)
)
+θ

Kcε1−α

1− α tα−1, |θ| ≤ 1. (62)

Returning now to (61), we conclude that∫ M/t

0

sin(tx)dF (x) = ctα
(∫ M

ε

cosx
xα

dx+ o(1)
)

+ θKCtα
(
M−α +

ε1−α

1− α
)
. (63)

The desired result follows from (58), (60), and (62). �
Lemma 4.2. Under conditions of Lemma 4.1 for t→ 0,∫ ∞

0

(1 − cos(tx))dF (x) ∼ c|t|α
∫ ∞

0

sinx
xα

dx. (64)

Proof. Without loss of generality, we may assume t > 0. Obviously,∫ ∞

0

(1− cos(tx))dF (x) =
∫ M/t

0

(1− cos(tx))dF (x) +
∫ ∞

M/t

(1− cos(tx))dF (x). (65)

By (59) for M > 0,

1− F (M/t) <
Kc

Mα
tα. (66)

Hence, ∫ ∞

M/t

(1 − cos(tx))dF (x) <
Kc

Mα
tα. (67)

Integrating by parts, we have∫ M/t

0

(1− cos(tx))dF (x) = t

∫ M/t

0

(1 − F (x)) sin(tx)dx + (1− F (M/t))(1 − cosM).

Hence, by (67),∣∣∣ ∫ M/t

0

(1 − cos(tx))dF (x) − t
∫ M/t

0

(1− F (x)) sin(tx)dx
∣∣∣ < Kc

Mα
tα. (68)

Further,∫ M/t

0

(1− F (x)) sin(tx)dx =
∫ ε/t

0

(1 − F (x)) sin(tx)dx +
∫ M/t

ε/t

(1− F (x)) sin(tx)dx.
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By (59), ∣∣∣∫ ε/t

0

(1− F (x)) sin(tx)dx
∣∣∣ < Kcε1−α

1− α tα−1.

For M and ε fixed,∫ M/t

ε/t

(1− F (x)) sin(tx)dx =
c

t1−α

(∫ M

ε

sinx
xα

dx+ o(1)
)
.

It follows from two last formulas that

t

∫ M/t

0

(1− F (x)) sin(tx)dx = ctα
(∫ M

ε

sinx
xα

dx+ o(1)
)

+ θ
Kctα

1− αε
1−α, |θ| ≤ 1. (69)

Combining (65)–(69), we obtain the assertion of Lemma 4.2. �
Lemma 4.3. For any 0 < α < 1,∫ ∞

0

eix

xα
dx = i1−αΓ(1− α). (70)

Proof. By changing the contour of integration in accordance with the change of the
variable x = iy, we find∫ ∞

0

eix

xα
dx = i1−α

∫ ∞

0

e−yy−αdy = i1−αΓ(1− α). �

Lemma 4.4. Let F (x) satisfy conditions (21). Then, for t→ 0,

1−
∫ ∞

−∞
eitxdF (x) ∼ |t|α

(
(p+ q) cos

πα

2
+ i(q − p) t|t| sin

πα

2

)
Γ(1− α). (71)

Proof. Obviously,

1−
∫ ∞

−∞
eitxdF (x) =

∫ ∞

−∞
(1− cos(tx))dF (x) − i

∫ ∞

−∞
sin(tx)dF (x).

By (57) and (64) for t→ 0,∫ ∞

−∞
(1 − cos(tx))dF (x) ∼ (p+ q)|t|α

∫ ∞

0

sinx
xα

dx

and ∫ ∞

−∞
sin(tx)dF (x) ∼ (p− q)|t|α t

|t|
∫ ∞

0

cosx
xα

dx.

Thus,

1−
∫ ∞

−∞
eitxdF (x) ∼ |t|α

(
(p+ q)

∫ ∞

0

sinx
xα

dx + i(q − p) t|t|
∫ ∞

0

cosx
xα

dx
)
.

According to Lemma 4.3,∫ ∞

0

cosx
xα

dx = Γ(1− α)Re i1−α = sin
πα

2
,∫ ∞

0

sinx
xα

dx = Γ(1− α)Im i1−α = cos
πα

2
.

Substituting these values into the previous equality, we obtain the desired result. �
Considering as before that F (x) satisfies conditions (21),we study the Laplace trans-

form of the projection of the harmonic renewal measure (3) on the semiaxis (−∞, 0].
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It is easily seen that ∫ 0−

−∞
ehxdG−(x) = −

∫ ∞

0+

e−hxdG−(−x). (72)

Hence, ∫ 0+

−∞
e−hxdG−(x) =

∫ ∞

0+

ehxdG−(x) + ν({0}). (73)

By (24),∫ ∞

0+

e−hxdG−(−x) +
1
2
ν({0}) = −h

π

∫ ∞

0

ln |1− f(−t)|
h2 + t2

dt− 1
π

∫ ∞

0

t arg (1 − f(−t))
h2 + t2

dt.

(74)
Using Lemma 4.4, it is easy to verify that, for t→ 0,

|1− f(−t)| = |t|αΓ(1− α)(p2 + q2 − 2pq sinπα)1/2 + o(1).

Consequently, for t→ 0,

ln |1− f(−t)| = α ln |t|+ c(α, p, q) + o(1),

where
c(α, p, q) =

1
2

ln(p2 + q2 − 2pq sinπα) + ln Γ(1− α).

Hence, by (42),

h

π

∫ ∞

0

ln |1− f(−t)|
h2 + t2

dt =
αh

π

∫ ∞

0

ln t
h2 + t2

dt+ ψ(h) =
α

2
lnh+ ψ(h), (75)

where limh→0 ψ(h) = c(α, p, q).
According to (71),

arg (1 − f(−t)) =
t

|t| arctan
(
β tg

πα

2

)
+ ϕ(t), (76)

where β = (p− q)/(p+ q), ϕ(t)→ 0 as t→ 0.

Lemma 4.5. The function

W (h) = exp
{∫ 1

h

tϕ(t)
h2 + t2

dt
}
, (77)

where ϕ(t)→ 0 for t→ 0, is slowly varying as h ↓ 0, i.e. for any c > 0,

lim
h↓0

W (ch)
W (h)

= 1.

Proof. Changing the variable t = u−1, we have

I(h) :=
∫ 1

h

tϕ(t)
h2 + t2

dt =
∫ 1/h

1

ϕ(1/u)
1 + h2u2

du

u

=
∫ 1/h

1

ϕ(1/u)
u

du − h2

∫ 1/h

1

uϕ(1/u)
1 + h2u2

du = I1(h) + I2(h).

It is easily seen that∣∣∣ ∫ 1/h

1

uϕ(1/u)
1 + h2u2

du
∣∣∣ < ∫ 1/h

1

|ϕ(1/u)|udu = o(h−2).

Consequently,
lim
h→0

I2(h) = 0.
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According to Karamata’s criterion, the function

Z(x) = exp
{∫ x

1

ϕ(1/u)
u

du
}

is slowly varying as x→∞. Hence, Z(1/h) is slowly varying as h ↓ 0. Since

W (h) = Z(1/h) exp{I2(h)},
the function W (h) has the same property as well. �
Lemma 4.6. Let a function ϕ(t) be continuous, and ϕ(0) = 0. Then

lim
h↓0

∫ h

−h

tϕ(t)
t2 + h2

dt = 0.

Proof. The conclusion of the lemma follows from the inequalities∣∣∣ ∫ h

−h

tϕ(t)
t2 + h2

dt
∣∣∣ < 2 sup

|t|≤h

|ϕ(t)|
∫ h

0

t

t2 + h2
dt < sup

|t|≤h

|ϕ(t)|. �

Lemma 4.7. For h ↓ 0,∫ 1

0

t arg(1− f(−t))
t2 + h2

dt = c(α, β) ln
1
h

+ lnW (h) + o(1) (78)

Proof. Based on formula (76) and Lemmas 4.5 and 4.6, we can state that∫ 1

0

t arg (1 − f(−t))
t2 + h2

dt = c(α, β)
∫ 1

0

t

t2 + h2
dt+ lnW (h) + o(1),

where
c(α, β) = arctan (β tan

πα

2
).

Obviously, ∫ 1

0

t

t2 + h2
dt =

1
2

ln(t2 + h2)
∣∣∣1
0

= ln
1
h

+
1
2

ln(1 + h2).

The conclusion of the lemma follows from last two formulas. �
Consider the integral

I(h) =
1
π

∫ ∞

1

t arg (1− f(−t))
t2 + h2

dt.

By (24) and (78), I(h) <∞ for h > 0.

Lemma 4.8. For every distribution F , there exists the finite limit

lim
h→0

I(h) = I0.

Proof. Arguing in the same way as in deducing formula (2.20) in [14], we are sure that

1
π

∫ ∞

1

t(1− arg f(−t))
t2 + h2

dt = −
∞∑

n−1

n−1

∫ ∞

1

tImfn(−t)
t2 + h2

dt. (79)

Evidently, ∫ ∞

1

tImfn(−t)
t2 + h2

dt = −
∫ ∞

1

tImfn(t)
t2 + h2

dt.

Further,∫ ∞

1

tImfn(t)
t2 + h2

dt =
∫ ∞

1

t

t2 + h2

∫ ∞

−∞
sin(tx)dFn(x) =

∫ ∞

−∞
dFn(x)

∫ ∞

1

t sin (tx)
t2 + h2

dx.
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By Lemma 1.1 in [14] for α < h ≤ 1,

∣∣∣∫ ∞

1

t sin (tx)
t2 + h2

dt
∣∣∣ < { 2/|x|, |x| ≥ 1,

3, |x| < 1.

It follows from last two relations that∣∣∣∫ ∞

1

tIm fn(t)
t2 + h2

dt
∣∣∣ < 3

∫
|x|<n1/4

dFn(x) + 2
∫
|x|>n1/4

dFn(x)
|x| <

c(F )
n1/4

.

We have applied here a bound for the concentration function (4). Thus, series (79)
converges uniformly in the interval (0, 1].

On the other hand, for any n,

lim
h↓0

∫ ∞

1

tIm fn(t)
t2 + h2

dt =
∫ ∞

1

Im fn(t)
t

dt.

Consequently,

lim
h↓0

I(h) =
1
π

∞∑
n=1

∫ ∞

1

Im fn(t)
t

dt = I0. �

It follows from Lemmas 4.7 and 4.8 that, for h ↓ 0,∫ ∞

0

t arg (1− f(−t))
t2 + h2

dt = c(α, β) ln
1
h

+ lnW (h) + I0 + o(1). (80)

Combining (72)–(75) and (80), we conclude that

−
∫ 0+

−∞
ehxdG−(x) =

∫ ∞

0+

e−hxdG−(−x) + ν({0})

= γ ln
1
h
− π−1(lnW (h) + c0(F )) +

1
2
ν({0}),

where

c0(F ) = c(α, p, q) + I0, γ =
α

2
− c(α, β)

π
.

Applying now the Baxter identity (see, e.g., [1], Ch. 18, § 3), we find that∫ ∞

0+

e−hxdH−(−x) = exp
{∫ ∞

0+

e−hxdG−(−x)
}

∼ h−γ exp
{
− 1
π

(
lnW (h) + c0(F )

)
+

1
2
ν({0})

}
.

(81)

Using the Tauberian theorem for the Laplace transform (see [1], Ch. 13, § 5), we have

H−(−x) ∼ xγL(x), (82)

where

L(x) =
1

Γ(1 + γ)
exp
{
− 1
π

(
lnW (x−1) + c0(F )

)
+

1
2
ν({0})

}
, x > 0,

which is equivalent to the assertion of the theorem. �
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5. Proof of Theorem 3

Using formula (1), we have

P(Z+ > x) ∼ p
∫ 0+

−∞
(x− y)−αdH−(y) = pα

∫ 0

−∞
(x− y)−α−1H−(y)dy. (83)

We need several lemmas to find the asymptotics of the last integral.

Lemma 5.1. For any x > 0,∫ 0

−√
x

(x− y)−α−1H−(y)dy < c(ε)xγ/2−α+ε, (84)

where ε is as small as one likes.

Proof. By (82), there exists a constant c such that, for every x > 0,∫ 0

−√
x

(x− y)−α−1H−(y)dy < c

∫ 0

−√
x

(x+ |y|)−α−1|y|γL(|y|)dy

= cxγ−α

∫ 0

− 1√
x

(1 + |y|)−α−1|y|γL(x|y|)dy < c(ε)xγ/2−α+ε/2 (85)

since
L(x|y|) < c(ε)(x|y|)ε. �

Lemma 5.2. As x→∞,

Γ(1 + γ)
∫ −√

x

−∞
(x − y)−α−1H−(y)dy ∼ xγ−α−1

∫ −√
x

−∞
(1 + |y|)−α−1|y|γL(x|y|)dy. (86)

Proof. The assertion of the lemma follows from asymptotics (82). �
Lemma 5.3. As x→∞,

Γ(1 + γ)
∫ 0

−∞
(x− y)−α−1H−(y)dy ∼ xγ−α

∫ 0

−∞
(1 + |y|)−α−1|y|γL(|y|)dy. (87)

Proof. Obviously,∫ −√
x

−∞
(x− y)−α−1H−(y)dy =

∫ −√
x

−∞
+
∫ 0

−√
x

= I1 + I2.

By Lemma 5.2,
I1 > c(ε)xγ−α−ε. (88)

It follows from (84) and (88) that
I2 = o(I1).

Hence, by (86), ∫ 0

−∞
(x − y)−α−1H−(y)dy

∼
∫ −√

x

−∞
(x− y)−α−1H−(y)dy ∼ xγ−α

Γ(1 + γ)

∫ −√
x

−∞
(1 + |y|)−α−1|y|γL(x|y|)dy.

It remains to remark that, by (85) and (87),∫ −√
x

−∞
(1 + |y|)−α−1|y|γL(x|y|)dy ∼

∫ 0

−∞
(1 + |y|)−α−1|y|γL(x|y|)dy. � (89)
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Lemma 5.4. The function

h(x) :=
∫ 0

−∞
(1 + |y|)−α−1|y|γL(x|y|)dy (90)

is slowly varying.

Proof. By (89) for x→∞,

h(cx)
h(x)

∼
∫ −√

x

−∞ (1 + |y|)−α−1|y|γL(cx|y|)dy∫ −√
x

−∞ (1 + |y|)−α−1|y|γL(x|y|)dy
∼ 1. �

It follows from Lemmas 5.3 and 5.4 that∫ 0

−∞
(x− y)−α−1H−(y)dy ∼ xγ−α

Γ(1 + γ)
h(x), (91)

where h(x) is a slowly varying function. Comparing (83) and (91), we find that

P(Z+ > x) ∼ pα

Γ(1 + γ)
xγh(x).

Hence, letting
l(x) =

pα

Γ(1 + γ)
,

we obtain the conclusion of Theorem 3. �
In conclusion, we remark that if the integral∫ 1

0

ϕ(t)
t
dt,

where ϕ is defined by (76), is finite, then W (h) in (77) converges to some constant as
h ↓ 0.

Indeed, in this case for any η > h,∣∣∣∣∣
∫ η

h

tϕ(t)
t2 + h2

dt−
∫ η

h

ϕ(t)
t
dt

∣∣∣∣∣ ≤ sup
0≤t≤η

|ϕ(t)|
∫ η

h

(
t

t2 + h2
− 1
t

)
dt.

Obviously, ∫ η

h

(
t

t2 + h2
− 1
t

)
dt < h2

∫ η

h

dt

t3
<

1
3
.

On the other hand, for every 0 < η < 1,

lim
h↓0

∫ 1

η

tϕ(t)
t2 + h2

dt =
∫ 1

η

ϕ(t)
t
dt.

Thus,

lim
h↓0

∫ 1

h

tϕ(t)
t2 + h2

dt =
∫ 1

0

ϕ(t)
t
dt.

Further, if there exists the finite limit lim
h↓0

W (h), then the same is true for L(x) in (82)

as x→∞. But then, by (89) and (90),

h(x) ∼ c(α, γ)L(x),

where

c(α, γ) =
∫ ∞

0

(1 + y)−α−1yγdy.
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