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ALEXANDER V. IVANOV AND IGOR V. ORLOVSKY

CONSISTENCY OF M-ESTIMATES IN GENERAL
NONLINEAR REGRESSION MODELS

Nonlinear regression model with continuous time and weak depen-
dent or long-range dependent stationary noise is considered. Strong
consistency sufficient conditions of M -estimates of regression param-
eters are obtained.

1. Introduction

Consider a regression model

X(t) = g(y(t), θ) + ε(t), t ≥ 0, (1)

where g(y, τ) is a non random function defined on Y ×Θc, Θc is the closure
in Rq of an open set Θ, Y ⊂ Rm is a compact region of regression ex-
periment design. Borel function y(t) : [0,∞) → Y is a design of regression
experiment, θ = (θ1, ..., θq) ∈ Θc is an unknown parameter. Let ε(t), t ∈ R1

be a random process satisfying the assumption
A1. ε(t), t ∈ R1 is a real valued mean-square continuous measurable

stationary process with zero mean on a complete probability space (Ω,�, P ).
We do not assume function g(y, θ) to be a linear form of coordinates of

the vector θ.
Definition 1. M-estimate of unknown parameter θ obtained by the

observations X(t), t ∈ [0, T ), of the type (1), is said to be any random

vector θ̂T that minimizes in τ ∈ Θc the functional MT (τ) = 1
T

T∫
0

ρ(X(t) −
g(y(t), τ))dt with continuous risk function ρ : R1 → R1.

The consistency property of M-estimates for nonlinear regression model
with independent identically distributed observation errors is considered
in [1]. Some facts on consistency of the least squares estimates and least
moduli estimates can be found in [2].

Sufficient conditions for strong consistency of M-estimates of an un-
known parameter θ of the model (1) with random noise that satisfies weak
or long-range dependence conditions are presented in this paper.
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2. Assumptions and the main results

Let us impose some restriction on the random process ε(t), t ∈ R1.
A2. ε(t), t ∈ R1 is a strictly stationary process, such that for some

δ > 0 μ2+δ = E|ε(0)|2+δ < ∞ and

∞∫
0

(α(r))
δ

2+δ dr < ∞,

where
α(r) = sup

A∈σ(−∞,s], B∈σ[s+r,∞)

|P (AB) − P (A)P (B)|,

σ(a, b] is σ-algebra generated by random variables (r.v.) {ε(t), t ∈ (a, b]}.
Definition 2. If for symmetric r.v. ξ the probabilities P{|ξ − b| < x},

x ∈ [0,∞) are nonincreasing functions of the variable b ∈ [0,∞), then we
say that ξ is a symmetric and unimodal r.v..

A3. ε(0) is a symmetric and unimodal r.v. with the distribution func-
tion (d.f.) F (x).

Let B be a σ-algebra of Borel subsets of Y . For any A ∈ B
μT (A) = T−1m{t ∈ [0, T ] : y(t) ∈ A},

where m is Lebesgue measure on [0,∞).
Let Δg(y, τ) = g(y, θ) − g(y, τ) and vθ(ε) = {τ ∈ Rq : ‖τ − θ‖ < ε}.
B1. The measures μT are weakly converge, as T → ∞, to some measure

μ: μT =⇒ μ and for any ε > 0 μ {y ∈ Y : Δg(y, τ) = 0} < 1 for each
τ /∈ vθ(ε).

Example. Assume {yi}i≥1 ⊂ Y to be some sequence and y(t) = yi, t ∈
[i − 1; i), i = 1, 2, ... . Introduce the measure

μT =
1

T

[T ]∑
i=1

δyi
+

{T}
T

δy[T ]+1
,

where [T ] and {T} are integer and fractional parts of T . Then, if 1
n

n∑
i=1

δyi
⇒

μ as n → ∞, then μT ⇒ μ as T → ∞.
Requirement on the measure μ in the condition B1 can be written as

follows: for any ε > 0 μ{y ∈ Y : g(y, τ) 
= g(y, θ)} > 0 for each τ /∈ vθ(ε).
Suppose that the measure μ is absolutely continuous with respect to

Lebesgue measure l on Y , furthermore l(Y ) > 0 and μ has the density f(y)
separated from zero: infy∈Y f(y) ≥ f∗ > 0. Then

μ{y ∈ Y : g(y, τ) 
= g(y, θ)} =

∫
{y∈Y : g(y,τ)�=g(y,θ)}

f(y)dy ≥
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≥ f∗l{y ∈ Y : g(y, τ) 
= g(y, θ)} > 0,

if l{y ∈ Y : g(y, τ) 
= g(y, θ)} > 0. But the last inequality is the property
of the regression function to distinguish parameters.

Definition 3. Function J(·) : R1 → R1 is called symmetric, if there
exists some point b0 ∈ R1(which is called the center of symmetry) and
some function ϕ(·) : [0,∞) → R1 such that J(b) = ϕ(|b − b0|). If ϕ is a
monotonically nondecreasing function and ϕ(x) > ϕ(0) for x > 0, then J is
called unimodal and the center of symmetry is called the mode.

Impose some restriction on risk function. Let Eρ(ε(t)) = Eρ(ε(0)) < ∞.
C1. ρ(x) is continuous unimodal, with mode in zero, function such that

ρ(0) = 0.
C2. There exists c > 0 such that |ρ(x1) − ρ(x2)| ≤ c|x1 − x2| for any

x1, x2 ∈ R1.
Assume also

A4.
∞∫
0

[P{|ε(0)| < z} − P{|ε(0)− b| < z}] dρ(z) > 0, b > 0.

Note that from C1 it follows that ρ(x) is monotonically nondecreasing
function in the region x ≥ 0. It means that Lesbegue-Stilties integral in A4
exists. Moreover, from A3 it follows that the difference in square brackets
A4 is nonnegative.

Theorem 1. Suppose that assumptions A1-A4, B1, C1 and C2 are
fulfilled. Then M-estimate θ̂T → θ a.s. as T → ∞.

To state the second result of the paper we need to introduce additional
condition on ε(t).

Definition 4. Stationary process ε(t), t ∈ R1 Eε(t) = 0 is called a
process with long-range dependence if

Eε(0)ε(t) = B(t) =
L(|t|)
|t|α , 0 < α < 1, (2)

where L(t) : [0,∞) → [0,∞) is a slowly varying function (at infinity).
A5. Gaussian random process ε(t), t ∈ R1 is a process with long-range

dependence, B(0) = 1.
Theorem 2. Suppose that assumptions A1, A4, A5, B1, C1 and C2

are fulfilled. Then M-estimate θ̂T → θ a.s. as T → ∞.

3. Auxiliary assertions

Set
δT (τ) = QT (τ) − EQT (τ), ΔT (τ) = QT (τ) − QT (θ).

Definition 5. An unknown parameter θ is said to be identifiable, if for
any ε > 0 there exist the numbers T0 = T0(ε) and δ = δ(ε) > 0 such that
EΔT (τ) > δ when T > T0 and τ /∈ vθ(ε).
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Lemma 1. Assume that θ is identifiable parameter and

sup
τ∈Θc

|δT (τ)| −→
T→∞

0 a.s., (3)

then θ̂T −→ θ a.s. as T → ∞.
Proof. Let us denote by Ω1 the event of the probability 1, for which the

condition (3) is fulfilled. For elementary events ω ∈ Ω1 from the definition

of the estimate θ̂T we have

ΔT (θ̂T ) ≤ 0. (4)

Suppose that for some fixed ω ∈ Ω1 θ̂T 
−→θ as T → ∞. It means that
there exists some number ε0 > 0 and the sequence of numbers Tn ↑ ∞ as

n → ∞ such that for n > n(ε0)
∥∥∥θ̂Tn − θ

∥∥∥ ≥ ε0. As for these Tn (4) also

holds, then infτ /∈vθ(ε0) ΔTn(τ) ≤ 0.
Let Tn ≥ T0(ε0) and for n > n(ε0) supτ∈Θc |δTn(τ)| < δ0

4
, where δ0 =

δ(ε0). Then for n > n(ε0)

0 ≥ inf
τ /∈vθ(ε0)

ΔTn(τ) = inf
τ /∈vθ(ε0)

(δTn(τ) + EΔTn(τ)) − δTn(θ)

≥ inf
τ /∈vθ(ε0)

δTn(τ) + inf
τ /∈vθ(ε0)

EΔTn(τ) − δTn(θ)

≥ inf
τ∈Θc

δTn(τ) + inf
τ /∈vθ(ε0)

EΔTn(τ) − δTn(θ) >
δ0

2
.

We obtain contradiction. Hence, for ω ∈ Ω1 θ̂T −→ θ as T → ∞. �
Introduce function J(b) = Eρ(ε(t) − b) = Eρ(ε(0) − b), b ∈ R1.
The next lemma states sufficient conditions of identifiability of parame-

ter θ.
Lemma 2. An unknown parameter θ is identifiable if
(i) for any ε > 0 there exist T0 = T0(ε) and x = x(ε) > 0 such that for

any T > T0 and any τ /∈ vθ(ε) μT {y ∈ Y : |Δg(y, τ)| > x} > x;
(ii) J(b) is unimodal;
(iii) J(b) > J(0) for any b 
= 0.
Proof. It is easily seen that under the conditions (ii) and (iii) the mode

is in b = 0. Furthermore,

EΔT (τ) =
1

T

T∫
0

[J(Δg(y(t), τ)) − J(0)] dt. (5)

Fix some ε > 0 and consider numbers T0 and x taken from the condition (i)
of the Lemma. From the condition (ii) it follows that the right hand side of
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the relation (5) permits the lower bound

1

T

T∫
0

[J(Δg(y(t), τ)) − J(0)] dt ≥ (J(x) − J(0))
1

T

T∫
0

χ(x,∞) (|Δg(y(t), τ)|)dt

= (J(x) − J(0))μT {y ∈ Y : |Δg(y, τ)| > x} ,

where χA(x) is the indicator of the set A.
From (i) and (ii) it follows that in the definition of the identifiability of

parameter one can set δ = x(J(x) − J(0)). �
Further we formulate some sufficient conditions on the validity of Lem-

mas 1 and 2.
Lemma 3. If the assumption B1 holds, then the condition (i) of the

Lemma 2 fulfiles.
Proof. Let ε > 0 be an arbitrary number. It is necessary to show that

there exists some numbers T0 and x > 0 such that

μT {y ∈ Y : |Δg(y, τ)| > x} > x, T > T0, τ /∈ vθ(ε). (6)

Assume that (6) does not hold. Then there exist some sequences Tn ↑ ∞
as n → ∞ and τn ∈ Θc\vθ(ε) such that

μTn

{
y ∈ Y : |Δg(y, τn)| > n−1

} ≤ n−1, n ≥ 1. (7)

As the set Θc\vθ(ε) is compact, there exists some point τ ∗ ∈ Θc\vθ(ε) and
the sequence nk, k ≥ 1 such that τnk

→ τ ∗ as k → ∞.
Let δ > 0 be an arbitrary fixed number. Then there exists some number

kδ such that for k > kδ, uniformly in y ∈ Y ,

|Δg(y, τnk
) − Δg(y, τ ∗)| ≤ δ

2
. (8)

Thanks to (8), for k > kδ

{|Δg(y, τ ∗)| > δ} ⊂ {|Δg(y, τ ∗) − Δg(y, τnk
)| + |Δg(y, τnk

)| > δ}

⊂
{
|Δg(y, τnk

)| >
δ

2

}
. (9)

Taking into account the inequality (7) for nk > 2
δ

one has

μTnk

{
y ∈ Y : |Δg(y, τnk

)| >
δ

2

}
≤ 1

nk
. (10)

Then, from (9) and (10) it follows that

μTnk
{y ∈ Y : |Δg(y, τ ∗)| > δ} ≤ n−1

k , (11)
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which is true for any k > k′
δ = max

(
kδ, min

{
k : nk > 2

δ

})
.

Denote by Yδ = {y ∈ Y : |Δg(y, τ ∗)| ≤ δ}. From (11) it follows that
μTnk

(Yδ) > 1 − n−1
k for all k > k′

δ.
As Yδ is a closed set, then thanks to weak convergence of μT to the

measure μ, we obtain (see, for example, [3], p. 21)

lim
k→∞

μTnk
(Yδ) ≤ μ(Yδ), δ > 0.

For δ ↓ 0, from the continuity of the measure μ it follows that

μ{y ∈ Y : Δg(y, τ) = 0} = 1. (12)

But the relation (12) contradicts to the condition B1. �
Lemma 4. If the assumptions A3, A4 and C1 hold, then the conditions

(ii) and (iii) of the Lemma 2 are fulfilled.
Proof. Without loss of generality, assume that ρ(x), x ≥ 0 is strictly

monotonically increasing function. From the formula for the mean of the
nonnegative r.v. (see, for example, [4], p. 190) one has

J(b) − J(0) =

∞∫
0

(P{ρ(ε(0)) < x} − P{ρ(ε(0) − b) < x}) dx =

∞∫
0

(
P

{−ρ−1(x) < ε(0) < ρ−1(x)
} − P

{−ρ−1(x) < ε(0) − b < ρ−1(x)
})

dx,

where ρ−1(x) is the inverse of the function ρ(x), x ≥ 0.
By the change of variable x = ρ(z), z ≥ 0 in the last integral,

J(b) − J(0) =

∞∫
0

(P {|ε(0)| < z} − P {|ε(0) − b| < z}) dρ(z) =

=

∞∫
0

(F (z) − F (z − b) − F (z + b) + F (z)) dρ(z), (13)

where F (x) is the d.f. of the r.v. ε(0).
The integral in the first equality of the relations (13) coincides with the

expression of A4, and the condition (iii) of Lemma 2 is fulfilled.
From the symmetry of ρ and r.v. ε(0) it follows the symmetry of J(b).
Denote by Δ2

bF (z) = (F (z) − F (z − b)) − (F (z + b) − F (z)) , b, z ≥ 0.
Then A4 can be rewritten in the form

∞∫
0

Δ2
bF (z)dρ(z) > 0, b > 0.
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From (13) it follows that

Δ2
bF (z) = P{|ε(0)| < z} − P{|ε(0)− b| < z}.

Consider for b2 > b1 the difference

J(b2) − J(b1) =

∞∫
0

(
Δ2

b2
F (z) − Δ2

b1
F (z)

)
dρ(z).

It is easily seen that

Δ2
b2

F (z) − Δ2
b1

F (z) = P{|ε(0)− b1| < z} − P{|ε(0)− b2| < z} ≥ 0

from the unimodality of the r.v. ε(0). It means that J(b2)− J(b1) ≥ 0, and
the condition (ii) of Lemma 2 is a corollary of A3 and C1. �

Assume that the d.f. F (x) is continuously differentiable and the density
of the distribution p(x) is an even strictly decreasing for x ≥ 0 function.
Suppose that a continuous even function ρ(x) is such that ρ(0) = 0 and
strictly monotonically increasing for x ≥ 0. Then one can use Lemma 10.2
of the book [3], p. 217-218, and for any b 
= 0

J(b) − J(0) = Eρ(ε(0) − b) − Eρ(ε(0)) > 0,

and the integral in A4 is strictly positive.
Consider next sufficient conditions of the uniform convergence in (3) of

Lemma 1.
Lemma 5. Suppose the condition C2 fulfiles and

δT (τ) −→
T→∞

0 a.s., τ ∈ Θc, (14)

then (3) holds.
Proof. From C2 it follows that for τ1, τ2 ∈ Θc

|QT (τ1) − QT (τ2)| ≤ c

T

T∫
0

|g(y(t), τ1) − g(y(t), τ2)|dt.

Similarly, from C2 for τ1, τ2 ∈ Θc one has

|δT (τ1) − δT (τ2)| ≤ 2c

T

T∫
0

|g(y(t), τ1) − g(y(t), τ2)|dt.

Hence, the family of functions {δT (τ) : ω ∈ Ω, T > 0} is an equicontin-
uous on the set Θc. So for any δ > 0 there exists a finite number of points
τ1, ..., τk ∈ Θc such that

sup
τ∈Θc

|δT (τ)| ≤ max
1≤j≤k

|δT (τj)| + δ, ω ∈ Ω, T > 0.

From (14) it follows that max1≤j≤k |δT (τj)| −→ 0 a.s. as T → ∞, and,
hence, supτ∈Θc |δT (τ)| −→ 0 a.s. as T → ∞. �
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4. Proof of Theorem 1

We shall prove that (14) holds under the assumptions of Theorem 1.
Using the notation

ξ(t) = ρ(ε(t) − Δg(y(t), τ)) − Eρ(ε(t) − Δg(y(t), τ)), τ ∈ Θc

one has

δT (τ) =
1

T

T∫
0

ξ(t)dt, Eδ2
T (τ) =

1

T 2

T∫
0

T∫
0

Eξ(t)ξ(s)dtds ≤

≤ 10

T 2

T∫
0

T∫
0

[
Eρ2+δ(ε(t) − Δg(y(t), τ))

] 1
2+δ ×

× [
Eρ2+δ(ε(s) − Δg(y(s), τ))

] 1
2+δ α

δ
2+δ (|t − s|)dtds. (15)

To obtain (15) the Davidov inequality has been used with p = q = 2+δ, r =
1 + 2

δ
(see [5], and also Lemma 1.6.2 of the book [6]).

As ρ(0) = 0, then from the condition C2 one obtains

Eρ2+δ (ε(t) − Δg(y(t), τ)) ≤ c2+δE |ε(0) − Δg(y(t), τ)|2+δ .

By obvious inequalities

|a + b|κ ≤ 2κ−1 (|a|κ + |b|κ) , |a + b| 1
κ ≤ |a| 1

κ + |b| 1
κ , κ = 2 + δ, (16)[

Eρ2+δ (ε(t) − Δg(y(t), τ))
] 1

2+δ ≤ 2
1+δ
2+δ c

(
μ

1
2+δ

2+δ + |Δg(y(t), τ)|
)

,

i.e.

Eδ2
T (τ) ≤ 2

δ
2+δ c2 20

T 2

T∫
0

T∫
0

α
δ

2+δ (|t − s|)
[
μ

1
2+δ

2+δ + |Δg(y(t), τ)|
]
×

×
[
μ

1
2+δ

2+δ + |Δg(y(s), τ)|
]

dtds ≤

≤ 2
δ

2+δ c2 20

T 2

T∫
0

T∫
0

α
δ

2+δ (|t − s|)
[
μ

1
2+δ

2+δ + |Δg(y(t), τ)|
]2

dtds.

Using the first inequality of (16) with κ = 2,

Eδ2
T (τ) ≤ 2

δ
2+δ c2 40

T 2

T∫
0

T∫
0

α
δ

2+δ (|t − s|)
[
μ

2
2+δ

2+δ + |Δg(y(t), τ)|2
]

dtds.
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It remains to estimate two integrals, namely:

I1 =
1

T 2

T∫
0

T∫
0

α
δ

2+δ (|t − s|)dtds ≤ 1

T 2

T∫
0

ds

T∫
−T

α
δ

2+δ (|t|)dt = O(T−1)

as T → ∞, under assumption A2. On the other hand,

I2 =
1

T 2

T∫
0

T∫
0

α
δ

2+δ (|t − s|)|Δg(y(t), τ)|2dtds

≤
⎛⎝2

∞∫
0

α
δ

2+δ (s)ds

⎞⎠ 1

T 2

T∫
0

|Δg(y(t), τ)|2dt. (17)

As g(y, τ) is continuous function on the compact Y ×Θc , the right hand
side of the inequality (17) is of the order O(T−1) as T → ∞.

Thus, Eδ2
T (τ) = O(T−1) as T → ∞, and δT (τ) −→ 0 in probability as

T → ∞ .

Note that for the sequence Tn = n2, n ≥ 1
∞∑

n=1

Eδ2
Tn

(τ) < ∞, i.e.

δTn(τ)−→n→∞ 0 a.s.
If T ∈ [Tn, Tn+1], then

|δT (τ)| ≤ sup
Tn≤T≤Tn+1

|δT (τ) − δTn(τ)| + |δTn(τ)| ,

and the Theorem will be proved, if sup
Tn≤T≤Tn+1

|δT (τ) − δTn(τ)| −→n→∞ 0 a.s.

Obviously

δT (τ) − δTn(τ) =
1

T

T∫
0

ξ(t)dt− 1

Tn

Tn∫
0

ξ(t)dt =

=

(
1

T
− 1

Tn

) Tn∫
0

ξ(t)dt +
1

T

T∫
Tn

ξ(t)dt = I3 + I4.

Furthermore, for T ∈ [Tn, Tn+1]

|I3| ≤ Tn+1 − Tn

Tn

|δTn(τ)| −→
n→∞

0 a.s.;

|I4| ≤ 1

Tn

Tn+1∫
Tn

|ξ(t)|dt ≤ 1

Tn

Tn+1∫
Tn

ρ (ε(t) − Δg(y(t), τ)) dt+
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+
1

Tn

Tn+1∫
Tn

Eρ (ε(t) − Δg(y(t), τ)) dt = I5 + I6.

As under the Lipshits condition C2

ρ (ε(t) − Δg(y(t), τ)) ≤ c (|ε(t)| + |Δg(y(t), τ)|) ,

then

I5 ≤ c

Tn

Tn+1∫
Tn

|ε(t)|dt +
c

Tn

Tn+1∫
Tn

|Δg(y(t), τ)|dt = I7 + I8,

I8 = c

⎛⎝Tn+1

Tn

· 1

Tn+1

Tn+1∫
0

|Δg(y(t), τ)|dt− 1

Tn

Tn∫
0

|Δg(y(t), τ)|dt

⎞⎠ .

From the assumption B1 of the Theorem it follows

1

Tn

Tn∫
0

|Δg(y(t), τ)|dt =

∫
Y

|Δg(y, τ)|μTn(dy) −→
n→∞

∫
Y

|Δg(y, τ)|μ(dy),

then I8 −→ 0 as n → ∞.
On the other hand,

I7 = c

⎛⎝ 1

Tn

Tn+1∫
Tn

(|ε(t)| − E|ε(t)|) dt + E|ε(0)|Tn+1 − Tn

Tn

⎞⎠ −→
n→∞

0 a.s.

by Davidov inequality.
Similarly, it can be shown that I6 −→ 0 as n → ∞.
Consequently, (14) is fulfilled. The validity of Theorem 1 follows now

from the Lemmas 1-5 proved above. �

5. Proof of Theorem 2

Similarly to proof of Theorem 1 we need to proof that (14) holds. Then
the result of Theorem 2 will follow from the Lemmas 1-5.

Consider a random process

G(ε(t), t) = ρ(ε(t) − Δg(y(t), τ)). (18)

From C2 and A5

EG2(ε(t), t) ≤ c2E |ε(t) − Δg(y(t), τ)|2 = c2
(
1 + |Δg(y(t), τ)|2) ≤ C < ∞

(19)
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uniformly in t ≥ 0 and τ ∈ Θc. Therefore in Gilbert space L2(R
1, ϕ(u)du),

where ϕ(x) = 1√
2π

e−
x2

2 is a standard Gaussian density, there exists an ex-

pansion (see, for example, [6])

G(u, t) =

∞∑
m=0

Cm(t)

m!
Hm(u), Cm(t) =

∫
R1

G(u, t)Hm(u)ϕ(u)du, m ≥ 0

by Chebyshev-Hermite polynomials

Hm(u) = (−1)me
u2

2
dm

dum
e−

u2

2 , m ≥ 0. (20)

Note that C0(t) = Eρ(ε(0) − Δg(y(t), τ)) = J (Δg(y(t), τ)).
Thanks to relations

EHm(ε(t))Hk(ε(s)) = δk
mm!Bm(t − s), (21)

where δk
m is Kroneker delta we have

Eξ(t)ξ(s) = cov (G(ε(t), t), G(ε(s), s)) =

∞∑
m=1

Cm(t)Cm(s)

m!
Bm(t − s).

Hence, taking into account that B(0) = 1, we obtain

Eδ2
T (τ) =

∞∑
m=1

1

m!

1

T 2

T∫
0

T∫
0

Cm(t)Cm(s)Bm(t − s)dtds

≤
∞∑

m=1

1

m!

1

T 2

T∫
0

T∫
0

C2
m(t)Bm(t − s)dtds

≤ 1

T 2

T∫
0

T∫
0

( ∞∑
m=1

C2
m(t)

m!

)
B(t − s)dtds.

Note that, thanks to (19),

∞∑
m=1

C2
m(t)

m!
= EG2(ε(0), t) − (EG(ε(0), t))2 = DG(ε(0), t) ≤ C < ∞,

and

Eδ2
T (τ) ≤ C

1

T 2

T∫
0

T∫
0

B(t − s)dtds.
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On the other hand, as T → ∞,

1

T 2

T∫
0

T∫
0

B(t−s)dtds =

1∫
0

1∫
0

B (T (t − s)) dtds =
1

T α

1∫
0

1∫
0

L (T |t − s|)
|t − s|α dtds

∼
⎛⎝ 1∫

0

1∫
0

dtds

|t − s|α

⎞⎠ L(T )

T α
=

2

(1 − α)(2 − α)

L(T )

T α

by the properties of the slowly varying function (see, for example [7],[8]).

For the sequence Tn = n
1
α

+ν , where ν > 0 is some number,
∞∑

n=1

L(Tn)
T α

n
<

∞, and so δTn(τ) −→ 0 a.s., as n → ∞.
Taking into account the proof of Theorem 1, it remains to show that

1

Tn

Tn∫
0

(|ε(t)| − E|ε(t)|) dt −→
n→∞

0 a.s. (22)

But the proof of (22) is similar to the previous reasoning for G(ε(t), t).�
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