ALEXANDER V. IVANOV AND IGOR V. ORLOVSKY

CONSISTENCY OF M-ESTIMATES IN GENERAL NONLINEAR REGRESSION MODELS

Nonlinear regression model with continuous time and weak dependent or long-range dependent stationary noise is considered. Strong consistency sufficient conditions of M-estimates of regression parameters are obtained.

1. Introduction

Consider a regression model

$$
\begin{equation*}
X(t)=g(y(t), \theta)+\varepsilon(t), t \geq 0, \tag{1}
\end{equation*}
$$

where $g(y, \tau)$ is a non random function defined on $Y \times \Theta^{c}, \Theta^{c}$ is the closure in \mathbf{R}^{q} of an open set $\Theta, Y \subset \mathbf{R}^{m}$ is a compact region of regression experiment design. Borel function $y(t):[0, \infty) \rightarrow Y$ is a design of regression experiment, $\theta=\left(\theta_{1}, \ldots, \theta_{q}\right) \in \Theta^{c}$ is an unknown parameter. Let $\varepsilon(t), t \in \mathbf{R}^{1}$ be a random process satisfying the assumption

A1. $\varepsilon(t), t \in \mathbf{R}^{1}$ is a real valued mean-square continuous measurable stationary process with zero mean on a complete probability space (Ω, \Im, P).

We do not assume function $g(y, \theta)$ to be a linear form of coordinates of the vector θ.

Definition 1. M-estimate of unknown parameter θ obtained by the observations $X(t), t \in[0, T)$, of the type (1), is said to be any random vector $\widehat{\theta}_{T}$ that minimizes in $\tau \in \Theta^{c}$ the functional $M_{T}(\tau)=\frac{1}{T} \int_{0}^{T} \rho(X(t)-$ $g(y(t), \tau)) d t$ with continuous risk function $\rho: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$.

The consistency property of M-estimates for nonlinear regression model with independent identically distributed observation errors is considered in [1]. Some facts on consistency of the least squares estimates and least moduli estimates can be found in [2].

Sufficient conditions for strong consistency of M-estimates of an unknown parameter θ of the model (1) with random noise that satisfies weak or long-range dependence conditions are presented in this paper.

[^0]
2. Assumptions and the main results

Let us impose some restriction on the random process $\varepsilon(t), t \in \mathbf{R}^{1}$.
A2. $\varepsilon(t), t \in \mathbf{R}^{1}$ is a strictly stationary process, such that for some $\delta>0 \mu_{2+\delta}=E|\varepsilon(0)|^{2+\delta}<\infty$ and

$$
\int_{0}^{\infty}(\alpha(r))^{\frac{\delta}{2+\delta}} d r<\infty
$$

where

$$
\alpha(r)=\sup _{A \in \sigma(-\infty, s], B \in \sigma[s+r, \infty)}|P(A B)-P(A) P(B)|,
$$

$\sigma(a, b]$ is σ-algebra generated by random variables (r.v.) $\{\varepsilon(t), t \in(a, b]\}$.
Definition 2. If for symmetric r.v. ξ the probabilities $P\{|\xi-b|<x\}$, $x \in[0, \infty)$ are nonincreasing functions of the variable $b \in[0, \infty)$, then we say that ξ is a symmetric and unimodal r.v..

A3. $\varepsilon(0)$ is a symmetric and unimodal r.v. with the distribution function (d.f.) $F(x)$.

Let \mathcal{B} be a σ-algebra of Borel subsets of Y. For any $A \in \mathcal{B}$

$$
\mu_{T}(A)=T^{-1} m\{t \in[0, T]: y(t) \in A\}
$$

where m is Lebesgue measure on $[0, \infty)$.
Let $\Delta g(y, \tau)=g(y, \theta)-g(y, \tau)$ and $v_{\theta}(\varepsilon)=\left\{\tau \in \mathbf{R}^{q}:\|\tau-\theta\|<\varepsilon\right\}$.
B1. The measures μ_{T} are weakly converge, as $T \rightarrow \infty$, to some measure $\mu: \mu_{T} \Longrightarrow \mu$ and for any $\varepsilon>0 \mu\{y \in Y: \Delta g(y, \tau)=0\}<1$ for each $\tau \notin v_{\theta}(\varepsilon)$.

Example. Assume $\left\{y_{i}\right\}_{i \geq 1} \subset Y$ to be some sequence and $y(t)=y_{i}, t \in$ $[i-1 ; i), i=1,2, \ldots$. Introduce the measure

$$
\mu_{T}=\frac{1}{T} \sum_{i=1}^{[T]} \delta_{y_{i}}+\frac{\{T\}}{T} \delta_{y_{[T]+1}},
$$

where $[T]$ and $\{T\}$ are integer and fractional parts of T. Then, if $\frac{1}{n} \sum_{i=1}^{n} \delta_{y_{i}} \Rightarrow$ μ as $n \rightarrow \infty$, then $\mu_{T} \Rightarrow \mu$ as $T \rightarrow \infty$.

Requirement on the measure μ in the condition B1 can be written as follows: for any $\varepsilon>0 \mu\{y \in Y: g(y, \tau) \neq g(y, \theta)\}>0$ for each $\tau \notin v_{\theta}(\varepsilon)$.

Suppose that the measure μ is absolutely continuous with respect to Lebesgue measure l on Y, furthermore $l(Y)>0$ and μ has the density $f(y)$ separated from zero: $\inf _{y \in Y} f(y) \geq f_{*}>0$. Then

$$
\mu\{y \in Y: g(y, \tau) \neq g(y, \theta)\}=\int_{\{y \in Y: g(y, \tau) \neq g(y, \theta)\}} f(y) d y \geq
$$

$$
\geq f_{*} l\{y \in Y: g(y, \tau) \neq g(y, \theta)\}>0,
$$

if $l\{y \in Y: g(y, \tau) \neq g(y, \theta)\}>0$. But the last inequality is the property of the regression function to distinguish parameters.

Definition 3. Function $J(\cdot): \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$ is called symmetric, if there exists some point $b_{0} \in \mathbf{R}^{1}$ (which is called the center of symmetry) and some function $\varphi(\cdot):[0, \infty) \rightarrow \mathbf{R}^{1}$ such that $J(b)=\varphi\left(\left|b-b_{0}\right|\right)$. If φ is a monotonically nondecreasing function and $\varphi(x)>\varphi(0)$ for $x>0$, then J is called unimodal and the center of symmetry is called the mode.

Impose some restriction on risk function. Let $E \rho(\varepsilon(t))=E \rho(\varepsilon(0))<\infty$.
C1. $\rho(x)$ is continuous unimodal, with mode in zero, function such that $\rho(0)=0$.

C2. There exists $c>0$ such that $\left|\rho\left(x_{1}\right)-\rho\left(x_{2}\right)\right| \leq c\left|x_{1}-x_{2}\right|$ for any $x_{1}, x_{2} \in \mathbf{R}^{1}$.

Assume also
A4. $\int_{0}^{\infty}[P\{|\varepsilon(0)|<z\}-P\{|\varepsilon(0)-b|<z\}] d \rho(z)>0, b>0$.
Note that from C1 it follows that $\rho(x)$ is monotonically nondecreasing function in the region $x \geq 0$. It means that Lesbegue-Stilties integral in A4 exists. Moreover, from A3 it follows that the difference in square brackets A4 is nonnegative.

Theorem 1. Suppose that assumptions $\mathbf{A 1} \mathbf{- A 4}, \mathbf{B 1}, \mathbf{C} 1$ and $\mathbf{C} 2$ are fulfilled. Then M-estimate $\widehat{\theta}_{T} \rightarrow \theta$ a.s. as $T \rightarrow \infty$.

To state the second result of the paper we need to introduce additional condition on $\varepsilon(t)$.

Definition 4. Stationary process $\varepsilon(t), t \in \mathbf{R}^{1} \quad E \varepsilon(t)=0$ is called a process with long-range dependence if

$$
\begin{equation*}
E \varepsilon(0) \varepsilon(t)=B(t)=\frac{L(|t|)}{|t|^{\alpha}}, \quad 0<\alpha<1, \tag{2}
\end{equation*}
$$

where $L(t):[0, \infty) \rightarrow[0, \infty)$ is a slowly varying function (at infinity).
A5. Gaussian random process $\varepsilon(t), t \in \mathbf{R}^{1}$ is a process with long-range dependence, $B(0)=1$.

Theorem 2. Suppose that assumptions A1, A4, A5, B1, C1 and C2 are fulfilled. Then M-estimate $\widehat{\theta}_{T} \rightarrow \theta$ a.s. as $T \rightarrow \infty$.

3. Auxiliary assertions

Set

$$
\delta_{T}(\tau)=Q_{T}(\tau)-E Q_{T}(\tau), \Delta_{T}(\tau)=Q_{T}(\tau)-Q_{T}(\theta)
$$

Definition 5. An unknown parameter θ is said to be identifiable, if for any $\varepsilon>0$ there exist the numbers $T_{0}=T_{0}(\varepsilon)$ and $\delta=\delta(\varepsilon)>0$ such that $E \Delta_{T}(\tau)>\delta$ when $T>T_{0}$ and $\tau \notin v_{\theta}(\varepsilon)$.

Lemma 1. Assume that θ is identifiable parameter and

$$
\begin{equation*}
\sup _{\tau \in \Theta^{c}}\left|\delta_{T}(\tau)\right| \underset{T \rightarrow \infty}{\longrightarrow} 0 \text { a.s., } \tag{3}
\end{equation*}
$$

then $\widehat{\theta}_{T} \longrightarrow \theta$ a.s. as $T \rightarrow \infty$.
Proof. Let us denote by Ω_{1} the event of the probability 1 , for which the condition (3) is fulfilled. For elementary events $\omega \in \Omega_{1}$ from the definition of the estimate $\widehat{\theta}_{T}$ we have

$$
\begin{equation*}
\Delta_{T}\left(\widehat{\theta}_{T}\right) \leq 0 \tag{4}
\end{equation*}
$$

Suppose that for some fixed $\omega \in \Omega_{1} \widehat{\theta}_{T} \nrightarrow \theta$ as $T \rightarrow \infty$. It means that there exists some number $\varepsilon_{0}>0$ and the sequence of numbers $T_{n} \uparrow \infty$ as $n \rightarrow \infty$ such that for $n>n\left(\varepsilon_{0}\right)\left\|\widehat{\theta}_{T_{n}}-\theta\right\| \geq \varepsilon_{0}$. As for these T_{n} (4) also holds, then $\inf _{\tau \notin v_{\theta}\left(\varepsilon_{0}\right)} \Delta_{T_{n}}(\tau) \leq 0$.

Let $T_{n} \geq T_{0}\left(\varepsilon_{0}\right)$ and for $n>n\left(\varepsilon_{0}\right) \sup _{\tau \in \Theta^{c}}\left|\delta_{T_{n}}(\tau)\right|<\frac{\delta_{0}}{4}$, where $\delta_{0}=$ $\delta\left(\varepsilon_{0}\right)$. Then for $n>n\left(\varepsilon_{0}\right)$

$$
\begin{gathered}
0 \geq \inf _{\tau \notin v_{\theta}\left(\varepsilon_{0}\right)} \Delta_{T_{n}}(\tau)=\inf _{\tau \notin v_{\theta}\left(\varepsilon_{0}\right)}\left(\delta_{T_{n}}(\tau)+E \Delta_{T_{n}}(\tau)\right)-\delta_{T_{n}}(\theta) \\
\geq \inf _{\tau \notin v_{\theta}\left(\varepsilon_{0}\right)} \delta_{T_{n}}(\tau)+\inf _{\tau \notin v_{\theta}\left(\varepsilon_{0}\right)} E \Delta_{T_{n}}(\tau)-\delta_{T_{n}}(\theta) \\
\geq \inf _{\tau \in \Theta^{c}} \delta_{T_{n}}(\tau)+\inf _{\tau \notin v_{\theta}\left(\varepsilon_{0}\right)} E \Delta_{T_{n}}(\tau)-\delta_{T_{n}}(\theta)>\frac{\delta_{0}}{2} .
\end{gathered}
$$

We obtain contradiction. Hence, for $\omega \in \Omega_{1} \quad \widehat{\theta}_{T} \longrightarrow \theta$ as $T \rightarrow \infty$.
Introduce function $J(b)=E \rho(\varepsilon(t)-b)=E \rho(\varepsilon(0)-b), b \in \mathbf{R}^{1}$.
The next lemma states sufficient conditions of identifiability of parameter θ.

Lemma 2. An unknown parameter θ is identifiable if
(i) for any $\varepsilon>0$ there exist $T_{0}=T_{0}(\varepsilon)$ and $x=x(\varepsilon)>0$ such that for any $T>T_{0}$ and any $\tau \notin v_{\theta}(\varepsilon) \mu_{T}\{y \in Y:|\Delta g(y, \tau)|>x\}>x$;
(ii) $J(b)$ is unimodal;
(iii) $J(b)>J(0)$ for any $b \neq 0$.

Proof. It is easily seen that under the conditions (ii) and (iii) the mode is in $b=0$. Furthermore,

$$
\begin{equation*}
E \Delta_{T}(\tau)=\frac{1}{T} \int_{0}^{T}[J(\Delta g(y(t), \tau))-J(0)] d t \tag{5}
\end{equation*}
$$

Fix some $\varepsilon>0$ and consider numbers T_{0} and x taken from the condition (i) of the Lemma. From the condition (ii) it follows that the right hand side of
the relation (5) permits the lower bound

$$
\begin{gathered}
\frac{1}{T} \int_{0}^{T}[J(\Delta g(y(t), \tau))-J(0)] d t \geq(J(x)-J(0)) \frac{1}{T} \int_{0}^{T} \chi_{(x, \infty)}(|\Delta g(y(t), \tau)|) d t \\
=(J(x)-J(0)) \mu_{T}\{y \in Y:|\Delta g(y, \tau)|>x\},
\end{gathered}
$$

where $\chi_{A}(x)$ is the indicator of the set A.
From (i) and (ii) it follows that in the definition of the identifiability of parameter one can set $\delta=x(J(x)-J(0))$.

Further we formulate some sufficient conditions on the validity of Lemmas 1 and 2.

Lemma 3. If the assumption $\mathbf{B 1}$ holds, then the condition (i) of the Lemma 2 fulfiles.

Proof. Let $\varepsilon>0$ be an arbitrary number. It is necessary to show that there exists some numbers T_{0} and $x>0$ such that

$$
\begin{equation*}
\mu_{T}\{y \in Y:|\Delta g(y, \tau)|>x\}>x, T>T_{0}, \tau \notin v_{\theta}(\varepsilon) . \tag{6}
\end{equation*}
$$

Assume that (6) does not hold. Then there exist some sequences $T_{n} \uparrow \infty$ as $n \rightarrow \infty$ and $\tau_{n} \in \Theta^{c} \backslash v_{\theta}(\varepsilon)$ such that

$$
\begin{equation*}
\mu_{T_{n}}\left\{y \in Y:\left|\Delta g\left(y, \tau_{n}\right)\right|>n^{-1}\right\} \leq n^{-1}, n \geq 1 \tag{7}
\end{equation*}
$$

As the set $\Theta^{c} \backslash v_{\theta}(\varepsilon)$ is compact, there exists some point $\tau^{*} \in \Theta^{c} \backslash v_{\theta}(\varepsilon)$ and the sequence $n_{k}, k \geq 1$ such that $\tau_{n_{k}} \rightarrow \tau^{*}$ as $k \rightarrow \infty$.

Let $\delta>0$ be an arbitrary fixed number. Then there exists some number k_{δ} such that for $k>k_{\delta}$, uniformly in $y \in Y$,

$$
\begin{equation*}
\left|\Delta g\left(y, \tau_{n_{k}}\right)-\Delta g\left(y, \tau^{*}\right)\right| \leq \frac{\delta}{2} \tag{8}
\end{equation*}
$$

Thanks to (8), for $k>k_{\delta}$

$$
\begin{align*}
\left\{\left|\Delta g\left(y, \tau^{*}\right)\right|>\delta\right\} \subset & \left\{\left|\Delta g\left(y, \tau^{*}\right)-\Delta g\left(y, \tau_{n_{k}}\right)\right|+\left|\Delta g\left(y, \tau_{n_{k}}\right)\right|>\delta\right\} \\
& \subset\left\{\left|\Delta g\left(y, \tau_{n_{k}}\right)\right|>\frac{\delta}{2}\right\} . \tag{9}
\end{align*}
$$

Taking into account the inequality (7) for $n_{k}>\frac{2}{\delta}$ one has

$$
\begin{equation*}
\mu_{T_{n_{k}}}\left\{y \in Y:\left|\Delta g\left(y, \tau_{n_{k}}\right)\right|>\frac{\delta}{2}\right\} \leq \frac{1}{n_{k}} . \tag{10}
\end{equation*}
$$

Then, from (9) and (10) it follows that

$$
\begin{equation*}
\mu_{T_{n_{k}}}\left\{y \in Y:\left|\Delta g\left(y, \tau^{*}\right)\right|>\delta\right\} \leq n_{k}^{-1} \tag{11}
\end{equation*}
$$

which is true for any $k>k_{\delta}^{\prime}=\max \left(k_{\delta}, \min \left\{k: n_{k}>\frac{2}{\delta}\right\}\right)$.
Denote by $Y_{\delta}=\left\{y \in Y:\left|\Delta g\left(y, \tau^{*}\right)\right| \leq \delta\right\}$. From (11) it follows that $\mu_{T_{n_{k}}}\left(Y_{\delta}\right)>1-n_{k}^{-1}$ for all $k>k_{\delta}^{\prime}$.

As Y_{δ} is a closed set, then thanks to weak convergence of μ_{T} to the measure μ, we obtain (see, for example, [3], p. 21)

$$
\varlimsup_{k \rightarrow \infty} \mu_{T_{n_{k}}}\left(Y_{\delta}\right) \leq \mu\left(Y_{\delta}\right), \delta>0
$$

For $\delta \downarrow 0$, from the continuity of the measure μ it follows that

$$
\begin{equation*}
\mu\{y \in Y: \Delta g(y, \tau)=0\}=1 \tag{12}
\end{equation*}
$$

But the relation (12) contradicts to the condition B1.
Lemma 4. If the assumptions A3, A4 and $\mathbf{C 1}$ hold, then the conditions (ii) and (iii) of the Lemma 2 are fulfilled.

Proof. Without loss of generality, assume that $\rho(x), x \geq 0$ is strictly monotonically increasing function. From the formula for the mean of the nonnegative r.v. (see, for example, [4], p. 190) one has

$$
\begin{gathered}
J(b)-J(0)=\int_{0}^{\infty}(P\{\rho(\varepsilon(0))<x\}-P\{\rho(\varepsilon(0)-b)<x\}) d x= \\
\int_{0}^{\infty}\left(P\left\{-\rho^{-1}(x)<\varepsilon(0)<\rho^{-1}(x)\right\}-P\left\{-\rho^{-1}(x)<\varepsilon(0)-b<\rho^{-1}(x)\right\}\right) d x
\end{gathered}
$$ where $\rho^{-1}(x)$ is the inverse of the function $\rho(x), x \geq 0$.

By the change of variable $x=\rho(z), z \geq 0$ in the last integral,

$$
\begin{align*}
J(b)- & J(0)=\int_{0}^{\infty}(P\{|\varepsilon(0)|<z\}-P\{|\varepsilon(0)-b|<z\}) d \rho(z)= \\
& =\int_{0}^{\infty}(F(z)-F(z-b)-F(z+b)+F(z)) d \rho(z), \tag{13}
\end{align*}
$$

where $F(x)$ is the d.f. of the r.v. $\varepsilon(0)$.
The integral in the first equality of the relations (13) coincides with the expression of A4, and the condition (iii) of Lemma 2 is fulfilled.

From the symmetry of ρ and r.v. $\varepsilon(0)$ it follows the symmetry of $J(b)$.
Denote by $\Delta_{b}^{2} F(z)=(F(z)-F(z-b))-(F(z+b)-F(z)), b, z \geq 0$. Then A4 can be rewritten in the form

$$
\int_{0}^{\infty} \Delta_{b}^{2} F(z) d \rho(z)>0, b>0
$$

From (13) it follows that

$$
\Delta_{b}^{2} F(z)=P\{|\varepsilon(0)|<z\}-P\{|\varepsilon(0)-b|<z\} .
$$

Consider for $b_{2}>b_{1}$ the difference

$$
J\left(b_{2}\right)-J\left(b_{1}\right)=\int_{0}^{\infty}\left(\Delta_{b_{2}}^{2} F(z)-\Delta_{b_{1}}^{2} F(z)\right) d \rho(z) .
$$

It is easily seen that

$$
\Delta_{b_{2}}^{2} F(z)-\Delta_{b_{1}}^{2} F(z)=P\left\{\left|\varepsilon(0)-b_{1}\right|<z\right\}-P\left\{\left|\varepsilon(0)-b_{2}\right|<z\right\} \geq 0
$$

from the unimodality of the r.v. $\varepsilon(0)$. It means that $J\left(b_{2}\right)-J\left(b_{1}\right) \geq 0$, and the condition (ii) of Lemma 2 is a corollary of $\mathbf{A 3}$ and $\mathbf{C 1}$.

Assume that the d.f. $F(x)$ is continuously differentiable and the density of the distribution $p(x)$ is an even strictly decreasing for $x \geq 0$ function. Suppose that a continuous even function $\rho(x)$ is such that $\rho(0)=0$ and strictly monotonically increasing for $x \geq 0$. Then one can use Lemma 10.2 of the book [3], p. 217-218, and for any $b \neq 0$

$$
J(b)-J(0)=E \rho(\varepsilon(0)-b)-E \rho(\varepsilon(0))>0,
$$

and the integral in A4 is strictly positive.
Consider next sufficient conditions of the uniform convergence in (3) of Lemma 1.

Lemma 5. Suppose the condition C2 fulfiles and

$$
\begin{equation*}
\delta_{T}(\tau) \underset{T \rightarrow \infty}{\longrightarrow} 0 \quad \text { a.s. }, \tau \in \Theta^{c}, \tag{14}
\end{equation*}
$$

then (3) holds.
Proof. From C2 it follows that for $\tau_{1}, \tau_{2} \in \Theta^{c}$

$$
\left|Q_{T}\left(\tau_{1}\right)-Q_{T}\left(\tau_{2}\right)\right| \leq \frac{c}{T} \int_{0}^{T}\left|g\left(y(t), \tau_{1}\right)-g\left(y(t), \tau_{2}\right)\right| d t
$$

Similarly, from C2 for $\tau_{1}, \tau_{2} \in \Theta^{c}$ one has

$$
\left|\delta_{T}\left(\tau_{1}\right)-\delta_{T}\left(\tau_{2}\right)\right| \leq \frac{2 c}{T} \int_{0}^{T}\left|g\left(y(t), \tau_{1}\right)-g\left(y(t), \tau_{2}\right)\right| d t
$$

Hence, the family of functions $\left\{\delta_{T}(\tau): \omega \in \Omega, T>0\right\}$ is an equicontinuous on the set Θ^{c}. So for any $\delta>0$ there exists a finite number of points $\tau_{1}, \ldots, \tau_{k} \in \Theta^{c}$ such that

$$
\sup _{\tau \in \Theta^{c}}\left|\delta_{T}(\tau)\right| \leq \max _{1 \leq j \leq k}\left|\delta_{T}\left(\tau_{j}\right)\right|+\delta, \omega \in \Omega, T>0
$$

From (14) it follows that $\max _{1 \leq j \leq k}\left|\delta_{T}\left(\tau_{j}\right)\right| \longrightarrow 0$ a.s. as $T \rightarrow \infty$, and, hence, $\sup _{\tau \in \Theta^{c}}\left|\delta_{T}(\tau)\right| \longrightarrow 0$ a.s. as $T \rightarrow \infty$.

4. Proof of Theorem 1

We shall prove that (14) holds under the assumptions of Theorem 1. Using the notation

$$
\xi(t)=\rho(\varepsilon(t)-\Delta g(y(t), \tau))-E \rho(\varepsilon(t)-\Delta g(y(t), \tau)), \tau \in \Theta^{c}
$$

one has

$$
\begin{align*}
\delta_{T}(\tau) & =\frac{1}{T} \int_{0}^{T} \xi(t) d t, \quad E \delta_{T}^{2}(\tau)=\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} E \xi(t) \xi(s) d t d s \leq \\
& \leq \frac{10}{T^{2}} \int_{0}^{T} \int_{0}^{T}\left[E \rho^{2+\delta}(\varepsilon(t)-\Delta g(y(t), \tau))\right]^{\frac{1}{2+\delta}} \times \\
\times & {\left[E \rho^{2+\delta}(\varepsilon(s)-\Delta g(y(s), \tau))\right)^{\frac{1}{2+\delta}} \alpha^{\frac{\delta}{2+\delta}}(|t-s|) d t d s . } \tag{15}
\end{align*}
$$

To obtain (15) the Davidov inequality has been used with $p=q=2+\delta, r=$ $1+\frac{2}{\delta}$ (see [5], and also Lemma 1.6.2 of the book [6]).

As $\rho(0)=0$, then from the condition C2 one obtains

$$
E \rho^{2+\delta}(\varepsilon(t)-\Delta g(y(t), \tau)) \leq c^{2+\delta} E|\varepsilon(0)-\Delta g(y(t), \tau)|^{2+\delta}
$$

By obvious inequalities

$$
\begin{align*}
& |a+b|^{\kappa} \leq 2^{\kappa-1}\left(|a|^{\kappa}+|b|^{\kappa}\right), \quad|a+b|^{\frac{1}{\kappa}} \leq|a|^{\frac{1}{\kappa}}+|b|^{\frac{1}{\kappa}}, \kappa=2+\delta, \tag{16}\\
& \quad\left[E \rho^{2+\delta}(\varepsilon(t)-\Delta g(y(t), \tau))\right]^{\frac{1}{2+\delta}} \leq 2^{\frac{1+\delta}{2+\delta}} c\left(\mu_{2+\delta}^{\frac{1}{2+\delta}}+|\Delta g(y(t), \tau)|\right),
\end{align*}
$$

i.e.

$$
\begin{array}{r}
E \delta_{T}^{2}(\tau) \leq 2^{\frac{\delta}{2+\delta}} c^{2} \frac{20}{T^{2}} \int_{0}^{T} \int_{0}^{T} \alpha^{\frac{\delta}{2+\delta}}(|t-s|)\left[\mu_{2+\delta}^{\frac{1}{2+\delta}}+|\Delta g(y(t), \tau)|\right] \times \\
\times\left[\mu_{2+\delta}^{\frac{1}{2+\delta}}+|\Delta g(y(s), \tau)|\right] d t d s \leq \\
\leq 2^{\frac{\delta}{2+\delta}} c^{2} \frac{20}{T^{2}} \int_{0}^{T} \int_{0}^{T} \alpha^{\frac{\delta}{2+\delta}}(|t-s|)\left[\mu_{2+\delta}^{\frac{1}{2+\delta}}+|\Delta g(y(t), \tau)|\right]^{2} d t d s
\end{array}
$$

Using the first inequality of (16) with $\kappa=2$,

$$
E \delta_{T}^{2}(\tau) \leq 2^{\frac{\delta}{2+\delta}} c^{2} \frac{40}{T^{2}} \int_{0}^{T} \int_{0}^{T} \alpha^{\frac{\delta}{2+\delta}}(|t-s|)\left[\mu_{2+\delta}^{\frac{2}{2+\delta}}+|\Delta g(y(t), \tau)|^{2}\right] d t d s
$$

It remains to estimate two integrals, namely:

$$
I_{1}=\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} \alpha^{\frac{\delta}{2+\delta}}(|t-s|) d t d s \leq \frac{1}{T^{2}} \int_{0}^{T} d s \int_{-T}^{T} \alpha^{\frac{\delta}{2+\delta}}(|t|) d t=O\left(T^{-1}\right)
$$

as $T \rightarrow \infty$, under assumption A2. On the other hand,

$$
\begin{align*}
& I_{2}=\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} \alpha^{\frac{\delta}{2+\delta}}(|t-s|)|\Delta g(y(t), \tau)|^{2} d t d s \\
& \tag{17}\\
& \leq\left(2 \int_{0}^{\infty} \alpha^{\frac{\delta}{2+\delta}}(s) d s\right) \frac{1}{T^{2}} \int_{0}^{T}|\Delta g(y(t), \tau)|^{2} d t .
\end{align*}
$$

As $g(y, \tau)$ is continuous function on the compact $Y \times \Theta^{c}$, the right hand side of the inequality (17) is of the order $O\left(T^{-1}\right)$ as $T \rightarrow \infty$.

Thus, $E \delta_{T}^{2}(\tau)=O\left(T^{-1}\right)$ as $T \rightarrow \infty$, and $\delta_{T}(\tau) \longrightarrow 0$ in probability as $T \rightarrow \infty$.

Note that for the sequence $T_{n}=n^{2}, n \geq 1 \sum_{n=1}^{\infty} E \delta_{T_{n}}^{2}(\tau)<\infty$, i.e. $\delta_{T_{n}}(\tau) \longrightarrow{ }_{n \rightarrow \infty} 0$ a.s.

If $T \in\left[T_{n}, T_{n+1}\right]$, then

$$
\left|\delta_{T}(\tau)\right| \leq \sup _{T_{n} \leq T \leq T_{n+1}}\left|\delta_{T}(\tau)-\delta_{T_{n}}(\tau)\right|+\left|\delta_{T_{n}}(\tau)\right|
$$

and the Theorem will be proved, if $\sup _{T_{n} \leq T \leq T_{n+1}}\left|\delta_{T}(\tau)-\delta_{T_{n}}(\tau)\right| \longrightarrow{ }_{n \rightarrow \infty} 0$ a.s.
Obviously

$$
\begin{aligned}
& \delta_{T}(\tau)-\delta_{T_{n}}(\tau)=\frac{1}{T} \int_{0}^{T} \xi(t) d t-\frac{1}{T_{n}} \int_{0}^{T_{n}} \xi(t) d t= \\
& =\left(\frac{1}{T}-\frac{1}{T_{n}}\right) \int_{0}^{T_{n}} \xi(t) d t+\frac{1}{T} \int_{T_{n}}^{T} \xi(t) d t=I_{3}+I_{4} .
\end{aligned}
$$

Furthermore, for $T \in\left[T_{n}, T_{n+1}\right]$

$$
\begin{gathered}
\left|I_{3}\right| \leq \frac{T_{n+1}-T_{n}}{T_{n}}\left|\delta_{T_{n}}(\tau)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0 \text { a.s. } \\
\left|I_{4}\right| \leq \frac{1}{T_{n}} \int_{T_{n}}^{T_{n+1}}|\xi(t)| d t \leq \frac{1}{T_{n}} \int_{T_{n}}^{T_{n+1}} \rho(\varepsilon(t)-\Delta g(y(t), \tau)) d t+
\end{gathered}
$$

$$
+\frac{1}{T_{n}} \int_{T_{n}}^{T_{n+1}} E \rho(\varepsilon(t)-\Delta g(y(t), \tau)) d t=I_{5}+I_{6} .
$$

As under the Lipshits condition C2

$$
\rho(\varepsilon(t)-\Delta g(y(t), \tau)) \leq c(|\varepsilon(t)|+|\Delta g(y(t), \tau)|)
$$

then

$$
\begin{gathered}
I_{5} \leq \frac{c}{T_{n}} \int_{T_{n}}^{T_{n+1}}|\varepsilon(t)| d t+\frac{c}{T_{n}} \int_{T_{n}}^{T_{n+1}}|\Delta g(y(t), \tau)| d t=I_{7}+I_{8}, \\
I_{8}=c\left(\frac{T_{n+1}}{T_{n}} \cdot \frac{1}{T_{n+1}} \int_{0}^{T_{n+1}}|\Delta g(y(t), \tau)| d t-\frac{1}{T_{n}} \int_{0}^{T_{n}}|\Delta g(y(t), \tau)| d t\right) .
\end{gathered}
$$

From the assumption B1 of the Theorem it follows

$$
\frac{1}{T_{n}} \int_{0}^{T_{n}}|\Delta g(y(t), \tau)| d t=\int_{Y}|\Delta g(y, \tau)| \mu_{T_{n}}(d y) \underset{n \rightarrow \infty}{\longrightarrow} \int_{Y}|\Delta g(y, \tau)| \mu(d y),
$$

then $I_{8} \longrightarrow 0$ as $n \rightarrow \infty$.
On the other hand,

$$
I_{7}=c\left(\frac{1}{T_{n}} \int_{T_{n}}^{T_{n+1}}(|\varepsilon(t)|-E|\varepsilon(t)|) d t+E|\varepsilon(0)| \frac{T_{n+1}-T_{n}}{T_{n}}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \text { a.s. }
$$

by Davidov inequality.
Similarly, it can be shown that $I_{6} \longrightarrow 0$ as $n \rightarrow \infty$.
Consequently, (14) is fulfilled. The validity of Theorem 1 follows now from the Lemmas 1-5 proved above.

5. Proof of Theorem 2

Similarly to proof of Theorem 1 we need to proof that (14) holds. Then the result of Theorem 2 will follow from the Lemmas 1-5.

Consider a random process

$$
\begin{equation*}
G(\varepsilon(t), t)=\rho(\varepsilon(t)-\Delta g(y(t), \tau)) . \tag{18}
\end{equation*}
$$

From C2 and A5

$$
\begin{equation*}
E G^{2}(\varepsilon(t), t) \leq c^{2} E|\varepsilon(t)-\Delta g(y(t), \tau)|^{2}=c^{2}\left(1+|\Delta g(y(t), \tau)|^{2}\right) \leq C<\infty \tag{19}
\end{equation*}
$$

uniformly in $t \geq 0$ and $\tau \in \Theta^{c}$. Therefore in Gilbert space $L_{2}\left(\mathbf{R}^{1}, \varphi(u) d u\right)$, where $\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$ is a standard Gaussian density, there exists an expansion (see, for example, [6])

$$
G(u, t)=\sum_{m=0}^{\infty} \frac{C_{m}(t)}{m!} H_{m}(u), C_{m}(t)=\int_{\mathbf{R}^{1}} G(u, t) H_{m}(u) \varphi(u) d u, m \geq 0
$$

by Chebyshev-Hermite polynomials

$$
\begin{equation*}
H_{m}(u)=(-1)^{m} e^{\frac{u^{2}}{2}} \frac{d^{m}}{d u^{m}} e^{-\frac{u^{2}}{2}}, m \geq 0 \tag{20}
\end{equation*}
$$

Note that $C_{0}(t)=E \rho(\varepsilon(0)-\Delta g(y(t), \tau))=J(\Delta g(y(t), \tau))$.
Thanks to relations

$$
\begin{equation*}
E H_{m}(\varepsilon(t)) H_{k}(\varepsilon(s))=\delta_{m}^{k} m!B^{m}(t-s), \tag{21}
\end{equation*}
$$

where δ_{m}^{k} is Kroneker delta we have

$$
E \xi(t) \xi(s)=\operatorname{cov}(G(\varepsilon(t), t), G(\varepsilon(s), s))=\sum_{m=1}^{\infty} \frac{C_{m}(t) C_{m}(s)}{m!} B^{m}(t-s)
$$

Hence, taking into account that $B(0)=1$, we obtain

$$
\begin{aligned}
E \delta_{T}^{2}(\tau) & =\sum_{m=1}^{\infty} \frac{1}{m!} \frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} C_{m}(t) C_{m}(s) B^{m}(t-s) d t d s \\
& \leq \sum_{m=1}^{\infty} \frac{1}{m!} \frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} C_{m}^{2}(t) B^{m}(t-s) d t d s \\
& \leq \frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T}\left(\sum_{m=1}^{\infty} \frac{C_{m}^{2}(t)}{m!}\right) B(t-s) d t d s
\end{aligned}
$$

Note that, thanks to (19),

$$
\sum_{m=1}^{\infty} \frac{C_{m}^{2}(t)}{m!}=E G^{2}(\varepsilon(0), t)-(E G(\varepsilon(0), t))^{2}=D G(\varepsilon(0), t) \leq C<\infty
$$

and

$$
E \delta_{T}^{2}(\tau) \leq C \frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} B(t-s) d t d s
$$

On the other hand, as $T \rightarrow \infty$,

$$
\begin{gathered}
\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} B(t-s) d t d s=\int_{0}^{1} \int_{0}^{1} B(T(t-s)) d t d s=\frac{1}{T^{\alpha}} \int_{0}^{1} \int_{0}^{1} \frac{L(T|t-s|)}{|t-s|^{\alpha}} d t d s \\
\sim\left(\int_{0}^{1} \int_{0}^{1} \frac{d t d s}{|t-s|^{\alpha}}\right) \frac{L(T)}{T^{\alpha}}=\frac{2}{(1-\alpha)(2-\alpha)} \frac{L(T)}{T^{\alpha}}
\end{gathered}
$$

by the properties of the slowly varying function (see, for example $[7],[8]$).
For the sequence $T_{n}=n^{\frac{1}{\alpha}+\nu}$, where $\nu>0$ is some number, $\sum_{n=1}^{\infty} \frac{L\left(T_{n}\right)}{T_{n}^{\alpha}}<$ ∞, and so $\delta_{T_{n}}(\tau) \longrightarrow 0$ a.s., as $n \rightarrow \infty$.

Taking into account the proof of Theorem 1, it remains to show that

$$
\begin{equation*}
\frac{1}{T_{n}} \int_{0}^{T_{n}}(|\varepsilon(t)|-E|\varepsilon(t)|) d t \underset{n \rightarrow \infty}{\longrightarrow} 0 \text { a.s. } \tag{22}
\end{equation*}
$$

But the proof of (22) is similar to the previous reasoning for $G(\varepsilon(t), t)$. \square

Bibliography

1. F. Liese and I. Vajda Consistency of M-estimates in general regression models, Journal of Multivariate Analysis, 50, 1, (1994), 93-114.
2. A. V. Ivanov Asymptotic Theory of Nonlinear Regression, Kluwer Academic Publishers, Dordrecht, (1997).
3. Ibrahimov I.A. and Hasminsky R.Z. Asymptotic theory of estimation, Nauka, Moskow, (1979). (in Russian)
4. Feller V. Introduction to probability theory and its applications, Mir, Moskow, volume 2, (1967). (in Russian)
5. Davidov U.A. About convergence of the distributions, generated by stationary random processes, TVIP, Vol. 15, 3, (1970), 498-509.(in Russian)
6. Ivanov A.V. and Leonenko N.N. Statistical analysis of random fields, Vyscha Shkola, Kyiv,(1986). (in Russian)
7. Seneta E. Regularly varying function, Nauka, Moskow, (1985). (in Russian)
8. Ivanov A.V. and Orlovsky I.V. L_{p}-Estimates in Nonlinear Regression with Long-Range Dependence, Theory of Stochastic Processes, Vol. 7(23), . 3-4, (2002), 38-49.

National technical university of Ukraine, "KPI". Peremogi avenue 37, Kiev
E-mail address: ivanov@paligora.kiev.ua
National technical university of Ukraine, "KPI". Peremogi avenue 37, Kiev
E-mail address: avalon@ln.ua

[^0]: 2000 Mathematics Subject Classifications. Primary 62J02; Secondary 62J99
 Key words and phrases. Consistency, M-estimates, nonlinear regression model.

