Theory of Stochastic Processes Vol.13 (29), no.1-2, 2007, pp.86-97

ALEXANDER V. IVANOV AND IGOR V. ORLOVSKY

CONSISTENCY OF M-ESTIMATES IN GENERAL NONLINEAR REGRESSION MODELS

Nonlinear regression model with continuous time and weak dependent or long-range dependent stationary noise is considered. Strong consistency sufficient conditions of M-estimates of regression parameters are obtained.

1. INTRODUCTION

Consider a regression model

$$X(t) = g(y(t), \theta) + \varepsilon(t), \ t \ge 0, \tag{1}$$

where $g(y,\tau)$ is a non-random function defined on $Y \times \Theta^c$, Θ^c is the closure in \mathbf{R}^q of an open set Θ , $Y \subset \mathbf{R}^m$ is a compact region of regression experiment design. Borel function $y(t) : [0,\infty) \to Y$ is a design of regression experiment, $\theta = (\theta_1, ..., \theta_q) \in \Theta^c$ is an unknown parameter. Let $\varepsilon(t), t \in \mathbf{R}^1$ be a random process satisfying the assumption

A1. $\varepsilon(t), t \in \mathbb{R}^1$ is a real valued mean-square continuous measurable stationary process with zero mean on a complete probability space (Ω, \Im, P) .

We do not assume function $g(y, \theta)$ to be a linear form of coordinates of the vector θ .

Definition 1. M-estimate of unknown parameter θ obtained by the observations $X(t), t \in [0,T)$, of the type (1), is said to be any random vector $\hat{\theta}_T$ that minimizes in $\tau \in \Theta^c$ the functional $M_T(\tau) = \frac{1}{T} \int_0^T \rho(X(t) - g(y(t), \tau)) dt$ with continuous risk function $\rho : \mathbf{R}^1 \to \mathbf{R}^1$.

The consistency property of M-estimates for nonlinear regression model with independent identically distributed observation errors is considered in [1]. Some facts on consistency of the least squares estimates and least moduli estimates can be found in [2].

Sufficient conditions for strong consistency of M-estimates of an unknown parameter θ of the model (1) with random noise that satisfies weak or long-range dependence conditions are presented in this paper.

²⁰⁰⁰ Mathematics Subject Classifications. Primary 62J02; Secondary 62J99 Key words and phrases. Consistency, M-estimates, nonlinear regression model.

2. Assumptions and the main results

Let us impose some restriction on the random process $\varepsilon(t)$, $t \in \mathbf{R}^1$. **A2.** $\varepsilon(t)$, $t \in \mathbf{R}^1$ is a strictly stationary process, such that for some $\delta > 0 \ \mu_{2+\delta} = E |\varepsilon(0)|^{2+\delta} < \infty$ and

$$\int_{0}^{\infty} (\alpha(r))^{\frac{\delta}{2+\delta}} \, dr < \infty,$$

where

$$\alpha(r) = \sup_{A \in \sigma(-\infty,s], B \in \sigma[s+r,\infty)} |P(AB) - P(A)P(B)|,$$

 $\sigma(a, b]$ is σ -algebra generated by random variables (r.v.) $\{\varepsilon(t), t \in (a, b]\}$.

Definition 2. If for symmetric r.v. ξ the probabilities $P\{|\xi - b| < x\}$, $x \in [0, \infty)$ are nonincreasing functions of the variable $b \in [0, \infty)$, then we say that ξ is a symmetric and unimodal r.v..

A3. $\varepsilon(0)$ is a symmetric and unimodal r.v. with the distribution function (d.f.) F(x).

Let \mathcal{B} be a σ -algebra of Borel subsets of Y. For any $A \in \mathcal{B}$

$$\mu_T(A) = T^{-1}m\{t \in [0,T] : y(t) \in A\},\$$

where m is Lebesgue measure on $[0, \infty)$.

Let $\Delta g(y,\tau) = g(y,\theta) - g(y,\tau)$ and $v_{\theta}(\varepsilon) = \{\tau \in \mathbf{R}^q : \|\tau - \theta\| < \varepsilon\}.$

B1. The measures μ_T are weakly converge, as $T \to \infty$, to some measure μ : $\mu_T \Longrightarrow \mu$ and for any $\varepsilon > 0$ $\mu \{y \in Y : \Delta g(y, \tau) = 0\} < 1$ for each $\tau \notin v_{\theta}(\varepsilon)$.

Example. Assume $\{y_i\}_{i\geq 1} \subset Y$ to be some sequence and $y(t) = y_i, t \in [i-1;i), i = 1, 2, \dots$. Introduce the measure

$$\mu_T = \frac{1}{T} \sum_{i=1}^{[T]} \delta_{y_i} + \frac{\{T\}}{T} \delta_{y_{[T]+1}},$$

where [T] and $\{T\}$ are integer and fractional parts of T. Then, if $\frac{1}{n} \sum_{i=1}^{n} \delta_{y_i} \Rightarrow \mu$ as $n \to \infty$, then $\mu_T \Rightarrow \mu$ as $T \to \infty$.

Requirement on the measure μ in the condition **B1** can be written as follows: for any $\varepsilon > 0$ $\mu\{y \in Y : g(y, \tau) \neq g(y, \theta)\} > 0$ for each $\tau \notin v_{\theta}(\varepsilon)$.

Suppose that the measure μ is absolutely continuous with respect to Lebesgue measure l on Y, furthermore l(Y) > 0 and μ has the density f(y) separated from zero: $\inf_{y \in Y} f(y) \ge f_* > 0$. Then

$$\mu\{y\in Y:\ g(y,\tau)\neq g(y,\theta)\}=\int\limits_{\{y\in Y:\ g(y,\tau)\neq g(y,\theta)\}}f(y)dy\geq$$

$$\geq f_*l\{y \in Y : g(y,\tau) \neq g(y,\theta)\} > 0,$$

if $l\{y \in Y : g(y,\tau) \neq g(y,\theta)\} > 0$. But the last inequality is the property of the regression function to distinguish parameters.

Definition 3. Function $J(\cdot) : \mathbf{R}^1 \to \mathbf{R}^1$ is called symmetric, if there exists some point $b_0 \in \mathbf{R}^1$ (which is called the center of symmetry) and some function $\varphi(\cdot) : [0, \infty) \to \mathbf{R}^1$ such that $J(b) = \varphi(|b - b_0|)$. If φ is a monotonically nondecreasing function and $\varphi(x) > \varphi(0)$ for x > 0, then J is called unimodal and the center of symmetry is called the mode.

Impose some restriction on risk function. Let $E\rho(\varepsilon(t)) = E\rho(\varepsilon(0)) < \infty$.

C1. $\rho(x)$ is continuous unimodal, with mode in zero, function such that $\rho(0) = 0$.

C2. There exists c > 0 such that $|\rho(x_1) - \rho(x_2)| \le c|x_1 - x_2|$ for any $x_1, x_2 \in \mathbf{R}^1$.

Assume also

A4.
$$\int_{0}^{\infty} \left[P\{|\varepsilon(0)| < z\} - P\{|\varepsilon(0) - b| < z\} \right] d\rho(z) > 0, \ b > 0.$$

Note that from C1 it follows that $\rho(x)$ is monotonically nondecreasing function in the region $x \ge 0$. It means that Lesbegue-Stilties integral in A4 exists. Moreover, from A3 it follows that the difference in square brackets A4 is nonnegative.

Theorem 1. Suppose that assumptions A1-A4, B1, C1 and C2 are fulfilled. Then M-estimate $\hat{\theta}_T \rightarrow \theta$ a.s. as $T \rightarrow \infty$.

To state the second result of the paper we need to introduce additional condition on $\varepsilon(t)$.

Definition 4. Stationary process $\varepsilon(t)$, $t \in \mathbf{R}^1$ $E\varepsilon(t) = 0$ is called a process with long-range dependence if

$$E\varepsilon(0)\varepsilon(t) = B(t) = \frac{L(|t|)}{|t|^{\alpha}}, \ 0 < \alpha < 1,$$
(2)

where $L(t): [0, \infty) \to [0, \infty)$ is a slowly varying function (at infinity).

A5. Gaussian random process $\varepsilon(t), t \in \mathbf{R}^1$ is a process with long-range dependence, B(0) = 1.

Theorem 2. Suppose that assumptions A1, A4, A5, B1, C1 and C2 are fulfilled. Then M-estimate $\hat{\theta}_T \to \theta$ a.s. as $T \to \infty$.

3. AUXILIARY ASSERTIONS

 Set

$$\delta_T(\tau) = Q_T(\tau) - EQ_T(\tau), \ \Delta_T(\tau) = Q_T(\tau) - Q_T(\theta).$$

Definition 5. An unknown parameter θ is said to be identifiable, if for any $\varepsilon > 0$ there exist the numbers $T_0 = T_0(\varepsilon)$ and $\delta = \delta(\varepsilon) > 0$ such that $E\Delta_T(\tau) > \delta$ when $T > T_0$ and $\tau \notin v_{\theta}(\varepsilon)$. **Lemma 1.** Assume that θ is identifiable parameter and

$$\sup_{\tau \in \Theta^c} |\delta_T(\tau)| \underset{T \to \infty}{\longrightarrow} 0 \quad \text{a.s.}, \tag{3}$$

then $\widehat{\theta}_T \longrightarrow \theta$ a.s. as $T \to \infty$.

Proof. Let us denote by Ω_1 the event of the probability 1, for which the condition (3) is fulfilled. For elementary events $\omega \in \Omega_1$ from the definition of the estimate $\hat{\theta}_T$ we have

$$\Delta_T(\widehat{\theta}_T) \le 0. \tag{4}$$

Suppose that for some fixed $\omega \in \Omega_1 \ \widehat{\theta}_T \not\to \theta$ as $T \to \infty$. It means that there exists some number $\varepsilon_0 > 0$ and the sequence of numbers $T_n \uparrow \infty$ as $n \to \infty$ such that for $n > n(\varepsilon_0) \|\widehat{\theta}_{T_n} - \theta\| \ge \varepsilon_0$. As for these T_n (4) also holds, then $\inf_{\tau \notin v_\theta(\varepsilon_0)} \Delta_{T_n}(\tau) \le 0$.

Let $T_n \geq T_0(\varepsilon_0)$ and for $n > n(\varepsilon_0) \sup_{\tau \in \Theta^c} |\delta_{T_n}(\tau)| < \frac{\delta_0}{4}$, where $\delta_0 = \delta(\varepsilon_0)$. Then for $n > n(\varepsilon_0)$

$$0 \geq \inf_{\tau \notin v_{\theta}(\varepsilon_{0})} \Delta_{T_{n}}(\tau) = \inf_{\tau \notin v_{\theta}(\varepsilon_{0})} \left(\delta_{T_{n}}(\tau) + E \Delta_{T_{n}}(\tau) \right) - \delta_{T_{n}}(\theta)$$
$$\geq \inf_{\tau \notin v_{\theta}(\varepsilon_{0})} \delta_{T_{n}}(\tau) + \inf_{\tau \notin v_{\theta}(\varepsilon_{0})} E \Delta_{T_{n}}(\tau) - \delta_{T_{n}}(\theta)$$
$$\geq \inf_{\tau \in \Theta^{c}} \delta_{T_{n}}(\tau) + \inf_{\tau \notin v_{\theta}(\varepsilon_{0})} E \Delta_{T_{n}}(\tau) - \delta_{T_{n}}(\theta) > \frac{\delta_{0}}{2}.$$

We obtain contradiction. Hence, for $\omega \in \Omega_1$ $\widehat{\theta}_T \longrightarrow \theta$ as $T \to \infty$. \Box Introduce function $J(b) = E\rho(\varepsilon(t) - b) = E\rho(\varepsilon(0) - b), \ b \in \mathbf{R}^1$.

The next lemma states sufficient conditions of identifiability of parameter θ .

Lemma 2. An unknown parameter θ is identifiable if

(i) for any $\varepsilon > 0$ there exist $T_0 = T_0(\varepsilon)$ and $x = x(\varepsilon) > 0$ such that for any $T > T_0$ and any $\tau \notin v_{\theta}(\varepsilon) \ \mu_T \{y \in Y : |\Delta g(y, \tau)| > x\} > x;$

(ii) J(b) is unimodal;

(iii) J(b) > J(0) for any $b \neq 0$.

Proof. It is easily seen that under the conditions (ii) and (iii) the mode is in b = 0. Furthermore,

$$E\Delta_T(\tau) = \frac{1}{T} \int_0^T \left[J(\Delta g(y(t), \tau)) - J(0) \right] dt.$$
 (5)

Fix some $\varepsilon > 0$ and consider numbers T_0 and x taken from the condition (i) of the Lemma. From the condition (ii) it follows that the right hand side of

the relation (5) permits the lower bound

$$\frac{1}{T} \int_{0}^{T} \left[J(\Delta g(y(t),\tau)) - J(0) \right] dt \ge \left(J(x) - J(0) \right) \frac{1}{T} \int_{0}^{T} \chi_{(x,\infty)} \left(\left| \Delta g(y(t),\tau) \right| \right) dt$$

$$= (J(x) - J(0)) \mu_T \{ y \in Y : |\Delta g(y, \tau)| > x \}$$

where $\chi_A(x)$ is the indicator of the set A.

From (i) and (ii) it follows that in the definition of the identifiability of parameter one can set $\delta = x(J(x) - J(0))$. \Box

Further we formulate some sufficient conditions on the validity of Lemmas 1 and 2.

Lemma 3. If the assumption B1 holds, then the condition (i) of the Lemma 2 fulfiles.

Proof. Let $\varepsilon > 0$ be an arbitrary number. It is necessary to show that there exists some numbers T_0 and x > 0 such that

$$\mu_T \{ y \in Y : |\Delta g(y,\tau)| > x \} > x, \ T > T_0, \ \tau \notin v_\theta(\varepsilon).$$
(6)

Assume that (6) does not hold. Then there exist some sequences $T_n \uparrow \infty$ as $n \to \infty$ and $\tau_n \in \Theta^c \setminus v_{\theta}(\varepsilon)$ such that

$$\mu_{T_n}\left\{y \in Y : |\Delta g(y, \tau_n)| > n^{-1}\right\} \le n^{-1}, \ n \ge 1.$$
(7)

As the set $\Theta^c \setminus v_\theta(\varepsilon)$ is compact, there exists some point $\tau^* \in \Theta^c \setminus v_\theta(\varepsilon)$ and the sequence $n_k, \ k \ge 1$ such that $\tau_{n_k} \to \tau^*$ as $k \to \infty$.

Let $\delta > 0$ be an arbitrary fixed number. Then there exists some number k_{δ} such that for $k > k_{\delta}$, uniformly in $y \in Y$,

$$|\Delta g(y,\tau_{n_k}) - \Delta g(y,\tau^*)| \le \frac{\delta}{2}.$$
(8)

Thanks to (8), for $k > k_{\delta}$

$$\{|\Delta g(y,\tau^*)| > \delta\} \subset \{|\Delta g(y,\tau^*) - \Delta g(y,\tau_{n_k})| + |\Delta g(y,\tau_{n_k})| > \delta\}$$
$$\subset \left\{|\Delta g(y,\tau_{n_k})| > \frac{\delta}{2}\right\}.$$
(9)

Taking into account the inequality (7) for $n_k > \frac{2}{\delta}$ one has

$$\mu_{T_{n_k}}\left\{y \in Y : |\Delta g(y, \tau_{n_k})| > \frac{\delta}{2}\right\} \le \frac{1}{n_k}.$$
(10)

Then, from (9) and (10) it follows that

$$\mu_{T_{n_k}} \{ y \in Y : |\Delta g(y, \tau^*)| > \delta \} \le n_k^{-1}, \tag{11}$$

which is true for any $k > k'_{\delta} = \max\left(k_{\delta}, \min\left\{k : n_k > \frac{2}{\delta}\right\}\right)$.

Denote by $Y_{\delta} = \{y \in Y : |\Delta g(y, \tau^*)| \le \delta\}$. From (11) it follows that $\mu_{T_{n_k}}(Y_{\delta}) > 1 - n_k^{-1}$ for all $k > k'_{\delta}$.

As Y_{δ} is a closed set, then thanks to weak convergence of μ_T to the measure μ , we obtain (see, for example, [3], p. 21)

$$\overline{\lim_{k \to \infty}} \mu_{T_{n_k}}(Y_{\delta}) \le \mu(Y_{\delta}), \ \delta > 0.$$

For $\delta \downarrow 0$, from the continuity of the measure μ it follows that

$$\mu\{y \in Y : \Delta g(y,\tau) = 0\} = 1.$$
(12)

But the relation (12) contradicts to the condition **B1**. \Box

Lemma 4. If the assumptions A3, A4 and C1 hold, then the conditions (*ii*) and (*iii*) of the Lemma 2 are fulfilled.

Proof. Without loss of generality, assume that $\rho(x)$, $x \ge 0$ is strictly monotonically increasing function. From the formula for the mean of the nonnegative r.v. (see, for example, [4], p. 190) one has

$$J(b) - J(0) = \int_{0}^{\infty} \left(P\{\rho(\varepsilon(0)) < x\} - P\{\rho(\varepsilon(0) - b) < x\} \right) dx =$$

$$\int_{0} \left(P\left\{ -\rho^{-1}(x) < \varepsilon(0) < \rho^{-1}(x) \right\} - P\left\{ -\rho^{-1}(x) < \varepsilon(0) - b < \rho^{-1}(x) \right\} \right) dx,$$

where $\rho^{-1}(x)$ is the inverse of the function $\rho(x), x \ge 0$.

By the change of variable $x = \rho(z), z \ge 0$ in the last integral,

$$J(b) - J(0) = \int_{0}^{\infty} \left(P\left\{ |\varepsilon(0)| < z \right\} - P\left\{ |\varepsilon(0) - b| < z \right\} \right) d\rho(z) =$$
$$= \int_{0}^{\infty} \left(F(z) - F(z - b) - F(z + b) + F(z) \right) d\rho(z), \tag{13}$$

where F(x) is the d.f. of the r.v. $\varepsilon(0)$.

 ∞

The integral in the first equality of the relations (13) coincides with the expression of A4, and the condition (iii) of Lemma 2 is fulfilled.

From the symmetry of ρ and r.v. $\varepsilon(0)$ it follows the symmetry of J(b). Denote by $\Delta_b^2 F(z) = (F(z) - F(z-b)) - (F(z+b) - F(z)), \ b, z \ge 0$. Then **A4** can be rewritten in the form

$$\int_{0}^{\infty} \Delta_b^2 F(z) d\rho(z) > 0, \ b > 0.$$

From (13) it follows that

$$\Delta_b^2 F(z) = P\{|\varepsilon(0)| < z\} - P\{|\varepsilon(0) - b| < z\}.$$

Consider for $b_2 > b_1$ the difference

$$J(b_2) - J(b_1) = \int_{0}^{\infty} \left(\Delta_{b_2}^2 F(z) - \Delta_{b_1}^2 F(z) \right) d\rho(z).$$

It is easily seen that

$$\Delta_{b_2}^2 F(z) - \Delta_{b_1}^2 F(z) = P\{|\varepsilon(0) - b_1| < z\} - P\{|\varepsilon(0) - b_2| < z\} \ge 0$$

from the unimodality of the r.v. $\varepsilon(0)$. It means that $J(b_2) - J(b_1) \ge 0$, and the condition (ii) of Lemma 2 is a corollary of **A3** and **C1**. \Box

Assume that the d.f. F(x) is continuously differentiable and the density of the distribution p(x) is an even strictly decreasing for $x \ge 0$ function. Suppose that a continuous even function $\rho(x)$ is such that $\rho(0) = 0$ and strictly monotonically increasing for $x \ge 0$. Then one can use Lemma 10.2 of the book [3], p. 217-218, and for any $b \ne 0$

$$J(b) - J(0) = E\rho(\varepsilon(0) - b) - E\rho(\varepsilon(0)) > 0,$$

and the integral in A4 is strictly positive.

Consider next sufficient conditions of the uniform convergence in (3) of Lemma 1.

Lemma 5. Suppose the condition C2 fulfiles and

$$\delta_T(\tau) \underset{T \to \infty}{\longrightarrow} 0 \quad \text{a.s.}, \tau \in \Theta^c,$$
 (14)

then (3) holds.

Proof. From **C2** it follows that for $\tau_1, \tau_2 \in \Theta^c$

$$|Q_T(\tau_1) - Q_T(\tau_2)| \le \frac{c}{T} \int_0^T |g(y(t), \tau_1) - g(y(t), \tau_2)| dt.$$

Similarly, from **C2** for $\tau_1, \tau_2 \in \Theta^c$ one has

$$|\delta_T(\tau_1) - \delta_T(\tau_2)| \le \frac{2c}{T} \int_0^T |g(y(t), \tau_1) - g(y(t), \tau_2)| dt.$$

Hence, the family of functions $\{\delta_T(\tau) : \omega \in \Omega, T > 0\}$ is an equicontinuous on the set Θ^c . So for any $\delta > 0$ there exists a finite number of points $\tau_1, ..., \tau_k \in \Theta^c$ such that

$$\sup_{\tau \in \Theta^c} |\delta_T(\tau)| \le \max_{1 \le j \le k} |\delta_T(\tau_j)| + \delta, \ \omega \in \Omega, \ T > 0.$$

From (14) it follows that $\max_{1 \le j \le k} |\delta_T(\tau_j)| \longrightarrow 0$ a.s. as $T \to \infty$, and, hence, $\sup_{\tau \in \Theta^c} |\delta_T(\tau)| \longrightarrow 0$ a.s. as $T \to \infty$. \Box

4. Proof of Theorem 1

We shall prove that (14) holds under the assumptions of Theorem 1. Using the notation

$$\xi(t) = \rho(\varepsilon(t) - \Delta g(y(t), \tau)) - E\rho(\varepsilon(t) - \Delta g(y(t), \tau)), \ \tau \in \Theta^c$$

one has

$$\delta_{T}(\tau) = \frac{1}{T} \int_{0}^{T} \xi(t) dt, \quad E \delta_{T}^{2}(\tau) = \frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} E \xi(t) \xi(s) dt ds \leq \\ \leq \frac{10}{T^{2}} \int_{0}^{T} \int_{0}^{T} \left[E \rho^{2+\delta}(\varepsilon(t) - \Delta g(y(t), \tau)) \right]^{\frac{1}{2+\delta}} \times \\ \times \left[E \rho^{2+\delta}(\varepsilon(s) - \Delta g(y(s), \tau)) \right]^{\frac{1}{2+\delta}} \alpha^{\frac{\delta}{2+\delta}}(|t-s|) dt ds.$$
(15)

To obtain (15) the Davidov inequality has been used with $p = q = 2 + \delta$, $r = 1 + \frac{2}{\delta}$ (see [5], and also Lemma 1.6.2 of the book [6]).

As $\rho(0) = 0$, then from the condition C2 one obtains

$$E\rho^{2+\delta}\left(\varepsilon(t) - \Delta g(y(t),\tau)\right) \le c^{2+\delta} E \left|\varepsilon(0) - \Delta g(y(t),\tau)\right|^{2+\delta}.$$

By obvious inequalities

$$|a+b|^{\kappa} \le 2^{\kappa-1} \left(|a|^{\kappa} + |b|^{\kappa} \right), \quad |a+b|^{\frac{1}{\kappa}} \le |a|^{\frac{1}{\kappa}} + |b|^{\frac{1}{\kappa}}, \ \kappa = 2+\delta, \quad (16)$$
$$\left[E\rho^{2+\delta} \left(\varepsilon(t) - \Delta g(y(t),\tau) \right) \right]^{\frac{1}{2+\delta}} \le 2^{\frac{1+\delta}{2+\delta}} c \left(\mu^{\frac{1}{2+\delta}}_{2+\delta} + |\Delta g(y(t),\tau)| \right),$$

i.e.

$$\begin{split} E\delta_T^2(\tau) &\leq 2^{\frac{\delta}{2+\delta}} c^2 \frac{20}{T^2} \int_0^T \int_0^T \alpha^{\frac{\delta}{2+\delta}} (|t-s|) \left[\mu_{2+\delta}^{\frac{1}{2+\delta}} + |\Delta g(y(t),\tau)| \right] \times \\ & \times \left[\mu_{2+\delta}^{\frac{1}{2+\delta}} + |\Delta g(y(s),\tau)| \right] dt ds \leq \\ &\leq 2^{\frac{\delta}{2+\delta}} c^2 \frac{20}{T^2} \int_0^T \int_0^T \alpha^{\frac{\delta}{2+\delta}} (|t-s|) \left[\mu_{2+\delta}^{\frac{1}{2+\delta}} + |\Delta g(y(t),\tau)| \right]^2 dt ds. \end{split}$$

Using the first inequality of (16) with $\kappa = 2$,

$$E\delta_{T}^{2}(\tau) \leq 2^{\frac{\delta}{2+\delta}}c^{2}\frac{40}{T^{2}}\int_{0}^{T}\int_{0}^{T}\alpha^{\frac{\delta}{2+\delta}}(|t-s|)\left[\mu_{2+\delta}^{\frac{2}{2+\delta}}+|\Delta g(y(t),\tau)|^{2}\right]dtds.$$

It remains to estimate two integrals, namely:

$$I_{1} = \frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} \alpha^{\frac{\delta}{2+\delta}} (|t-s|) dt ds \le \frac{1}{T^{2}} \int_{0}^{T} ds \int_{-T}^{T} \alpha^{\frac{\delta}{2+\delta}} (|t|) dt = O(T^{-1})$$

as $T \to \infty$, under assumption A2. On the other hand,

$$I_{2} = \frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} \alpha^{\frac{\delta}{2+\delta}} (|t-s|) |\Delta g(y(t),\tau)|^{2} dt ds$$
$$\leq \left(2 \int_{0}^{\infty} \alpha^{\frac{\delta}{2+\delta}}(s) ds\right) \frac{1}{T^{2}} \int_{0}^{T} |\Delta g(y(t),\tau)|^{2} dt.$$
(17)

As $g(y,\tau)$ is continuous function on the compact $Y\times\Theta^c$, the right hand side of the inequality (17) is of the order $O(T^{-1})$ as $T \to \infty$. Thus, $E\delta_T^2(\tau) = O(T^{-1})$ as $T \to \infty$, and $\delta_T(\tau) \longrightarrow 0$ in probability as

 $T\to\infty$.

Note that for the sequence $T_n = n^2$, $n \ge 1 \sum_{n=1}^{\infty} E \delta_{T_n}^2(\tau) < \infty$, i.e. $\delta_{T_n}(\tau) \longrightarrow_{n \to \infty} 0$ a.s.

If $T \in [T_n, T_{n+1}]$, then

$$\left|\delta_{T}(\tau)\right| \leq \sup_{T_{n} \leq T \leq T_{n+1}} \left|\delta_{T}(\tau) - \delta_{T_{n}}(\tau)\right| + \left|\delta_{T_{n}}(\tau)\right|,$$

and the Theorem will be proved, if $\sup_{T_n \leq T \leq T_{n+1}} |\delta_T(\tau) - \delta_{T_n}(\tau)| \longrightarrow_{n \to \infty} 0$ a.s.

Obviously

$$\delta_T(\tau) - \delta_{T_n}(\tau) = \frac{1}{T} \int_0^T \xi(t) dt - \frac{1}{T_n} \int_0^{T_n} \xi(t) dt =$$
$$= \left(\frac{1}{T} - \frac{1}{T_n}\right) \int_0^{T_n} \xi(t) dt + \frac{1}{T} \int_{T_n}^T \xi(t) dt = I_3 + I_4.$$

Furthermore, for $T \in [T_n, T_{n+1}]$

$$|I_3| \leq \frac{T_{n+1} - T_n}{T_n} |\delta_{T_n}(\tau)| \underset{n \to \infty}{\longrightarrow} 0 \text{ a.s.};$$

$$|I_4| \le \frac{1}{T_n} \int_{T_n}^{T_{n+1}} |\xi(t)| dt \le \frac{1}{T_n} \int_{T_n}^{T_{n+1}} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) dt + \frac{1}{T_n} \int_{T_n}^{T_n} \rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right)$$

$$+\frac{1}{T_n}\int_{T_n}^{T_{n+1}} E\rho\left(\varepsilon(t) - \Delta g(y(t),\tau)\right)dt = I_5 + I_6.$$

As under the Lipshits condition C2

$$\rho\left(\varepsilon(t) - \Delta g(y(t), \tau)\right) \le c\left(|\varepsilon(t)| + |\Delta g(y(t), \tau)|\right),$$

then

$$I_{5} \leq \frac{c}{T_{n}} \int_{T_{n}}^{T_{n+1}} |\varepsilon(t)| dt + \frac{c}{T_{n}} \int_{T_{n}}^{T_{n+1}} |\Delta g(y(t),\tau)| dt = I_{7} + I_{8},$$
$$I_{8} = c \left(\frac{T_{n+1}}{T_{n}} \cdot \frac{1}{T_{n+1}} \int_{0}^{T_{n+1}} |\Delta g(y(t),\tau)| dt - \frac{1}{T_{n}} \int_{0}^{T_{n}} |\Delta g(y(t),\tau)| dt \right).$$

From the assumption **B1** of the Theorem it follows

$$\frac{1}{T_n} \int_{0}^{T_n} |\Delta g(y(t), \tau)| dt = \int_{Y} |\Delta g(y, \tau)| \mu_{T_n}(dy) \underset{n \to \infty}{\longrightarrow} \int_{Y} |\Delta g(y, \tau)| \mu(dy),$$

then $I_8 \longrightarrow 0$ as $n \longrightarrow \infty$.

T

On the other hand,

$$I_7 = c \left(\frac{1}{T_n} \int_{T_n}^{T_{n+1}} (|\varepsilon(t)| - E|\varepsilon(t)|) dt + E|\varepsilon(0)| \frac{T_{n+1} - T_n}{T_n} \right) \underset{n \to \infty}{\longrightarrow} 0 \quad \text{a.s}$$

by Davidov inequality.

Similarly, it can be shown that $I_6 \longrightarrow 0$ as $n \to \infty$.

Consequently, (14) is fulfilled. The validity of Theorem 1 follows now from the Lemmas 1-5 proved above. \Box

5. Proof of Theorem 2

Similarly to proof of Theorem 1 we need to proof that (14) holds. Then the result of Theorem 2 will follow from the Lemmas 1-5.

Consider a random process

$$G(\varepsilon(t), t) = \rho(\varepsilon(t) - \Delta g(y(t), \tau)).$$
(18)

From C2 and A5

$$EG^{2}(\varepsilon(t),t) \leq c^{2}E |\varepsilon(t) - \Delta g(y(t),\tau)|^{2} = c^{2} \left(1 + |\Delta g(y(t),\tau)|^{2}\right) \leq C < \infty$$
(19)

uniformly in $t \ge 0$ and $\tau \in \Theta^c$. Therefore in Gilbert space $L_2(\mathbf{R}^1, \varphi(u)du)$, where $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ is a standard Gaussian density, there exists an expansion (see, for example, [6])

$$G(u,t) = \sum_{m=0}^{\infty} \frac{C_m(t)}{m!} H_m(u), \ C_m(t) = \int_{\mathbf{R}^1} G(u,t) H_m(u) \varphi(u) du, \ m \ge 0$$

by Chebyshev-Hermite polynomials

$$H_m(u) = (-1)^m e^{\frac{u^2}{2}} \frac{d^m}{du^m} e^{-\frac{u^2}{2}}, \ m \ge 0.$$
(20)

Note that $C_0(t) = E\rho(\varepsilon(0) - \Delta g(y(t), \tau)) = J(\Delta g(y(t), \tau)).$ Thanks to relations

$$EH_m(\varepsilon(t))H_k(\varepsilon(s)) = \delta_m^k m! B^m(t-s), \qquad (21)$$

where δ_m^k is Kroneker delta we have

$$E\xi(t)\xi(s) = \operatorname{cov}\left(G(\varepsilon(t), t), G(\varepsilon(s), s)\right) = \sum_{m=1}^{\infty} \frac{C_m(t)C_m(s)}{m!} B^m(t-s).$$

Hence, taking into account that B(0) = 1, we obtain

$$\begin{split} E\delta_T^2(\tau) &= \sum_{m=1}^\infty \frac{1}{m!} \frac{1}{T^2} \int_0^T \int_0^T C_m(t) C_m(s) B^m(t-s) dt ds \\ &\leq \sum_{m=1}^\infty \frac{1}{m!} \frac{1}{T^2} \int_0^T \int_0^T C_m^2(t) B^m(t-s) dt ds \\ &\leq \frac{1}{T^2} \int_0^T \int_0^T \left(\sum_{m=1}^\infty \frac{C_m^2(t)}{m!} \right) B(t-s) dt ds. \end{split}$$

Note that, thanks to (19),

$$\sum_{m=1}^{\infty} \frac{C_m^2(t)}{m!} = EG^2(\varepsilon(0), t) - \left(EG(\varepsilon(0), t)\right)^2 = DG(\varepsilon(0), t) \le C < \infty,$$

and

$$E\delta_T^2(\tau) \le C\frac{1}{T^2} \int_0^T \int_0^T B(t-s)dtds.$$

On the other hand, as $T \to \infty$,

$$\frac{1}{T^2} \int_0^T \int_0^T B(t-s)dtds = \int_0^1 \int_0^1 B\left(T(t-s)\right)dtds = \frac{1}{T^\alpha} \int_0^1 \int_0^1 \frac{L\left(T|t-s|\right)}{|t-s|^\alpha} dtds$$
$$\sim \left(\int_0^1 \int_0^1 \frac{dtds}{|t-s|^\alpha}\right) \frac{L(T)}{T^\alpha} = \frac{2}{(1-\alpha)(2-\alpha)} \frac{L(T)}{T^\alpha}$$

by the properties of the slowly varying function (see, for example [7], [8]).

For the sequence $T_n = n^{\frac{1}{\alpha} + \nu}$, where $\nu > 0$ is some number, $\sum_{n=1}^{\infty} \frac{L(T_n)}{T_n^{\alpha}} < \infty$

 ∞ , and so $\delta_{T_n}(\tau) \longrightarrow 0$ a.s., as $n \to \infty$.

Taking into account the proof of Theorem 1, it remains to show that

$$\frac{1}{T_n} \int_{0}^{T_n} (|\varepsilon(t)| - E|\varepsilon(t)|) dt \underset{n \to \infty}{\longrightarrow} 0 \text{ a.s.}$$
(22)

But the proof of (22) is similar to the previous reasoning for $G(\varepsilon(t), t)$.

Bibliography

- 1. F. Liese and I. Vajda Consistency of M-estimates in general regression models, Journal of Multivariate Analysis, **50**, 1, (1994), 93-114.
- A. V. Ivanov Asymptotic Theory of Nonlinear Regression, Kluwer Academic Publishers, Dordrecht, (1997).
- Ibrahimov I.A. and Hasminsky R.Z. Asymptotic theory of estimation, Nauka, Moskow, (1979). (in Russian)
- 4. Feller V. Introduction to probability theory and its applications, Mir, Moskow, volume 2, (1967). (in Russian)
- Davidov U.A. About convergence of the distributions, generated by stationary random processes, TVIP, Vol. 15, 3, (1970), 498-509.(in Russian)
- Ivanov A.V. and Leonenko N.N. Statistical analysis of random fields, Vyscha Shkola, Kyiv,(1986). (in Russian)
- 7. Seneta E. Regularly varying function, Nauka, Moskow, (1985). (in Russian)
- Ivanov A.V. and Orlovsky I.V. L_p-Estimates in Nonlinear Regression with Long-Range Dependence, Theory of Stochastic Processes, Vol. 7(23), . 3-4, (2002), 38-49.

NATIONAL TECHNICAL UNIVERSITY OF UKRAINE, "KPI". PEREMOGI AVENUE 37, KIEV

E-mail address: ivanov@paligora.kiev.ua

NATIONAL TECHNICAL UNIVERSITY OF UKRAINE, "KPI". PEREMOGI AVENUE 37, KIEV

E-mail address: avalon@ln.ua