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MARIYA PERESTYUK

ON UNIFORM CONVERGENCE OF WAVELET
EXPANSIONS OF SOME RANDOM PROCESSES

In the paper there are found conditions for uniform convergence with
probability one of wavelet expansion of g-sub-Gaussian random processes
under additional condition for norm of such process

1. Introduction

It this paper I proceed with research presented in [1] and derive conditions
for uniform convergence of wavelet expansions of g-sub-Gaussian random
processes on the finite interval in case when norm τg of such process X =
{X (t) , t ∈ R} increases for positive t.

2. Main results

Definition 1.[2] Let g = {g (x) , x ∈ R} be a continuous even convex
function; g is called an N -function if g (0) = 0, g(x) > 0 as x �= 0 and

lim
x→0

g(x)
x

= 0, lim
x→∞

g(x)
x

= ∞.

Condition Q. [3] An N -function g satisfies condition Q if lim inf
x→0

g(x)
x2 =

C > 0. It may happen that C = ∞.
Definition 2. [2, 3] Let g be an N -function, which satisfies condition
Q. Let {Ω, L, P} be a standard probability space. A random variable ξ =
{ξ (ω) , ω ∈ Ω} belongs to the space Subg (Ω) (is g-sub-Gaussian) if Eξ = 0,
E exp {λξ} exists for all λ ∈ R and there exists a constant a > 0 such that
the following inequality holds for all λ ∈ R : E exp {λξ} ≤ exp {g (aλ)}.

The space Subg (Ω) is a Banach space with respect to the norm

τg (ξ) =

sup
λ�=0

g(−1) (ln E exp {λξ})
λ

.

Definition 3. [2] A random process {X(t), t ∈ T} belongs to the space
Subg (Ω) (is g-sub-Gaussian) if the random variable X (t) ∈ Subg (Ω) for all
t ∈ T.

Let ϕ = {ϕ (x) , x ∈ R} be an f -wavelet and ψ = {ψ (x) , x ∈ R} be the
m-wavelet, which corresponds to ϕ.

Define a family of functions {ϕjk, ψjk, j ∈ Z, k ∈ Z} in the following way:
ϕjk (x) = 2j/2 · ϕ (2jx − k) , ψjk (x) = 2j/2 · ψ (2jx − k).
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It is know that the family of functions {ϕ0k, ψjk, j = 0, 1, ... k ∈ Z} is an
orthonormal basis in L2 (R).

Definition 4. [1] Let ϕ be an f -wavelet ( ψ be an m-wavelet). The as-
sumption S holds for ϕ (or ψ) if there exists a function Φ = {Φ (x) , x ≥ 0}
such that Φ (x) decreases, |ϕ (x)| ≤ Φ (|x|) (or ψ (x) ≤ Φ (|x|)) almost
everywhere and

∫
R

Φ (|x|) dx < ∞.

The following theorem is a particular case of the theorem 4.1 from the
paper [1].

Theorem 1. Let X = {X (t) , t ∈ R} be a separable g-sub-Gaussian ran-
dom process, Bl = [al, al+1] , al+1 − al = e, l ∈ Z, al → +∞ as l → +∞,
al → −∞ as l → −∞. Assume that there exists an increasing continuous
function σ = {σ (h) , h > 0} such that sup

|t−s|≤h

τg (X (t) − X (s)) ≤ σ (h) .

Let c = {c (t) , t ∈ R} be a continuous even positive function such that for
sufficiently large x we have: c (ax) ≤ c (x) A (a) , A (a) ∈ (0;∞) . Denote

δl = sup
t∈Bl

(c (t))−1 , χl = sup
t∈Bl

τg (X (t) − X (al+1)) , Zl = τg (X (al+1)) , l ∈ Z.

Assume that for any ε > 0 :

ε∫
0

ag

(
ln

((
2σ(−1) (u)

)−1
+ 1

))
du < ∞, (1)

and ∑
l∈Z

δlZl < ∞, (2)

sup
l∈Z

χl

Zl
≤ β < ∞, (3)

∑
l∈Z

δl

χl∫
0

ag

(
ln

(
al+1 − al

2σ(−1) (u)
+ 1

))
du < ∞, (4)

where ag (x) = x
g(−1)(x)

. Let ϕ be an f -wavelet and ψ be the m-wavelet, which

corresponds to ϕ, and suppose that the assumption S holds for ϕ and ψ with
respect to a function Φ and

∫
R

c (x) Φ (|x|) dx < ∞. (5)

Then with probability one there exist

a0k =

∫
R

X (t)ϕ0k (t)dt and bjk =

∫
R

X (t) ψjk (t) dt, k ∈ Z, j = 0, +∞
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and wavelet expansion Xm (t) =
∑
k∈Z

α0kϕ0k (x)+
m−1∑
j=0

∑
k∈Z

βjkψjk (x) converges

to X (t) as m → ∞ uniformly on each interval [a, b] with probability one
(−∞ < a < b < +∞).

Theorem 2. Let the assumptions (1) and (2) of the Theorem 1 hold and
assume that ∑

l∈Z

δlχl ag (ln (1 + (al+1 − al))) < ∞, (6)

∑
l∈Z

δl

χl∫
0

ag

(
ln

((
2σ(−1) (u)

)−1
+ 1

))
du < ∞. (7)

Also suppose that τg (X (t)) = τg (X (−t)) > 0, t �= 0, and norm τg (X (t))
increases as t > 0.

Then the assertion of the Theorem 1 follows.
Proof. It follows from Lemma 2.2.3 of the book [2] that the function
ag (x) = x

g(−1)(x)
increases as x > 0. If x > 0 and y > 0 then

ag (x + y) =
x + y

g(−1) (x + y)
=

x

g(−1) (x + y)
+

y

g(−1) (x + y)
≤

≤ x

g(−1) (x)
+

y

g(−1) (y)
= ag (x) + ag (y) .

Therefore
χl∫

0

ag

(
ln

(
al+1 − al

2σ(−1) (u)
+ 1

))
du ≤

χl∫
0

ag (ln (1 + al+1 − al)) + ln
(
1 +

(
2σ(−1) (u)

)−1
)

du ≤

≤ χlag (ln (1 + al+1 − al)) +

χl∫
0

ag

(
ln

(
1 +

(
2σ(−1) (u)

)−1
))

du

and the assumption (4) follows from (6) and (7).
Since sup

l∈Z

χl

Zl
= sup

l>0

χl

Zl
, then

τg (X (t) − X (al+1)) ≤ τg (X (t)) + τg (X (al+1)) ≤ 2τg (al+1)

for any t ∈ Bl, l > 0. Therefore χl

Zl
≤ 2 and assumption (3) holds true.

Example 1. Let the assumptions of the Theorem 2 hold true for the
function σ (u) = c

(ln(1+ 1
2u))

γ , where c > 0, γ > 0. Then σ(−1) (u) =
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1

2 exp ( c
t )

1/γ −1
and

χl∫
0

ag

(
ln

(
1 +

(
2σ(−1) (u)

)−1
))

du =

χl∫
0

ag

(( c

u

)1/γ
)

du. (8)

Since ag

((
c
u

)1/γ
)

=
( c

u)
1/γ

g(−1) ( c
u)

1/γ
≤ ( c

u)
1/γ

g(−1) c
χl

1/γ , as u < χl then

χl∫
0

ag

(
ln

(
1 +

(
2σ(−1) (u)

)−1
))

du ≤ c1/γ

g(−1)

((
c
χl

)1/γ
) · χ

1− 1
γ

l(
1 − 1

γ

)
and assumption (7) holds true if

∑
l∈Z

δlχ
1− 1

γ

l

(
g(−1)

((
c

χl

)1/γ
))−1

< ∞. (9)

If g (x) = |x|α , 1 < α ≤ 2, then ag

((
c
u

)1/γ
)

=
(

c
u

) 1
γ
− 1

γα and if γ > 1 − 1
α

then
χl∫
0

ag

(
ln

((
2σ(−1) (u)

)−1
+ 1

))
du =

c
1
γ − 1

γα χ
(1− 1

γ + 1
γα)

l

(1− 1
γ
+ 1

γα)
. Thus assump-

tion (7) holds true if ∑
l∈Z

δlχ
(1− 1

γ
+ 1

γα)
l < ∞. (10)

Theorem 3. Let X = {X (t) , t ∈ R} be a separable g-sub-Gaussian ran-
dom process, where g (x) = |x|α , 1 < α < 2; X (t) = X (−t) with probability
one; Bl = [al, al+1] , l = 0, 1, 2, ..., a0 = 0, al+1 − al > e, al → ∞, l → ∞,
and

sup
|t−s|≤h

τg (X (t) − X (s)) ≤ c(
ln

(
1 + 1

2u

))γ , c > 0, γ > 1 − 1

α
.

Let τg (X (t)) increase as t > 0 and
∞∑
l=0

δlZl < ∞, (11)

∞∑
l=0

δlχl (ln (1 + (al+1 − al)))
1−α < ∞, (12)

∞∑
l=0

δlχ
1− 1

γ
+ 1

γα

l < ∞. (13)

Then with probability one Xm (t) → X (t) as m → ∞ uniformly on each
bounded interval [a, b].

Theorem 3 follows from Example 1 and Theorem 2.
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Remark 1. Since χl ≤ 2Zl then from the assumption
∞∑
l=0

δlZl (ln (1 + (al+1 − al)))
1−α < ∞

the assumptions (11)–(13) follow, if χl > c > 0.

If al = el and τg (X (t)) = t then c (t) = t · (ln t)β, t > 1, and
Φ (|t|) = 1

|t|(ln|t|)β+v , v > 1, |t| > 1.

Conclusions. In the paper there are found conditions for uniform con-
vergence with probability one of the wavelet expansion of g-sub-Gaussian
random process such that τg (X (t)) increases for t > 0.

I plan to obtain similar results for random processes from Subg (Ω) such
that

τg (X (t) − X (s)) ≤ c · |t − s|α .
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