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ALEXANDER KUKUSH AND MARIA POLEKHA

A GOOGNESS OF-FIT-TEST FOR A MULTIVARIATE
ERRORS-IN-VARIABLES MODEL

A multivariate errors-in-variables model AX ~ B is considered, where
the data matrices A and B are observed with errors, and a matrix para-
meter X is to be estimated. A goodness-of-fit test which is based on the
moment estimator is constructed. The proposed test is asymptotically
chi-squared under null hypothesis. The power of the test is discussed.

1. INTRODUCTION

Errors-in-variables (EIV) models are rather important in practical appli-
cations. It is reasonable to develop appropriate goodness—offit test for such
models.

Consistent estimators for a multivariate errors-in-variables model under
various conditions are presented in [1 — 3]. A goodness—of-fit test is con-
structed in [4] for a linear structural EIV model, where the distribution of
the latent variable and the error distributions are normal. A polynomial
EIV model is considered in [5], without the normality assumption. Present
paper modifies the results of [5] for a multivariate errors-in-variables model.

We use the following notations: ||A|| is Frobenius norm of a matrix A,
I, is the unit matrix of size p. The symbols E, D, and cov denote the
expectation of a random matrix, the variance of random variable, and the
variance - covariance matrix of a random vector, respectively. O,(1) de-
notes a sequence of stochastically bounded random variables, and o,(1) is
a sequence of random variables that converges to 0 in probability. All the
vectors in the paper are column vectors.

The paper is organized as follows. In Section 2 we introduce the model
and construct an estimator. In Section 3 we present a goodness—of-fit test
and show that it is asymptotically chi-squared with p degrees of freedom
under null hypothesis. We introduce a local alternative and investigate the
power of the test in Section 4. Section 5 concludes, and the proofs of the
results are presented in Appendix.

2. THE MODEL AND THE ESTIMATOR

Consider the model of observations:
(1) A°X =B A=A"+ A, B=B"+ B,
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where A° ¢ R™" X € R™P, BY ¢ R™*P. Here the data matrices A, B
are observed, and A°, B are unknown nonrandom matrices, and A B are
matrices of random errors.

Let AT = [ay...a,y], BT = [b1...b,,], and we use similar notations for the
rows of A°, B, A, B.

Rewrite the model (1) as a multivariate lineal model:

(2) XTa) =0}, i =T,m;

bzzbg—i-gz, ai:a?—l—&i, 1= 1,m.
We assume the following conditions:

a) the sequences of errors vectors {a;, i > 1} and {b;,i > 1} are two IID
centered sequences of random errors, independent of each other,

b) for all i, @ £ &, b= b; and Ea = 0, Eb = 0;
¢) cova =: S; is known and covb =: S; is unknown.
The adjusted least squares (ALS) estimator of matrix parameter X is

= (ATA—EATA)'ATB = Za, —Ea;a") ") aib] =

= (aaT — Eaal) ab?,
(3) X =H a7,
where H := aa’ — Eaa”’. Hereafter the bars denote averages, e.g.,
ab” =S a;bF /m.
Lemma i[6] Assume_that the following conditions are satisfied.
(i) El|al|* < oo, E[Jb]|* < cc.
(ii) There exists V := lim a%®" and V is positive definite.

m—0o0

Then H is nonsingular with probability tending to 1, and

(4) X5 X as m— oo,

~

(5) Sb—bbT—baTX—>S as m — oo.

The estimator of X is well-defined for m > mg(w) a.s., under the condi-
tions of Lemma 1. If the matrix H = H(m,w) is singular, then the estimator
is X =H fabT, where H' is pseudoinverse matrix.

3. CONSTRUCTION OF THE TEST

For the response vector b and the corresponding latent vector a® we consider
the following hypotheses
Hy : there exists a matrix X € R"*P, for which the equality holds true:

(6) E(b— X"d%) =0,
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and Hy : for all matrices X € R"*P,
(7) E(b— X"a") is not identically equal to 0.

We want to construct a test statistic for the null hypothesis using the ob-
servations a; and b;, 1 = 1,2,...,n

Let w(a’) be a scalar weight function. Then under null hypothesis we
have equality E[(b— X7 a®)w(a")] = 0. We will construct a vector polynomial
s(a), such that under Hy the following relation is true:

(8) E[(b - X"s(a))w(a)] = 0.
Such a construction is possible if one chooses w(a) as follows: w(a) =
a€R" A= (A, Ao, ..., M) T s fixed, A\, # 0, k=1,n. We fix such a A and
assume that the corresponding exponential moment of a exists and satisfies
the condition:

(iii) E[(1 + [|a]))e*" ] < oo.

For the chosen weight function, relation (8) holds if for every a® one has:

a® - E(eM®) = E(s(a® + a)e ).

T
6)\ a’

Then (8) holds for s(a) = a — 2@, . Denote o = E(e ) and py =

E(c>
E(ae*' ), then s(a) = a — £
Define a statistic of the score type

m

(9) T, = % Y (b = X"s(a)eX = (b= XTs(a))e.

i=1

We introduce further assumptions to derive an asymptotic expansion of
vm - TY.

(iv) E[(1 + [|al*)e*"%] < oc.

This condition is stronger than (iii). For arbitrary function f(a"), we
denote M(f(a)) = lim f(a®), provided the limit exists and finite; af is
jth component of the vector a’

(v) IM((a®(5))"(a®(k))"er @ 0) forall ,;r >0, l+7r<2, jk=1n.

(vi) [|a%a®T — V|| = o(m~Y4), as m — oo.

Lemma 2. Assume (i), (ii), and (iv) to (vi). Then

(10) fTO—Tgé “l—ain)ﬂLXT%;nﬁrop(l)

where 1; == (a% — s(a;))er % +( 9a;f)f are independent random vectors
with expectation 0, H; = a;al —Ea;al, f = V_lM(aOe’\T“O),uo, and matrix
V' comes from (ii).

We need some more assumptions in order to apply the central limit the-
orem in the Lyapunov form to the statistic y/m - TC.

(vii) 36 > 0: B[(1 + ||@||*T?)e®tV 4] < oo, and E|[b||* < oo.
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(viii) There exist M(( O(MNHa®(k))er ), for all I, > 0, I+ < 3, and
M((a®(j))(a®(k)) e %), for all I,r >0, I+r <2; jk=T1,n.

(ix) 30 > 0 : [JaO][*F + e@+oATa® 4 ||q0[|2+0e(2+0ATa® < copst.

(x) e - ||ad||* = o(m), as m — oo.

Condition (vii) absorbs conditions (iii) and (iv), and conditions (viii)
absorbs condition (v). Condition (ix) means that the higher empirical mo-

ments are bounded.
Lemma 3. Assume (i), and (vii) to (ix). Then \/m - T N N(0,%7),

where Sy = S;- M[E(eN *—a” )+ XT (L., fT®1L,)- MU)- L., fT® L)X,

M(U) = lim cov(Z(a)), Z(a;) = [Ue E?;z}f(Ze)ﬁf;oaTﬂ i=T,m,

the symbol ® is Kronecker product, and vector f comes from Lemma 2.
Under the conditions of Lemma 3 and condition (x), a consistent estima-
tor 3 of Y7 is constructed,
B = G (T aT R

() Xl o n) e | O e )R,

where f, €ov are approximations described below.
A. Since H -5 V and s(a)e’™ 25 M(a%e* ") as m — oo, we get
the estimator f = H 's(a)er" .

(a® — s(a))er ]\ Y1 Yo
M (COV L)ec(H — aOaT)]> N M(Eﬁ 222)

We want to construct iij for M(%;;), 4,7 = 1,2, based on observations
a;, i = 1, m. We need the following auxiliary statement.
Lemma 4. Let k > 0, and p(a®) be a polynomial of degree k, and {a,i >
1,} be a sequence of nonrandom vectors in R", satisfying the condition

(zi) (14 ||a®||2F)e2 " e® = o(m), as m — cc.

Let a; = a? + a;, 1 > 1, and vectors a; satisfy the conditions a) and b),
and the following condition

(zii) E[(1 + ||a]|?*)e*" 4] < oo.

Assume also that the limit M(p(a®)e) ) = lim L 3" p(ad)er @ exists
i=1

and 1is finite.
Then there exists a polynomial pi(a) of degree k, a € R", such that

1 m
(12) — Zpl(az')eﬂai L M(p(ao)e’\Tao), as m — 0o.
m &

T T,0 T T T
Consider the matrix 31, = a’a’ e} “ Ee?* @ — Es(a)e?* “a® —

—a"Es(a)e®"* + Es(a)s a)Te2 Ma = Uy — Uy — UJ + Us. Next,
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E(aaT62,\Ta) _ aOaOTe”‘T“Oml + aoe2’\T“0m2 + aoTez,\TaOmg + 62)\Ta0m3’

E(a€2)\Ta> _ a0€2,\Ta0m1 + 62)\Ta0m2’

E(aTe?" ) = a0 "y 4 2T T B(e220) = 229", where

my = Ee2N"@ my, = Eae?' @ ms; = Eaa’e?" @, Then by Lemma 4, the
estimator of U; equals

T T
A m Mo — m3  2m5mo
T T T T
U, = aale2Xa — g2 Ta . 22 _ qTe2\a . e2ATa 22 ).
mi mi mi my

Again from the previous expression and the following identity
E(s(a)a”e®" ) = E(s(a)e?" ) (a®)T +a%®" my+ e (mg — [ pio-m1),

we get an approximation:

T T T
~ m 7=,y — U1 0 m ms Mo
Uy = s(a)aTee — geA"e . —2 _ 2274( /K 2 _ 2 ).
mq mq mi

The next approximation is Us = s(a)s(a)Te2 . Finally,
211 = Ul - UQ - U2T + Ug.

In a similar way one can construct other approximations i)ij and obtain
the approximation (11).

Then the test statistic defined as follows: T2 = m - ||S7"*T2 ||2. Since
S is the consistent estimator of $7, we obtain by Lemma 3 the following
theorem.

Theorem 1. Suppose that the conditions of lemma 3 and condition () are
satisfied. Assume as well that at least one of the following two conditions is
satisfied:

(ziii) M[E(eX* —aT )] > 0, and S; is positive definite;

(xvi) n > p, rankX = p, and the matriz

0 (CL))(E)\TG

MU) =M <c0V [(“ —s\ae

vee(H — a%a )}) 15 nonsingular.

Then T2 4, X5, under hypothesis Ho.

Let a > 0 and x2, be corresponding quantile of the x? distribution,
ie., P{Xf) > X?]a} = «. Based on Theorem 1, we construct the following
goodness-of -fit test with asymptotic confidence probability 1 — a. If T2 <
Xoo then we accept the hypothesis Ho; if 77 > x?, then we reject the null
hypothesis.

4. THE POWER PROPERTIES OF THE TEST

Consider the following sequences of models:

O ~
(13) Hin: b :XTa?—i—M—i—bi, a; =aj +a; i=1,m,

Jm
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where g : R" — RP is a nonlinear vector function which satisfies the condi-
tions:

(xv) 3 M(g(ao)eATQO) and 3 M(g(a®)a® )
(xvi) [[g(a®)[12 - (1 + [Ja®[|? 4 €22 )=o
Then under Hj 5, we have: \% Z( XTs(a;))er 4, N(C,%r),

o(m ) as m — oo.

where a vector C'is found bellow.

Now, we define a noncentral chi-squared distribution X;(T) with p degrees
of freedom, and noncentrality parameter 7.

Definition.

For p > 1 and 7 > 0, let x2(r) < [N (re, I,)||?, where e € R?, [|e]| = 1, or

p
equivalently x2(7) L (1 4+7)2+ 3 ~2, where {7;} are independent standard
i=2

normal variables.
Theorem 2. Suppose that all the conditions of Theorem 1 and conditions

(xv), (zvi) are satisfied. Then, under Hy m, T2 LN X;Q,(HE;MCH),
(1) where C = o Mig(a)e™) — M{g(a®)a? VM (™).

Here X§(||E;1/2C||) is noncentral chi-squared random variable with p degrees

of freedom and noncentrality parameter HE;I/ZC’H.
From Theorem 2 we can find the asymptotic power of the test under local
alternative (13). It is easy to see that the asymptotic power of the test is

increasing function of ||Z;1/QC’||. In other words, the larger ||Z;1/20||, the
more powerful test we will have.

Since in present paper the vector A is arbitrary chosen and the function
g is unknown, it is reasonable to consider the next two problems.

1) We assume that the weight function w(a) = e*" @ is fixed. We discuss
for which g the power is the largest. For simplicity we suppose that {a), i >

1} are IID random vectors, independent of {a;, and b;, i > 1}, and a° 4 al.

Then [|S;"2C = po - |57 [E(g(a®)eX ) —

~E(g(a®)a"" ) E(a’a®") B’ )|l = pol E(Z5"2g(a®)ha(a®))].

Here h,, is defined from the expansion: e ® = 2Ta0 + hy(a®), z € R" and

Ehy(a%)(v7a%) = 0, for all v € R™ The ratio |X;"°C|%/|£:g(a®)|[2,
is maximal, if g(a®) = hy(a®)w, for certain nonrandom w 6 RP, w # 0.
We have hy(a®) = e — E(a%®")"12E(e*’ a®")a"E(a%a®")~1/2, and its
consistent estimator is

A~

hy(a®) = Py 2 ae Ve i(e’\Tas(a)T —eMa(Eale za E&e)‘Ta))aOH_l/Q.
Ho

The function }Az,\(ao)w, w # 0, is asymptotically optimal choice of the func-
tion g for a local alternative (13), when the weight function w is fixed.
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2) Now, we consider the second problem. Let the function g be fixed and
we want to choose optimally the weight function w(a’) = N 'We need
to maximize the function ||S"*C(\)|? for A; € R"\{0}, ¢ = T, m. Here
the vector function C' = C(\) is given in (14) provided all corresponding
moments of random vectors {a;, a, ¢ > 1} are exist. This is a nonlinear
problem, and it can be solved numerically. Of course, one has to incorporate
the approximations for ||2;1/ ?C(N)||? constructed by data.

5. CONCLUSION

We constructed a goodness-of-fit test for a multivariate errors-in-variables
model if the covariance structure of errors b is unknown, and the exponen-
tial moments and the covariance structure of errors a are known. Using
an exponential weight function, we obtained an asymptotically chi-squared
statistic under null hypothesis. A local alternative hypothesis is introduced,
under which the test has a noncentral chi-squared asymptotic distribution.
We discussed for what local alternatives the power of the test is the largest.

APPENDIX

Proof of Lemma 1. First we prove (4). .
With probability tending to 1, as m — oo, we have HX = ab?. Hence

(15)  (a%a®") " (a%aO" + aa®” + a%aT + aa” — Eaa®)X =

= (a°a®") Y (a%a"" X + aa®" X + aObT + ﬁ),

or V-YTHX = V1abT, where V,, := a%°" is nonsingular for m > my, and
Vi — V., as m — oco. We show that

(16) (a9%a0T) " (a%a0” + aa®T + a%T + aa’ — Eaa’) — I,

(17) and (a%a®") ™ (@a%" X + a%bT + ﬁ) 0.

We deal with each summand in (16) separately.

We have [[(a%®")~*(aa®")|| < [V, "] - [laa®".

Since V, is nonsingular matrix, ||V, < const - AL (V;,). By Cauchy-
Schwartz inequality we obtain

P 1 o~ or 1 ¢ @
Bl |2 = Bl= > ol I = 5 37 B(Y ) <
=1 jk=1 =1

i 1
— > O Ea Y (ah)?) < -1l - const,
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therefore ||aa®” || = O”?SL). By (ii) we have
— - O,(1
(18) |@aT)! - | = —— %)

0,(1)

- n m
Next, from (i) we get E|jaa” — Eaa”||? = & Y E(X aai — Eajaz,)? =
gk=1  i=1

(19)  Similarly we have ||(a®a®")~! - aa®" || =

NIE

LS S E(g505 — Ediiai)? = 2. Therefore
o

J 1i=1

N R =

By the assumption b) and (ii) we get

E| a7 |? = % Y EQD aibu)’ = o)

m
k=1 =1

Op(1)

(21) Thus ||(a%a®") ™t - 07| =

Similarly we obtain for the last residual:

Op(1)
\/m : )\mm(vm)
Therefore, equalities (18) - (20) yield the convergence (16), and the relations
(19), (21) and (22) yield the convergence (17). Then (15) implies the desired

5 P
convergence X — X as m — 0o. Now we prove the convergence (5).
We have

(22) 1(a%a®T) " - abT | =

BT = (XTa® 4+ b)(XTa® + b)T = XTa%" X 4+ XTa%T + ba®" X + BT,

bal = m = XTa%0T + XTG0T + bal + ba"7

and X = X + 0,(1), then S§; = XTa0b? + bb" — XTa0aT X — ba’ X + o,(1).
From the proof of the first part of the theorem .
XTa0bT — XTaaT X —baT X = O,(1)/+/m. Moreover bbT — EbbT = S;.

As a result we obtain Sg £, Sy, as m — o00. [J
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Proof of Lemma 2. We substitute the estimator (3) into statistic (9):

(23) T = (b— XTs(a))er @ = (b— (H-1abT)Ts(a))er e =

= (XTa® +b— XTaO%T - H's(a) — baT - H-15(a)) - eMa =

=b(era —aT - H1s(a)er o)+
+ XT(a%era — 0T - H's(a)er o) = F + XTG.
First, we investigate the vector \/mF.
_ Since H = ad® — Eaa? 2 V, as m — oo, we denote A = H —V,
A ~ 0. The approximate equality ” ~ ” means equality up to summands,
converging to 0 in probability. Thus H™l = ([n+V_1AV_1)_1V_i: V-
VAV 4 1y, where [|ry || = [JA[2O,(1). We show that v/m - |[A]|* =~ 0.
From (i), and (ii), and (vi) we have E|H — V||* =

“o.oT O(1 1
(24) = E|aa®" + a%aT + aa’ — Eaal + a%a®" — V| < o) + ﬂ
m

3

Therefore /m - ||A||> = 0 and ||7,,|| = 0,(1)/+/m. Moreover
~ ~ =~ T 1

Vvm - baT = /m(ba® + ba®") = /m - o)

A/

s(a)er e = (a® +a — %)e’\T&e’\T‘lo L, M(a®eN - ),

therefore s(a)e/\Ta = Op(1). Then we get
V- baT H ' s(a)eX™ e &~ /m - baTV ="M (a%*"*"). This implies
(25) VmF ~ /m -b(eX"e — aTV-1M (%" o)) = /m - b(eX"e — aT f),

where { is the vector defined in Lemma 2.
Next, consider \/mG, where G comes from (23):

VMG = v/m - (%N — a%aTV 1 s(a)er e 4 a%aTV AV "ts(a)er @),
Since /m-||A| =~ 0 we have m'/*(a%T — V) ~ 0 and s(a)er® = O,(1). Then
Vm-a%dTV RV Ls(a)eX e ~ /m-AVts(a)eN e = /m- (HV "Ls(a)er e —

s(a)e®), vmG ~ m((a® — s(a))eN e + (H — a®%aT)V—"s(a)e’@). Since
vm - H —a%T = 0,(1) and s(a )e*T“—>M( 0A"a%) e also have

(26) VmG = v/m - (a = s(a))eX + (H — a%a”) f.

Using (25) and (26), we obtain (10). O

Proof of Lemma 3. From the Lemma 2 we have

= OP<1)7

0 LN\,
(27) \/ﬁTmN\/_Z i

m
=1
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where z =: bi(eX % — a7 f) + XT((a¥ — s(a;))er ™ + (H; — a;,%T)f) are
independent random vectors and Ez; = 0. Represent the vectors z; as

~ T N ))er o
zi=bi(e “ —a )+ X", [T @ I,] Lec((afzz) i(Z;)C)(eaioaiT)] '

Then Ez;2] = S; - E(eM % —q,0f)24

0 __ ) AT a;
+ XTI, fT ® L) - cov L} (a7 — s(ai))e 0, T

ec(H;) — vec(a;"a; )] [, £ @ L)X,

m—00

m
therefore lim - 3 Ezz! = 7. The limit exists due to conditions (i), (ii),
i=1

(vi), and (viii). Conditions (vii), (ix) guarantee the following boundedness:
1 m
46 >0: — E i 249 < t.
- ; |z:||°™° < cons

Thus all the conditions of the CLT in Lyapunov form are satisfied, then

1 m
i=1

From this and from (27) using Slutsky Lemma we get Lemma 3. [J

Proof of Lemma 4. First we prove by induction that there exists a polyno-
mial py(a), a € R", of degree k such that

(28) E(pi(a)e*’ ) = p(a®)er .

1. Let p(a®) be a polynomial of degree 0. Since Ee'® = X “"EeM @ =
e*"9" 1o, there exists a polynomial of degree 0, pi(a) = p(a®)ug .

2. Suppose that for arbitrary polynomial of degree less than k, p(a),
there exists p;(a) such that deg pi(a) < k and the equality (28) is satisfied.

3. Prove the existence of similar polynomial of degree k.

E(p(a)er ) = p(a®)e? pg + e “Ep*(a°, a)e* , where p* is some poly-
nomial of two variables. The expectation Ep*(a°, EL)GATFI can be represented
as pQ(aO)e’\TQO, where deg ps < deg p = k. Therefore by part 2 of the proof,
for py(a®) there exists a polynomial pj(a) of degree less than k, such that (28)
is satisfied. Moreover, E(p(a)e* ®/ o — pi(a)e @) = p(a®)er *. Therefore,
I pi(a) :=pla)/po — pi(a), degp; = k.

Now, prove the convergence (12) for the constructed polynomial p;(a). In
fact, we have to prove the next equality

1 — T 1 T 0
2 —_ ; Ma; = 0y ATad _ 1.
(29) 7 2o pa)e™ = 3 plad) ™ = o)
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Zi, EZi = 07

IE

m
Consider the difference - z(pl(ai)e’\T“i — p(a?)er" ) =: -

D(3 3 2) =B} X %) = s L B

1

SIH

Ez} = E(pi(ar)e )’ = (p(a))e *)* < E(pi(a)e™ ™), i =T,m.

We have Ez2 < const - E[(1 + |la;||?*)e? %] < const - E[(1 + [a?||** +

|G || )2 ol 2N @] < (14 [|a?]|2F)e @ - const, i =T, m.
Then by condition (xvi) we get as m — oo,

1 & 9 1
i DBt < T 3 e = T T o,
m? & — m

Thus we obtain (29), and as a result we get the convergence (12). O
Proof of Theorem 1. From the conditions of Theorem 1 we get that »r is
positive matrix. Then m - |S7 /270 |2 -2 X2. Since S is the consistent

estimator of Y7, we have T2 = m.-||S73/270 |2 -% x; under null hypothesis.
U

Proof of Theorem 2. Assume the hypothesis Hy y,. Then

(30) X =H"'ab? + H!

Since H'ab” - X under Hy, we have H—! = O,(1) and Lad%g(a®)” — 0,
E||ﬁ-dg(a0)T||2 — 0, as m — oo. Therefore from (30) we obtain X X
under H; ,,,. However for the statistic 7%, we have

(B VmTolm,, = V- Tyl + (gla)er'® — g(a®)a” H seX'),

where T2\, .,., and Th|m, are the values of Ty under the corresponding
hypotheses H; ,,, and Hj.
Now, consider the last summand in (31). By conditions (xiii) and (xiv)

we have g(a®)eN"e ~ g(a®)BeX" = pgg(a®)er’@” — oM (g(a®)er ™)
and seXe 5 o M(ae¥9), B L vl g(@9)dT &~ g(a)Ed? =
g(a®)a®" — M(g(a®)a®"), as m — oo. Relation (31) yields

(32) VT, —5 N(C, %),

where C'is the vector defined in (14).
The conditions of Theorem 1 are satisfied, therefore 7 > 0. And from
(32) we have the following convergence

_ d _
(33) m- |22 T a1 -5 21272 C).
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Further, due to (xii) and (xiii) we have S; £, S;, under Hy , and 3y L,
Y under Hy p,. (we used only the observations a;, ¢ = 1, m, in the construc-
tion of X7, and they do not change under local alternative Hy y,). Thus by

relation (33). We have T2 |x, ., —— 2(|£7°C). O
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