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MATRIX PARAMETER ESTIMATION

IN AN AUTOREGRESSION MODEL

The vector difference equation ξk = Af(ξk−1)+ εk, where (εk) is a square integrable

difference martingale, is considered. A family of estimators Ǎn depending, besides
the sample size n, on a bounded Lipschitz function is constructed. Convergence in
distribution of

√
n Ǎn − A as n → ∞ is proved with the use of stochastic calculus.

Ergodicity and even stationarity of (εk) is not assumed, so the limiting distribution
may be, as the example shows, other than normal.

Introducton

We consider the vector autoregression process

(1) ξk = Af(ξk−1) + εk, k ∈ N.

Here, A is an unknown square matrix, f is a prescribed function, and (εk) is a square
integrable difference martingale with respect to some flow (Fk, k ∈ Z+) of σ-algebras
such that the random variable ξ0 is F0-measurable. In the detailed form, the assumption
about (εk) means that for any k εk is Fk-measurable,

(2) E|εk|2 < ∞
and

(3) E(εk|Fk−1) = 0.

All vectors are regarded, unless otherwise stated, as columns. Then a�b and ab�

signify scalar and tensor product respectively. The latter is otherwise denoted a ⊗ b
(this is a (0, 2)-tensor), in particular a⊗2 = aa�. We use the Euclidean norm of vectors,
denoting it |·|, and the operator norm of matrices. Other notation: B† – the pseudoinverse
to B; O – the null matrix; l.i.p. – limit in probability; d→ – the weak convergence of the
finite-dimensional distributions of random functions, in particular the convergence in
distribution of random vectors.

Let h be a vector function such that for some n

E (|ξn| + |Af(ξn)|) |h(ξn−1)| + E|h(ξn−1)| < ∞.

Then from (1) – (3) we have E (ξn − Af(ξn−1)) ⊗ h(ξn−1) = O , whence

A = (Eξn ⊗ h(ξn−1)) (Ef(ξn−1) ⊗ h(ξn−1))
−1
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provided the inverse exists. This prompts the estimator

(4) Ǎn =

(
n∑

k=1

ξk ⊗ h(ξk−1)

) (
n∑

k=1

f(ξk−1) ⊗ h(ξk−1)

)†

coinciding in the case f(x) = x with the LSE.
The goal of the article is to study the asymptotic behaviour of the normalized deviation√

n
(
Ǎn − A

)
as n → ∞. The use of stochastic calculus underlying our approach allows

us to dispense with the assumptions of ergodicity and even asymptotic stationarity of
the sequence (εk), thereat the limiting distribution of the studied statistic may be other
than normal. This is the main distinction of our results from A.Ya. Dorogovtsev’s ones
[1] essentially based on the ergodicity assumption.

Preliminaries

Let E0 denote E(· · · |F0).

Lemma 1. Let conditions (2) and (3) be fulfilled and there exist a number q such that
for all x

(5) |Af(x)| ≤ q|x|.
Then, for any k,

E0|ξk|2 ≤ q2k|ξ0|2 +
k−1∑
i=0

qiE0|εk−i|2.

Proof. Writing, on the basis of (1),

(6) |ξk|2 = |Af(ξk−1)|2 + 2Af(ξk−1)�εk + |εk|2

we deduce our assertion from (2), (3) and (5) by induction.
Denote further σ2

k = E
(
ε⊗2

k |Fk−1

)
, χN

k = I{|ξk| > N}, IN
k = I{|εk| > (1 − q)N},

bN
k = E0|ξk|2χN

k . Obviously,

(7) E
(|εk|2|Fk−1

)
= trσ2

k.

Lemma 2. Let conditions (2), (3) and (5) be fulfilled and

(8) q < 1.

Then for any k

bN
k ≤ q2bN

k−1 + E0|εk|2χN
k−1 + 2(q/(1 − q))2N−2E0|ξk−1|2trσ2

k + 2E0|εk|2IN
k .

Proof. Due to (1) and (5),
χN

k ≤ χN
k−1 + IN

k ,

which together with (6), (5) and the obvious inequality |a�b| ≤ |a|2 + |b|2 yields

|ξk|2χN
k ≤ q2|ξk−1|2χN

k−1 + 2Af(ξk−1)�εkχN
k−1 + |εk|2χN

k−1 + 2(q2|ξk−1|2 + |εk|2)IN
k .

By Lemma 1 and condition (5), E0|Af(ξk−1)|2 < ∞. Hence, because of (2) and (3),
E0

(
Af(ξk−1)�εk|Fk−1

)
= 0. The equality

E0|ξk−1|2IN
k = E0

(|ξk−1|2P{|εk| > (1 − q)N |Fk−1}
)
,

together with condition (8), Chebyshev’s inequality, and equality (7) completes the proof.
In what follows, C is a generic constant.
Obviously, E0χN

i ≤ N−2bN
i . Hence and from the previous lemmas we deduce (the

details can be found in the proof of Theorem 2 [2])
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Corollary 1. Let conditions (2), (3), (5), and (8) be fulfilled,

(9) lim
N→∞

lim
n→∞

1
n

n∑
k=1

E|εk|2I{|εk| > N} = 0,

and let there exist an F0-measurable random variable υ such that for all k

(10) E
(|εk|2|Fk−1

) ≤ υ.

Then with probability 1

lim
N→∞

lim
n→∞

1
n

n∑
k=1

bN
k = 0.

The main results

Let h be a Borel function such that

(11) |h(x)| ≤ C|x|.
Denote ηk = h(ξk), Kn = 1√

n

∑n
k=1 εk ⊗ ηk−1, Qn = 1

n

∑n−1
k=0 f(ξk) ⊗ ηk,

Tn =
√

n(AQnQ†
n − A), Gn = 1

n

∑n
k=1 σ2

k ⊗ η⊗2
k−1,

(12) Yn(t) =
1√
n

[nt]∑
k=1

εk ⊗ ηk−1.

Then, because of (4),

(13)
√

n(Ǎn − A) = KnQ†
n + Tn.

By construction and conditions (2), (3) and (5), Yn is a locally square integrable
martingale with quadratic characteristic

(14) 〈Yn〉(t) = n−1[nt]G∗
[nt],

where ∗ is a linear operation in the space of 4-valent tensors such that

(a ⊗ b ⊗ c ⊗ d)∗ = a ⊗ c ⊗ b ⊗ d.

Theorem 1. Let conditions (2), (3), (5) and (8) – (11) be fulfilled, and let there exist
a random (0, 4)-tensor G such that

(15) Gn
d→G.

Then Yn
d→Y , where Y is a continuous local martingale with quadratic characteristic

〈Y 〉(t) = G∗t.

Proof. According to Corollary in [3] and in view of (14) and (15), it suffices to show that
for any t

(16) E sup
s≤t

‖Yn(s) − Yn(s−)‖2 → 0.

The argument in [3] doess not change if the expectation is taken conditioned on F0, so
in (16) E and → may be substituted by E0 and P→, respectively. This weakened version
of (16) is equivalent, because of (12), to the following relation:

n−1E0 max
k≤nt

ρk
P→0,
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where ρk = |εk|2|ηk−1|2. Since for any δ > 0

max
k

ρk ≤ δn +
∑

k

ρkI{ρk > δn},

it remains to prove that the random variables
√

ρk/n satisfy the Lindeberg condition:
for any δ > 0

(17)
1
n

∑
k≤nt

E0ρkI{ρk > δn} P→0.

Writing on the basis of (11)

ρkI{ρk > δn} (I{|ξk−1| ≤ N} + I{|ξk−1| > N})
≤ C2

(
N2|εk|2I{|εk|2 > (CN)−2δn} + |εk|2|ξk−1|2χN

k−1

)
,

we deduce (17) from both the conditions and the conclusion of Corollary 1.
Applying Theorem 1 to the compound processes (Yn, Qn) where the second component

does not depend on t, we obtain

Corollary 2. Let conditions (2), (3), (5), and (8) – (11) be fulfilled, and let there exist
given on a common probability space random (0, 4)-tensor G and (0, 2)-tensor Q such
that

(18) (Gn, Qn) d→(G, Q).

Then (Yn, Qn) d→(Y, Q), where Y is a continuous local martingale w. r. t. some flow
(F(t), t ∈ R+) such that 〈Y 〉(t) = G∗t and the tensor-valued r. v. Q is F(0)-measurable.

Theorem 2. Let the conditions of Corollary 2 be fulfilled and detQ �= 0 a. s. Then

(19)
√

n(Ǎn − A) d→Y (1)Q−1.

Proof. By Corollary 2,
(Yn(1), Qn) d→(Y (1), Q).

But Yn(1) = Kn, which together with the nondegeneracy of Q implies that
KnQ†

n
d→KQ−1. Now, to obtain the assertion of the theorem from (13), it remains to

note that
P{Tn �= O} ≤ P{detQn �= O} → 0.

Simpler versions of condition (18)

Denote f0(x) = x and, for r ≥ 1,

(20) fr(x0, . . . , xr) = Af(fr−1(x0, . . . , xr−1)) + xr.

Then

(21) ξk = fr(ξk−r , εk−r+1, . . . , εk), r < k,

and

(22) |fr(x0, . . . , xr)| ≤
r∑

i=0

qi|xr−i|.

Below Xr stands for (x1, . . . , xr), and d is the dimensionality of each xj .
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Lemma 3. Let for all x, y

(23) |Af(x) − Af(y)| ≤ q|x − y|.
Then for all x, y, r, Xr

|fr(x, Xr) − fr(y, Xr)| ≤ qr|x − y|.
Proof. Due to (20) and (23),

|fr(x, Xr) − fr(y, Xr)| ≤ q|fr−1(x, Xr−1) − fr−1(y, Xr−1)|,
so it remains to apply the induction.

Corollary 3. Under the conditions of Lemma 3, for any N

lim
r→∞ sup

|x|≤N,Xr∈Rrd

|fr(x, Xr) − fr(0, Xr)| = 0.

Corollary 4. Let conditions (5), (8), (11) and (23) be fulfilled and for any x, y

(24) |h(x) − h(y)| ≤ C|x − y|.
Then for any N > 0

(25) lim
r→∞ sup

|x|≤N,Xr∈Rrd

‖f(fr(x, Xr)) ⊗ h(fr(x, Xr)) − f(fr(0, Xr))⊗ h(fr(0, Xr))‖ = 0,

(26) lim
r→∞ sup

|x|≤N,Xr∈Rrd

‖h(fr(x, Xr))⊗2 − h(fr(0, Xr))⊗2‖ = 0.

Denote further ξr
k = fr(0, εk−r+1, . . . , εk), ηr

k = h(ξr
k), Qr

n = 1
n

∑n−1
k=r f(ξr

k) ⊗ ηr
k,

Gr
n = 1

n

∑n
k=r σ2

k ⊗ (ηr
k−1)

⊗2. We endow the space of (0, 4)-tensors with such a norm
that for any (0, 2)-tensors A1 and A2, ‖A1 ⊗ A2‖ = ‖A1‖‖A2‖.
Lemma 4. Let conditions (2), (3), (5), (8) – (11), (23) and (24) be fulfilled and

(27) |f(x)| ≤ C|x|.
Then almost surely

(28) lim
r→∞ lim

n→∞E0‖Qn − Qr
n‖ = 0,

(29) lim
r→∞ lim

n→∞E0‖Gn − Gr
n‖ = 0.

Proof. By Corollary 4 for any N > 0,

(30) lim
r→∞ lim

n→∞
1
n

n−1∑
k=r

E‖f(ξk) ⊗ ηk − f(ξr
k) ⊗ ηr

k‖I{|ξk| ≤ N} = 0.

Due to (11) and (27),
E0‖f(ξk) ⊗ ηk‖χN

k ≤ C2bN
k ,

so, by Corollary 1,

(31) lim
N→∞

lim
n→∞

1
n

n−1∑
k=0

E0‖f(ξk) ⊗ ηk‖χN
k = 0.

Further, for k ≥ r

E0‖f(ξr
k) ⊗ ηr

k‖ = E0|f(fr(0, εk−r+1, . . . , εk))||h(fr(0, εk−r+1, . . . , εk))|,
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whence, in view of (22), (27), and (11),

(32) E‖f(ξr
k) ⊗ ηr

k‖χN
k ≤ C2E

(
r−1∑
i=0

qi|εk−i|
)2

χN
k .

Writing the Cauchy–Buniakowsky inequality

(
r−1∑
i=0

qi|εk−i|
)2

≤
r−1∑
j=0

qj
r−1∑
i=0

qi|εk−i|2,

we get for an arbitrary L > 0

E

(
r−1∑
i=0

qi|εk−i|
)2

χN
k

≤ (1 − q)−1

(
E

r−1∑
i=0

qi|εk−i|2I{|εk−i| > L} + L2P{|ξk| > N}
r−1∑
i=0

qi

)
.

(33)

Lemma 1 together with (8) and (10) implies that

(34) lim
N→∞

lim
n→∞

1
n

n∑
k=0

P{|ξk| > N} = 0.

Obviously, for arbitrary nonnegative numbers u0, . . . , ur−1, v1, . . . , vn−1,

n−1∑
k=r

r−1∑
i=0

uivk−i ≤
r−1∑
i=0

ui

n−1∑
j=1

vj ,

so conditions (8) and (9) imply that

lim
L→∞

sup
r

lim
n→∞

1
n

n−1∑
k=r

E
r−1∑
i=0

qi|εk−i|2I{|εk−i| > L} = 0,

whence, in view of (32) – (34),

lim
N→∞

sup
r

lim
n→∞

1
n

n−1∑
k=r

E‖f(ξr
k) ⊗ ηr

k‖χN
k = 0.

Combining this with (30) and (31), we arrive at (28).
The proof of (29) is similar.

Corollary 5. Let the conditions of Lemma 4 be fulfilled and for any r ∈ N there exist a
pair (Qr, Gr) of tensors such that

(Qr
n, Gr

n) d→(Qr, Gr) as n → ∞.

Then the sequence ((Qr, Gr), r ∈ N) converges in distribution to some limit (Q, G) and
relation (18) holds.
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Lemma 5. Let the sequence (εk) satisfy conditions (9) and (10) and for any uniformly
bounded sequence (αk) of Borel functions on R

rd

(36)
1
n

n−1∑
k=r

(
αk(εk−r+1, . . . , εk) − E0αk(εk−r+1, . . . , εk)

) P→O.

Then this relation holds for any sequence (αk) of Borel functions such that

(37) |αk(x1, . . . , xr)| ≤ C

(
r∑

i=1

|xi|2 + 1

)
.

Proof. Denote ζk = αk(εk−r+1, . . . , εk). Then for any N > 0

1
n

n−1∑
k=r

(
ζkI{|εk−r+1| ≤ N, . . . , |εk| ≤ N} − E0ζkI{|εk−r+1| ≤ N, . . . , |εk| ≤ N}) P→0,

so it suffices to prove that, for j = 0, . . . , r − 1,

(38) lim
N→∞

lim
n→∞

1
n

n∑
k=1

E0|ζk|I{|εk−j| > N} = 0 a.s.

By assumption,

(39) E0|ζk|I{|εk−j | > N} ≤ C

(
P{|εk−j| > N |F0} +

k−1∑
i=0

E0|εk−i|2I{|εk−j | > N}
)

.

Due to (10), P{|εi| > N |F0} ≤ υ2N−2 and E0|εk−i|2I{|εk−j | > N} ≤ υ4N−2 as i �= j,
which together with (39) and (9) implies (38).

Remark. Obviously, if relation (36) holds for any sequence of R-valued functions (uni-
formly bounded or satisfying (37)), then for any m ∈ N it is valid for any sequence of
R

m-valued functions with the same property.
The proof of the following statement is similar.

Lemma 6. Let the sequence (εk) satisfy conditions (9) and (10) and for any uniformly
bounded sequence (αk) of R-valued Borel functions on R

rd

(40)
1
n

n−1∑
k=r

(
σ2

k ⊗ αk(εk−r+1, . . . , εk) − E0(σ2
k ⊗ αk(εk−r+1, . . . , εk))

) P→O

(here ⊗ signifies the multiplication of a tensor by a real number). Then this relation
holds for any sequence (αk) of tensor-valued functions satisfying (37) (with ‖ · ‖ instead
of | · | on the left-hand side).

Corollary 6. Let the conditions of Lemmas 4 and 5 be fulfilled and for any uniformly
bounded sequence (αk) of R-valued Borel functions on R

rd the sequence(
1
n

n−1∑
k=r

E0αk(εk−r+1, . . . , εk), n = r, r + 1, . . .

)

converge in probability. Then the sequence (Qr
n, n = r, r + 1 . . . ) converges in probabil-

ity.
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Corollary 7. Let the conditions of Lemmas 4 and 6 be fulfilled and for any uniformly
bounded sequence of R-valued functions the sequence(

1
n

n−1∑
k=r

E0σ2
kαk(εk−r+1, . . . , εk), n = r, r + 1, . . .

)

converge in probability. Then the sequence (Gr
n, n = r, r + 1 . . . ) converges in probabil-

ity.

An example

Suppose that conditions (5), (8), (11), (23) and (24) are fulfilled. Let also εk = γkχk,
where (γk) and (χk) are independent sequences of random variables and i.i.d. random
vectors, respectively, |γk| ≤ C, and let for any r ∈ N and bounded Borel function g the
sequence (

1
n

n−1∑
k=r

g(γk−r+1, . . . , γk), n = r, r + 1, . . .

)

converge in probability; Eχ1 = 0, Eχ⊗2
1 = I.

For Fk, we take the σ-algebra generated by ξ0; χ1, . . . , χk; γ1, γ2, . . . (so that the whole
sequence (γk) is F0-measurable). Then σ2

k = γ2
kI,

(41) Gr
n = I ⊗ 1

n

n∑
k=r

(γkηr
k)⊗2

and conditions (2), (3), and (10) are fulfilled. So is (9), because the γk’s are uniformly
bounded and χk’s are identically distributed.

To deduce (19) from Theorem 2 and Corollary 5 it suffices to verify the conditions of
Corollaries 6 and 7. In view of (41) and the expressions for Qr

n and ηr
k, we may confine

ourselves with the case αk = α.
By the Stone – Weierstrass theorem, α can be approximated uniformly on compacta

with finite linear combinations of functions of the kind h(y)h1(x1) . . . hr(xr) (y ∈ R
r, xj ∈

R
d). By the choice of Fk and the assumptions on (γk) and (χk),

E0h(γk)h1(χk−r+1) . . . hr(χk) = h(γk)
r∏

i=1

Ehi(χ1),

where γk = (γk−r+1, . . . , γk).
Hence and from the Chebyshev’s inequality, (36) emerges. The last condition of Corol-

lary 6 follows from (41) and the above assumption on (γk).
If detQ �= 0, then Theorem 2 asserts (19). If herein l.i.p.n→∞

1
n

∑n
k=r g(γk) is random,

then the limiting distribution will not be Gaussian.
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