A. V. IVANOV AND I. V. ORLOVSKY

PARAMETER ESTIMATORS OF NONLINEAR QUANTILE REGRESSION

Abstract

We have obtained the asymptotic normality of parameter estimators of a nonlinear quantile regression with nonsymmetric random noise.

Introduction

Here, we examine the asymptotic normality of Koenker and Basset estimators [1] or the generalized least moduli estimators (GLME) of nonlinear regression model parameters that generalize least moduli estimators for non-symmetric observation errors.

The consistency property of GLME has been considered in [2].

1. Assumptions and the main result

Suppose that an observation X_{j} is a r.v. with values in $\left(\mathbb{R}^{1}, \mathcal{B}^{1}\right)\left(\mathbb{R}^{1}\right.$ is a real line, \mathcal{B}^{1} - σ-algebra of its Borel subsets) and distribution P_{j}. We also assume that the unknown distribution P_{j} belongs to a certain parametric family $\left\{P_{i \theta}, \theta \in \Theta\right\}$. We call the triple $\mathcal{E}_{j}=\left\{\mathbb{R}^{1}, \mathcal{B}^{1}, P_{j \theta}, \theta \in \Theta\right\}$ a statistical experiment generated by the observation X_{j}.

We say that a statistical experiment $\mathcal{E}^{n}=\left\{\mathbb{R}^{n}, \mathcal{B}^{n}, P_{\theta}^{n}, \theta \in \Theta\right\}$ is the product of the statistical experiments $\mathcal{E}_{i}, i=1, \ldots, n$, if $P_{\theta}^{n}=P_{1 \theta} \times \ldots \times P_{n \theta}\left(\mathbb{R}^{n}-n\right.$-dimensional Euclidean space and $\mathcal{B}^{n}-\sigma$-algebra of its Borel subsets). We say that the experiment \mathcal{E}^{n} is generated by n independent observations $X=\left(X_{1}, . ., X_{n}\right)$.

Let the observations have the form

$$
\begin{equation*}
X_{j}=g(j, \theta)+\varepsilon_{j}, j=1, \ldots, n \tag{1.1}
\end{equation*}
$$

where $g(j, \theta)$ is a non-random sequence of functions defined on Θ^{c}, Θ^{c} is the closure of an open convex set $\Theta \subset \mathbb{R}^{q}$ in \mathbb{R}^{q}, and

A1. ε_{j} are independent identically distributed random variables (r.v.) with zero mean, distribution function \mathcal{P}, and

$$
\begin{equation*}
\mathcal{P}(0)=\beta, \beta \in(0,1) . \tag{1.2}
\end{equation*}
$$

It is not supposed that the functions $g(j, \theta)$ are the linear forms of coordinates of the vector θ.

Definition. GLME of the parameter $\theta \in \Theta$ obtained by the observations $X_{j}, j=1, \ldots, n$ of the form (1.1) is said to be any random vector $\widehat{\theta}_{n}=\widehat{\theta}_{n}\left(X_{j}, j=1, \ldots, n\right) \in \Theta^{c}$ having the property

$$
\begin{equation*}
S_{\beta}\left(\widehat{\theta}_{n}\right)=\inf _{\tau \in \Theta^{c}} S_{\beta}(\tau), \quad S_{\beta}(\tau)=\sum \rho_{\beta}\left(X_{j}-g(j, \tau)\right) \tag{1.3}
\end{equation*}
$$

[^0]Key words and phrases. Nonlinear quantile regression, parameter estimator.
where $\sum=\sum_{j=1}^{n}$ and

$$
\rho_{\beta}(x)=\left\{\begin{array}{ll}
\beta x, & x \geq 0 \tag{1.4}\\
(\beta-1) x, & x<0
\end{array}, \quad \beta \in(0,1)\right.
$$

Since $P_{\theta}^{n}\left\{X_{j}<g(j, \theta)\right\}=P_{\theta}^{n}\left\{\varepsilon_{j}<0\right\}=F(0)=\beta$, the observation model (1.1) can be interpreted as a nonlinear quantile regression [1]. Indeed, $\widehat{\theta}_{n}$ estimates the β-quantile $g(j, \theta)$ of observations $X_{j}, j=1, \ldots, n$.

Let us impose some restrictions on r.v. ε_{j} :
A2. $\mu_{s}=E\left|\varepsilon_{j}\right|^{s}<\infty$ for some natural s.
A3. R.v. ε_{j} has a bounded density $p(x)=\mathcal{P}^{\prime}(x)$ with the property

$$
|p(x)-p(0)| \leq H|x|, \quad p(0)>0
$$

where $H<\infty$ is a certain constant.
Example. A r.v. $\xi=\chi_{2 m}^{2}-2 m$, where $\chi_{2 m}^{2}$ has chi-squared distribution with even degrees of freedom, satisfies conditions A1-A3.

Denote, by $\mathcal{C}^{q} \subset \mathcal{B}^{q}$, the class of all convex Borel subsets of \mathbb{R}^{q} and, by $T \subset \Theta$, some compact.

Let us introduce the notation

$$
\begin{gathered}
g_{i}(j, \tau)=\frac{\partial}{\partial \tau^{i}} g(j, \tau), \quad g_{i l}(j, \tau)=\frac{\partial^{2}}{\partial \tau^{i} \partial \tau^{l}} g(j, \tau), \\
d_{i n}^{2}(\theta)=\sum g_{i}^{2}(j, \theta), \quad d_{i l, n}^{2}(\tau)=\sum g_{i l}^{2}(j, \tau), \tau \in \Theta^{c}, i, l=1, \ldots, q
\end{gathered}
$$

Here, $d_{n}^{2}(\theta)$ is a diagonal matrix with elements $d_{i n}^{2}(\theta), i=1, \ldots, q$ on the diagonal.
Consider the change of variables $u=n^{-1 / 2} d_{n}(\theta)(\tau-\theta)$, i.e.

$$
g(j, \tau)=g\left(j, \theta+n^{1 / 2} d_{n}^{-1}(\theta) u\right)=f(j, u)
$$

assuming that θ is a true value of the parameter. Under this change of variables, the set Θ turns to the set $\widetilde{U}_{n}(\theta)=n^{-1 / 2} U_{n}(\theta)$, where $U_{n}(\theta)=d_{n}(\theta)(\Theta-\theta)$, and GLME $\widehat{\theta}_{n}$ turns to a normed random vector $\widehat{u}_{n}=n^{-1 / 2} d_{n}(\theta)\left(\widehat{\theta}_{n}-\theta\right)$.

We will denote positive constants by the letter k. Suppose that
B1. Functions $g(j, \theta), j \geq 1$ are continuous on Θ^{c} together with all the first partial derivatives, and $g_{i}(j, \theta), i=1, \ldots, q, j \geq 1$, are continuously differentiable in Θ. Moreover, for any $R \geq 0$,
(i) $\sup _{\theta \in T} \sup _{u \in v(R) \cap \widetilde{U}_{n}^{c}(\theta)} \max _{1 \leq j \leq n} \frac{\left|f_{i}(j, u)\right|}{d_{i n}(\theta)} \leq k^{i}(R) n^{-1 / 2}, i=1, \ldots, q$,
(1.6)
(ii) $\sup _{\theta \in T} \sup _{u \in v(R) \cap \widetilde{U}_{n}^{c}(\theta)} \frac{d_{i l, n}\left(\theta+n^{1 / 2} d_{n}^{-1 / 2}(\theta) u\right)}{d_{i n}(\theta) d_{l n}(\theta)} \leq k^{i l}(R) n^{-1 / 2}, i, l=1, \ldots, q$.

It follows from (1.5) that

$$
\begin{equation*}
\sup _{\theta \in T} \sup _{u_{1}, u_{2} \in v^{c}(R) \cap \tilde{U}_{n}^{c}(\theta)} n^{-1} \frac{\Phi_{n}\left(u_{1}, u_{2}\right)}{\left|u_{1}-u_{2}\right|^{2}} \leq k(R) \tag{1.7}
\end{equation*}
$$

where $\Phi_{n}\left(u_{1}, u_{2}\right)=\sum\left(f\left(j, u_{1}\right)-f\left(j, u_{2}\right)\right)^{2}$.
Similarly, relation (1.6) yields the inequality

$$
\begin{equation*}
\sup _{\theta \in T} \sup _{u_{1}, u_{2} \in v^{c}(R) \cap \tilde{U}_{n}^{c}(\theta)} \frac{\Phi_{n}^{(i)}\left(u_{1}, u_{2}\right)}{d_{i n}^{2}(\theta)\left|u_{1}-u_{2}\right|^{2}} \leq \tilde{k}^{(i)}(R) \tag{1.8}
\end{equation*}
$$

with $\Phi_{n}^{(i)}\left(u_{1}, u_{2}\right)=\sum\left(\left(f_{i}\left(j, u_{1}\right)-f_{i}\left(j, u_{2}\right)\right)^{2}, \quad i=1, \ldots, q\right.$.
Suppose that GLME is consistent, namely:
C. For any $r>0$

$$
\sup _{\theta \in T} P_{\theta}^{n}\left\{\left|n^{-1 / 2} d_{n}(\theta)\left(\widehat{\theta}_{n}-\theta\right)\right| \geq r\right\}=\left\{\begin{array}{ll}
O\left(n^{-s+1}\right), & s \geq 2 \\
o(1), & s=1
\end{array} .\right.
$$

The sufficient conditions for \mathbf{C} to be fulfilled are stated in [2].
Let us denote

$$
I(\theta)=\left(d_{i n}^{-1}(\theta) d_{l n}^{-1}(\theta) \sum g_{i}(j, \theta) g_{l}(j, \theta)\right)_{i, l=1}^{q}, \quad \theta \in \Theta
$$

The matrix $I(\theta)$ is symmetric and non-negative definite. Let $\lambda_{\min }(I(\theta))$ be the smallest eigenvalue of $I(\theta)$. Assume that

B2. For $n>n_{0}, \inf _{\theta \in T} \lambda_{\text {min }}(I(\theta)) \geq \lambda_{0}>0$.
Let l be an arbitrary direction in \mathbb{R}^{q}, and $\tau \in \Theta$. Then

$$
\frac{\partial}{\partial l} S_{\beta}(\tau)=\sum\langle\nabla g(j, \tau), l\rangle\left(\chi\left\{X_{j} * g(j, \tau)-\beta\right\}\right)
$$

where "*" denotes " \leq " if $\langle\nabla g(j, \tau), l\rangle \geq 0$ and " $<$ " if $\langle\nabla g(j, \tau), l\rangle<0$. Let r_{0} be a distance between T and $\mathbb{R}^{q} \backslash \Theta$. If an event $\left\{\left|\hat{\theta}_{n}-\theta\right|<r\right\}$ occurs for $\theta \in T$ and $r<r_{0}$, then, for any direction l,

$$
\frac{\partial}{\partial l} S_{\beta}\left(\hat{\theta}_{n}\right) \geq 0
$$

This remark will be used in the proof of the main result.
Theorem. If conditions A1-A3, B1, B2, and \mathbf{C} are fulfilled, then

$$
\begin{equation*}
\sup _{\theta \in T} \sup _{C \in \mathcal{C}^{q}}\left|P_{\theta}^{n}\left\{\frac{p(0)}{\sqrt{\beta(1-\beta)}} I^{1 / 2}(\theta) d_{n}(\theta)\left(\widehat{\theta}_{n}-\theta\right) \in C\right\}-\Phi(C)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0 \tag{1.9}
\end{equation*}
$$

where $\Phi(C)=\int_{C} \frac{1}{(2 \pi)^{q / 2}} e^{-\frac{\|x\|^{2}}{2}} d x$.
In other words, the normal distribution $N\left(0, \frac{\beta(1-\beta)}{p^{2}(0)} I^{-1}(\theta)\right)$ is the accompanying law for the distribution of the normed estimator $d_{n}(\theta)\left(\widehat{\theta}_{n}-\theta\right)$.

2. Auxiliary assertions

We carry out the proof by the scheme of the theorem on asymptotic normality of the least moduli estimators [3], by using the method of partitioning a parametric set [4,5].

Let l_{1}, \ldots, l_{q} be the positive directions of the coordinate axes. Let us consider the vectors $S_{\beta}^{ \pm}(\tau)$ with coordinates

$$
S_{i \beta}^{ \pm}(\tau)=d_{i n}^{-1}(\theta)\left(\frac{\partial}{\partial\left(\pm l_{i}\right)}\right) S_{\beta}(\tau), \quad i=1, \ldots, q
$$

and the vectors $E_{\theta}^{n} S_{\beta}^{ \pm}(\theta)$ with coordinates

$$
E_{\theta}^{n} S_{i \beta}^{ \pm}(\tau)= \pm d_{i n}^{-1}(\theta) \sum g_{i}(j, \tau)[\mathcal{P}(g(j, \tau)-g(j, \theta))-\beta], \quad i=1, \ldots, q
$$

Clearly,

$$
E_{\theta}^{n} S_{\beta}^{ \pm}(\theta)=0
$$

due to assumption A1. Let us denote $S_{\beta}^{* \pm}(u)=S_{\beta}^{ \pm}\left(\theta+n^{1 / 2} d_{n}^{-1}(\theta) u\right)$ and

$$
z_{n}^{ \pm}(\theta, u)=\frac{\left|S_{\beta}^{* \pm}(u)-S_{\beta}^{* \pm}(0)-E_{\theta}^{n} S_{\beta}^{* \pm}(u)\right|}{1+\left|E_{\theta}^{n} S_{\beta}^{* \pm}(u)\right|}
$$

Lemma 1. Under the conditions of the theorem, for any $\epsilon>0$ and sufficiently small $r>0$,

$$
\begin{equation*}
\sup _{\theta \in T} P_{\theta}^{n}\left\{\sup _{u \in v^{c}(r) \cap \tilde{U}_{n}^{c}(\theta)} z_{n}^{ \pm}(\theta, u)>\epsilon\right\} \underset{n \rightarrow \infty}{\longrightarrow} 0 \tag{2.1}
\end{equation*}
$$

Proof. We will proof the statement for $z_{n}^{+}(\theta, u)$. Assume, for simplicity, that $r=1$ and the inner supremum in (2.1) is defined in a cube

$$
C_{0}=\left\{u:|u|_{0}=\max _{1 \leq i \leq q}\left|u_{i}\right| \leq 1\right\} \supset v(1) .
$$

Let us cover the cube C_{0} with $N_{0}=O(\ln n)$ cubes $C_{(1)}, \ldots, C_{\left(N_{0}\right)}$ in the following way. For the number $t \in(0,1)$, we consider a concentric system of sets

$$
\begin{aligned}
C^{(m)} & =\left\{u:|u|_{0} \in\left[(1-t)^{m+1},(1-t)^{m}\right]\right\}, \quad m=0, \ldots, m_{0}-1, \\
C^{\left(m_{0}\right)} & =\left\{u:|u|_{0} \leq(1-t)^{m_{0}}\right\} .
\end{aligned}
$$

We cover each of the sets $C^{(m)}$ by identical cubes with sides

$$
a_{m}=(1-t)^{m}-(1-t)^{m+1}=t(1-t)^{m}
$$

and enumerate these cubes. They form the required covering

$$
C_{(1)}, \ldots, C_{\left(N_{0}-1\right)}, C_{\left(N_{0}\right)}={ }^{\operatorname{def}} C^{\left(m_{0}\right)}
$$

Let us choose $m_{0}=m_{0}(n)$ from the condition $(1-t)^{\tilde{m}_{0}}=n^{-\gamma}, \quad m_{0}=\left[\tilde{m}_{0}\right], \quad \gamma \in\left(\frac{1}{2}, 1\right)$.
We denote, by $|\cdot|_{0}$, the distance from $C_{(j)}$ to 0 which is equal to

$$
r(j)=(1-t) n^{-\gamma m / \tilde{m}_{0}}
$$

and, by $|\cdot|_{0}$, the diameter of $C_{(j)}$ which is equal to

$$
a(j)=t n^{-\gamma m / \tilde{m}_{0}}
$$

for some $m=m(j), j=1, \ldots, N_{0}-1$. Moreover, if the cube $C_{(j)}$ is an element of the covering of the sets $C^{(m)}$, then

$$
a(j)=a_{m}, \quad r(j)=t(1-t)^{m+1}+\ldots+t(1-t)^{m_{0}-1}+(1-t)^{m_{0}} .
$$

The number of cubes $C_{(j)}$ covering each set $C^{(m)}$ can be made not depending on m and, consequently, on n. In order to verify this, let us consider any octant in \mathbb{R}^{q}. The volume occurring in its part of the set $C^{(m)}$ is $(1-t)^{m q}-(1-t)^{(m+1) q}$, and the volume of the sets $C_{(j)}$ is equal to $a^{q}(j)=t^{q}(1-t)^{m q}$. In this way, the maximum number of cubes $C_{(j)}$ that can be "placed" in the part of $C^{(m)}$ that belongs to the given octant is equal to

$$
\frac{(1-t)^{m q}-(1-t)^{(m+1) q}}{t^{q}(1-t)^{m q}}=\frac{1-(1-t)^{q}}{t^{q}}
$$

cubes. Since $m_{0}=O(\ln n), N_{0}=O(\ln n)$ as well. Let us fix $\theta \in T$. Then

$$
\begin{equation*}
P_{\theta}^{n}\left\{\sup _{u \in C_{0}} z_{n}^{+}(\theta, u)>\epsilon\right\} \leq \sum_{j=1}^{N_{0}} P_{\theta}^{n}\left\{\sup _{u \in C_{(j)}} z_{n}^{+}(\theta, u)>\epsilon\right\} . \tag{2.2}
\end{equation*}
$$

Let us estimate each term in (2.2). The general element of the derivative matrix $D_{n}(u)$ of the mapping

$$
u \longrightarrow E_{\theta}^{n} S_{\beta}^{*+}(u)
$$

has the form

$$
\begin{aligned}
D_{n}^{i l}(u)= & \frac{\partial}{\partial u_{l}} E_{\theta}^{n} S_{i \beta}^{*+}(u) \\
= & n^{1 / 2} d_{i n}^{-1}(\theta) d_{l n}^{-1}(\theta) \sum f_{i l}(j, u)[\mathcal{P}(g(j, \tau)-g(j, \theta))-\beta] \\
& +n^{1 / 2} d_{i n}^{-1}(\theta) d_{l n}^{-1}(\theta) \sum f_{i}(j, u) f_{l}(j, u) p(g(j, \tau)-g(j, \theta)) \\
= & { }_{1} D_{n}^{i l}(u)+{ }_{2} D_{n}^{i l}(u) .
\end{aligned}
$$

Taking into account (1.6), (1.7), and the inequality

$$
\sup _{x \in \mathbb{R}^{1}} p(x)=p_{0}<\infty
$$

we obtain, for $|u|<r$,

$$
\begin{gather*}
n^{-1 / 2}{ }_{1} D_{n}^{i l}(u) \mid \leq n^{1 / 2} d_{i n}^{-1}(\theta) d_{l n}^{-1}(\theta) d_{i l, n}\left(\theta+n^{1 / 2} d_{n}^{-1}(\theta) u\right) \times \\
\times\left(n^{-1} \sum(\mathcal{P}(f(j, u)-f(j, 0))-\mathcal{P}(0))^{2}\right)^{1 / 2} \leq k^{(i l)}(r) k^{1 / 2}(r) p_{0}|u| . \tag{2.3}
\end{gather*}
$$

On the other hand,

$$
\begin{align*}
& \left|n^{-1 / 2}{ }_{2} D_{n}^{i l}(u)-p(0) I_{i l}(\theta)\right| \leq \\
& \leq p_{0}\left[d_{i n}^{-1}(\theta) d_{i n}\left(\theta+n^{1 / 2} d_{n}^{-1}(\theta) u\right) d_{l n}^{-1}(\theta)\left(\Phi_{n}^{(l)}(u, 0)\right)^{1 / 2}+d_{i n}^{-1}(\theta)\left(\Phi_{n}^{(i)}(u, 0)\right)^{1 / 2}\right] \\
& 4) \quad \quad+d_{i n}^{-1}(\theta) d_{l n}^{-1}(\theta)\left|\sum g_{i}(j, \theta) g_{l}(j, \theta)(p(f(j, u)-f(j, 0))-p(0))\right| . \tag{2.4}
\end{align*}
$$

It follows from (1.5) and (1.8) that the terms in square brackets are bounded by the quantity

$$
p_{0}\left(\left(\tilde{k}^{(i)}\right)^{1 / 2}+k^{(i)}(r)\left(\tilde{k}^{(l)}\right)^{1 / 2}\right)|u| .
$$

For another term on the right-hand side of (2.4), we can find, by using condition A3 and (1.5), the upper bound

$$
\begin{gather*}
n^{1 / 2} d_{i n}^{-1}(\theta) \max _{1 \leq j \leq n}\left|g_{i}(j, \theta)\right|\left(n^{-1} \sum(p(f(j, u)-f(j, 0))-p(0))^{2}\right)^{1 / 2} \\
\leq k^{(i)}(r) H k^{1 / 2}(r)|u| \tag{2.5}
\end{gather*}
$$

Since the matrix $n^{-1 / 2} D_{n}(0)=p(0) I(\theta)$ is positive definite by condition $\mathbf{B 2}$, it follows from the above-presented considerations that, for sufficiently small u (for simplicity we assume that $u \in C_{0}$) and some $k_{0}>0$,

$$
\begin{equation*}
\inf _{\theta \in T}\left|E_{\theta}^{n} S_{\beta}^{+}\left(\theta+n^{1 / 2} d_{n}^{-1}(\theta) u\right)\right| \geq k_{0} n^{1 / 2}|u|_{0} \tag{2.6}
\end{equation*}
$$

Let $l \neq N_{0}$, and let $v \in C_{(l)}$ be an arbitrary point. Then, in view of (2.6), we can write

$$
\begin{aligned}
& \sup _{u \in C_{(l)}} z_{n}^{+}(\theta, u) \leq\left(\sup _{u \in C_{(l)}} M_{n}^{(l)}(\theta, u, v)+L_{n}^{(l)}(\theta, v)\right)\left(1+k_{0} n^{1 / 2} r(l)\right)^{-1} \\
& M_{n}^{(l)}(\theta, u, v)=\sum_{\lambda=1}^{4} M_{\lambda n}^{(l)}(\theta, u, v) \quad\left(\bmod P_{\theta}^{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& M_{1 n}^{(l)}(\theta, u, v)=\left|d_{n}^{-1}(\theta) \sum \nabla f(j, u)\left(\chi\left\{X_{j} * f(j, u)\right\}-\chi\left\{X_{j}<f(j, v)\right\}\right)\right| \\
& M_{2 n}^{(l)}(\theta, u, v)=\left|d_{n}^{-1}(\theta) \sum(\nabla f(j, u)-\nabla f(j, v))\left(\chi\left\{X_{j}<f(j, v)\right\}-\beta\right)\right| \\
& M_{3 n}^{(l)}(\theta, u, v)=\left|d_{n}^{-1}(\theta) \sum \nabla f(j, u)(\mathcal{P}(f(j, u)-f(j, 0))-\mathcal{P}(f(j, v)-f(j, 0)))\right| \\
& M_{4 n}^{(l)}(\theta, u, v)=\left|d_{n}^{-1}(\theta) \sum(\nabla f(j, u)-\nabla f(j, v))(\mathcal{P}(f(j, v)-f(j, 0))-\beta)\right| \\
& L_{n}^{(l)}(\theta, v)=\mid d_{n}^{-1}(\theta) \sum\left(\nabla f(j, v)\left(\chi\left\{X_{j}<f(j, v)\right\}-\beta\right)-\nabla f(j, 0)\left(\chi\left\{\varepsilon_{j} * 0\right\}-\beta\right)\right. \\
& -\nabla f(j, v)(\mathcal{P}(f(j, v)-f(j, 0))-\beta) \mid \quad\left(\bmod P_{\theta}^{n}\right) .
\end{aligned}
$$

By (1.8) and for $u, v \in C_{(l)}$, we obtain

$$
\begin{equation*}
n^{-1 / 2} M_{2 n}^{(l)}(\theta, u, v) \leq \beta^{\prime}\left(\sum_{i=1}^{q} d_{i n}^{-2}(\theta) \Phi_{n}^{(i)}(u, v)\right)^{1 / 2} \leq k_{1} a(l) . \tag{2.7}
\end{equation*}
$$

Furthermore, in accordance with (1.5), (1.7), and A3, we get
(2.8) $n^{-1 / 2} M_{3 n}^{(l)}(\theta, u, v) \leq p_{0} n^{-1 / 2} \Phi_{2 n}^{1 / 2}(u, v)\left(\sum_{i=1}^{q} \frac{d_{i n}^{2}\left(\theta+n^{1 / 2} d_{n}^{-1}(\theta) u\right)}{d_{i n}^{2}(\theta)}\right)^{1 / 2} \leq k_{2} a(l)$.

Analogously,

$$
\begin{equation*}
n^{-1 / 2} M_{4 n}^{(l)}(\theta, u, v) \leq p_{0} n^{-1 / 2} \Phi_{2 n}^{1 / 2}(v, 0)\left(\sum_{i=1}^{q} d_{i n}^{-2}(\theta) \Phi_{n}^{(i)}(u, v)\right)^{1 / 2} \leq k_{3} a(l) \tag{2.9}
\end{equation*}
$$

Let us estimate $M_{1 n}^{(l)}(\theta, u, v)$. For any $u, v \in C_{(l)}$,

$$
\begin{aligned}
& \left|\chi\left\{X_{j} * f(j, u)\right\}-\chi\left\{X_{j}<f(j, v)\right\}\right| \\
& \quad \leq \chi\left\{\inf _{u \in C_{(l)}} f(j, u)-f(j, 0) \leq \varepsilon_{j} \leq \sup _{u \in C_{(l)}} f(j, u)-f(j, 0)\right\}=\chi_{j} \quad\left(\bmod P_{\theta}^{n}\right) .
\end{aligned}
$$

Consequently, by (1.5),

$$
\begin{align*}
n^{-1 / 2} M_{1 n}^{(l)}(\theta, u, v) & \leq n^{-1 / 2}\left(\sum_{i=1}^{q}\left(d_{i n}^{-1}(\theta) \max _{1 \leq j \leq n}\left|f_{i}(j, u)\right|\right)^{2}\right)^{1 / 2} \sum \chi_{j} \\
& \leq k_{4} n^{-1} \sum \chi_{j} . \tag{2.10}
\end{align*}
$$

Using the formula for finite increments, we find

$$
\begin{align*}
n^{-1} \sum E_{\theta}^{n} \chi_{j} & =n^{-1} \sum\left(\mathcal{P}\left(\sup _{u \in C_{(l)}} f(j, u)-f(j, 0)\right)-\mathcal{P}\left(\inf _{u \in C_{(l)}} f(j, u)-f(j, 0)\right)\right) \\
& \leq p_{0} n^{-1} \sum \sup _{u_{1}, u_{2} \in C_{(l)}}\left|f\left(j, u_{1}\right)-f\left(j, u_{2}\right)\right| \\
(2.11) \quad \leq & p_{0} q^{1 / 2}\left(\sum_{i=1}^{q}\left(n^{1 / 2} d_{i n}^{-1}(\theta) \sup _{u \in C_{(l)}} \max _{1 \leq j \leq n}\left|f_{i}(j, u)\right|\right)^{2}\right)^{1 / 2} a(l) \leq k_{5} a(l) . \tag{2.11}
\end{align*}
$$

Estimates (2.7)-(2.11) show that there exist constants k_{6} and k_{7} such that

$$
P_{\theta}^{n}\left\{\sup _{u \in C_{(l)}} M_{n}^{(k)}(\theta, u, v)\left(1+k_{0} n^{1 / 2} r(l)\right)^{-1}>\frac{\epsilon}{2}\right\}
$$

$$
\begin{equation*}
\leq P_{\theta}^{n}\left\{k_{6} n^{-1} \sum\left(\chi_{j}-E_{\theta}^{n} \chi_{j}\right)>\frac{\epsilon}{2} r(l)-k_{7} a(l)\right\} \tag{2.12}
\end{equation*}
$$

Note that $\frac{\epsilon}{2} r(l)-k_{7} a(l)=\left(\frac{\epsilon}{2}(1-t)-k_{7} t\right) n^{-\gamma m / \tilde{m}_{0}}>0$, if t is chosen sufficiently small. Therefore, probability (2.12) can be estimated, with the help of the Chebyshev inequality and (2.11), by the quantity

$$
\begin{equation*}
\frac{4 k_{6}^{2}}{\left(\epsilon(1-t)-2 k_{7} t\right)^{2}} n^{-2+2 \gamma m / \tilde{m}_{0}} \sum E_{\theta}^{n} \chi_{j} \leq k_{8} n^{-1+\gamma m / \tilde{m}_{0}} \tag{2.13}
\end{equation*}
$$

Using the notation

$$
\begin{aligned}
& L_{1 i}(j)=\left(f_{i}(j, v)-f_{i}(j, 0)\right)\left(\chi\left\{X_{j}<f(j, v)\right\}-\beta\right) \\
& L_{2 i}(j)=f_{i}(j, 0)\left(\chi\left\{X_{j}<f(j, v)\right\}-\chi\left\{\varepsilon_{j} * 0\right\}\right), i=1, \ldots, q
\end{aligned}
$$

we obtain

$$
P_{1}=P_{\theta}^{n}\left\{L_{n}^{(k)}(\theta, v)\left(1+k_{0} n^{1 / 2} r(l)\right)^{-1}>\frac{\epsilon}{2}\right\}
$$

It follows from relations (2.14)-(2.16) and the conditions of the theorem that

$$
\begin{align*}
P_{1} \leq & \frac{4 n^{-1}}{\left(k_{0} \epsilon\right)^{2}}\left[\frac{(r(l)+a(l))^{2}}{r^{2}(l)} \sum_{i=1}^{q} \tilde{k}^{(i)}(1)+\frac{r(l)+a(l)}{r^{2}(l)} p_{0} k^{1 / 2}(1) \sum_{i=1}^{q} k^{(i)}(1)\right] \\
& \leq k_{9} n^{-1}\left[(1-t)^{-2}+(1-t)^{-2} n^{\gamma m / \tilde{m}_{0}}\right]=O\left(n^{-1+\gamma m / \tilde{m}_{0}}\right) \tag{2.17}
\end{align*}
$$

Inequalities (2.13) and (2.17) show that, for $l=1, \ldots, N_{0}-1$ and some $m=m(l)<m_{0}$,

$$
\begin{equation*}
\sup _{\theta \in T} P_{\theta}^{n}\left\{\sup _{u \in C_{(l)}} z_{n}^{+}(\theta, u)>\epsilon\right\}=O\left(n^{-1+\gamma m / \tilde{m}_{0}}\right) \tag{2.18}
\end{equation*}
$$

Let us consider the case $l=N_{0}$. Clearly,

$$
P_{\theta}^{n}\left\{\sup _{u \in C_{\left(N_{0}\right)}} z_{n}^{+}(\theta, u)>\epsilon\right\} \leq
$$

$$
\begin{equation*}
\leq P_{\theta}^{n}\left\{\sup _{|u|_{0}<n^{-\gamma m / \tilde{m}_{0}}}\left|S_{\beta}^{*+}(u)-S_{\beta}^{*+}(0)-E_{\theta}^{n} S_{\beta}^{*+}(u)\right|>\epsilon\right\} \tag{2.19}
\end{equation*}
$$

Let us rewrite the expression standing under the sign of supremum in (2.19) in the form of $\nu_{1}(\theta, u)+\nu_{2}(\theta, u)+\nu_{3}(\theta, u)$, where

$$
\begin{aligned}
& \nu_{1}(\theta, u)=d_{n}^{-1}(\theta) \sum(\nabla f(j, u)-\nabla f(j, 0))\left(\chi\left\{X_{j} * f(j, u)\right\}-\beta\right) \\
& \nu_{2}(\theta, u)=d_{n}^{-1}(\theta) \sum \nabla f(j, 0)\left(\chi\left\{X_{j} * f(j, u)\right\}-\chi\left\{\varepsilon_{j} * 0\right\}\right) \\
& \nu_{3}(\theta, u)=d_{n}^{-1}(\theta) \sum \nabla f(j, u)(\mathcal{P}(f(j, u)-f(j, 0))-\beta)
\end{aligned}
$$

It is easy to show that, for $|u|_{0}<n^{-\gamma m / \tilde{m}_{0}}$,

$$
\begin{gather*}
\left|\nu_{1}(\theta, u)\right| \leq \beta^{\prime} n^{\frac{1}{2}}\left(\sum_{i=1}^{q} d_{i n}^{-2}(\theta) \Phi_{2 n}^{(i)}(u, 0)\right)^{1 / 2} \leq k_{1} n^{\frac{1}{2}-\frac{\gamma m}{m_{0}}} \tag{2.20}\\
\left|\nu_{3}(\theta, u)\right| \leq p_{0} \Phi_{2 n}^{\frac{1}{2}}(u, 0)\left(\sum_{i=1}^{q} \frac{d_{i n}^{2}\left(\theta+n^{1 / 2} d_{n}^{-1}(\theta) u\right)}{d_{i n}^{2}(\theta)}\right)^{1 / 2} \leq k_{2} n^{\frac{1}{2}-\frac{\gamma m}{m_{0}}} \tag{2.21}
\end{gather*}
$$

where k_{1} and k_{2} are the same as in (2.7) and (2.8), correspondingly.
If $\gamma>\frac{1}{2}$, then the exponents in (2.20) and (2.21) are negative for $n>n_{0}$. That is, for $\epsilon^{\prime}<\epsilon$, it remains to estimate the probability

$$
\begin{gather*}
P_{\theta}^{n}\left\{\sup _{|u|_{0}<n^{-\gamma m / \tilde{m}_{0}}}\left|\nu_{2}(\theta, u)\right|>\epsilon^{\prime}\right\} \\
\leq P_{\theta}^{n}\left\{\left(\sum_{i=1}^{q}\left(d_{i n}^{-1}(\theta) \max _{1 \leq j \leq n}\left|g_{i}(j, \theta)\right|\right)^{2}\right)^{1 / 2} \sum \tilde{\chi}_{j}>\epsilon^{\prime}\right\} \\
\leq P_{\theta}^{n}\left\{k_{4} n^{-1 / 2} \sum \tilde{\chi}_{j}>\epsilon^{\prime}\right\}, \tag{2.22}\\
\tilde{\chi}_{j}=\chi\left\{\inf _{|u|_{0} \leq n^{-\gamma m / \tilde{m}_{0}}} f(j, u)-f(j, 0) \leq \varepsilon_{j} \leq \sup _{|u|_{0} \leq n^{-\gamma m / \tilde{m}_{0}}} f(j, u)-f(j, 0)\right\} .
\end{gather*}
$$

From the conditions of the theorem,

$$
\sum E_{\theta}^{n} \tilde{\chi}_{j} \leq k_{5} n^{-\gamma m / \tilde{m}_{0}}, \quad j=1, \ldots, n
$$

Hence, instead of (2.22), it is sufficient to estimate, for any $\epsilon^{\prime \prime}>0$, the probability

$$
P_{\theta}^{n}\left\{n^{-1 / 2} \sum\left(\tilde{\chi}_{j}-E_{\theta}^{n} \tilde{\chi}_{j}\right)>\epsilon^{\prime \prime}\right\} \leq\left(\epsilon^{\prime \prime}\right)^{2} k_{5} n^{-\gamma m / \tilde{m}_{0}}
$$

Taking into account the fact that all the bounds are uniform in $\theta \in T$, we obtain that the lemma is proved for $z_{n}^{+}(\theta, u)$. The case of $z_{n}^{-}(\theta, u)$ is investigated similarly.

Let us set

$$
E_{\theta}^{n} S_{\beta}^{ \pm}\left(\hat{\theta}_{n}\right)=\left(E_{\theta}^{n} S_{\beta}^{ \pm}(\tau)\right)_{\tau=\hat{\theta}_{n}}
$$

Lemma 2. Under the conditions of the theorem, for any $\epsilon>0$,

$$
\begin{equation*}
\sup _{\theta \in T} P_{\theta}^{n}\left\{\left|S_{\beta}^{ \pm}(\theta)+E_{\theta}^{n} S_{\beta}^{ \pm}\left(\hat{\theta}_{n}\right)\right|>\epsilon\right\} \underset{n \rightarrow \infty}{\longrightarrow} 0 . \tag{2.23}
\end{equation*}
$$

Proof. Let us introduce the events

$$
\begin{gathered}
A_{i}^{ \pm}(\theta)=\left\{S_{i \beta}^{ \pm}(\theta)+E_{\theta}^{n} S_{i \beta}^{ \pm}\left(\hat{\theta}_{n}\right)-S_{i \beta}^{ \pm}\left(\hat{\theta}_{n}\right) \geq-\epsilon\left(1+\left|E_{\theta}^{n} S_{\beta}^{ \pm}\left(\hat{\theta}_{n}\right)\right|\right)\right\} \\
i=1, \ldots, q
\end{gathered}
$$

It follows from (1.11) and the previous lemma that

$$
\begin{equation*}
\inf _{\theta \in T} P_{\theta}^{n}\left\{A_{i}^{ \pm}(\theta)\right\} \underset{n \rightarrow \infty}{\longrightarrow} 1, \quad i=1, \ldots, q \tag{2.24}
\end{equation*}
$$

For the events $\left\{\left|\hat{\theta}_{n}-\theta\right|<r\right\}, r<r_{0}, S_{\beta}^{ \pm}\left(\hat{\theta}_{n}\right) \geq 0$. Therefore, relation (2.24) is true for the events

$$
B_{i}^{ \pm}(\theta)=\left\{S_{i \beta}^{ \pm}(\theta)+E_{\theta}^{n} S_{i \beta}^{ \pm}\left(\hat{\theta}_{n}\right) \geq-\epsilon\left(1+\left|E_{\theta}^{n} S_{\beta}^{ \pm}\left(\hat{\theta}_{n}\right)\right|\right)\right\} \supset A_{i}^{ \pm}(\theta)
$$

On the other hand,

$$
S_{i \beta}^{+}(\theta)+S_{i \beta}^{-}(\theta)=\sum\left|g_{i}(j, \theta)\right| \chi\left\{\varepsilon_{j}=0\right\}=0 \quad\left(\bmod P_{\theta}^{n}\right)
$$

and the events $B_{i}^{-}(\theta)$ are equally like to the events

$$
C_{i}^{+}(\theta)=\left\{S_{i \beta}^{+}(\theta)+E_{\theta}^{n} S_{i \beta}^{+}\left(\hat{\theta}_{n}\right) \leq \epsilon\left(1+\left|E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)\right|\right)\right\}
$$

Furthermore, for $\epsilon<q^{-1}$, the events $D_{i}^{+}(\theta)=B_{i}^{+}(\theta) \cap C_{i}^{+}(\theta), i=1, \ldots, q$,

$$
\begin{equation*}
D_{i}^{+}(\theta)=\left\{\left|S_{i \beta}^{+}(\theta)+E_{\theta}^{n} S_{i \beta}^{+}\left(\hat{\theta}_{n}\right)\right| \leq \epsilon\left(1+\left|E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)\right|\right)\right\} \tag{2.25}
\end{equation*}
$$

$$
\begin{aligned}
\bigcap_{i=1}^{q} D_{i}^{+}(\theta) & \subseteq\left\{\left|S_{\beta}^{+}(\theta)+E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)\right| \leq q \epsilon\left(1+\left|E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)\right|\right)\right\} \\
& \subseteq\left\{\left|E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)\right| \leq(1-q \epsilon)^{-1}\left(q \epsilon+\left|S_{\beta}^{+}(\theta)\right|\right)\right\}=X^{+}(\theta),
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\inf _{\theta \in T} P_{\theta}^{n}\left\{X^{+}(\theta)\right\} \underset{n \rightarrow \infty}{\longrightarrow} 1 \tag{2.26}
\end{equation*}
$$

Let us note that

$$
\begin{equation*}
P_{\theta}^{n}\left\{\left|E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)\right|>M\right\} \leq P_{\theta}^{n}\left\{\overline{X^{+}(\theta)}\right\}+P_{\theta}^{n}\left\{\left|S_{\beta}^{+}(\theta)\right|>M(1-q \epsilon)-q \epsilon\right\} \tag{2.27}
\end{equation*}
$$

where $\overline{X^{+}(\theta)}$ is a complement of the event $X^{+}(\theta)$. Let us denote

$$
\begin{gathered}
\eta_{j}=\chi\left\{\varepsilon_{j}<0\right\}-\beta, \quad j \geq 1 \\
I_{i n}(\theta)=\{1, \ldots, n\} \cap\left\{j: g_{i}(j, \theta)>0\right\} .
\end{gathered}
$$

Then P_{θ}^{n} - a.s.

$$
S_{\beta}^{+}(\theta)-d_{i n}^{-1}(\theta) \sum g_{i}(j, \theta) \eta_{j}=d_{i n}^{-1}(\theta) \sum_{j \in I_{i n}(\theta)} g_{i}(j, \theta) \chi\left\{\varepsilon_{j}=0\right\}=0
$$

Therefore, by the Chebyshev inequality,

$$
P_{\theta}^{n}\left\{\left|S_{\beta}^{+}(\theta)\right|>M(1-q \epsilon)-q \epsilon\right\} \leq q(M(1-q \epsilon)-q \epsilon)^{-2} \underset{M \rightarrow \infty}{\longrightarrow} 0
$$

i.e., the vector $S_{\beta}^{+}(\theta)$ is bounded in probability. It follows from (2.26) and (2.27) that the vector $E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)$ is also bounded in probability uniformly in $\theta \in T$.

According to (2.25),

$$
\sup _{\theta \in T} P_{\theta}^{n}\left\{\left|S_{\beta}^{+}(\theta)+E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)\right|>\epsilon\left(1+\left|E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)\right|\right)\right\} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Therefore, (2.23) holds. We remark that the boundedness in probability of the r.v. $E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)$ can also be obtained immediately from condition \mathbf{C}, the explicit form of $E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)$, and from the conditions of the theorem.

Lemma 3. Under the conditions of the theorem, for any $\epsilon>0$,

$$
\begin{equation*}
P_{\theta}^{n}\left\{\left|E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)-p(0) I(\theta) d_{n}(\theta)\left(\hat{\theta}_{n}-\theta\right)\right|>\epsilon\right\} \underset{n \rightarrow \infty}{\longrightarrow} 0 \tag{2.28}
\end{equation*}
$$

Proof. If the quantity $n^{-1 / 2}\left|d_{n}(\theta)\left(\hat{\theta}_{n}-\theta\right)\right|$ is small, then it follows from inequality (2.6) and the boundedness of the r.v. $E_{\theta}^{n} S_{\beta}^{+}\left(\hat{\theta}_{n}\right)$ in probability that the norm of the vector $d_{n}(\theta)\left(\hat{\theta}_{n}-\theta\right)$ is bounded in probability. The statement of Lemma 3 follows from condition \mathbf{C} and inequalities (2.3)-(2.5).

3. Proof of the theorem

Relations (2.23) and (2.28) show that, for any $\epsilon>0$,

$$
\begin{equation*}
P_{\theta}^{n}\left\{\left|(p(0))^{-1} \Lambda(\theta) S_{\beta}^{+}(\theta)+d_{n}(\theta)\left(\hat{\theta}_{n}-\theta\right)\right|>\epsilon\right\} \underset{n \rightarrow \infty}{\longrightarrow} 0 \tag{3.1}
\end{equation*}
$$

As was noted above,

$$
S_{\beta}^{+}(\theta)=d_{n}^{-1}(\theta) \sum \nabla g(j, \theta) \eta_{j} \quad\left(\bmod P_{\theta}^{n}\right)
$$

Let us apply Corollary 17.2 in ([5], p. 165) to the random vectors

$$
\xi_{j n}=n^{1 / 2} d_{n}^{-1}(\theta) \nabla g(j, \theta) \eta_{j}, \quad j=1, \ldots, n .
$$

It follows from (1.5) that

$$
n^{-1} \sum E_{\theta}^{n}\left|\xi_{j n}\right|^{3} \leq q^{1 / 2} \sum_{i=1}^{q} n^{-1} \sum d_{i n}^{-3}(\theta)\left|g_{i}(j, \theta)\right|^{3} n^{3 / 2} \leq k_{10}<\infty
$$

uniformly in $\theta \in T$. Then

$$
\begin{equation*}
\sup _{\theta \in T} \sup _{C \in \mathcal{C}^{q}}\left|P_{\theta}^{n}\left\{I^{-1 / 2}(\theta) S_{\beta}^{+}(\theta) \in C\right\}-\Phi(C)\right|=O\left(n^{-1 / 2}\right) \tag{3.2}
\end{equation*}
$$

Let us find the correlation matrix of $S_{\beta}^{+}(\theta)$. Clearly, $E S_{\beta}^{+}(\theta)=0$. Then, taking into account A1, we get

$$
E_{\theta}^{n} S_{i \beta}^{+}(\theta) S_{l \beta}^{+}(\theta)=d_{i n}^{-1}(\theta) d_{l n}^{-1}(\theta) \sum g_{i}(j, \theta) g_{l}(j, \theta) E \eta_{j}^{2}, \quad i, l=1, \ldots, q
$$

It follows from the form of η_{j} that $E \eta_{j}^{2}=\beta(1-\beta)$. Then

$$
\begin{equation*}
E_{\theta}^{n} S_{\beta}^{+}(\theta)\left(S_{\beta}^{+}(\theta)\right)^{T}=\beta(1-\beta) I(\theta) \tag{3.3}
\end{equation*}
$$

Relations (3.1)-(3.3) yield that, for any $\epsilon>0$ and $C \in \mathcal{C}^{q}$,

$$
\begin{equation*}
-\Delta_{n}+\Phi\left(C_{-\epsilon}\right) \leq P_{\theta}^{n}\left\{\frac{p(0)}{\sqrt{\beta(1-\beta)}} I^{1 / 2}(\theta) d_{n}(\theta)\left(\hat{\theta}_{n}-\theta\right) \in C\right\} \leq \Delta_{n}+\Phi\left(C_{\epsilon}\right) \tag{3.4}
\end{equation*}
$$

where $C_{-\epsilon}$ and C_{ϵ} are the exterior and interior sets parallel to C, and $\Delta_{n} \underset{n \rightarrow \infty}{\longrightarrow} 0$ uniformly in $\theta \in T$ and $C \in \mathcal{C}^{q}$. The statement of the theorem follows from (3.4) and the theorem from Section 3 in [6] which state that, for any $\epsilon>0$,

$$
\sup _{C \in \mathcal{C}^{q}}\left|\Phi\left(C_{ \pm \epsilon}\right)-\Phi(C)\right| \leq k \epsilon,
$$

where k is a constant that does not depend on ϵ.

Bibliography

1. Koenker, R. and Bassett, G., Regression quantile, Econometrica 46 (1978), 33-50.
2. Orlovsky I.V., Consistency of Koenker and Basset estimators in nonlinear regression models, Scintific News of National Technical University of Ukraine "Kyiv Politekhn. Inst." 4(42) (2005), 140-147.
3. Ivanov A.V., Asymptotic Theory of Nonlinear Regression, Kluwer, Dordrecht, 1997.
4. Huber P.J., Robust Statistics, Wiley, New York, 1981.
5. Huber P.J., The Behaviour of Maximum Likelihood Estimates under Nonstandard Conditions, Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability. I, University of California Press: Berkeley, (1967), 221-234.
6. Bhattacharya R.N. and Ranga Rao R., Normal Approximation and Asymptotic Expantions, Wiley, New York, 1976.

National Technical University of Ukraine "KPI" 37, Peremogy Ave., Kyiv, Ukraine
E-mail: ivanov@paligora.kiev.ua, avalon@ln.ua

[^0]: 2000 AMS Mathematics Subject Classification. Primary 62J02; Secondary 62J99.

