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A. V.IVANOV AND I. V. ORLOVSKY

PARAMETER ESTIMATORS OF
NONLINEAR QUANTILE REGRESSION

We have obtained the asymptotic normality of parameter estimators of a nonlinear
quantile regression with nonsymmetric random noise.

INTRODUCTION

Here, we examine the asymptotic normality of Koenker and Basset estimators [1] or the
generalized least moduli estimators (GLME) of nonlinear regression model parameters
that generalize least moduli estimators for non-symmetric observation errors.

The consistency property of GLME has been considered in [2].

1. ASSUMPTIONS AND THE MAIN RESULT

Suppose that an observation X; is a r.v. with values in (R, B!) (R! is a real line, B!
- o-algebra of its Borel subsets) and distribution P; . We also assume that the unknown
distribution P; belongs to a certain parametric family {Pjg, 6 € ©}. We call the triple
& ={R', B, Pjy, 6 € O} a statistical experiment generated by the observation X;.

We say that a statistical experiment " = {R",B", Py*, § € ©} is the product of
the statistical experiments &;, i = 1,...,n, if PJ’ = Pig X ... X Ppy (R™ - n-dimensional
Euclidean space and B" - og-algebra of its Borel subsets). We say that the experiment
E™ is generated by n independent observations X = (X7, .., X,,).

Let the observations have the form

(1.1) X;=9(,0)+¢;, i=1,..,n,

where ¢(j,0) is a non-random sequence of functions defined on ©°¢, ©¢ is the closure of
an open convex set © C R? in R?, and

Al. ¢; are independent identically distributed random variables (r.v.) with zero
mean, distribution function P, and

(1.2) P(0) =B, B €(0,1).
It is not supposed that the functions g(j, ) are the linear forms of coordinates of the
vector 6.

Definition. GLME of the parameter 6 € © obtained by the observations X;, j =1,...,n
of the form (1.1) is said to be any random vector 0, = 0,,(X;, 7 =1,...,n) € ©° having
the property

(13) S(0) = inf Sp(r), Sp(r) =D ps(X; — 9(j.7)).
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where 35 =377, and
(1. pol) = {

Since Pj{X; < g(j,0)} = Pj{e; < 0} = F(0) = (3, the observation model (1.1) can
be interpreted as a nonlinear quantile regression [1]. Indeed, én estimates the J-quantile
9(7,0) of observations X, j=1,...,n.

Let us impose some restrictions on r.v. g;:

A2. ps = Elgj|® < oo for some natural s.

A3. R.v. g; has a bounded density p(z) = P’(x) with the property

Ip(z) — p(0)| < Hlz|, p(0) >0,

where H < 0o is a certain constant.

p, z2>0

(B—1z, <0’ fe0.D).

Example. A rv. & = x3,, — 2m, where x3,, has chi-squared distribution with even
degrees of freedom, satisfies conditions A1-A3.

Denote, by C? C BY, the class of all convex Borel subsets of R? and, by 7' C ©, some
compact.
Let us introduce the notation
. g . . o .
9i(j,7) = %9(3,7)7 gu(J,7) = Wg(yﬁ),

d?n(a) = ZQ?(],Q), dz?l,n(T) = Zg?l(jﬂ—)v TEOY i, l=1,.,q

Here, d?(0) is a diagonal matrix with elements d?, (), i = 1,...,q on the diagonal.
Consider the change of variables u = n=1/2d,,(0)(1 — 6), i.c.

g(j7 7—) = g(j76 + nl/Qd/;l(e)u) = f(]? u)?

assuming that 6 is a true value of the parameter. Under this change of variables, the
set © turns to the set Uy (0) = n=1/2U, (), where U,(0) = d,,(6)(© — 6), and GLME 6,
turns to a normed random vector U, = n~/2d,(6)(8, — ).

We will denote positive constants by the letter k. Suppose that

B1. Functions g(j,0), j > 1 are continuous on ©° together with all the first par-
tial derivatives, and ¢;(j,0), ¢ = 1,...,q, j > 1, are continuously differentiable in ©.
Moreover, for any R > 0,

(1.5) (i) sup sup max £, w)] <E(Rn"Y2 i=1,..,q,

6T yeu(R)nDs (o) 1SIsm din(0)

it (0 + 2/ 2d5 2 (0)u)

(1.6) (ii) sup sup

0T yevw(R)NTE(8) din (0)din (0) N
It follows from (1.5) that
1 P (ur, uz)
1.7 su su nt ’ < Ek(R),
(17) b b 2t < k)

0T uy, ugeve(R)NUE ()

where ®,(u1, uz) = 32 (£(j, u1) = f(j, u2))”.
Similarly, relation (1.6) yields the inequality

&, u) g

1.8 —_—_—
(18) BB P

OET 4y, uy cve(R)NUE ()
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with @ (u1,u2) = (i, wr) — fi(Gou2)?, i=1,....q.
Suppose that GLME is consistent, namely:
C. For any r > 0

O(n=th), s>2,
o(1), s=1."
The sufficient conditions for C to be fulfilled are stated in [2].

Let us denote

sup P {|n~"2d, (6)(0, — 0)] > 1} = {
ocT

—1 —1 . . 4
16) = (41 0)d;10) Y 9:6.0):.0) )
The matrix 1(0) is symmetric and non-negative definite. Let Apin(I(6)) be the smallest
eigenvalue of I(6). Assume that
B2. For n > ng, infgper Amin(Z1(6)) > Ao > 0.
Let [ be an arbitrary direction in R?, and 7 € ©. Then

0 , )
57580 =D _(Va(G. 7). 1) (X % 95, 7) = B),

where 7%” denotes "<” if (Vg(j,7),1) > 0 and "<” if (Vg(j,7),l) < 0. Let ro be a
distance between T and R9\O. If an event {|0,, — 0] < r} occurs for § € T and r < g,
then, for any direction [,

, #€0.
1

9 .
g >
ol Sﬁ(en) > 0.

This remark will be used in the proof of the main result.

Theorem. If conditions A1l - A3, B1, B2, and C are fulfilled, then

—s 0
n— o0

(1.9) sup sup
0T CeCa

)

2 {% 1Y2(0)d, (0)(6, — 0) € c} —®(C)

ll)2

1
where ®(C) = [, @niz e" 2

In other words, the normal distribution N (07 ﬁ}g;(}l;) 171(9)) is the accompanying law
for the distribution of the normed estimator dn(Q)(@‘\n —0).

2. AUXILIARY ASSERTIONS

We carry out the proof by the scheme of the theorem on asymptotic normality of the
least moduli estimators [3], by using the method of partitioning a parametric set [4,5].

Let l1,...,l; be the positive directions of the coordinate axes. Let us consider the
vectors S?;(T) with coordinates

Sig(r) = d;,}(9) (%) Sa(r), i=1,..,q,

and the vectors EgSBi (9) with coordinates

Clearly,
EyS5(0) =0,
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due to assumption Al. Let us denote S;i(u) = S’g(@ +n1/2d;1(0)u) and

S () = S5(0) - S5 (u)|

zf(a,u) = 1+ ‘EgSEi(u)’

Lemma 1. Under the conditions of the theorem, for any ¢ > 0 and sufficiently small
r >0,

(2.1) sup Py’ sup 2E0,u) >ep — 0.
0T ueve (r)NUE () oo

Proof. We will proof the statement for z;}(6,u). Assume, for simplicity, that 7 = 1 and
the inner supremum in (2.1) is defined in a cube

= : = < .
Co {u [ulo 1rél%xq|uz| < 1} D (1)

Let us cover the cube Cy with No = O(Inn) cubes C(y), ...,C(n,) in the following way.
For the number ¢ € (0, 1), we consider a concentric system of sets

CM ={u:|ulpe[(1—t)" T, 1=}, m=0,...,mg—1,
CO™) —{u: July < (1—t)™}.
We cover each of the sets C("™) by identical cubes with sides
am =1 =)™ — (1 =)™ =t(1 —t)™
and enumerate these cubes. They form the required covering

Cays - Cig—1), Cvg) =" €170

Let us choose mo = mg(n) from the condition (1—¢)™ =n=7, mg = o], 7 € (3,1).
We denote, by | - |0, the distance from C;y to 0 which is equal to
) = (1= i,
and, by |- |o, the diameter of C(; which is equal to

—ym/mo

a(j) = tn
for some m = m(j), j = 1,..., No — 1. Moreover, if the cube C(;) is an element of the
covering of the sets C(™), then

a(j) = am, 7)) =t(1 =)™ 4 Ft(1 =)0t £ (1 —t)™o,

The number of cubes C|;) covering each set C (™) can be made not depending on m and,
consequently, on n. In order to verify this, let us consider any octant in R?. The volume
occurring in its part of the set C™) is (1 — )™ — (1 — ¢)(™*+14_ and the volume of the
sets Cy;) is equal to a?(j) = t9(1 —¢)™?. In this way, the maximum number of cubes C';
that can be ”placed” in the part of C™ that belongs to the given octant is equal to
(1—t)m — (1 —t)mte 1 —(1—¢)
ta(1 — t)yma - ta
cubes. Since mg = O(Inn), Ng = O(lnn) as well. Let us fix # € T. Then

No
(2.2) ry { sup 2! (0,u) > 6} < ZPG” { sup  z(60,u) > 6} .
j=1

ueCo uely)
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Let us estimate each term in (2.2). The general element of the derivative matrix D,, (u)
of the mapping
u— Ep SEJ'_(U)
has the form

Di(w) = - E}Sif ()
=21 0)d,(0) D falGw)[P(9(is7) — (), 0)) — )
+ 0! 2di 1 (0)d;,! (0) Y fiGw) G w) p9GiT) = 9(3,0))
= 1D (u) +2 D¥(u).
Taking into account (1.6), (1.7), and the inequality

sup p(x) = po < 00,
reR!?

we obtain, for |u| < r,
Y2 D) < n'/2d;10)d,t (0)din (0 + nt/2d; (0)u) x

23)  x (n PG - £G.0) — PO)) <KD @2 poul.
On the other hand,
(=2 2Dl ()~ p(0) La(6)| <

< o | 10) 0+ 020 000) 4,0 (2000)) 5 ) 0) (00 0,0))

@4) OGO 60.096.0EFG ) - 1(,0) - p0))].

It follows from (1.5) and (1.8) that the terms in square brackets are bounded by the
quantity

po (RO)172 4 KO (r) (R0)72) .

For another term on the right-hand side of (2.4), we can find, by using condition A3 and
(1.5), the upper bound

n!/2d;1(0) max 19,(5.0)] (n ™! (£ w) = £(5,0)) —p(0))?)

1<j<n

1/2

(2.5) < KO () HEY2(r)|u).

Since the matrix n='/2D,,(0) = p(0)I(f) is positive definite by condition B2, it follows
from the above-presented considerations that, for sufficiently small w (for simplicity we
assume that u € Cp) and some ko > 0,

(2.6) ggﬂEgS;(Mnl/?d;l(o)u)’ > kon'/|ulo.

Let I # No, and let v € C(;y be an arbitrary point. Then, in view of (2.6), we can write

sup z(0,u) < | sup MO (0,u,v) + LD (0,v) | (1+ kon'/?r(1))7,
ueC(y ueC(y)

4
MO(@,u,0) =3 MO (@O, u,0)  ( mod Py)
A=1
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) = [ (0) 30 VG w) O XS « f, )} = XX <SG o))
)= |d2 1 O) D (VFG w) = VG 0) X < fG0)} - B)]
M{(6,u,v) = [di(0) D V (G, w) (P(F(yw) = £,0)) = P(S(Giv) = £,0)))]
)= |421(0) Y (V1 Gow) = VI G0 (PUGiv) = £G.0)) = B)]
= |d10) Y (TSG0)0A XS < £} = B) = VFG,0)(xcle 0} - 6)

=V f(G0)(P(f(G,v) = f(5,0)) = B)]  ( mod Fy').
y (1.8) and for u, v € C(;), we obtain

. 1/2
(2.7) n_1/2M2(Q 0,u,v) <3 (Z d; 2 ()0 (u,v)) < kya(l).

i=1

Furthermore, in accordance with (1.5), (1.7), and A3, we get

1/2
a2, (0 4+ n'/2d; 1 (0)u
(2.8) n~ Y20 (0, u,v) < pon~ 2B (u, v (Z in +”(9) ())> < ksa(l).
=1

Analogously,
1/2
(2.9) _1/2M( D0, u,v) < pon= 2@}/ /2 (v,0) (Z d;2(0)0 (u v)) < ksa(l).

Let us estimate Ml(Q (0,u,v). For any u,v € C(y,
|X{X] * f(]a u)} - X{XJ < f(]a U)}|

Sx{ inf f(j,u) = f(4,0) <& < sup f(j,U)—f(J}O)}—Xj ( mod Fy').

uec(l) UGC(Z)
Consequently, by (1.5),

q

o\ 1/2
ML) (0, u,0) < 72 (Z (dml(wf?fz 110G >|)> PIRY

=1
(2.10) <k x

Using the formula for finite increments, we find

'Y By =n 12( (sup f(Gsu) = f(j,0)>—7’<ué%f(l)f(17 u) — f(j,O))>

ueC(y

Sponilz sup |f(.]7u1)_f(.]7u2)|
u1,u2€C (1)

UEC(Z)

o\ 1/2
(2.11) <p0q ( 1/2d (0) sup 112a<x | fi(d, )|> ) a(l) < ksa(l).
<j<n
Estimates ( ) show that there exist constants k¢ and k7 such that

P"{ sup M) (0, u,v)(1 + kon/?r(1)) 71 > E}
ueC () 2



88 A. V. IVANOV AND I. V. ORLOVSKY

(2.12) < pr {an DY 06— B > (l)—k:7a(l)}.

Note that %r(l)—km(l) = (%(1 —t) — k7t) n~Y™m/M0 > (), if t is chosen sufficiently small.

Therefore, probability (2.12) can be estimated, with the help of the Chebyshev inequality
and (2.11), by the quantity

4k}
(e(1 —t) — 2k7t)?
Using the notation
Lli(j) = (fz(]?v) - fz(]vo))(X{XJ < f(],U)} - ﬁ)7
Lai(j) = fi(5,0)(x{X; < f(§,v)} —x{e; #0}), i =1,....q,

(2.13)

n—2+2'ym/ﬁzo ZEZ‘IXJ < kgn—l-‘r'ym/ﬁzo'

we obtain
€

P = Py {LP0,0)(1 + kon' ()™ > £}

(214) < WZCZ 2 Z (Z L/\z ) EgLAz(])))27

i=1
(2.15) Dp(3" Lu(j) < @5)(v,0),
Di(Y_ Lai(i)) < 3 F2G0IP(fG,0) = £(3,0)) = PO)]
(2.16) < po ax |gi(7,0)|din (6) 23, (0,0).
1<j<n
It follows from relations (2.14)-(2.16) and the conditions of the theorem that

p o At l(r(l>+a<l>>2i ;;<z->(1)+Mpoklﬂ(l)ik“)(l)]

(koe)? r2(1) pe 72(1) 2
(2.17) < kon~! {(1 )2+ (1— t)f2n~/m/mo} -0 (n—1+wm/m0> .
Inequalities (2.13) and (2.17) show that, for I = 1,..., Ng — 1 and some m = m(l) < mo,
(2.18) sup Pg”{ sup 21 (0,u) > e} =0 (n*va/ﬁmo) .
oeT UGC(Z)

Let us consider the case [ = Ny. Clearly,

PP sup 2z (0,u) >ep <
UGC(NO)

S5t u) — S57(0) - EZ}S;JF(u)‘ > e} .

(2.19) < Py { sup

|u‘0<n*’7m/7710

Let us rewrite the expression standing under the sign of supremum in (2.19) in the form
of v1(0,u) + v2(0,u) + v3(0,u), where

vi(6,u) = d*l(e) D (VG w) = VG 0) X+ fG, )} = B),
va(6,u) = dy, ' (0) Y V(5,000 X, * £(5,w)} — x{e; * 0}),
V3(67u = 7: va ]7“ (f(]?u)_f(]ao))_ﬁ)
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It is easy to show that, for |u|g < n=7™/™0,

1/2
(2.20) 16, w)] < B (Z d;,2(0)5) (u 0)) < kyn? o,
1/2
1 T @2 (0 +n2d 1 (9)u L m
(2.21) lv3(0,u)| < po®3,(u,0) (Z in( . (g)n (0)u) < hon? 7%,
=1 in

where ky and ko are the same as in (2.7) and (2.8), correspondingly.
If v > 1, then the exponents in (2.20) and (2.21) are negative for n > ng. That is, for
€ < €, it remains to estimate the probability

Py { sup [2(0,u)| > e’}

|ulo<n—Ym/ M0

1/2

<P (Z (dml((’) max. Igz(Jﬁ)l) ) PR

i=1

(2.22) <P {kw*l“ > x> e’} ,

|ulo<n—rm/ M0 [u|o<n—ym/mo

)NCJ_X{ inf _ f(j,u)—f(j,())gsjg sup f(]7u)_f(]70)}
From the conditions of the theorem,
ST <ksn T =1, n
Hence, instead of (2.22), it is sufficient to estimate, for any € > 0, the probability
Py {n 23 (% — g ) > € ) < () ke,

Taking into account the fact that all the bounds are uniform in 6 € T', we obtain that
the lemma is proved for 2,7 (6, u). The case of z, (6, u) is investigated similarly. [

Let us set
not/n . n ot
Ey S5 (0h) = (E§ S5 (7)), -

Lemma 2. Under the conditions of the theorem, for any e > 0,

(2.23) SupPgn{|S§:( )+ By S%(0n)) >e} —0.
oeT

n—oo
Proof. Let us introduce the events

A7 (0) = {S;5(0) + B Si5(0n) — Si5(0n) = —e(1+ |E§ S5 (0a)])},

i=1,...,q.
It follows from (1.11) and the previous lemma that
. n =+ .
(2.24) euelgpg {AF(0)} — 1, i=1,..,q

For the events {|6,, — 0] <}, r < 70, S;E(én) > 0. Therefore, relation (2.24) is true for
the events

B (0) = {S;5(0) + Ey S;5(0n) > —€(1 +|EgS5 (0a)])} D AF(0).
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On the other hand,
S5(0) + Si5(0) =Y 19:(4,0)x{e; =0} =0 (mod Py,
and the events B; (6) are equally like to the events
CH(0) = {S55(0) + Ep S;5(0n) < e(1+|E§SS (0n)))}-
Furthermore, for € < g1, the events D} (§) = Bf () N C;F(0), i =1,...,q,

(2.25) DF(0) = {[S50) + EpS55(00)| < 1+ |EFSE@D}

M D7 6) < {|S500) + By 50| < a1 + |E5 550D}
=1

c {|Ezs16n)| < 1 - a0 ae +1SEOD} = XH0),
(2.26) eiggpy{xﬂe)} — L

Let us note that
(227)  PR{IEFST(0.)] > M} < PP{XF(0)} + Pp{IS] (0)] > M(1 — ge) — ge},

where X+(f) is a complement of the event X*(6). Let us denote

nj=x{e; <0} =46, j=>1,
Lin(0) = {1,...,n} N {j : 9:(4,0) > 0}.
Then Py'- a.s
S50 O)> 9i(,0)m; = di, (0) D 9i(4,0)x{e; = 0} = 0.
jelin(e)

Therefore, by the Chebyshev inequality,
Py{|S5(0)] > M(1— qe) — ge} < q(M(1 —ge) —ge) > — 0,

M—o0

i.e., the vector S;(@) is bounded in probability. It follows from (2.26) and (2.27) that

the vector £y Sg(én) is also bounded in probability uniformly in § € T'.
According to (2.25),

gggpg{mg( )+ EpS5(6,)] >6<1+|E95+(én)|>} 0.

Therefore, (2.23) holds. We remark that the boundedness in probability of the r.v.
EgS;(&n) can also be obtained immediately from condition C, the explicit form of
EgSE(én), and from the conditions of the theorem. O

Lemma 3. Under the conditions of the theorem, for any € > 0,

(2.28) Py {|E5 S5 (6n) = p(O)1(0)du (6)(0r — 0)] > ¢} — 0.
Proof. If the quantity n='/2|d,,(8)(6,, — 0)| is small, then it follows from inequality (2.6)
and the boundedness of the r.v. EQSE (0,,) in probability that the norm of the vector

dp(6)(6,,—0) is bounded in probability. The statement of Lemma 3 follows from condition
C and inequalities (2.3)-(2.5). O
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3. PROOF OF THE THEOREM

Relations (2.23) and (2.28) show that, for any € > 0,
(3.1) P {I(p(0)) " AO)SF(6) + du(6) (B — 0)] > €} — 0.

n—oo

As was noted above,

S+ ZVg 7, 0)n; (mod Py").
Let us apply Corollary 17.2 in ([5]7 p. 165) to the random vectors

En =0 Pd OV (5 O G=1,...n
It follows from (1.5) that

_1 ZEO |§] |3 < q1/2 Zn ! Zdzn |gl ] 0)|3n3/2 S klO < 0

uniformly in § € T. Then

(3.2) sup sup |Pg {]—1/2(9)55(9) } ’ _ —1/2

0T Cece

Let us find the correlation matrix of S’g(@). Clearly, ES;(@) = 0. Then, taking into
account A1, we get

EjS5(0)5,5(0) = i, (0)d;, (0) Y 9:(5,0)cu (G 0)En, i1 =1,....q.
It follows from the form of n; that Enjz = 3(1 — 3). Then

(3.3) EySE(0)(S5(0)" = (1 - B)I(0).

Relations (3.1)-(3.3) yield that, for any € > 0 and C € CY,

(34) —-A,+®(C_) <P} &Il/Q(Q)dn(a)(én —-0)eCi <A, +9(C),
Bl —pB)

where C_. and C. are the exterior and interior sets parallel to C, and A, — 0

n—oo

uniformly in € T and C € C%. The statement of the theorem follows from (3.4) and
the theorem from Section 3 in [6] which state that, for any € > 0,

sup |®(Cy.) — @(C)| < ke,
Ceca
where k is a constant that does not depend on e.
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