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A. V. IVANOV AND I. V. ORLOVSKY

PARAMETER ESTIMATORS OF

NONLINEAR QUANTILE REGRESSION

We have obtained the asymptotic normality of parameter estimators of a nonlinear
quantile regression with nonsymmetric random noise.

Introduction

Here, we examine the asymptotic normality of Koenker and Basset estimators [1] or the
generalized least moduli estimators (GLME) of nonlinear regression model parameters
that generalize least moduli estimators for non-symmetric observation errors.

The consistency property of GLME has been considered in [2].

1. Assumptions and the main result

Suppose that an observation Xj is a r.v. with values in (R1,B1) (R1 is a real line, B1

- σ-algebra of its Borel subsets) and distribution Pj . We also assume that the unknown
distribution Pj belongs to a certain parametric family {Piθ, θ ∈ Θ}. We call the triple
Ej = {R1,B1, Pjθ , θ ∈ Θ} a statistical experiment generated by the observation Xj .

We say that a statistical experiment En = {Rn,Bn, Pn
θ , θ ∈ Θ} is the product of

the statistical experiments Ei, i = 1, ..., n, if Pn
θ = P1θ × ... × Pnθ (Rn - n-dimensional

Euclidean space and Bn - σ-algebra of its Borel subsets). We say that the experiment
En is generated by n independent observations X = (X1, .., Xn).

Let the observations have the form

(1.1) Xj = g(j, θ) + εj , j = 1, ..., n ,

where g(j, θ) is a non-random sequence of functions defined on Θc, Θc is the closure of
an open convex set Θ ⊂ R

q in R
q, and

A1. εj are independent identically distributed random variables (r.v.) with zero
mean, distribution function P , and

(1.2) P(0) = β, β ∈ (0, 1).

It is not supposed that the functions g(j, θ) are the linear forms of coordinates of the
vector θ.

Definition. GLME of the parameter θ ∈ Θ obtained by the observations Xj, j = 1, ..., n

of the form (1.1) is said to be any random vector θ̂n = θ̂n(Xj , j = 1, ..., n) ∈ Θc having
the property

(1.3) Sβ(θ̂n) = inf
τ∈Θc

Sβ(τ), Sβ(τ) =
∑

ρβ(Xj − g(j, τ)),
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where
∑

=
∑n

j=1 and

(1.4) ρβ(x) =
{

βx, x ≥ 0
(β − 1)x, x < 0

, β ∈ (0, 1).

Since Pn
θ {Xj < g(j, θ)} = Pn

θ {εj < 0} = F (0) = β, the observation model (1.1) can
be interpreted as a nonlinear quantile regression [1]. Indeed, θ̂n estimates the β-quantile
g(j, θ) of observations Xj , j = 1, ..., n.

Let us impose some restrictions on r.v. εj :
A2. μs = E|εj |s <∞ for some natural s.
A3. R.v. εj has a bounded density p(x) = P ′(x) with the property

|p(x)− p(0)| ≤ H |x|, p(0) > 0,

where H < ∞ is a certain constant.

Example. A r.v. ξ = χ2
2m − 2m, where χ2

2m has chi-squared distribution with even
degrees of freedom, satisfies conditions A1-A3.

Denote, by Cq ⊂ Bq, the class of all convex Borel subsets of R
q and, by T ⊂ Θ, some

compact.
Let us introduce the notation

gi(j, τ) =
∂

∂τ i
g(j, τ), gil(j, τ) =

∂2

∂τ i∂τ l
g(j, τ),

d2
in(θ) =

∑
g2

i (j, θ), d2
il,n(τ) =

∑
g2

il(j, τ), τ ∈ Θc, i, l = 1, ..., q.

Here, d2
n(θ) is a diagonal matrix with elements d2

in(θ), i = 1, ..., q on the diagonal.
Consider the change of variables u = n−1/2dn(θ)(τ − θ), i.e.

g(j, τ) = g(j, θ + n1/2d−1
n (θ)u) = f(j, u),

assuming that θ is a true value of the parameter. Under this change of variables, the
set Θ turns to the set Ũn(θ) = n−1/2Un(θ), where Un(θ) = dn(θ)(Θ− θ), and GLME θ̂n

turns to a normed random vector ûn = n−1/2dn(θ)(θ̂n − θ).
We will denote positive constants by the letter k. Suppose that
B1. Functions g(j, θ), j ≥ 1 are continuous on Θc together with all the first par-

tial derivatives, and gi(j, θ), i = 1, ..., q, j ≥ 1, are continuously differentiable in Θ.
Moreover, for any R ≥ 0,

(i) sup
θ∈T

sup
u∈v(R)∩Uc

n(θ)

max
1≤j≤n

|fi(j, u)|
din(θ)

≤ ki(R)n−1/2, i = 1, ..., q,(1.5)

(ii) sup
θ∈T

sup
u∈v(R)∩Uc

n(θ)

dil,n(θ + n1/2d
−1/2
n (θ)u)

din(θ)dln(θ)
≤ kil(R)n−1/2, i, l = 1, ..., q.(1.6)

It follows from (1.5) that

(1.7) sup
θ∈T

sup
u1, u2∈vc(R)∩Uc

n(θ)

n−1 Φn(u1, u2)
|u1 − u2|2 ≤ k(R),

where Φn(u1, u2) =
∑

(f(j, u1)− f(j, u2))
2.

Similarly, relation (1.6) yields the inequality

(1.8) sup
θ∈T

sup
u1, u2∈vc(R)∩Uc

n(θ)

Φ(i)
n (u1, u2)

d2
in(θ)|u1 − u2|2 ≤ k̃(i)(R),
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with Φ(i)
n (u1, u2) =

∑
((fi(j, u1)− fi(j, u2))2, i = 1, ..., q.

Suppose that GLME is consistent, namely:
C. For any r > 0

sup
θ∈T

Pn
θ {|n−1/2dn(θ)(θ̂n − θ)| ≥ r} =

{
O(n−s+1), s ≥ 2,

o(1), s = 1.
.

The sufficient conditions for C to be fulfilled are stated in [2].
Let us denote

I(θ) =
(
d−1

in (θ)d−1
ln (θ)

∑
gi(j, θ)gl(j, θ)

)q

i,l=1
, θ ∈ Θ.

The matrix I(θ) is symmetric and non-negative definite. Let λmin(I(θ)) be the smallest
eigenvalue of I(θ). Assume that

B2. For n > n0, infθ∈T λmin(I(θ)) ≥ λ0 > 0.
Let l be an arbitrary direction in R

q, and τ ∈ Θ. Then
∂

∂l
Sβ(τ) =

∑
〈∇g(j, τ), l〉 (χ{Xj ∗ g(j, τ) − β}),

where ”∗” denotes ”≤” if 〈∇g(j, τ), l〉 ≥ 0 and ”<” if 〈∇g(j, τ), l〉 < 0. Let r0 be a
distance between T and R

q\Θ. If an event {|θ̂n − θ| < r} occurs for θ ∈ T and r < r0,
then, for any direction l,

∂

∂l
Sβ(θ̂n) ≥ 0.

This remark will be used in the proof of the main result.

Theorem. If conditions A1 - A3, B1, B2, and C are fulfilled, then

(1.9) sup
θ∈T

sup
C∈Cq

∣∣∣∣∣Pn
θ

{
p(0)√

β(1− β)
I1/2(θ)dn(θ)(θ̂n − θ) ∈ C

}
− Φ(C)

∣∣∣∣∣ −→n→∞ 0,

where Φ(C) =
∫

C

1
(2π)q/2

e−
‖x‖2

2 dx.

In other words, the normal distribution N
(
0, β(1−β)

p2(0) I−1(θ)
)

is the accompanying law

for the distribution of the normed estimator dn(θ)(θ̂n − θ).

2. Auxiliary assertions

We carry out the proof by the scheme of the theorem on asymptotic normality of the
least moduli estimators [3], by using the method of partitioning a parametric set [4,5].

Let l1, ..., lq be the positive directions of the coordinate axes. Let us consider the
vectors S±

β (τ) with coordinates

S±
iβ(τ) = d−1

in (θ)
(

∂

∂(±li)

)
Sβ(τ), i = 1, ..., q,

and the vectors En
θ S±

β (θ) with coordinates

En
θ S±

iβ(τ) = ±d−1
in (θ)

∑
gi(j, τ)[P(g(j, τ) − g(j, θ))− β], i = 1, ..., q.

Clearly,

En
θ S±

β (θ) = 0,
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due to assumption A1. Let us denote S∗±
β (u) = S±

β (θ + n1/2d−1
n (θ)u) and

z±n (θ, u) =

∣∣∣S∗±
β (u)− S∗±

β (0)− En
θ S∗±

β (u)
∣∣∣

1 +
∣∣∣En

θ S∗±
β (u)

∣∣∣ .

Lemma 1. Under the conditions of the theorem, for any ε > 0 and sufficiently small
r > 0,

(2.1) sup
θ∈T

Pn
θ

{
sup

u∈vc(r)∩Ũc
n(θ)

z±n (θ, u) > ε

}
−→

n→∞ 0.

Proof. We will proof the statement for z+
n (θ, u). Assume, for simplicity, that r = 1 and

the inner supremum in (2.1) is defined in a cube

C0 =
{

u : |u|0 = max
1≤i≤q

|ui| ≤ 1
}
⊃ v(1).

Let us cover the cube C0 with N0 = O(ln n) cubes C(1), ..., C(N0) in the following way.
For the number t ∈ (0, 1), we consider a concentric system of sets

C(m) ={u : |u|0 ∈ [(1− t)m+1, (1 − t)m]}, m = 0, . . . , m0 − 1,

C(m0) ={u : |u|0 ≤ (1− t)m0}.
We cover each of the sets C(m) by identical cubes with sides

am = (1− t)m − (1− t)m+1 = t(1− t)m

and enumerate these cubes. They form the required covering

C(1), . . . , C(N0−1), C(N0) =def C(m0).

Let us choose m0 = m0(n) from the condition (1− t)m̃0 = n−γ , m0 = [m̃0], γ ∈ (1
2 , 1).

We denote, by | · |0, the distance from C(j) to 0 which is equal to

r(j) = (1 − t)n−γm/m̃0 ,

and, by | · |0, the diameter of C(j) which is equal to

a(j) = tn−γm/m̃0

for some m = m(j), j = 1, ..., N0 − 1. Moreover, if the cube C(j) is an element of the
covering of the sets C(m), then

a(j) = am, r(j) = t(1 − t)m+1 + ... + t(1− t)m0−1 + (1− t)m0 .

The number of cubes C(j) covering each set C(m) can be made not depending on m and,
consequently, on n. In order to verify this, let us consider any octant in R

q. The volume
occurring in its part of the set C(m) is (1 − t)mq − (1− t)(m+1)q, and the volume of the
sets C(j) is equal to aq(j) = tq(1− t)mq. In this way, the maximum number of cubes C(j)

that can be ”placed” in the part of C(m) that belongs to the given octant is equal to

(1 − t)mq − (1− t)(m+1)q

tq(1− t)mq
=

1− (1− t)q

tq

cubes. Since m0 = O(ln n), N0 = O(ln n) as well. Let us fix θ ∈ T . Then

(2.2) Pn
θ

{
sup
u∈C0

z+
n (θ, u) > ε

}
≤

N0∑
j=1

Pn
θ

{
sup

u∈C(j)

z+
n (θ, u) > ε

}
.



86 A. V. IVANOV AND I. V. ORLOVSKY

Let us estimate each term in (2.2). The general element of the derivative matrix Dn(u)
of the mapping

u −→ En
θ S∗+

β (u)

has the form

Dil
n (u) =

∂

∂ul
En

θ S∗+
iβ (u)

= n1/2d−1
in (θ)d−1

ln (θ)
∑

fil(j, u)[P(g(j, τ) − g(j, θ))− β]

+ n1/2d−1
in (θ)d−1

ln (θ)
∑

fi(j, u)fl(j, u) p(g(j, τ) − g(j, θ))

= 1D
il
n (u) +2 Dil

n (u).

Taking into account (1.6), (1.7), and the inequality

sup
x∈R1

p(x) = p0 <∞,

we obtain, for |u| < r,

n−1/2|1Dil
n (u)| ≤ n1/2d−1

in (θ)d−1
ln (θ)dil,n(θ + n1/2d−1

n (θ)u)×
×
(
n−1

∑
(P(f(j, u)− f(j, 0))− P(0))2

)1/2

≤ k(il)(r)k1/2(r)p0|u|.(2.3)

On the other hand,∣∣∣n−1/2
2D

il
n (u)− p(0)Iil(θ)

∣∣∣ ≤
≤ p0

[
d−1

in (θ) din(θ + n1/2d−1
n (θ)u) d−1

ln (θ)
(
Φ(l)

n (u, 0)
)1/2

+ d−1
in (θ)

(
Φ(i)

n (u, 0)
)1/2

]

(2.4) +d−1
in (θ)d−1

ln (θ)
∣∣∣∑ gi(j, θ)gl(j, θ)(p(f(j, u) − f(j, 0))− p(0))

∣∣∣ .
It follows from (1.5) and (1.8) that the terms in square brackets are bounded by the
quantity

p0

(
(k̃(i))1/2 + k(i)(r)(k̃(l))1/2

)
|u|.

For another term on the right-hand side of (2.4), we can find, by using condition A3 and
(1.5), the upper bound

n1/2d−1
in (θ) max

1≤j≤n
|gi(j, θ)|

(
n−1

∑
(p(f(j, u)− f(j, 0))− p(0))2

)1/2

(2.5) ≤ k(i)(r)Hk1/2(r)|u|.
Since the matrix n−1/2Dn(0) = p(0)I(θ) is positive definite by condition B2, it follows
from the above-presented considerations that, for sufficiently small u (for simplicity we
assume that u ∈ C0) and some k0 > 0,

(2.6) inf
θ∈T

∣∣∣En
θ S+

β (θ + n1/2d−1
n (θ)u)

∣∣∣ ≥ k0n
1/2|u|0.

Let l 
= N0, and let v ∈ C(l) be an arbitrary point. Then, in view of (2.6), we can write

sup
u∈C(l)

z+
n (θ, u) ≤

(
sup

u∈C(l)

M (l)
n (θ, u, v) + L(l)

n (θ, v)

)
(1 + k0n

1/2r(l))−1,

M (l)
n (θ, u, v) =

4∑
λ=1

M
(l)
λn(θ, u, v) ( mod Pn

θ )
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M
(l)
1n (θ, u, v) =

∣∣∣d−1
n (θ)

∑
∇f(j, u) (χ{Xj ∗ f(j, u)} − χ{Xj < f(j, v)})

∣∣∣
M

(l)
2n (θ, u, v) =

∣∣∣d−1
n (θ)

∑
(∇f(j, u)−∇f(j, v))(χ{Xj < f(j, v)} − β)

∣∣∣
M

(l)
3n (θ, u, v) =

∣∣∣d−1
n (θ)

∑
∇f(j, u) (P(f(j, u)− f(j, 0))− P(f(j, v)− f(j, 0)))

∣∣∣
M

(l)
4n (θ, u, v) =

∣∣∣d−1
n (θ)

∑
(∇f(j, u)−∇f(j, v))(P(f(j, v) − f(j, 0))− β)

∣∣∣
L(l)

n (θ, v) =
∣∣∣d−1

n (θ)
∑

(∇f(j, v)(χ{Xj < f(j, v)} − β) −∇f(j, 0)(χ{εj ∗ 0} − β)

−∇f(j, v)(P(f(j, v) − f(j, 0))− β)| ( mod P n
θ ).

By (1.8) and for u, v ∈ C(l), we obtain

(2.7) n−1/2M
(l)
2n (θ, u, v) ≤ β′

(
q∑

i=1

d−2
in (θ)Φ(i)

n (u, v)

)1/2

≤ k1a(l).

Furthermore, in accordance with (1.5), (1.7), and A3, we get

(2.8) n−1/2M
(l)
3n (θ, u, v) ≤ p0n

−1/2Φ1/2
2n (u, v)

(
q∑

i=1

d2
in(θ + n1/2d−1

n (θ)u)
d2

in(θ)

)1/2

≤ k2a(l).

Analogously,

(2.9) n−1/2M
(l)
4n (θ, u, v) ≤ p0n

−1/2Φ1/2
2n (v, 0)

(
q∑

i=1

d−2
in (θ)Φ(i)

n (u, v)

)1/2

≤ k3a(l).

Let us estimate M
(l)
1n (θ, u, v). For any u, v ∈ C(l),

|χ{Xj ∗ f(j, u)} − χ{Xj < f(j, v)}|

≤ χ

{
inf

u∈C(l)

f(j, u)− f(j, 0) ≤ εj ≤ sup
u∈C(l)

f(j, u)− f(j, 0)

}
= χj ( mod Pn

θ ).

Consequently, by (1.5),

n−1/2M
(l)
1n (θ, u, v) ≤ n−1/2

(
q∑

i=1

(
d−1

in (θ) max
1≤j≤n

|fi(j, u)|
)2
)1/2∑

χj

≤ k4n
−1
∑

χj .(2.10)

Using the formula for finite increments, we find

n−1
∑

En
θ χj = n−1

∑(
P
(

sup
u∈C(l)

f(j, u)− f(j, 0)

)
− P

(
inf

u∈C(l)

f(j, u)− f(j, 0)
))

≤ p0n
−1
∑

sup
u1,u2∈C(l)

|f(j, u1)− f(j, u2)|

(2.11) ≤ p0q
1/2

⎛⎝ q∑
i=1

(
n1/2d−1

in (θ) sup
u∈C(l)

max
1≤j≤n

|fi(j, u)|
)2
⎞⎠1/2

a(l) ≤ k5a(l).

Estimates (2.7)-(2.11) show that there exist constants k6 and k7 such that

Pn
θ

{
sup

u∈C(l)

M (k)
n (θ, u, v)(1 + k0n

1/2r(l))−1 >
ε

2

}
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(2.12) ≤ Pn
θ

{
k6n

−1
∑

(χj − En
θ χj) >

ε

2
r(l)− k7a(l)

}
.

Note that
ε

2
r(l)−k7a(l) =

( ε

2
(1− t)− k7t

)
n−γm/m̃0 > 0, if t is chosen sufficiently small.

Therefore, probability (2.12) can be estimated, with the help of the Chebyshev inequality
and (2.11), by the quantity

(2.13)
4k2

6

(ε(1− t)− 2k7t)2
n−2+2γm/m̃0

∑
En

θ χj ≤ k8n
−1+γm/m̃0.

Using the notation

L1i(j) = (fi(j, v) − fi(j, 0))(χ{Xj < f(j, v)} − β),
L2i(j) = fi(j, 0)(χ{Xj < f(j, v)} − χ{εj ∗ 0}), i = 1, ..., q,

we obtain
P1 = Pn

θ

{
L(k)

n (θ, v)(1 + k0n
1/2r(l))−1 >

ε

2

}
(2.14) ≤ 4

n(k0ε)2r2(l)

q∑
i=1

d−2
in (θ)

2∑
λ=1

En
θ

(∑
(Lλi(j)− En

θ Lλi(j))
)2

,

(2.15) Dn
θ (
∑

L1i(j)) ≤ Φ(i)
2n(v, 0),

Dn
θ (
∑

L2i(j)) ≤
∑

f2
i (j, 0)|P(f(j, v)− f(j, 0))− P(0)|

(2.16) ≤ p0 max
1≤j≤n

|gi(j, θ)|din(θ)Φ1/2
2n (v, 0).

It follows from relations (2.14)-(2.16) and the conditions of the theorem that

P1 ≤ 4n−1

(k0ε)2

[
(r(l) + a(l))2

r2(l)

q∑
i=1

k̃(i)(1) +
r(l) + a(l)

r2(l)
p0k

1/2(1)
q∑

i=1

k(i)(1)

]

(2.17) ≤ k9n
−1
[
(1 − t)−2 + (1 − t)−2nγm/m̃0

]
= O

(
n−1+γm/m̃0

)
.

Inequalities (2.13) and (2.17) show that, for l = 1, ..., N0 − 1 and some m = m(l) < m0,

(2.18) sup
θ∈T

Pn
θ

{
sup

u∈C(l)

z+
n (θ, u) > ε

}
= O

(
n−1+γm/m̃0

)
.

Let us consider the case l = N0. Clearly,

Pn
θ

{
sup

u∈C(N0)

z+
n (θ, u) > ε

}
≤

(2.19) ≤ Pn
θ

{
sup

|u|0<n−γm/m̃0

∣∣∣S∗+
β (u)− S∗+

β (0)− En
θ S∗+

β (u)
∣∣∣ > ε

}
.

Let us rewrite the expression standing under the sign of supremum in (2.19) in the form
of ν1(θ, u) + ν2(θ, u) + ν3(θ, u), where

ν1(θ, u) = d−1
n (θ)

∑
(∇f(j, u)−∇f(j, 0))(χ{Xj ∗ f(j, u)} − β),

ν2(θ, u) = d−1
n (θ)

∑
∇f(j, 0)(χ{Xj ∗ f(j, u)} − χ{εj ∗ 0}),

ν3(θ, u) = d−1
n (θ)

∑
∇f(j, u)(P(f(j, u)− f(j, 0))− β).
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It is easy to show that, for |u|0 < n−γm/m̃0,

(2.20) |ν1(θ, u)| ≤ β′n
1
2

(
q∑

i=1

d−2
in (θ)Φ(i)

2n(u, 0)

)1/2

≤ k1n
1
2−γm

m̃0 ,

(2.21) |ν3(θ, u)| ≤ p0Φ
1
2
2n(u, 0)

(
q∑

i=1

d2
in(θ + n1/2d−1

n (θ)u)
d2

in(θ)

)1/2

≤ k2n
1
2−γm

m̃0 ,

where k1 and k2 are the same as in (2.7) and (2.8), correspondingly.
If γ > 1

2 , then the exponents in (2.20) and (2.21) are negative for n > n0. That is, for
ε′ < ε, it remains to estimate the probability

Pn
θ

{
sup

|u|0<n−γm/m̃0

|ν2(θ, u)| > ε′
}

≤ Pn
θ

⎧⎨⎩
(

q∑
i=1

(
d−1

in (θ) max
1≤j≤n

|gi(j, θ)|
)2
)1/2∑

χ̃j > ε′

⎫⎬⎭ ,

(2.22) ≤ Pn
θ

{
k4n

−1/2
∑

χ̃j > ε′
}

,

χ̃j = χ

{
inf

|u|0≤n−γm/m̃0
f(j, u)− f(j, 0) ≤ εj ≤ sup

|u|0≤n−γm/m̃0

f(j, u)− f(j, 0)

}
.

From the conditions of the theorem,∑
En

θ χ̃j ≤ k5n
−γm/m̃0, j = 1, . . . , n.

Hence, instead of (2.22), it is sufficient to estimate, for any ε′′ > 0, the probability

Pn
θ

{
n−1/2

∑
(χ̃j − En

θ χ̃j) > ε′′
}
≤ (ε′′)2 k5n

−γm/m̃0.

Taking into account the fact that all the bounds are uniform in θ ∈ T , we obtain that
the lemma is proved for z+

n (θ, u). The case of z−n (θ, u) is investigated similarly. �
Let us set

En
θ S±

β (θ̂n) = (En
θ S±

β (τ))τ=θ̂n
.

Lemma 2. Under the conditions of the theorem, for any ε > 0,

(2.23) sup
θ∈T

Pn
θ

{
|S±

β (θ) + En
θ S±

β (θ̂n)| > ε
}
−→

n→∞ 0.

Proof. Let us introduce the events

A±
i (θ) = {S±

iβ(θ) + En
θ S±

iβ(θ̂n)− S±
iβ(θ̂n) ≥ −ε(1 + |En

θ S±
β (θ̂n)|)},

i = 1, . . . , q.

It follows from (1.11) and the previous lemma that

(2.24) inf
θ∈T

Pn
θ {A±

i (θ)} −→
n→∞ 1, i = 1, ..., q.

For the events {|θ̂n − θ| < r}, r < r0, S±
β (θ̂n) ≥ 0. Therefore, relation (2.24) is true for

the events

B±
i (θ) = {S±

iβ(θ) + En
θ S±

iβ(θ̂n) ≥ −ε(1 + |En
θ S±

β (θ̂n)|)} ⊃ A±
i (θ).
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On the other hand,

S+
iβ(θ) + S−

iβ(θ) =
∑

|gi(j, θ)|χ{εj = 0} = 0 (mod Pn
θ ),

and the events B−
i (θ) are equally like to the events

C+
i (θ) = {S+

iβ(θ) + En
θ S+

iβ(θ̂n) ≤ ε(1 + |En
θ S+

β (θ̂n)|)}.
Furthermore, for ε < q−1, the events D+

i (θ) = B+
i (θ) ∩ C+

i (θ), i = 1, ..., q,

(2.25) D+
i (θ) =

{∣∣∣S+
iβ(θ) + En

θ S+
iβ(θ̂n)

∣∣∣ ≤ ε(1 + |En
θ S+

β (θ̂n)|)
}

,

q⋂
i=1

D+
i (θ) ⊆

{∣∣∣S+
β (θ) + En

θ S+
β (θ̂n)

∣∣∣ ≤ qε(1 + |En
θ S+

β (θ̂n)|)
}

⊆
{∣∣∣En

θ S+
β (θ̂n)

∣∣∣ ≤ (1− qε)−1(qε + |S+
β (θ)|)

}
= X+(θ),

i.e.,

(2.26) inf
θ∈T

Pn
θ {X+(θ)} −→

n→∞ 1.

Let us note that

(2.27) Pn
θ {|En

θ S+
β (θ̂n)| > M} ≤ Pn

θ {X+(θ)}+ Pn
θ {|S+

β (θ)| > M(1− qε)− qε},
where X+(θ) is a complement of the event X+(θ). Let us denote

ηj = χ{εj < 0} − β, j ≥ 1,

Iin(θ) = {1, . . . , n} ∩ {j : gi(j, θ) > 0}.
Then Pn

θ - a.s.

S+
β (θ)− d−1

in (θ)
∑

gi(j, θ)ηj = d−1
in (θ)

∑
j∈Iin(θ)

gi(j, θ)χ{εj = 0} = 0.

Therefore, by the Chebyshev inequality,

Pn
θ {|S+

β (θ)| > M(1− qε)− qε} ≤ q(M(1 − qε)− qε)−2 −→
M→∞

0,

i.e., the vector S+
β (θ) is bounded in probability. It follows from (2.26) and (2.27) that

the vector En
θ S+

β (θ̂n) is also bounded in probability uniformly in θ ∈ T .
According to (2.25),

sup
θ∈T

Pn
θ

{
|S+

β (θ) + En
θ S+

β (θ̂n)| > ε
(
1 + |En

θ S+
β (θ̂n)|

)}
−→
n→∞ 0.

Therefore, (2.23) holds. We remark that the boundedness in probability of the r.v.
En

θ S+
β (θ̂n) can also be obtained immediately from condition C, the explicit form of

En
θ S+

β (θ̂n), and from the conditions of the theorem. �

Lemma 3. Under the conditions of the theorem, for any ε > 0,

(2.28) Pn
θ

{
|En

θ S+
β (θ̂n)− p(0)I(θ)dn(θ)(θ̂n − θ)| > ε

}
−→

n→∞ 0.

Proof. If the quantity n−1/2|dn(θ)(θ̂n − θ)| is small, then it follows from inequality (2.6)
and the boundedness of the r.v. En

θ S+
β (θ̂n) in probability that the norm of the vector

dn(θ)(θ̂n−θ) is bounded in probability. The statement of Lemma 3 follows from condition
C and inequalities (2.3)-(2.5). �
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3. Proof of the theorem

Relations (2.23) and (2.28) show that, for any ε > 0,

(3.1) Pn
θ

{
|(p(0))−1Λ(θ)S+

β (θ) + dn(θ)(θ̂n − θ)| > ε
}
−→

n→∞ 0.

As was noted above,

S+
β (θ) = d−1

n (θ)
∑

∇g(j, θ)ηj (mod Pn
θ ).

Let us apply Corollary 17.2 in ([5], p. 165) to the random vectors

ξjn = n1/2d−1
n (θ)∇g(j, θ)ηj , j = 1, . . . , n.

It follows from (1.5) that

n−1
∑

En
θ |ξjn|3 ≤ q1/2

q∑
i=1

n−1
∑

d−3
in (θ)|gi(j, θ)|3n3/2 ≤ k10 <∞

uniformly in θ ∈ T . Then

(3.2) sup
θ∈T

sup
C∈Cq

∣∣∣Pn
θ

{
I−1/2(θ)S+

β (θ) ∈ C
}
− Φ(C)

∣∣∣ = O(n−1/2).

Let us find the correlation matrix of S+
β (θ). Clearly, ES+

β (θ) = 0. Then, taking into
account A1, we get

En
θ S+

iβ(θ)S+
lβ(θ) = d−1

in (θ)d−1
ln (θ)

∑
gi(j, θ)gl(j, θ)Eη2

j , i, l = 1, ..., q.

It follows from the form of ηj that Eη2
j = β(1− β). Then

(3.3) En
θ S+

β (θ)(S+
β (θ))T = β(1 − β)I(θ).

Relations (3.1)-(3.3) yield that, for any ε > 0 and C ∈ Cq,

(3.4) −Δn + Φ(C−ε) ≤ Pn
θ

{
p(0)√

β(1− β)
I1/2(θ)dn(θ)(θ̂n − θ) ∈ C

}
≤ Δn + Φ(Cε),

where C−ε and Cε are the exterior and interior sets parallel to C, and Δn −→
n→∞ 0

uniformly in θ ∈ T and C ∈ Cq. The statement of the theorem follows from (3.4) and
the theorem from Section 3 in [6] which state that, for any ε > 0,

sup
C∈Cq

|Φ(C±ε)− Φ(C)| ≤ kε,

where k is a constant that does not depend on ε.
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