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VOLODYMYR B. BRAYMAN

ON THE EXISTENCE AND UNIQUENESS OF THE SOLUTION OF A
DIFFERENTIAL EQUATION WITH INTERACTION GOVERNED BY
GENERALIZED FUNCTION IN ABSTRACT WIENER SPACE

We consider the following differential equation with interaction governed by a gener-
alized function :

dz(u,t)

dt :a’(w(uvt)v%t)v :c(u,O) =u, n :%Oox('vt)il'

The conditions that guarantee the existence and uniqueness of a solution when
mapping a belongs to some Sobolev space are obtained.

1. INTRODUCTION

Let (X, H, 1) be an abstract Wiener space, i.e. X is a real separable Banach space
and p is a Gaussian measure on X with the Cameron-Martin space H (cf. [1]). Consider
the evolution of a material system in X in the case where the behaviour of each particle
depends not only on the position of this particle but also on some characteristic of the
whole system represented by a generalized function. Examples of such characteristics are
mass distributions at some surfaces, their derivatives, ets.

Let WF = W}F(X,H,p),k € N,p > 1, be the Sobolev space (cf. [1], the precise
definition will be given later), and let W, ™* = (W})*, where © + 2 = 1, be the space
of generalized functions equipped with #-weak topology. Denote, by z(u,t), the position
of the particle starting from w at time ¢. Assume that the characteristic of the material
system at time t is 2 € Wq’k, and the evolution of the system is described by the
differential equation with interaction
(1) { % = a(z(u,t), )

2(u,0) = u, s =sgox(-t)"L t>0.

where a : X x W~ k — H is a measurable transformation. Here, the generalized func-
tion s = 3¢ o x(-,t)~! is said to be the image of the generalized function »p under
transformation z(-,¢) if, for every test function f € W}, we have foxz(-,t) € W} and
(fy2a) = (f o x(-,t), 29). Note that if s¢ is a measure on X, then the definition of s
coincides with the standard definition of the image of a measure.
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Definition 1. Measurable mapping = : X x R — X is said to be a solution of Eq. (1) if
1) for every ¢ > 0, the generalized function 4 = s o x(-,t)~* belongs to W,
2) for p-almost all u,

t
x(u,t) =u —|—/ a(x(u, s), 75 )ds holds for all t > 0;
0

3) for every t > 0, the measure pox(-,t)~! is absolutely continuous with respect to y;

Remark. Condition 3) in Definition 1 provides that the solution does not depend on the
particular choice of a modification of a.

In this article, we obtain some sufficient conditions for the existence and uniqueness
of solution of (1). To formulate them, we need to recall some standard constructions and
notations from the Malliavin calculus (cf. [1]).

For any separable Hilbert space F, we denote, by FC* (X, E), a set of smooth cylindi-
cal functions, i.e. functions of the form

f(u) = Z‘Pl(<y17u>,~ . ,<yn,U>)61,
=1
where y1,...,yn € X*, p1,...,m € C°(R") and ey, ..., e, € E. The derivative V
along H is defined, for f € FC* (X, E), by
G 880l - 00
Vf(u) = Z By (<y17u>7"' v<ynvu>).] Yi ®ep € FC (XaEl)v

where £y = H(H, E) is the space of Hilbert—Schmidt operators from H to E equipped
with the Hilbert—Schmidt norm. Define higher order derivatives on FC*°(X, E) itera-
tively by setting By = E, VY = Trce(x,r) and, for k € N,

Ey=H(H,Ex_1), V¥ =V oV 1. FC®(X,E) — FC®(X, Ey).

Note that Fj can be identified with the space of k-linear Hilbert—Schmidt operators on
H with range in E.

For any k € N and p € [1, +00), the operator V* is closable under the norm || f||,.x =
S IV fll,x, B

The completion of FC* (X, E) under this norm is a Sobolev space WI’,“(X,E,,u) C
Ly(X, E, p). The extensions D¥ : WF(X, E, i) — Ly(X, E, 1) of derivatives V¥ to W}
are called stochastic derivatives. By 0 : D(§) C Ly(X, H, i) — Ly(X, R, p), 11—) + % =1,
we denote the divergence operator, i.e. the operator adjoint to D. Denote, by || - ||, the
Hilbert-Schmidt norm in each of Ej, k > 1, and, by || - ||op, the operator norm in £L(H).

Now we can formulate the results.

Theorem 1. Let a: X X I/Vq_’C — H be such that
1) 3po > 1 Ve e W5 a(-, ) e WE (X, H, p);

2)co= sup |la(u,s)|g <oo, VI<I<Ek ¢ = sup |Da(u,s)|x < oc;
ucX ueX
€W " PR
3)¥e>0 60(c)= sup [y exp(cldalu,s)|)p(du) < oo;
wEW,

4) if {3¢,500,n > 1} C Wq_k and s, — », n — oo, *-weakly in Wq_k, then a(u, s,) —
a(u, ), n — 00, in measure L.
Suppose that

—k
Je>0 e W, .
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Then Eq. (1) has a solution on [0, +00).

Theorem 2. Let a, s satisfy the conditions of Theorem 1 and, moreover, AL > 0 Jq; <
q YueX VheH Vi, ;e W *

la(u, 2a) — alu+ h, so)|a < LAl + 220 = s22llgr,~5-1);
Vi<I<k
ID"a(u, 521) = D'a(u+ h, )l < L(IAll# + 1520 = 22l gy~ k-1),
where ||| q,—x = sup [(f,)]. Then Eq. (1) has a unique solution on [0,400).
TNe

Remark. If the transformation a in (1) depends only on the first argument, i.e. a(u, u) =
agp(u), then Eq. (1) turns to be an ordinary differential equation

{ eGel) — ap(a(u,t)),

17
@) x(u,0) = u.

It is well known that Eq. (1’) has a unique solution if the transformation a is Lipschitz-
ian. The sufficient conditions for the existence and uniqueness of solution of (1’) were
studied in [2-4] in the case where the transformation a belongs to some Sobolev space,
instead of being Lipschitzian. In particular, it was proved in [3] that if ag € Wz} (X, H, o)
and exp(|dag|) € Lo(X, H, po), exp(||Daollop) € Le(X, H, po) for some ¢ > 0, then Eq.
(1') has a unique solution.

2. THE SPACE OF GENERALIZED FUNCTIONS quk

We shall prove Theorem 1 in a slightly different form involving other spaces of general-
ized functions. Note that if p > p, %—F% = land %—l—%- =1, then W; C W[i“, Wq_k C W;{k.
Denote Wy, = Uz, W, W, = Na<q W;{k.

The elements of W, k¥ are linear functionals on Wlf ‘. . Define the topology 7 on Wq__k as
T= C(W§+, quk). Then s, — s, n — o0, in quk means by definition that, for every
D > p, the sequence s,, n > 1 converges to s x-weakly in W[{k7 i.e., for every p > p and
for every test function f € Wg, we have (f, s,) — (f, ), n — oco.

We now can formulate the result in terms of the spaces quk.

Theorem 1’. Leta: X x quk — H be such that
1) 3po > 1V e W(;_k a(-, ) € WE (X, H, p);

2)co= sup |la(u,s)|g <oo, VI<I<k ¢ = sup |Da(u,s)|x < oc;
ueX ueX
eW, weW,
3)¥e>0 0(c)= sup [y exp(clda(u, »)|)p(du) < oo;
%EW(;’“

4) if {56,500, > 1} C quk and 3, = x, n — 00, in quk then a(u, 3,) —
a(u, ), n — 00, in measure L.
Then, for every sy € quk, Eq. (1) has a solution on [0,400) such that 3¢ €

W,k t>0.

Remark. Condition 1) in Definition 1 is caused by the fact that the transformation a is

defined on X x Wq_’“. Hence, it is reasonable to replace it by s € Wq__k, t > 0 in the
setup of Theorem 1.
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Theorem 1 follows from Theorem 1’ immediately since Wq__ﬁ__._ C Wq_k and 2 €
Wk c Wk imply 54 € Wk c Wk, t>0.
Theorem 1’ shows that the solution of Eq. (1) preserves the space quk7 i.e. if the

initial value 3¢ belongs to W, k then the images s, t > 0, remain the elements of the
same space. The following example shows that the solution of Eq. (1) does not preserve
the space W~ * hence the condition »y € Wq_ﬁ: in Theorem 1 cannot be replaced by
»y € Wq_k. Therefore, the spaces W k¥ are more natural when dealing with Eq. (1) than

usual spaces I/Vq”C .

Example 1. Let X = R, p(du) = \/%e’“zﬂdu, and let a generalized function 37 be
defined by (f,s0) = [, f(u)lg0ye™ /2 V¥u(du), f € W, Since

2 1 o, 5 1 0o
/(H{u>0}6u 1200 () = _/ o022 | 2 _/ e Vidy < oo,
R - V2w Jo V21 Jo

we get s € Lo(dp) C W (dp).
Let a(u, ») = 1. Then Eq. (1) turns out to be an ordinary differential equation which
has a unique solution z(u,t) = u + t. We have

(f.sa) = / Flu 4 )y spe™ 2V u(du) = L / F(w)e=0*/2a=vo=t.
R - V2T Jy

= 0=D?/2, / F(0) Ly e/ 20 D008 2Vt (g
R

Hence, s must be a regular generalized function, but

/ (H{vzt}e”2/2“("*1)“’5/“(4*1”2/2’V“’t)qu(dv) =
R

1 o0 2
_ (g—1)vt—(g—1)¢ /2—q\/v—td _
= — e v =
V2r /t

and s ¢ Wq_l,t > 0. On the other hand, for every ¢ < ¢, we have 3¢ € Lz(du) C
Wa_l(du). Therefore, s € Wq__l.

3. THE PROOF OF THEOREM 1’

Note that it is sufficient to obtain the existence of a solution on [0, 1]. Really, since
n € Wq__k, one can determine the solution on [k, k + 1],k > 0, in succession solving (1)
on [0,1] with the initial value s¢; instead of .

Let g : [0,1] — Wq__k be some measurable mapping. By [3, Theorem 5.3.1], the
equation

29 (u, t) :u—i—/o a(x9(u, s),g(s))ds

has a unique (up to p-equivalence) solution z9(u,t),¢ € [0,1] and, moreover, for every
t € [0,1], the measure p o x9(-,t)~1 is absolutely continuous with respect to u. In the
next section, we will verify that, for every ¢t € [0,1] and f € W[ﬂ, the function foz9(-,t)
belongs to W;“_H and there exists the image of the generalized function s o x9(-,¢)~!
i.e. an element of Wq__k such that, for every f € WJ,, we have (f, s o z9(-,t)"")
(fox9(-t), ) (see Proposition 1).

Define

(2) F(g9)(t) = spoa9(-, 1)1, t €[0,1].
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Then if the function g satisfies F(g)(t) = s o 29(-,t)~1 = g(t), t € [0,1], then z9(u,t)
solves (1).

Thus, the solutions of (1) correspond to fixed points of the transformation F. To prove
the existence of a fixed point, we apply the Schauder theorem.

Theorem 3 [5, Theorem 2(3.XVI)]. Let Yy be a closed convex subset of a linear normed
space Y, and let F : Yo — Yy be a continuous transformation such that F(Yy) is relatively
compact. Then F has a fized point.

Set Y = C([0, 1], I/Vq:k)7 where Wq:k is equipped with a metric A defined as follows.

Fix a sequence 1 < q¢; < ... < ¢ < @n+1 < ... < g such that ¢, — ¢, n — oo, and,
for every n > 1, find the family of functions { f,.,, m > 1} dense in szn, where p,, is

determined by the condition p% + i = 1. For every s, € W k. we set

M1, 562) = 37 2 (LA [(Fums 1) = (Fams 22) ).

2m
m>1

Then )\, is a metric in Wq_nk, because sr # 3o implies A\, (311, 2) # 0. Therefore,
A, 0m) = >0 ,5 217)\71(%1,%2)7 1,20 € quk is a metric in Wq:k. Without loss of
generality, we may assume that each of fn.,,n,m > 1, belongs to FC°(X,R) and has
bounded derivatives of any orders.

Remark. Let us compare the convergence in the metric A with convergence in the topol-
ogy 7in W k. The sequence of elements of W, k converges x-weakly if and only if it is
bounded in the norm of W, - k and converges in the metric \,. Hence, the sequence of
elements of Wq:k converges in the topology 7 if and only if it is bounded in the norms of
Wq;’ﬁ n > 1, and converges in the metric A.

In the next section, we will verify that, for every g € Y, the function F(g) defined by
(2) belongs to Y, and the set F(Y) is relatively compact. Also we will find a closed convex
set Yy such that F(Y) C Yy CY and F : Yy — Yj is continuous. Then the conditions
of the Schauder theorem are valid, and the transformation F' has a fixed point, which
proves Theorem 1'. O

4. PROPERTIES OF THE TRANSFORMATION I

Proposition 1. For every g € Y,t € [0,1], the generalized function F(g)(t) belongs to
W,
—

Proof. Fix g € Y,t € [0, 1]. First, we prove that there exist constants ¢;,1 <! < k, which
depend on a but do not depend on g € Y and t € [0, 1] such that

(3)  esssup ||[Dx9(u,t) — M|l < & and esssup |D'z?(u,t)||ln <&, 2<1<k.
ueX ueX
Since, for p-almost all u, the derivative Dx9(u, t) satisfies the equation
t
Dz9(u,t) = 1y —|—/ Da(z9(u, s), g(s))Dx?(u, s)ds for every t > 0
0
(cf. [4, Lemma 5.17]), we have

t
D7, t)op < 1+ | |1Daa?(u.5) (5)) e Do, 5) s <
0

t
<1 —i—cl/ | Dz (u, s)||opds
0
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for p-almost all u. By the Gronwall inequality, this implies || D9 (u,t)|lop < et < et =
Cop for pra.a uw € X,t € [0, 1]. Hence, for p-almost all v and for every ¢t € [0,1],

t
D2 (u, t) = Mg ||3 < / [1Da(2?(u, 5), g(5)) |4/ D2 (u, 5)[[opds < c1opt < c160p = C1.
0
Now
t t
D2t(u,t) = [ Dala? 1,9, 9(9) D%, )ds + [ DPa(a?(5).9(5) (D . s
0 0
implies
| D%29 (u, t) || < cl/ | D?29 (u, S)||HdS+CQC for p-a.a u,t € [0, 1],

and, by the Gronwall inequality,
Jc, >0Vt €[0,1]Vg €Y esssup || D?x9 (u,t)||3 < .
ueX

Similar calculations prove (3) in succession for every [ < k.

Fix any n > 1. Let us verify that F(g)(t) € W, i.e. F(g)(t) is a linear continuous
functional on Wk , where p1 > ... > p, > ppy1 > ... are taken from the definition of
the metric A. We prove that, for every f € an, the function fox9(-,t) belongs to Wiﬂﬂ
and

(4) 1f 0 29 )pnsrsb < Al Fllpns £ EWE.

To simplify notations, we denote here and thereafter, by ¢, any constants which depend
on a,py, and p,4+1 and do not depend on f, g, and t.

Denote, by L{, the density of the measure p o 29(-,¢)~! with respect to u. Then, for
every f € L (X,R, ) we have, by the Holder inequality,

[ 1 ear e uan = [ 1P Lnt) <
X X

Pni1l Pn—Pn41

< ([ r@pua) ™ ([ @ty )T

y [3, Theorem 5.12] for every ¢ > 1 and 0 < ¢ < 1, we have

/ (Lo)eu(du) < {1+ =2 sup / exp(clda(u, ) u(du) | €/°,
X X

¢ %Gquk

hence
Vf € Lpn(XaRﬁj') foxg(-7t) € LP71+1(X7R7M) and ”foxg('?t)”[/pn+1 < EHfHLPn

For every f € W, similarly to [4, Corollary 5.6], we have

/ ID(f 0 29 (1) |5 pu(dus) = / 1D o2 (u, 1) Dac? (u, £) |25 pu(dus) <

/ IDf o af(u, )37 - op™ u(du) —53{5“/ IDf (u)ll3; " L (w)p(du) <

<¢( [ 105t udU)) -
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hence
VieW, foxi(,t)eW, and||fox?(t)|p.ia < flpnn

Pn+1
Similarly for every f € Wzlfn and for every 2 <1 < k,

l
/X ID!(7 o 00 ) < @3 /X 1D f o 29 (u, )23+ pu(ds) <

Pn+1

gzg ( /. ||Dif(u>|m<du>) "

Therefore,

Ve W, foad(,t)eWy . and [foa?( )p. ik <l flp .k,

Pn+1

and (4) is proved. Hence, for every f € W[ | we can define (f, F(g)(t)) = (fox9(-,1), »0)

—k _
because of fox9(-,t) € Wﬁnﬂ and 9 € W,* C an’il. Moreover,

(£ E(@)@0)] = [(foa?(-,), 30)| < [[50llgnia,—k - 1 027 0)lpnsa b <

S E||%0||Qn+17_k7||f||pn7k7 = RanHpn;k'
Thus, we have F(g)(t) € Np>1 Wq_nk = quk. Proposition 1 is proved.

Proposition 2. For every g € Y = C([0, 1], Wq__k), the function F(g) belongs to'Y and,
moreover, the family of functions {F(g),g € Y} is equicontinuous.

Proof. By Proposition 1 for every g € Y, the function F(g) maps [0, 1] to quk. Hence,
the first assertion of Proposition 2 follows from the second one.
We have to check that

Ve >030>0 Vg €Y Vty,ty € [071] |t1 — t2| <d=> )\(F(g)(tl),F(g)(fg)) < E.

Since

AMF(g)(t1), F(g)(t2)) <
1

N N
< Z_:l 2i (1 A Zl 2im<1 AN fums Flg)(t1)) — <fnm,F<g>(tz>>l>> =

it is sufficient to prove that
Vn,m € NVe > 030 =0dpm >0Vg €Y Vii,t2 €[0,1]

(5) [t1 = ta| <O = [(frm, F(9)(t1)) = (frm, F(g)(t2))| <e.
Fix n,m € N and f = f,,. By definition of the metric A, we have f € FC®(X,R) C
Wﬁnil. Then

vte[0,1] foaf(t)e WE
and

Vi1, t2 € [0,1] [(f, F(9)(t1)) — (f, F(9)(t2))| = [(f 029 (-,t1) — foa?(:,t2), 50)| <

<|[foa?(-tr) = fox?(t2)llp,.k - 20]lg,,—k-
Since f has bounded derivatives of any orders, we have

/X Fo9( ) — f 0 a9(- ta) [P p(du) <

<% /X 1291 t2) — 29 (-, t2) | ().
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Here and thereafter, we denote, by ¢¢, any constants which depend on f but do not
depend on g € Y and ¢1,ts € [0,1]. Also we have

/X ID(f o 29 (u, 1)) — D(f 029 (u, £2)) | pu(dus) <

§2p”_1/ |Dfoad(u,tr) — D(f ox?(u,ta)|}
X

| D (u, )| ) 4 2771 / 1D 029 (u, 1) - D29, 1) — D (u, £2) [ u(dr) <
X

<% ( /X 29 ut £0) — 29 (1) [ o) + /X |Dx9<u,t1>—Dx%u,tz)nm(du))

and similarly

Vi< k /X ID(f 029 (u, t1)) — D'(f 0 &9 (u, t2)) 15 p(du) <

l . .
< ( [ et =t o) + 3 [ D% 0,tr) = D) %"u(dw) .

It remains to check that

(6) Ve >030>0 Vg €Y Vty,ty € [071] |t1 — t2| <d=> ||(,Cg(-,t1) — LL’g(-,tQ)Hpmk <E.
Let 0 < t; < to < 1. Then 29(u,t2) = x9(u,t1) + f:f a(x9(u, s),g(s))ds implies, for
p-almost all u, esssup, ¢ x [|29(u, t2) — 27 (u, 1) g < (t2 — t1)co,

Dax9(u,te) = D9 (u,t1) + ’ Da(z9(u, s),g(s))Dz? (u, s)ds

t1

implies, for py-almost all u,

esssup || Dz? (u, t2) — D9 (u, t1)|| < (t2 — t1)c1Cop,
ueX

and similarly

Vi < k esssup ||Dlx‘7(u,t2) — Dlxg(u,tl)HH <lta—ty |%l7

ueX
where ¢ is a function of the constants o, - - - , ¢ from condition 2) of Theorem 1’ and of
the constants Cop, €1, ... ,¢; defined in the proof of Proposition 1.

Therefore, ||z9(-,t1) — x9(-,t2)|lp.ke < atl — to], where ¢ does not depend on gey
and t1,t2 € [0,1]. Thus, (6) holds true, and the equicontinuity of the family of functions
F(Y) is proved.

Proposition 3. The set F(Y) is relatively compact.

Proof. Let us verify the conditions of the Arzela—Ascoli theorem. Since, by Proposition
2, the family of functions F(Y') is equicontinuous, it remains to check that, for every
t € [0, 1], there exists a compact set K; C Wq__/C such that

YgeY F(g)(t) € K.
It was obtained at the end of the proof of Proposition 1 that
(1) VYn>13R,>0Vfe Wy VgeY vtel0,1] [(f,F(9))| < Rullflpnr-
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Set K(n) = {» € W, *||lslq..—k < Rn}. Then, by the Banach-Alaoglu theorem,
K(n) is a xweak compact in W, k. Therefore, K(n) is a compact in Wq_nk with the
metric A,. Let K = Np>1K(n). Then (7) implies that, for every ¢t € [0, 1], we have
{F(g)(t),g € Y} C K. Moreover, K is a compact in quk. Really, fix any sequence
{#m,m > 1} C K. For every n > 1, there exist a subsequence which converges in W, k
since K C K(n) and K(n) is a compact in W(;lk. Then, by applying the diagonal method,
we can find a subsequence which converges in each of W k. Hence, this subsequence
converges in W _*. Thus, K is a compact in quk. The Arzela—Ascoli theorem implies
that F(Y') is relatively compact.

Set Yy = C([0,1], K), where K is a compact constructed in the proof of Proposition 3.
Then F(Y) C Yy C Y, and Y} is a closed convex subset of Y. It is evident that F' maps
YO to }/0

Proposition 4. The transformation F is continuous on Yj.

Proof. Let g, — go, n — o0, in Yy. We have to check that F(g,) — F(g0), n — oo,
in Yy. Since F(Yp) is relatively compact, there exist a subsequence {n;, ¢ > 1} such
that F(gn,) converges in Yy as ¢ — oo. Thus, it is sufficient to verify that if g, — go
and F(g,) — ¢ in Yy, n — oo, then g = F(go). We prove that, for every f from the
definition of the metric A and for every ¢ € [0, 1], {f, F'(g0)(t)) = (f, g(t)). This will imply
g = F(go). Fix any f from the definition of the metric A for ¢ € [0, 1].

Since (f, F'(gn)(t)) — (f,g(t)), n — oo, it is sufficient to check that (f, F(g,)(t)) —
(f,F(g0)(t)), n — oo, or, equivalently (f o a9~ (-,t) — f o 29 (-,t), 5¢0) — 0, n — co. Fix
any m € N. We will verify that

(8) Vi € Wq;k (foxdn(-,t) — fox9(,t),3) — 0, n — oo.

Since f € FC®(X,R) Cc W} _,
Al fllpp_ix>m > 0, where ¢ is a constant which depends on p,,—1, pm but does not depend
on n. It is sufficient to check (8) for s from a dense subset of Wq_mk, for example for
regular generalized functions sz of the form

) () = [ Fp(itd. where p € Ly, (X.Rp).

Fix any s defined by (9). We have

we get foxdn(-,t) € Wy and |[fox9 (1), , <

<

[(F 029 () — f o 2™ (1), )] = ' [ (ream )= f o )plutan)

<% /X 25 (u ) — 290 u ) 1 () () <

where ¢y is a constant which depends only on f.
Similar to the proof of Theorem 5.21 in [3], it can be checked that

[ e ) =l () <
<z ( /] *afus, 9a(s)) — a(u, go(s)| %’“u(du}d8> -

where T is a constant which depends only on ¢; and 6(c) defined in conditions 2), 3) of
Theorem 1'.
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Note that g,(t) € K,n > 1. Hence, the sequence {g,(t), n > 1} is bounded in the
norms W - nk , m > 1. Moreover, by the remark after the definition of the metric A, the

convergence ¢n(t) — go(t), n — oo, in Wq__k with the metric A\ implies the convergence

gn(t) 5 go(t), n — oco. By condition 4) of Theorem 1’, this implies
vt € [0,1] alu, ga(t)) == a(u, go(t)), n — oo,

and, by the Lebesgue dominated convergence theorem,

/ / (et gn(5)) — afee, go (5)) |55 p(du)dds — 0, 1 — oo,
X JO

Therefore, (10) proves (8) for any regular generalized function > € W, *. Since regular
generalized functions are dense in W nk, (8) is proved for every x € W, nk. In particular,
(8) holds for sc = s¢5. Then F(go)(t) = g(t),t € [0,1], and the continuity of F is proved.

5. THE PROOF OF THEOREM 2

Assume that Eq. (1) has solutions z(u,t) and y(u,t). Then
¢
x(u,t) = u+/ a(x(u, s), 22 )ds, t >0,
0

t
ylu,t) =u —|—/ a(y(u, s),s?)ds, t >0,
0

where »% = »goux(-,s)" ! € W;k, w¥ =spoy(,s) L e W;k, 5> 0. We will find ¢p > 0
which depends only on co, ... ,cg, L and ||5¢]|4,— from the conditions of Theorems 1 and
2 such that z(u,s) = y(u,s), s < to for p-almost all u. This implies the uniqueness of
the solution.

Set

Ayz(t) = esssupsup || D'z (u, s) — D'y(u, s)||3, 0 <1<k,
ueX s<t

Ax(t) = sup [[5] — 5llg, s
s<t

where g1 < ¢ is defined in the formulation of Theorem 2.
Note that Ax(¢) is correctly defined since

n, —xd € quk C Wq:kfl, 1 <q.
We have [2(u,£) — gl Dl < L (f le(u,t) — y(u)lmds + [ 52 — 2l -5-rds)
thus
(11) Aox(t) < LtAox(t) + LtAsx(t).
Let us estimate Ax(t). We have

565 = sl ~k—1= sup  [(foz(,s)— foy(,s) )l <
1 fllpy,k+1<1

< lsllg—x  sup  [[fox(,s) = foy(,s)lpx,
1fllpy e <1
where p%—i—q% = 1, since, for every f € W;“ C Wfﬂ we have fozx(-,s) € W;ﬂ foy(-,s) €
wk.
P
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Set
Al%(t) =
1/p
=sup  sup (/ ID'(f o x(u,s)) — Dl(foy(u,S))H%u(dU)> , 0<I<E.
<t || fllpy 4151 NI X
Then
k
(12) Ase(t) < [50llq -k Y Ause(t).
=0

By (3), there exists a constant ¢ which depends only on @ and is such that
k

esssupsup ( [|lz(u, t) — ullg + | Do(u, t) — Tl + > | D'a(u,t)]n | <7
ueX t<1 I—2

esssup sup
weX t<1

Similarly to the proof of Proposition 5.2.1 in [3], it can be checked that

/ 1 o x(u,8) — f o y(u, 5) Pp(du) <
X

< E(/X ||Df(u)|’7’1};¢(du)>p/”1 (/OS/X lla(u, %) — a(u, %g)“gu(du)dr)p/m

< TN ()PP s <,
where ¢ is a constant which depends only on a and py > p. Thus, Agse(t) < EAs(t)t'/P

Let us estimate Aj¢(t). By the chain rule, we have
[ 1D a(09) = DUyt ) () <
<2 [ Df ot s)-Df o ylu,)fla)
X
(13) P B p/P
(esssupsup Dot s)lep ) 427 ([ 1070 u(w ()
X

ueX s<t
: (/X | D (u, s) — Dy(u,s)lli’;u(dwy/q»

k
(Iy(u, t) = ullar + | Dy(u,t) = Ll + ) IIDly(u,t)|H> <ec
=2

IN

where%+%:}%andp<’pv<p1.
Denote, by LY, the density of the measure o y(-, s)~! with respect to u. Then

/ IDF o y(u, ) Ea(du) = / D ()L () pa(dr) <
X X

< ([ 1pse é’;u(dw)w (/. (LZ(U))MdU))m ,

1 1
where — + = =
p1 + q1

Note that y(u,

) satisfie the equation

y(u,t) = u+ / 7 (y(u, 5))ds

~ =
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with @¥ = a(-,»¥). Then, by [3, Theorem 5.1.2], there exists a constant ¢ > 0 which
depends only on a such that

[ @iy <z o< s <t
X

Also we have

1Dz (u,t) = Dy(u, t)[ln < / [1Da(w(u, ), 5) |7 - [|Dx(u, 5) = Dy(u, s)|[ds+

/HDa z(u, 5),55) = Da(y(u, s), 5{)|ln - [ Dy (u, )[lopds <

<7( / (IDa(u5) = Dyl + l(w,9) = s 3) i+ 1 = w2 -) s )

for p-almost all u, where ¢ depends only on a and L.
Similarly to the proof of Proposition 5.2.1 in [3], we get

/ IDf ox(u,s) — Df oy(u,s)|2u (/ D2 f(u m)P/pl.

s p/p2
. (/ |Da(u, ) — Da(u, »¥)| ’;f,u(du)dr) < EA ()PP s <,
0
where ¢ is a constant which depends only on a. Hence, (13) implies

Ayse(t) < EAx(t)tP2 + (Agz(t) + Aoz (t) + As(t))t).

Similarly,
1/p
Ait) <zsup s (S [ 1D oalus) = D' oylus) i) |+
S<t Hf”Pl k+1 1<l
+EY_ Aix(t)
i<l
D o s) = D o y(us) Byldu) < /P o), s < ¢
X

and
(14) )<t [ > Aja(t) + As(t)

1<t
Hence
(15) Apse(t) ST | Ase(t)t/P2 + [ > Aga(t) + Ase(t)t

i<l

By (11), (12), (14), and (15), we have

+ > Na(t) et | Ase(t) + > Asa(t) | Lt < 1,

i<k i<k

where ¢ depends only on a, ||5¢|q,—, and L. Thus, for 0 < ¢y < 1 such that ct(l)/p2 <1, we
have Agz(tg) = 0. That is, for p-almost all u for every s < o, we have z(u, s) = y(u, s).
The uniqueness is proved. O
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Consider an example which shows that one actually needs Lipschitzian conditions with
the || - ||¢1,—k—1-norm in Theorem 2, although generalized functions belong to Wq’k.

Example 2. Let X =R, p(du) = #e’“zﬂdu, and the generalized function ¢ is the
delta-function dy, i.e. (f,s0) = (f,00) = f(0). Fix 1 < p < 2. By the Sobolev embedding
theorem, W} (R, 1) € C(R). Hence, 6o € W, !, where %—i—% =1.Set f(z) = +/]z], z € R.
Then f e W, for 1 <p < 2and (f, ), € W, !, is correctly defined. Let ¢ € C§°(R)
be such that |z| < £ implies ¢(z) = z, |z| > 1 implies p(z) = 0, max,er [¢(z)| < 1,
and maxger |¢' ()] < 2. Let a(u, ») = a(s) = o((f, %)), » € W, '. Then Eq. (1) has the

form

{ it = e((f2a)) = @ ((f 0 2, ),0)) = o(v/12(0, D)),
z(u,0) = u.

Consider z1(0,t) = 0, 22(0,t) = 1t2,¢ € [0,1]. Then 21 2(u,t) = u+ 21,2(0,t) are two

distinct solutions of (1) on [0,1]. Tt is straightforward to verify that the conditions of

Theorem 1 are valid. Moreover, we have

Voer, 30 € Wit la(a) — aGe)l = [o((f,2a)) — o({f, 52))] <
< 2{f,0a) = {f,2)| < 2|f]

but the solution of (1) is not unique.

poillza = 22llg, -1,
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