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INSERTION MODELING IN DISTRIBUTED SYSTEM DESIGN 

 
The paper describes insertion modeling methodology, its implementation and applications. Insertion modeling is a 
methodology of model driven distributed system design. It is based on the model of interaction of agents and envi-
ronments [1-2] and use Basic Protocol Specification Language (BPSL) for the representation of requirement speci-
fications of distributed systems [3-6]. The central notion of this language is the notion of basic protocol – a se-
quencing diagram with pre- and postconditions, logic formulas interpreted by environment description. Semantics 
of BPSL allows concrete and abstract models on different levels of abstraction. Models defined by Basic Protocol 
Specifications (BPS) can be used for verification of requirement specifications as well as for generation of test 
cases for testing products, developed on the basis of BPS.  
Insertion modeling is supported by the system VRS (Verification of Requirement Specifications), developed for 
Motorola by Kiev VRS group in cooperation with Motorola GSG Russia. The system provides static requirement 
checking on the base of automatic theorem proving, symbolic and deductive model checking, and generation of 
traces for testing with different coverage criteria. All tools have been developed on a base of formal semantics of 
BPSL constructed according to insertion modeling methodology.      
The VRS has been successfully applied to a number of industrial projects from different domains including Tele-
communications, Telematics and real time applications. 

 

Introduction

 Insertion modeling is the technology 
of system design founded on the theory of 
interaction of agents and environments. This 
theory has been developed in [1–2]. It is 
based on process algebra and is intended for 
the unification of different models of interac-
tion and computation (such as CCS, CSP, π-
calculus, mobile ambients etc.). In the last 
years this approach has been successfully ap-
plied to the problems of the verification of 
requirement specifications [3–5] for distrib-
uted concurrent systems from different sub-
ject domains including Telecommunications, 
Telematics, distributed computing and others. 
These applications are supported by the sys-
tem VRS developed for Motorola by Kiev 
VRS group. In combination with TAT system 
developed in Motorola Software Group Rus-
sia it supports also the generation of test cases 
from requirement specifications.        

We use the basic protocol specifica-
tions [4–6] to formalize requirement specifi-
cations for distributed concurrent systems. 
Basic protocols are parameterized MSCs 
(Message Sequence Charts) with pre- and 
postconditions interpreted on the states of an 
environment with inserted agents. Semanti-

cally basic protocol can be considered as a 
statement )( βα >→<∀ ux  of some kind of 
dynamic logic. In this statement x is a (typed) 
list of parameters, α  and β  are precondition 
and postcondition, correspondingly, and u is a 
process defined by the MSC diagram. Pre-
conditions and postconditions are formulas of 
first order multisorted language called the Ba-
sic Language. This language is used to de-
scribe the properties of the states of a system 
represented as a composition of environment 
and agents inserted into this environment. The 
evolving part of a system is represented by 
distinguished functional and predicate sym-
bols from the signature of the basic language 
called the attributes of an environment. The 
process u describes finite behavior of an envi-
ronment with inserted agents. When parame-
ters of a basic protocol are fixed, then we can 
speak about instantiated basic protocol. 

The purpose of this paper is to repre-
sent the formal definitions of the main con-
cepts of the Basic Protocols Specification 
Language (BPSL), define the notion of im-
plementation of Basic Protocols Specifica-
tions (BPS) and to give the high level de-
scription of the tools of the VRS system. Each 
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BPS consists of two parts: the environment 
description and the set of basic protocols. En-
vironment description determines the signa-
ture of basic language and the restrictions on 
possible interpretations of this signature 
(some part of a signature can be interpreted at 
the very beginning, for example, numerical 
functions and predicates, or constructors for 
the states of agents). The signature can also 
include some constructors for actions of 
agents inserted into environment. The set of 
basic protocols defines the requirements to 
the behavior of a system and implicitly 
defines the insertion function for the given 
environment. The requirements informally 
can be expressed in the following way: If the 
precondition of some instantiated protocol is 
valid and the process of this protocol started 
then after successful termination of this 
process the postcondition is valid.  

The semantics of BPS is defined by 
the variety of possible implementations of 
BPS that satisfy the informal property above. 
On abstract level an implementation is repre-
sented as an attributed transition system, that 
is a labeled transition system with transitions 
labeled by actions and states labeled by at-
tribute labels.  

We distinguish among concrete and 
abstract implementations. A concrete imple-
mentation assumes the concrete interpretation 
of a signature of basic language, and the states 
of concrete implementations are labeled by 
the attribute valuations that are the partial 
mappings from constant attribute expressions 
(expressions of a type ,...),( 21 aaf  where f is 

an attribute symbol and ,..., 21 aa  are constant 
terms of corresponding types) to their values. 
Each closed (no free variables) formula of ba-
sic language has the value on each state of a 
concrete implementation. Basic protocols can 
be also considered as formulas, but formulas 
of dynamic logic that express the main be-
havioral requirements. These formulas must 
be valid on any state of a concrete implemen-
tation and arbitrary values of parameters. Also 
we would like to specify concrete implemen-
tations for a case of concurrent performance 
of several basic protocols. To catch the situa-
tion the permutability relation for attributed 
actions is added to BPS and is used for the 

definition of so called partially sequential 
composition of processes. For empty permu-
tability relation this composition coincides 
with sequential composition and for the case 
when all actions are permutable it is a parallel 
composition. 

For abstract implementations we do 
not use concrete interpretation of a basic lan-
guage mentioned above. An abstract imple-
mentation of BPS is defined as an attributed 
transition system with validity relation be-
tween the attribute labels and the formulas of 
the basic language. Abstract and concrete im-
plementations are partially ordered by two 
abstraction relations: direct and inverse. These 
relations were studied in [6]. They generalize 
many abstractions referred to in [8-9] and 
were used for the definition of two abstract 
implementations of a system of basic proto-
cols that cover concrete implementations. The 
first one is used for the verification, the sec-
ond one – for generating of tests. 

The main tools of the VRS system are 
divided into two groups: static tools and dy-
namic tools. Static tools include checkers for 
consistency and completeness of precondi-
tions, safety checker, time checker and anno-
tation checker. All these tools are based on 
deductive system, which contains the univer-
sal prover for the first order predicate calculus 
and special provers for linear numeric arith-
metic (over real numbers and integers), enu-
merated and symbolic data types. Deductive 
system is capable for extension by integrating 
new specialized provers and solvers for spe-
cial theories. 

Dynamic tools include concrete and 
symbolic trace generators (CTG and STG). 
Both are assigned for simulating the behavior 
of models of a system defined by BPS by 
generating their traces in the system state 
space. For CTG the state space is generated in 
a traditional way by the valuation of attrib-
utes. The generation of traces is controlled by 
the goal state condition, safety conditions 
checked along traces, and some other means 
and heuristics that bound the search space. 
The states for STG are symbolic. Like as in 
symbolic model checking they are defined by 
logic formulas and symbolic computations in 
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combination with deduction are used for 
computing transitions. The BPS used for con-
crete trace generation can be used  for sym-
bolic trace generation as well.  

The paper is structured as follows. 
First we give the general introduction to in-
sertion modeling based on the model of inter-
action of agents and environments and de-
scribe the environments for MSC. Then the 
main features of the Basic Protocol Specifi-
cation Language are described. The semantics 
of this language for concrete and abstract im-
plementations are defined and used then for 
the definition of requirements for CTG and its 
high level description. Then we describe the 
main algorithms used for the static require-
ments checking. After the high level descrip-
tion of STG we define the notion of abstrac-
tion and prove the theorem about the connec-
tion between concrete and abstract imple-
mentations. We also describe some tools for 
tests generation. The last section contains the 
conclusions and the comparison with related 
approaches.             

 

Insertion modeling 

 
Insertion modeling is the development 

and investigation of distributed concurrent 
systems by means of representing them as a 
composition of interacting agents and envi-
ronments. Both agents and environments are 
attributed transition systems, considered up to 
bisimilarity, but environments are additionally 
provided with insertion function used for the 
composition and characterizing the behavior 
of environment with inserted agents. Attrib-
uted transition systems are labeled transition 
systems such that besides the labels of transi-
tions called actions, they have states labeled 
by attribute labels. If s is a state of a system, 
then its attributed label will be denoted as 
al(s). A transition system can be also enriched 
by distinguishing in its set of states S the set 
of initial states SS ⊆0  and the set of terminal 

states SS ⊆∆ . For attributed transition sys-
tem we use the following notation. 

ss a ′′→ :: αα  means that there is a transi-
tion from the state s with attributed label 

L∈α  to the state s΄ labeled by attributed la-

bel L∈′α , and this transition is labeled by 
action Aa ∈ . Therefore an  enriched attrib-
uted system S can be considered as a tuple   

>→××⊆< ∆ LSSASTSSLAS :al,,,,,, 0  

A pair >< LA,  of actions and attributed la-
bels is called the signature of a system S. We 
also distinguish a hidden action τ  and hidden 
attributed label 1. In the difference from other 
actions and attributed labels these hidden la-
bels are not observable.  

Behaviors. Each state of a transition 
system is characterized up to bisimilarity by 
its behavior represented as an element of be-
havior algebra (a special kind of a process al-
gebra). The behavior of a system in a given 
state for the ordinary (labeled, but not attri-
buted) systems is specified as an element of a 
complete algebra of behaviors F(A) (with pre-
fixing a.u, non-deterministic choice u+v, 
constants 0, ∆ , ⊥ , the approximation relation     
, and the lowest upper bounds of directed sets 
of behaviors) [2]. In the sequel we shall use 
the term process as a synonym of behavior. 

For attributed systems attributed be-
haviors should be considered as invariants of 
bisimilarity. The algebra >< LAU ,,  of attrib-
uted behaviors is constructed as a three sorted 
algebra. The main set is a set U of attributed 
behaviors, A is a set of actions, L is a set of 
attribute labels. Prefixing and non-determi-
nistic choice are defined as usual (nondeter-
ministic choice is associative, commutative, 
and idempotent). Besides the usual behavior 
constants 0 (deadlock), ∆  (successful 
termination) and ⊥  (undefined behavior), the 
empty action τ is also introduced with the 
identity 

uu =.τ  
The operation Uu ∈):(α  of labeling the be-

havior Uu ∈  with an attribute label L∈α  is 
added. The empty attribute label 1 is intro-
duced with the identity 

uu =:1  
The approximation is extended to labeled be-
haviors so that 

vuvu     ):(    ):( <∧=⇔< βαβα . 
Constructing a complete algebra 

F(A,L) of labeled behaviors is similar to the 
constructing the algebra F(A). Each behavior 
u in this algebra has a canonical form: 
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where τα ≠≠ ji a,1 , uε  is a termination con-

stant ( ⊥+∆⊥∆ ,,,0 ), all summands  are 

different and behaviors iu  and ju  are in the 

same canonical form.  
Behaviors, i.e., elements of the algebra 

F(A,L) can be considered as the states of an 
attributed transition system. The transition 
relation of this system is defined as follows: 
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uua

uvuvu

uvua
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→+
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A set E of behaviors is called transi-

tion closed if EuuuEu a ∈′⇒′→∈ , . 

Ordinary labeled transition systems 
are considered as a special case of attributed 
ones with the set of attribute labels equal to 
{1}, and the algebra F(A) is identified with 
F(A,{1}). 

Insertion function. Environment 
>< ϕ,,,,, MALCE  is defined as a transition 

closed set of behaviors ),( LCFE ⊆  with in-

sertion function EMAFE →× ),(:ϕ . The 

only requirement for insertion function is that 
it must be continuous w.r.t. approximation 
relations defined on E and F(A,M). Usually 
the behaviors of environment are represented 
by the states of a transition system consider-
ing them up to bisimilarity. The state ),( ueϕ  

of an environment resulting after agent inser-
tion (identified with the corresponding be-
havior)   is denoted as ][ue  or ][ueϕ  to men-

tion insertion function explicitly, and the it-
eration of insertion function 
as ]]...)[])[[(...(],...,,[ 2121 mm uuueuuue = . Envi-

ronments can be considered as agents and 
therefore can be inserted into a higher level 
environments with another insertion func-
tions, so the state of multilevel environments 
can be described for example by the following 

expression: ,...],...],[,...],,[[ 2
2

1
2

22
1

1
1

1 uueuuee ψψϕ . 

The most of insertion functions considered in 
this paper are one-step or head insertion func-
tions. Typical rules for the definition of inser-
tion function are the following (one-step in-
sertion): 

 

,
][][

,

ueue

uuee
c

aa

′′→
′→′→

   (1) 

.
][][ ueue

ee
c

c

′→
′→

          (2) 

 
The first rule can be treated as 

follows. Agent u ask for permission to 
perform an action a, and if there exist an a-
transition from the state e the performance of 
a is allowed and both agent and environment 
come to the next state with observable action 
c of environment. The second rule describes 
the move of environment with suspended 
move of an agent. The additivity conditions 
usually are used:  

 
][][][ veuevue +=+ , 

][][])[( ufueufe +=+ . 

 
The rules (1–2) can be also written in the 
form of rewriting rules: 

 
fuecuaea +′′=′′ ][.].)[.( , 

guecuec +′=′ ][.])[.( . 

 
MSC environment. The standard se-

mantics of MSC diagrams is defined as pro-
cess algebra semantics [7–8], so that the mea-
ning of MSC is the set of traces of a process 
over the set of events used in MSC. The pro-
cess algebra proposed by M.A.Reniers for this 
purpose was very complicated and far from 
implementations. An alternative approach has 
been developed in [9–10] where insertion se-
mantics of MSC has been defined. The main 
difference from the Reniers semantics is that 
we consider branching time instead of linear 
and synchronizing treatment of conditions and 
references. We shall use this semantics as 
intermediate semantics for basic protocols so 
let us consider it here. 
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send message  (i: m to j) 

  receive message  (i: m from j) 
  local action   (i: action b) 
  instance start  (i: instance) 
  instance stop  (i: stop) 
  condition   (J: condition y) 
  local condition  (i: cond y(J)) 
 

Fig. 1 

We use in basic protocols only simple 
MSC, that is MSC with the following con-
structs: instances, conditions, messages, core-
gions, and local actions. Before inserting 
MSC B to the MSC-environment it is con-
verted to the process nppBproc ||...||)( 1=  

where npp ,...,1  are sequential compositions 

of events corresponding to the instances of a 
diagram (parallel composition must be used 
for coregions) in the same order as on in-
stances.  Events are considered as actions and 
these actions are message actions, local ac-
tions, instance actions and local conditions 
used instead of ordinary conditions sharing 
several instances. Parallel composition is de-
fined by means of interleaving.  We use the 
notations for events as in [9] (fig.1).  

The process over the actions listed in 
this figure is called MSC-process and MSC-
process without local conditions is called re-
duced MSC process.  

 
 
 
 
 
 
 
 
 
 
 
 
 
For example, if B is a diagram of fig.2, 

then  proc(B)=((b:instance).(b:cond 
y{ b,c}).(b:m to c). (b:n to c).(b:cond 
z{ b,c}).(b:stop) || 
(c:instance).(c:cond y{ b,c}).(c:m from b). (c:n 
from b).(c:cond z{ b,c}).(c:stop)). 

 The state of MSC-environment is a 
triple of functions e = (Ο, Σ, Υ) (empty envi-
ronment, no inserted agents) or the expression 

],...,,[ 21 muuue , where e is an empty environ-

ment and agents muuu ,...,, 21  are MSC-proc-

esses. The states of MSC environment are 
unlabeled. The function Ο is a partial function 
of three arguments m, i, j, where m is a mes-
sage expression, and i and j are instances. 
This function yields values in the set of non-
negative integers. Equation Ο(m, i, j) = k 
means that earlier k message events (i : m to j) 
occurred for which there are no corresponding 
receiving message events pending. Function Σ 
is a partial function of two arguments y and J. 
The first argument is a condition expression, 
the second is a set of instances. The value Σ(y, 

J) represents a nonempty subset of the set J. 
Σ(y, J) = I means that earlier a control event i 
: cond y(J) had been executed, for all in-
stances Ji ∈ . The condition event is attached 
to all instances in J, and Σ(y, J) is the set of all 
instances which have already been synchro-
nized by the condition y. The last component 
Υ of a triple is a set of all instances that had 
already started. This explanation results in the 
following definition of environment transi-
tions. For empty environment e a transition 

ee a ′→  
is possible in the following cases: 
 
1. a = (i: m to j), 

1),,(.),,(., +=′∈ jimejimei ΟΟΥ  
2. a = (i: m from j),  

1),,(.),,(., −=′∈ jimejimei ΟΟΥ  

3. a = (i: action b), ee =′  
4. a = (i: instance), }{.. iee ∪=′ ΥΥ  

5. a = (i: stop), }{\.. iee ΥΥ =′  

c b 

y 

m 
n 

 z 

Fig.2 
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6. a = (i: cond y(J)), 
)),, cond:(.,(), cond:(., iJyieJJyieJ ΣΣΥ Φ=′⊆

 
where  

}{),,(

)},{\,(

}{),,(

iIiIJ

iiJJ

iiJ

∪=Φ
=⊥Φ

=⊥Φ
 

and  a rule is applied if previous one is not 
applied. In all these rules only the 
components of environment state that change 
their value are shown. All other components 
of environment left unchanged. Now we 
define the rule (1) for empty MSC-
environment so that in the cases 1-3 ac = , in 
cases 4-5 τ=c , and in the case 6, c = (J: 
condition y) if =⊥′ ), cond:(. Jyie Σ  and 

τ=c  otherwise.  
Initial state of empty MSC environ-

ment is ),,(0 ∅⊥⊥=e  where the first two 

components are nowhere defined functions 
and the last component is the empty set of in-
stances. For the process B on fig. 2 the repre-
sentation of the process ][0 Be  is given on 

fig. 3.  
 To define insertion function for non-
empty environment let us define some auxil-
iary notions. MSC-process is called belonging 

to instance i if all its actions belong to the in-
stance i. MSC-process is called decomposable 
if it can be represented as a parallel composi-
tion of processes belonging to different in-
stances. The set of all decomposable proc-
esses is transition closed (follows directly 
from the definition).  

The process proc(B) is equivalent to 
the instance oriented textual representation of 
MSCs and we can define the composition u*v 
of decomposable MSC-processes which in the 
case of MSCs is equivalent to their vertical 
product. This composition is defined by the 
following identities: 

),||||);(||...||);((

)||||...||(*)||||...||(

11

11

SQqpqp

SqqQpp

mm

mm

=
=

 

where mpp ,...,1  belong to the same instances 

as mqq ,...,1 , correspondingly, Q and S have 

no common instances. Note that joining two 
instances we can use the identity ((i: stop). 
(i: instance)) = ∆, because these two behav-
iors are insertion equivalent. 

For nonempty environment e[u] and 
decomposable processes u and v define 

][],[ vuevue ∗= . This definition can be ex-
tended to arbitrary number of decomposable 
processes:  

 

][0 Be  = ( 
  ((b:instance). (c:instance)+(c:instance). (b:instance)); {b,c}:condition y);  
  (b:m to c). 1e  [ 
                         (b:n to c). (b:cond z{ b,c}).(b:stop) ||  
              (c:m from b). (c:n from b).(c:cond z{ b,c}).(c:stop) 
  ] 
 ) = ( 
  ((b:instance). (c:instance)+(c:instance). (b:instance));  
  ({b,c}:condition y). (b:m to c).( 
   ((b:n to c). (c:m from b)+(c:m from b). (b:n to c)); 
   (c:n from b).({b,c}:condition z);  
                         ((b:stop). (c:stop) +(c:stop).(b:stop)); 
   ][0 ∆e   
  ) 
 ) 
 

Fig. 3 
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]...[],...,[ 11 mm uueuue ∗∗= . 

To use this definition for arbitrary (not only 
decomposable) MSC-processes one must ex-
tend the notion of the composition of MSC-
processes. 

Partially sequential composition of 
behaviors. Let us consider attributed behav-
iors of the algebra F(A,L). Let 

},|:{: AaLaAL ∈∈= αα  be the set of 
attributed actions (unlabeled actions are 1:a, 
attribute labels are τα : ). First we define the 
permutability relation over the set L:A. This is 
an arbitrary symmetric and reflexive binary 
relation denoted as ba ↔ . Intuitively this 
relation means that )*(~)*( abba E  for envi-
ronment E where the agents from F(A,L) will 
be inserted into. We say that an attributed ac-
tion a:α  is reachable from behavior u if 
there exists behavior v such that v:α  is 
reachable from u and vv a ′→:α . Let us 
expand the permutability relation of attributed 
actions to attributed behaviors. We say that 
behaviors u and v are permutable ( vu ↔ ) if 0 
and ⊥  are not reachable from u and v, and for 
each attributed action a reachable from u and 
attributed action b reachable from v ba ↔ . 

Now we can define the partially se-
quential composition vu ∗  of two behaviors. 
Let u and v are two attributed behaviors, rep-
resented in the canonical form:   

v
Ll

ll
Kk

kk

u
Jj

jj
Ii

ii

vbv

vuauu

εβ

εα

++=

=++=

∑∑

∑∑

∈∈

∈∈

.:

,.:

 

Then 

);().()(:

).()(:

,,
vu

Llbu
ll

Kku
kk

Jj
ij

Ii
ii

lk

vubvu

vuavuvu

εεβ

α

β
+∗+∗+

+∗+∗=∗

∑∑

∑∑

∈↔∈↔

∈∈
 

A sequential composition of termination con-
stants is defined with the following relations: 

0);0(  ,);(  ,);( ==⊥⊥=∆ εεεε . 
Note that partially sequential composition is 
not continuous with respect to the first argu-
ment; however it is continuous with respect to 
the second one. It is also continuous with re-
spect to both arguments, if the first argument 
is finite and totally defined.  Let now u and v 
be completely unlabelled.  Then if all actions 
are permutable, then a partially sequential 

composition coincides with a parallel compo-
sition, and if no actions are permutable, then 
we obtain a sequential composition of behav-
iors.  The notion of partially sequential com-
position originates from the notion of weak 
sequential composition introduced by Renier 
for describing the semantics of MSC 
diagrams and is a generalization of the latter 
(for not delayed nondeterministic choice). 

Permutability for MSC-environ-
ment. The states of MSC have no attribute 
labels (the empty label is omitted). Two ac-
tions are permutable if they belong to differ-
ent instances, or in the case of conditions 
(sharing a set of instances) have no common 
instances. Now we can define partially se-
quential composition of arbitrary (not neces-
sarily decomposable) MSC-processes and de-
fine for them insertion function as above but 
changing vertical product to partially sequen-
tial composition that coincides with vertical 
product for decomposable processes. 

For MSCs B and C we have 
proc(B)*proc(C)=proc(B*C) where the prod-
uct of MSCs is their vertical product.  If 0e  is 

the initial state of empty MSC-environment 
and B is an MSC diagram then [B] denotes the 
behavior of a system )]([0 Bproce . 

Interpreted MSC.  MSC environment 
regulates the correct ordering of MSC-actions 
in MSC-processes. The actions of interpreted 
MSCs can also define the data transformation 
in higher level data environment D. Transi-
tions dd a ′→  in D for MSC action a define 
the corresponding transformation. The inser-
tion function for data environment can be de-
fined in the same way as for MSC environ-
ment using partially sequential composition, 
but with another notion of permutability. Be-
low several kinds of data environments will 
be considered. For MSC diagram B we can 
construct MSC-process [B] and insert this 
process into data environment obtaining two 
level environment d[[B]]. As it was men-
tioned before d[[B],[C]]=  d[[B]*[ C]] = 
d[[B*C]].   
 

Basic protocol specifications 

Let us start with a very simple and 
well known example: readers and writers 
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(R&W). The environment keeps shared record 
that can be sent to readers and updated by 
writers. Readers and  
writers are two types of agents that can be in-
serted into this environment. Basic Protocol 
Specification (BPS) of a system consists of 
two parts: environment description and the set 
of basic protocols. Environment description 
has a text representation and basic protocols 
are MSC diagrams with pre- and postcondi-
tions. The description of R&W environment 
is presented in fig.4. It shows that there are 
two  environment attributes rec of symbolic 
type and queue, the list of symbolic type data. 
Each reader has two Boolean attributes regis-
tered and access allowed. The agents of a 
type writer have no attributes in the environ-
ment. Safety condition asserts that access (to 
the rec) is allowed only for registered readers. 
This is a dynamic requirement which must be 
satisfied in any environment state. The last 
assumption states that initially there are no 
registered readers (and therefore access is not 
allowed for all of them).  Other sections of 
environment description will be discussed 
later. 

The set of basic protocols represents 
the set of local requirements to the system. 

Each protocol is a simple MSC with a special 
text block with parameters. Only two condi-
tions are allowed in Basic Protocol. The first 
one is at the beginning of MSC. It is shared 
by all instances of the protocol and contains a 
precondition formula as a condition text. The 
second condition is at the end of a protocol, it 
is shared by all instances and contains a post-
condition as a text. Text block contains a list 
of typed parameters used for instantiation of a 
protocol. 

Basic protocols for R&W are repre-
sented in figures 5-7. Each diagram is accom-
panied by its name and a list of parameters. 
First three protocols describe the local be-
havior of the system inspired by reader activ-
ity. The protocol write(m,s,x) describes the 
activity of the writer, and the last protocol up-
date(x,t) describes the transition of the envi-
ronment (without agents participation). The 
first four protocols have an expression of a 
type ),( smτ   where τ is a type of agent and s 
is the state expression. It is a state assumption 
and means that the agent m of the type τ is in 
a state s. Agents are represented by their 
unique names (ids), states are represented by 
means of behavior (process) algebra expres-
sions. 

environment( 
 agent types:( 
          reader: ( 
       registered: Bool, 
   access allowed: Bool 
          ), 
          writer: Nil  
     ); 
     attributes:( 
  rec: symb, 
  queue: list of symb 
 ); 
 safety condition: Forall(m:reader)( 
  m.access allowed->m.registered 
 ); 
 initial condition:( 
  Forall(m:reader)( 
                  ~(reader m.registered)&  
                  ~(reader m.access allowed) 
             ) 
 ) 
); 

Fig. 4 
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Therefore the symbols register, read, 
and release are reader actions, and write is a 
writer action. The actions of environment are 
send and receive message events or local ac-
tions presented by MSC. Agent attributes are 
accessed by the expressions of the type xm. τ , 
where τ is the type of agent m and x is the 
name of attribute (type of agent can be omit-
ted in some cases). The instances are named 
by expressions containing the names of agents 
or the name of environment env possibly at-
tached by the list of attributes or the names of 
agents.  

In symbolic notation a basic protocol 
will be represented by expressions of the form  

)( βα >→<∀ ux  
where x is a list of parameters, α  and β  are 
precondition and postcondition, correspond-
ingly, and u is an MSC process (usually in-
serted to MSC environment). 

Basic language used for pre- and 
postconditions is the first order language of 

multi-sorted predicate calculus with equality. 
The signature of this language has predefined 
part and the part defined by an environment 
description. Predefined part contains simple 
numeric types int and real, with arithmetical 
operations and inequalities, Boolean type 
Bool, type agent state with operations of 
process algebra (prefixing and nondetermin-
istic choice), symbolic type symb with some 
predefined constructors (such as (():()), ((),()) 
etc.), and composite types: arrays and lists of 
simple type elements and functional types 

τττ →),...,( 1 m  where  mττ ,...,1  are already 

defined types and τ is a simple type. However 
there are some restrictions on the use of func-
tional types for different tools. For example, 
concrete trace generator allows only enumer-
ated types for mττ ,...,1 .  

Predefined part of basic language sig-
nature contains also the agent state function 
symbol τstate   for each agent type τ defined 

env rec 

 update x 

update(x,t) 

Fig. 7 

  

(queue=t)&(rec=x)& 

Forall(n:reader)(n.registered-> 

n.access allowed) 

(queue=(x,t))& 

Exist(n:reader)(n.registered)& 

Forall(n:reader)(n.registered-> 

~(n.access allowed)) 

env queue 
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in environment description. This is a unary 
symbol for the function of a type 

stateagent nameagent → . These symbols are 
used implicitly in state assumption expres-
sions ),( smτ  equivalent to formulas 

smstate =)(τ . Some constant symbols for 

agent states can also be included into the sig-
nature of basic language an can be defined by 
behavior algebra equations. These equations 
can be represented in reductions section of 
environment description.  For example, possi-
ble equations for the behaviors of readers and 
writers in R&W example are: 

state reduction: rs(x)(                                                   
reader init = register.(loop read;release), 
writer init = (loop write;release), 
loop x = (x;(loop x+Delta)) 
). 

This is a correct behavior of readers and writ-
ers. More free behavior including incorrect 
activity can be described by another reduc-
tions: 

incorrect state reduction: rs()(                                                   
reader init = register state + read state + 
+ release state, 
register state = register. reader init, 
read state = read. reader init, 
release state = release. reader init, 
writer init = write state + writer release, 
write state = write. writer init, 
writer release = release. writer init 
).   

In environment description one can 
define several enumerated types in the section 
types (for example types: (colour: (red, 
green, yellow), size: (small, big),…)). One 
can also define agent types with associated 
agent attributes that are considered as func-
tional symbols. Functional and array 
attributes have arity more then 0, attributes of 
simple types and lists (simple attributes) are 
considered as functional symbols of arity 0. 
They are equivalent to the variables that 
change their values when a system moves 
from one state to another (but they cannot be 
bounded by quantifiers). Other attributes can 
also change their values during the evolution 
of a system, but this changing may refer only 
to the change of the parts of a value.   

Universal and existential quantifiers 
with variables typed by simple types can be 

used in formulas. All terms in formulas must 
have simple types. 

The difference of precondition and 
postcondition is that in postcondition one can 
use the imperative elements like assignments. 
In this case assignment (x:=y) is equivalent to 
the statement: new value of attribute x (after 
performing a basic protocol) is equal to the 
previous value of the expression y (before 
performing of a protocol).  In protocol 
write(m,s,x) the operator add_to_tail 
(queue,(m:x)) is used. This operator adds new 
element to a list and is interpreted as state-
ments so that new value of list queue is the 
result of performing of the operator 
add_to_tail applied to the previous value of 
the second parameter. 

The signature of basic language may 
include also abstract data types defined in the 
sections types, functions, axioms, and 
reductions. Section types contains symbols 
for simple abstract data types, section 
functions contains specification of functional 
symbols of type τττ →),...,( 1 m , axioms are 

first order formulas without attributes, and 
reductions are systems of rewriting rules that 
must define canonical forms.   

This information is used by deductive 
system, which contains a universal procedure 
for the first order theory, and procedures for 
eliminating quantifiers and solving equations 
in special theories (numeric, symbolic and 
enumerated) and some distinguished data 
types theories. 
 

Semantics of BPS    

 In [4] semantics of basic protocols has been 
presented in a very abstract and general form. 
In [6] there were introduced two kinds of se-
mantics, direct and inverse, and a theorem 
about connection between abstract and con-
crete implementations of a system of basic 
protocols was formulated with a sketch of 
proof. Here we shall consider more concrete 
definitions close to processes represented by 
MSCs and the implementation in VRS sys-
tem. Moreover we use here the independent 
notion of implementation of BPS and the con-
structions of [4] and [6] can be now proved to 
be implementations.  
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As in [4] and [6] we associate a tran-
sition systems with each BPS as its possible 
semantic values and distinguish between con-
crete and abstract implementations. In con-
crete implementations all functional and 
predicate symbols are interpreted on corre-
sponding domains and the state of environ-
ment is the partial valuation defined on all at-
tributes. In abstract implementations the class 
of possible interpretations for the signature is 
fixed, and the states of environment are for-
mulas of basic language.  

Implementation of BPS. First we 
should answer the question: what is the im-
plementation of a basic protocol specification. 
Then the class of all possible implementations 
will be declared as a semantic value of BPS. 
It must be an attributed transition system with 
validity relation α=|s  where s is a state and 
α  is a closed statement (no free variables) of 
basic language. The transitions of this system 
must be labeled by environment actions that 
are the events of basic protocols considered as 
MSCs.  

The validity relation |= must satisfy 
the following condition. Let T be the set of 
formulas of basic language that includes all 
axioms of the environment description (in-
cluding reductions) and all true statements of 
the specialized theories for interpreted part of 
a signature. Then the set C(s) of all statements 
α  valid in s, that is statements for which 

α=|s  is valid, must be closed relative to the 
inference in the theory T, that is for any 
statement )(sC∈α  all statements β  such 
that  βα −|,T  are also in C(s). The set C(s) 
relates to the observable part of a system and 
must depend only on the attribute label of a 
state s. In abstract form of a system model the 
attribute label can be identified with this set, 
but in practice more constructive representa-
tions are used.  

Note that basic language includes all 
information about the types and independent 
behaviors of agents to be inserted into their 
environment. But they interact with environ-
ment only via basic protocols (state assump-
tions) and can be present implicitly. Some in-
formation about the variety of agents can be 
represented by means of validity relation 
which can include more statements except of 
deduced in the theory T.        

If a system S is the implementation of 
BPS it must satisfy the following requirement. 
Let B is an instantiated basic protocol (a pro-
tocol with substituted parameters) with pre-
condition α  and postcondition β .  Let 

Ss ∈ . Then  
 

βα =′⇒′→= |,| ][ ssss B
. 

 

This requirement is not enough because it 
does not take into account the possibility of 
concurrent performing of several protocols. 
To make this possible we use corresponding 
permutability relation and partially sequential 
composition. The modified requirement can 
now be expressed in the following form:  

)3(|,| ][][ βα =′⇒′ →= ∗ ssss CB  
for arbitrary MSC C such that ][][ CB ↔ . 
Therefore to define the notion of implemen-
tation we must define the permutability rela-
tion for basic protocol specifications.  

A system S can be considered as a 
data environment for reduced MSC processes 
defined by equation (1), additivity conditions, 
and equation 

s[u,v] = s[u*v]. 
Let us consider some assumptions about in-
terpretation of MSC actions on S, that is a 
transition relation for S. We assume that mes-
sage and local actions as well as instance ac-
tions do not change the set C(s). It means that 
if ss a ′→  and a is not a condition, then 
C(s) = C(s΄). We introduce two kinds of con-
ditions: condition when and condition set  to 
distinguish the performance of pre- and 
postconditions. Condition a = (J: condition 
when y) is a guard, it does not change the att-
ribute labels of the states of S, but allows the 
transition ss a ′→  only if s|=y. Condition 
set changes not only the state of S but also its 
validity relation. If  a = (J: :condition set y) 
and ss a ′→  then ys =′ | . Assume that in 
basic protocols preconditions are changed to 
when condition and postconditions are chan-
ged to set condition. The set of MSC actions 
modified in this way will be called the modi-
fied MSC action set. A BPS is called con-
sistent if a theory T defined by environment 
description is consistent and the conjunction 
of all initial conditions and safety conditions 
is satisfiable.   
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Summarizing discussion above we 
give the following definition of implementa-
tion of BPS.  An attributed transition system 
S over the set of modified MSC actions is 
called an implementation of a given consistent 
BPS if 

1. Validity relation |= depending only on 
attribute labels and closed over the theory T, 
defined by environment description, is de-
fined on S. 

2. A permutability relation is defined on 
the set of modified attributed MSC actions so 
that condition (3) held for all basic protocols. 

Trivial implementation consisting with 
only one deadlock state always exists. So 
usually we are interested in the existence of 
nontrivial implementations, for example free 
of dead locks or satisfying safety (integrity) 
conditions or satisfying other kinds of dy-
namic properties.  

Direct and inverse implementations. 
The difference between two kinds of imple-
mentations is in the applicability condition 
used in the formula (3). In this formula the 
applicability condition is  α=|s  for instantia-
ted precondition α . This is a direct 
implementation. For inverse implementation a 
dual condition is used: )|( α¬=¬ s . This con-
dition means that precondition α  is con-
sistent with current state and is weaker than 
direct condition. For concrete implementati-
ons these conditions coincide (consistency 
and completeness of concrete implementa-
tion), so this is interesting first of all for abs-
tract implementations. Considered form of 
representation of inverse applicability condi-
tion is difficult for computations so simpler 
conditions are used in practice. For example, 
let attributed labels are formulas of basic lan-
guage. Then αα =⇔= |)(| ss alT, . Let  

,...),(,...),,()( 2121 rrrrs ααγ ==al , where 

,..., 21 rr  attributes occurring in two formulas 
and they are simple attributes. Then sufficient 
condition for inverse applicability can be ex-
pressed in the form 

,...)),(,...),(,...)(,(| 212121 xxxxxxs αγ ∧∃= . 
 

Concrete and abstract implementations 

Concrete implementations. Concrete 
implementations of BPS are characterized 

first of all that a concrete interpretation of all 
symbols from the signature of the base lan-
guage are defined for them, except for attrib-
utes. For them only the value domains and the 
ranges of the arguments are defined.  Another 
characteristic of concrete implementations is 
an explicit representation of the system in the 
form of a composition of the environment and 
agents inserted into it. Finally, a concrete im-
plementation should be deterministic with re-
spect to the agents’ behavior.  In other words, 
an arbitrary change of the state of the agents 
and their attributes should lead to a uniquely 
determined change of other attributes of the 
environment.  Here a certain class of concrete 
implementations will be described. 

BPS assumed to be consistent for a fi-
nite number of agents. That is the set of axi-
oms is consistent and there exists an initial 
state of environment with finite number of 
agents satisfying initial and safety conditions. 
State s of empty environment is the partial 
valuation of the set of all attributes. To 
achieve the determinism some additional hid-
den attributes can be added to the attributes 
described in environment description together 
with rules or algorithms for their change. Let 
A be the set of all attributes (including hidden 
ones), that is a set of all constant attribute ex-
pressions ,...),( 21 aaf  where f is an attribute 

symbol and ,..., 21 aa  are constant terms of 
corresponding types. If f is a symbol of agent 
attribute it has the form (m.x) where m is the 
name of agent and x is the name of attribute. 
In this case we write ,...),(. 21 aaxm . We add 
an undefined value ⊥  to all domains and con-
sider the state s as a totally defined mapping 

DA →:s  where D is the union of all do-
mains extended by undefined value. Let 0A  

be the set of all attributes defined by envi-
ronment description (they are observable). 
Define an attribute label for s as a narrowing 
of s to 0A , that is 

00 ),())((,:)( AalDAal ∈=→ xxsxss . Let 

Eq(s) is the conjunction of all equalities 

0),( A∈= xxsx . Define validity relation so 

that ⇔= α|s  α=|)(, sEqT . In the most of 
applications when quantifiers are restricted by 
finite sets of values (agent names or enumer-
ated types) and s is defined only on the finite 
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set of attributes the validity of the formulas of 
basic language is computed without any de-
duction simply by substituting the values.  

The next step of constructing the concrete 
implementation is the definition of transitions 
for the empty environment. Define ss a ′→  
so that  

1. If a is not a condition, then  
)()( ss ′= alal ; 

2. If a = (J: condition when y),  
)()( ss ′= alal  and  ys =| ; 

3. If  a = (J: condition set y), then ys =′ |  
and only those attributes which are the 
left hand sides of assignments or occur 
in logic formulas can change their val-
ues in the new state. 

Now define the states of entire system as 
]:,...,:][...[ 111 nnm uuqqs νν∗∗  

where mqqq ∗∗= ...1  is the partially sequen-

tial composition of MSCs with modified ac-
tion sets and inserted into MSC environment, 

nuu ,...,1  are the states of agents over the ac-

tion set A, nνν ,...,1  are their names (all differ-

ent) considered as the attribute labels of 
agents. Transitions of named agents are de-
fined as follows: 

vmumvu aa :: →⇒→  
 

Initial state 
]:,...,:][[ 11 kk wws µµ∆  

is such that all initial and safety conditions are 
valid on s. So the set S of empty environment 
states is considered as an environment for in-
terpreted MSC agents and the set s[q] is con-
sidered as an environment for agents over A 
with insertion function defined below. We 
call this environment as the main one. We as-
sume that the set of named agents that can be 
inserted into the main environment is fixed 
and constitutes only the agents in the initial 
state.  This assumption will be used each time 
the protocol is instantiated or the value of 
quantifier formula with variables bounded to 
the agent states or names is computed.    

The permutability relation for MSC 
agents is defined in the following way.  

1. Unconditional actions are per-
mutable if they belong to different instances; 

2. Conditional actions a and b are 
permutable if their instance sets do not inter-

sect and for all states s if ss ba ′→ .  and 
ss ab ′′→ .  then )()( ss ′′=′ alal . 

 From this definition it follows that for 
two MSCs A and B such that ][][ BA ↔  from 

ss BA ′ → ][*][  and ss AB ′′ → ][*][  it follows 
that )()( ss ′′=′ alal . 

The insertion function for the entire 
system is assumed to be additive and satisfy 
the commutativity condition: 

],][[],][[ uvqsvuqs = . Also we assume that 

⇒′′→ ][][ qsqs a  ]][[]][[ uqsuqs a ′′→  and 
]][[],:][[ vqsvmqs =∆ . We say that an agent 

m participate in q if a formula ),( umτ  occur 
in q. We also assume that the type of an agent 
is uniquely defined by its name m. Now we 
can define the insertion function by means of 
the following transition rules. 
 Changing the state of a protocol: 
where action a is supposed to be uncondi-
tional action. 

 Activating a protocol b: 

,
][]:,...,:][[

,,.],|

11 pqsumumqs

ssaqpabs
a

kk

a

∗′→
′→↔== [ α

 

 
(5) 

where )when condition :( αJa = , 

kk umum :,...,: 11  are agents involved into the 

protocol b (their state assumptions occur in 
the condition α ). The protocol b is assumed 
to be instantiated by constant values of pa-
rameters. 

Terminating a protocol: 

.
]:,...,:][[][

,

11 kk
a

aa

umumqsqs

qqss

′′→
′→′→

 
 

(6) 

Here q is a partially sequential composition of 
MSC agents, a is a condition set action (there-
fore a modified postcondition), kmm ,...,1  are 

the names of agents which participate in q, 
but do not participate in q′ , kuu ,...,1  are their 

states. The new states of agents are defined 
syntactically by state assumptions from post-
condition.  
The described implementation is direct one. 
The inverse implementation can work when 
some attributes needed for computing validity 
relation have no values. This is normal for 

,
][][

,

qsqs

qqss
a

aa

′′→
′→′→

 
 
(4) 
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abstract implementations used for proving 
properties but is not normal for concrete im-
plementations for which the undefined value 
usually is the indication of error.  

Denote the class of concrete imple-
mentations of BPS P described in this section 
as Concr(P)  
 Theorem 1. Each transition system S 
from the class Concr(P) is a direct and inverse  
implementation of P.  

The first property of implementation 
follows from the definition of validity relation 
for S, the second property follows from the 
definition of permutability relation. For con-
crete implementation we have a concrete in-
terpretation of the theory T. Therefore for 
each state s each formula α  is valid ( α=|s ) 
or not valid ( α¬=|s ). Therefore 

)|(| αα ¬=¬⇔= ss  and the each direct im-
plementation from Concr(P) is at the same 
time the inverse implementation and wise 
versa. 

Abstract implementations. For ab-
stract implementations the interpretation of 
the signature of a basic language is not strictly 
defined and the validity relation is derived 
from attributed labels of states and a theory T 
defined by environment description (includ-
ing predefined interpretation). We assume that 
the attributed labels of the states Ss ∈  of 
empty environment are formulas of the basic 
language and the validity set 

}|)(|{)( αα −= ss alT,C . The environment 
for abstract implementation is constructed in 
the same way as a concrete two level envi-
ronment. The low level is the environment for 
basic protocols and the high level is the level 
for named agents over the action set A. So the 
general state of a system has the form   

]:,...,:][...[ 111 nnm uuqqs νν∗∗ , 

but in the difference from concrete imple-
mentations the agents occurring in the state do 
not constitute a complete set of agents in the 
system. New agents can appear and disappear 
during the performance of environment and 
their states can be defined by means of sym-
bolic expressions.  

Instantiation of basic protocols in the 
case of concrete and abstract implementations 
are different, however in the both cases the 
solution of the precondition must be found, 

that is the list of values of parameters such 
that after substitution the precondition is 
valid. In the case of concrete implementation 
the solution must be concrete, and in the case 
of abstract implementation the solution can 
use symbolic values in the extended signature 
of basic language. For example, let precondi-
tion be the formula ax ≤  where x is an inte-
ger parameter and a is a simple integer attrib-
ute. If the value of a is defined then concrete 
implementation can select arbitrary integer 
less or equal to a for x (which one depends on 
hidden computations with hidden attributes. 
Otherwise the protocol is not applicable. In 
the case of direct abstract implementation a 
new symbolic value z for x can be introduced 
as a new constant symbol and a condition 

)( az ≤  will be added to the attribute label of 
a current state if ≠⊥a  is valid. The permuta-
bility relation is defined in the same way as 
for concrete interpretation.  

The insertion function for abstract im-
plementations is defined by means of the 
same rules (4–6) as for concrete implementa-
tions with slight change and another restric-
tions on the constituents of these rules. The 
rule (4) is used without any changes because 
the unconditional actions never change the 
attributed labels. The rule (5) for activating 
protocol is slightly changed. To explain this 
change let us consider the symbolic represen-
tation of a protocol b: 

))()()(( xxuxx βα >→<∀  
Applicability of this protocol in the current 
state s:γ  is equivalent to the condi-
tion )(|, xxαγ ∃=T . If this condition is valid, 
we can found a general solution 

),...(),( 2211 ztxztx ==  for the problem 

)(|, xαγ =T , where ,...),( 21 zzz =  is the list of 
symbolic parameters needed to express the 
general solution. Their symbols must be dif-
ferent from all other symbols already used in 
BPS and have corresponding types. In the 
worst case if there are no good solution pro-
cedure, the list x can be renamed to new pa-
rameters list z and )(zα  added to the attrib-
uted label. Let 

,...),()),(when condition :()( 21 tttxJxa == α . 
Then the modified rule (5) can be represented 
as follows: 
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The process of instantiation of a basic proto-
col which could be hidden in the case of con-
crete basic protocols because there were no 
symbolic parameters, must be defined explic-
itly together with the rule of activation of a 
protocol. Another peculiarity of symbolic 
case is that not all agents participating in the 
residual part p(t) of a protocol are taken from 
the list of inserted in the current moment 
agents but some can be generated in the 
moment of instantiation. For example, some 
of parameters from the list z can be the names 
of new agents, others can be parameters of 
their state expressions in the state 
assumptions. All  this depends on the states of 
a system and algorithms used for the 
implementation. One more peculiarity of 
symbolic implementations is that it can 
implement inverse implementation model. In 
this case the activation rule must looks as 
follows.  

 
The termination rule is the same as for conc-
rete implementation, but let us present it with 
the explicit change of attributed labels: 

]:,...,:][[][

),:():(

11 kk
a

aa

umumqsqs

qqss
′′→

′→′′→ γγ
 

 
(6a) 

 
Here )set condition :( βJa = , and the attrib-
uted  label γ ′  must satisfy the condition com-
mon for all condition set actions: the postcon-
dition must be valid on s′′ :γ  that is 

βγ →′−|T . The function ),( βγγ spt=′  is 

called a predicate transformer in the state s.  
As for concrete implementation 

kmm ,...,1  are the names of agents which par-

ticipate in q, but do not participate inq′ , 
kuu ,...,1  are their states. Again the new states 

of agents are defined syntactically by state 
assumptions from postcondition, but the list 
of agents can be not complete, some agents 

can disappear or even all of them disappear 
(k = 0). 

Predicate transformers. Two classes 
of implementations are described in a very 
general way. They contains a big undefined 
components that depend on subject domain, 
the not formalized requirements, and concrete 
circumstances of the development process. A 
source BPS model can be very concrete and 
remains no choices for implementation details 
or too abstract and provides a big freedom in 
making decisions. The definition of termina-
tion rule has the most indefinite component. 
Any condition γ ′  consistent with the theory T 
and strengthening β  can be chosen for attrib-
uted label of new state of environment. We 
can make the choice of predicate transformer 
more definite if some additional requirements 
are added to it. For example, we can claim 
that in arbitrary concrete implementation cov-
ered by the given abstract implementation the 

values of attributes can change only if they 
occur in postcondition. In this case if 

...2211 ∨∧∨∧= δγδγγ  and ,..., 21 δδ  have 
no occurrences of the attributes occurring in 
β , we can set βδδβγ ∧∨∨= ...)(),( 21pt . 

Denote the class of direct (inverse) ab-
stract implementations of BPS P described in 
this section as Adir(P) (Ainv(P)). 
 Theorem 2. Each system from the 
class Adir(P) (Ainv(P)) is a direct (inverse) 
implementation of P.  

The validity relation is closed by defi-
nition. The second property of implementa-
tion follows from the definition of permuta-
bility.   

Abstractions. As it is clear from 
above that the implementations can have dif-
ferent levels of abstraction. This notion can 
be defined exactly in terms of attributed tran-
sition systems with validity relation consid-
ered up to bisimilarity. The definition below 
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is close to the definition of [6] but does not 
use the labeled actions. First we must intro-
duce some simplification of transition systems 
connected with elimination of hidden transi-
tions, that is transitions labeled by τ .   

Hidden transitions of the form 
ss ′→ : 1: 1 τ  are called redundant. All 

redundant transitions may be eliminated in the 
following way: first, add transitions according 
to the rules:  

,
:

: ,: 1: 1
 

 ,
 ,: 1: 1

ss

ssss

ss

ssss
a

a

′′→
′′→′′→

′′→
′′→′′→

α
α

τ

ττ

τ

 

where 1≠α , until it is possible (an infinite 
number of steps may be required, at each step 
all rules are applied to all states simultane-
ously), then all redundant transitions are eli-
minated. After such transformation at least 
one state in each hidden transition will be la-
beled by attributed label different of 1. The 
system with no redundant transitions is called 
reduced. Below only reduced systems will be 
considered. 

Let S and S ′  be two attributed (not 
necessarily different) systems with the same 
signatures, validity relations and the same ba-
sic language denoted as BL. Define the ab-
straction relation SS ′×⊆Abs  in such a way 
that  

))|()|)(((),( ααα =′⇒=∈∀⇔∈′ ssss BLAbs
. 

To denote abstraction relations (the state s is 
an abstraction of the state s′ ) the notation 

ss ′<  will be used instead of Abs∈′),( ss .   
If ss ′<  and ss <′ , then the states s and s′  
are called deductively equivalent. 

The system S is called a direct ab-
straction (or a direct abstract model) of the 
system  S ′  and the system  S ′  is called a con-
cretization of the system S if there exists a 
relation 1−⊆ Absϕ , which is a relation of 
modeling (simulation). It means, that the fol-
lowing statement holds:  

)).),()((

),)((,(

ϕ
ϕ

∈′∧′→′′∈′∃⇒

⇒→∧∈′′∈′∈∀

tttsSt

tsssSsSs
a

a

 

The system S is called an inverse abstraction 
(or an inverse abstract model) of the system  
S ′  and the system  S ′  is called an inverse 
concretization of the system S if there exists a 

relation 1−⊆ Absϕ , which is a relation of in-
verse modeling. It means, that the following 
statement holds:  

)).),()((

),)((,(

ϕ
ϕ

∈′∧→∈∃⇒

⇒′→′∧∈′′∈′∈∀

tttsSt

tsssSsSs
a

a

 

For  enriched systems the requirement of pre-
serving the initial and terminal states is added 
in both cases: if )(0 ∆′′∈′ SSs  and ϕ∈′ ),( ss , 

then )(0 ∆∈ SSs .  

The system and its abstraction are re-
lated in the following way. If from an ab-
straction of some initial system state a certain 
property is reachable in its direct abstraction, 
then it is also reachable from the initial sys-
tem state. For inverse abstraction the inverse 
property hold: if from initial state of a system 
some property is reachable then it is reachable 
from some initial state of its inverse abstrac-
tion.  

Let us consider as a famous example a 
Kripke system S ′ ; i.e., an attributed system 
with binary attributes nxx ,...,1 . The states of 

this system are labelled with Boolean func-
tions of the variables nxx ,...,1 .  Let 

),...,( 1 nxxf  be one of such functions.  Let us 

decompose it with respect to the first k vari-
ables; i.e., present it in the form:  

 

),,...,,,...,(...

),...,(

111

1

1
nkkk

n

xxfxx

xxf

k
+∨=

=

αααα
 

where the disjunction is over all binary vec-
tors ),...,( 1 kαα  such that 

),...,,,...,( 11 nkk xxf +αα  is different from 0.  

Let us define the transformation 
),...,()),...,(( 11,...,1 knxx xxgxxfP

k
=  of the 

function ),...,( 1 nxxf , by:  

k
kk xxxxg αα ...),...,( 1

11 ∨= . 

Let us modify the system S ′  by substituting 
the function al for its labeling function  al΄ 
with ))(la()(al ,...,1

sPs
kxx ′= . Denoting thus 

modified system as S, we shall receive and 
abstract model of the system S ′ . Similar 
models are used in model checking to reduce 
the state space generated for checking.  

The importance of the notion of ab-
straction is explained by the following theo-
rem. 
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 Theorem 3. Each abstract 
implementation of the class Adir(P) (Ainv(P)) 
is an abstraction of some concrete implemen-
tation from the class Concr(P). This follows 
from the well known logic fact that each con-
sistent axiom system has a consistent com-
plete interpretation. 
 Theorem 4. There exist a direct and 
an inverse abstract implementations which are 
direct and inverse abstractions of all imple-
mentations from Concr(P). 

Corresponding constructions were de-
fined in the paper [6]. Complete proof need 
some more mathematics and we are going to 
this in the next papers. 
 

Concrete trace generator 

Purpose. CTG module of VRS system 
provide checking the reachability of proper-
ties, detecting deadlocks, non-determinisms, 
safety violations, unreachable requirements, 
usage of uninitialized attributes and admitted 
range attribute overflow on a base of a con-
crete model of formal requirement specifica-
tion in the form of BPS. The problems above 
are solved by means of generating traces 
reachable from the initial state of a model. 
The generated traces can be also used for test 
generation. Results are represented in 
.MSC/PR and .txt formats.  
 
In general, the CTG module input is the set of 
the following files: 

• Environment description; 
• Filters description; 
• Events description; 
• Set of Basic Protocols. 

Environment. Environment descrip-
tion is restricted to the following elements: 
list of enumerated types in type description, 
list of environment attributes, list of agent ty-
pes, list of instances, initial values of listed 
above elements and agent states. Abstract 
syntax of environment description is as fol-
lows: 
 
<environment descr>::= environment( 
 types: <enumerated types 
declaration>; 

attributes: <list of attr descr>; 

 
 agent_types: <list of agent descr>; 
 agents:  <list of typed agent ids>;  
 instances: <list of instances>; 
  

initial: env( 
    ( 
  attributes: <list of environment 
attributes values>; 
  agent_parameters: <list of 
agent attributes values> 
    ), 
    <agent states>      
 ) 
). 
 

Enumerated type declaration defines 
the symbol of enumerated type and the set of 
its values. Attribute description defines the 
symbol of environment attribute and its type. 
Agent type description defines the name of an 
agent type and the list of agent attributes for 
this type together with the types of these at-
tributes. The names of agents inserted into 
environment are represented in the list of 
typed agents ids. The list of instances repre-
sents the set of instances which can be used in 
MSC diagrams representing the interaction 
activity of agents. There is no explicit corre-
spondence between agents and instances. 
Usually each instance corresponds to one 
agent, but  there can be another kinds of cor-
respondence (one instance – several agents or 
one agent – several instances). Some of the 
instances can be used to represent the activity 
of environment. This correspondence does not 
explicitly expressed in the model and is in the 
mind of a user.      

Every environment/agent attribute has 
one of the following types: integer, real, enu-
merated, symbolic type, list, array, functional 
type (parameterized attributes) with only 
enumerated parameters and values. 

Environment description represents 
the structure of environment and contains 
some information about agents inserted into 
this environment. It also defines the initial 
state of environment. In this definition each 
agent and environment attribute can be as-
signed a value. Default is the undefined value. 
The initial states of all agents are represented 
in <agent states>. 
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Filters. Filters are used for the restric-
tion of the set of traces generated by CTG. 
The following filters are available in CTG:  
 goal state,  
 restricted state ,  
 break state,  
 safety conditions. 

All filters are defined by formulas 
checked during the trace generation. 

Goal state defines the successful ter-
mination of generating procedure. It is used to 
check the reachability of goal state condition 
or generating testing sequences for given cov-
erage criteria.  

Restricted states cut the set of states 
used for the search of goal states. When the 
restricted state is reached the system returns 
back to the nearest choice point.  

Break states switch the trace generator 
to interactive mode. In this mode the direction 
of further development of traces is selected by 
user. After several steps of interactive move a 
user can return to automatic generation of 
traces. 

Safety conditions must be true at any 
states so it is checked each time the system 
comes into the new state. If some of the safety 
conditions is violated the generation is 
stopped and the corresponding trace is fixed. 

There are also some other restrictions 
like the maximal trace length or switching the 
control of visited states. 

There are also some predefined condi-
tions such as deadlock condition, non-deter-
minisms,  unreachable requirements, usage of 
uninitialized attributes and admitted range at-
tribute overflow which are checked and result 
terminating the generation of a trace when 
these conditions are valid.     

Events description contains the in-
formation about messages used in MSC dia-
grams: message names, parameters of mes-
sages, parameter values. 

Basic protocols. To be efficient the 
CTG allows a very restricted class of basic 
protocols. Each protocol has the following 
abstract syntax form in symbolic notation:  

 )),(&),(),(

),(&)(&),()(,(Forall

yxAyxvyxB

yxFxuyxLyx

>→<
→

 

In this formula ,...),( 21 xxx =  is a list of pa-
rameters called key agent parameters. They 
are used in the conjunction of state assump-

tions u(x). The first state assumption in u(x) is 
called a key agent assumption and has the 
form ,...)),(,( 21 zzsmτ  where m is the name of 
a key agent and can be one of the key agent 
parameters, s is the (constant) name of an 
agent state, and ,..., 21 zz  are all other key 
agent parameters. All other agent state as-
sumptions do not contain parameters and are 
constructed with symbolic constants, agent 
parameters, and attributes. The list 

,...),( 21 yyy =  contains data parameters that 
obtain their values from the definitions 

...)&&(),( 2211 tytyyxL === , the right 
hand sides of these definitions can depend on 
key agent parameters, but not on data ones. 
The formula F(x,y) is the formula of basic 
language. It can contain quantifiers but only 
for finite sets represented by enumerated data 
types. The expression v(x,y) is a conjunction 
of agent state assumptions for agents intro-
duced by precondition and A(x,y) is the con-
junction of imperative statements: assign-
ments, list processing statements 
(add_to_head, add_to_tail etc.). B(x,y) is 
MSC representation of this basic protocol. 

The restrictions on basic protocols 
structure show that the performance of basic 
protocols can be done by computation on the 
current state of a system under modeling. The 
state expression in key agent assumption is 
matched with the states of all agents to get the 
values of parameters x and to decide which of 
the agents can be used as a key agent in the 
performance of the protocol. Data parameters 
obtain their values after the choice of a key 
agent and are used for instantiating the proto-
col by means of substitution.  

The main part of precondition is a 
logic formula F(x,y) which is computed on 
the current state if it is possible. The failure 
can appear if the values of some of the 
attributes needed for computation are 
undefined. So if precondition is valid the 
protocol can be applied by performing the 
imperative statements of postcondition in 
parallel (first compute the right hand sides of 
assignments then assign). The state 
assumptions in postcondition give the new 
states of agents participating in the protocol. 
Expressions in pre- and postconditions use 
various functions defined on data types. Some 
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other imperative constructions in addition to 
assignments are admissible in the postcondi-
tions.  

Generating traces. Ordinary trace for 
a transition system is a sequence  

n
aaa sss n→→→ −121 ...21  

of conjugated transitions. If restrict only to 
observable part of a trace it is a sequence 

121 ,...,, −naaa , and for attributed systems an 

observable trace is  
)(al...)(al)(al 121

21 n
aaa sss n→→→ − . 

The set of traces (ordinary or observable) for 
the behavior [B] of an MSC B can be very 
huge, but it is well represented by the MSC 
itself. So for the user representation it is not 
necessary to come from MSC to its traces. 
CTG generates traces by sequential activating 
of basic protocols, so it obtains first the set of 
so called BP traces, that is a sequences      

n
BBB sss n →→→ −121 ...21  

where 121 ,...,, −nBBB  are instantiated basic 

protocols, and nsss ,...,, 21  are intermediate 

states. According to the semantics of concrete 
implementation the resulting set of traces is 
the set of traces of the system 

]][*...*][*][[ 1211 −nBBBs  where * means the 

partially sequential composition of interpreted 
MSCs. We can take for observation partially 
sequential composition ][*...*][*][ 121 −nBBB  

of uninterpreted MSCs, that can be well rep-
resented by vertical composition 

]*...**[ 121 −nBBB  of MSCs, but it may con-

tain more observable traces than needed. In-
deed, two conditional actions can be permuta-
ble as uninterpreted actions because they have 
no common instances, but they are not per-
mutable because they have common attrib-
utes. To avoid the necessity of considering all 
observable traces CTG assumes the following 
correctness condition for MSCs: if two condi-
tion actions are not permutable as interpreted 
actions, they must have at least one common 
instances.  

As a consequence, the CTG looks 
through basic protocols entirely, but not ac-
tions and checks the permutability of basic 
protocols using this easy criteria – no com-
mon instances. If two protocols are not per-
mutable, CTG consider both cases in their or-

der, otherwise only one order will be consid-
ered.  

So the CTG generates the tree of BP 
traces and after performance of the next basic 
protocol it checks the filters. If one of the fil-
ters triggered the generating of the current 
BP-trace is interrupted, this trace is written if 
it is necessary to the set of generated traces, 
and CTG returns to the nearest choice point to 
continue the generation of the next trace.      

Output. The set of generated BP-
traces with the explanations of reasons of 
terminating. Each trace is contained in the 
separate verdict file. CTG also produces sta-
tistic of the generation process. 
 

Static requirements checking 

Static requirement checking (SRC) tools al-
low to solve verification problems without 
generating traces and exploring the state 
space. For this purpose SRC uses deductive 
system. The system is based on the universal 
prover for the first order predicate calculi with 
equality extended by some special provers 
and solvers. Universal prover is based on 
Glushkov evidence algorithm [11], insertion 
representation of this algorithm is presented 
in [2]. The specialized part of deductive sys-
tem supports proving and solving linear nu-
merical constraints for integers (Presburger 
algorithm) and for reals (Furiet-Motskin algo-
rithm), proving and solving formulas for 
enumerated and symbolic data types. So the 
environment description for SRC is much 
richer than for CTG. Especially the use of 
axioms and rewriting rules are allowed. Of 
course the use of arbitrary axiomatic or equa-
tional theories can lead to insolvability or in-
efficiency, so some preliminary adjustment 
may be needed. Another requirement for us-
age of special theories is the possibility of 
separation of subformulas belonging to differ-
ent theories if there are no procedures for their 
combination.  
 The input of deductive system is a 
closed formula (no free variables) of basic 
language with all needed axioms and reduc-
tions which can be invoked preliminarily. De-
ductive system gives one of four possible an-
swers: proved, not proved, refuted and un-
known. If the statement is proved, the proof 
can be printed by request. The answer not 
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proved means that the statement cannot be 
proved. If the statement is refuted, the refuta-
tion can be printed by request, and the answer 
unknown means that the process failed for 
lack of resources or for lack of knowledge (on 
the combination of theories or equational 
problems etc.). 

The statement to be proved can con-
tain the occurrences of attributes. Such a 
statement must be checked for arbitrary val-
ues of attributes. In this case all attributes are 
substituted by variables which are bind by 
universal quantifiers. For functional attributes 
which occur with different arguments the sub-
stitution must be more complicated then in the 
simple case. 

The query for solving has the form 
,...),(,...),(solve 2121 xxPxx . It is assumed that 

the formula  ,...),(,...),( 2121 xxPxx∃   has been 
already proved. If the formula P has quantifi-
ers they are eliminated (only theories which 
allow quantifier elimination are considered) 
and then the formula P is simplified to obtain 
the explicit solution ,..., 2211 txtx == . If the 
explicit solution is not possible, than the sim-
plified formula is used as an implicit solution. 
Generally a mixed solution can be obtained in 
the form of conjunction of the explicit part 
(conjunction of solved equalities) and the im-
plicit part (just a formula).   

The problems that can be solved by 
SRC are:  
 Transition consistency of precondi-
tions; 
 Completeness of preconditions; 
 Proving safety conditions. 

Transition consistency. Let 
)( βα >→<∀ ux  and )( βα ′>′→<′′∀ ux are 

two basic protocols. Their preconditions are 
called to be consistent if they cannot be valid 
at the same time. Formally it can be written 
by the consistency formula )( αα ′∧¬′∀∀ xx  

or )( αα ′∧′∃¬∃ xx  (the lists x and x′ must 
have no common variables otherwise use re-
naming). Consistency means determinism, 
only one of two protocols can be applied at 
the same time. If the consistency formula 
cannot be proved or is refuted, we have inde-
terminism that can be undesirable and it must 
be announced to user who can answer if the 
discovered indeterminism is desired or not. 

Completeness. The applicability con-
dition for a protocol  )( βα >→<∀ ux  is the 
validity of the formula αx∃ . The set of basic 
protocols is called complete if the disjunction 
of all applicability conditions for them is al-
ways valid. So completeness means that in 
any situation there must be at least one appli-
cable protocol.  

Both properties are only partially rec-
ognizable because their violation is only nec-
essary condition for inconsistency or incom-
pleteness. Indeed, sometimes inconsistency 
can be proved but the state that satisfies the 
inconsistency may be unreachable. Therefore 
we can set the inconsistency condition 

)( αα ′∧′∃∃ xx as a goal state and prove its 
reachability by means of CTG or STG. 

Proving safety. Safety condition is an 
invariant property for the system and in some 
cases can be proved inductively. That is it 
must be valid on any initial state and if it is 
valid on some reachable state, then it must be 
valid on the state obtained after the applica-
tion of a basic protocol. If it is difficult to 
characterize the set of reachable states by 
logic formula the tool consider arbitrary state 
such that safety condition γ  is valid and for 
arbitrary basic protocol applicable to this state 
applies this protocol formulates and calls de-
ductive system to prove the corresponding 
statement. For the protocol )( βα >→<∀ ux  
and safety condition γ  the corresponding for-
mula is  

)),(pt( γβαγ →∧∀x  
where pt is the predicate transformer de-
scribed at the end of the fifth section.  

 

Symbolic trace generator 

All input files for symbolic trace gene-
rator (STG) are the same as for CTG. The dif-
ference is that an abstract model of a system 
specified by a set of basic protocols is consi-
dered instead of a concrete one. The state of a 
model has the form 

],...,[ 1 nuuγ  

where γ  is a formula over attributes which 
coincides with the attributed label of the envi-
ronment state and nuu ,...,1  are agents inserted 

into environment. The deductive system is 
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used for checking the applicability of basic 
protocol and predicate transformer described 
in the section 5 is used  to obtain the next 
state. 
There are several modes of generating traces 
controlled by the following properties; 

1. Complete or incomplete set of agents. 
Complete set of agents means that there are 
no other agents except of those existing in the 
initial state. Incomplete agent set allows in-
troducing and inserting new agents form the 
virtual high level environment in the time of 
generating traces.  

2. Direct or inverse implementation. De-
fines which formula is used for checking ap-
plicability of basic protocol.    
 Basic protocols. Each protocol has 
the following abstract syntax form in 
symbolic notation:  

 ))(&)(&)()(

)(&)()((Forall

xwxAxvxB

xFxux

>→<
→

 

The list of parameters is not separated to 
agent and data parameters. The conjunction of 
state assumptions u(x) is the same as in CTG. 
As for CTG the first state assumption in u(x) 
is a key agent assumption and has the form 

,...)),(,( 21 zzsmτ  where m is the name of a 
key agent and can be one of parameters, s is 
the (constant) name of an agent state, and 

,..., 21 zz  are parameters or constants. The for-
mula F(x) is the formula of basic language 
without any restrictions. The expression v(x) 
is a conjunction of agent state assumptions for 
agents introduced by precondition, A(x) is the 
conjunction of imperative statements, w(x) is 
a postcondition formula (no restrictions). 
B(x,y) is MSC representation of this basic 
protocol. 

The application of a protocol to the 
current state of a system is performed ac-
cording to the rules (5a) in the case of direct 
implementation or (5b) in the case of inverse 
one with the following refinement for STG. 
The state expression in key agent assumption 
is matched with the states of all agents to get 
the values of those parameters which occur in 
the first state assumption and to decide which 
of the agents can be used as a key agent in the 
performance of the protocol. If a key agent 
cannot be found in the set of agents inserted 
into environment then in the case of complete 

agent set the checking is failed and in the case 
of incomplete agent set a new agent can be 
generated and inserted into environment with 
the state matched with key agent state as-
sumption. After making decision about a key 
agent, and checking state assumptions for 
other agents some of parameters obtain val-
ues. Moreover some of attributes can obtain 
the values because for not key agents the uni-
fication, not matching is applied considering 
the attributes having no definite value as vari-
ables. After that the parameters which ob-
tained values are deleted from the list of pa-
rameters and their values are substituted to the 
protocol. Now the main applicability condi-
tion is checked:  

 
)),()((| zxxRzz ∃→∀= γT  

for direct implementation and  
)),()((| zxxRzz ∃∧∃= γT  

 for inverse one. Here )(rγ  is an environment 
state formula, ),( rxR  is the main part of pre-
condition with the explicit dependence on at-
tributes and ,...),( 21 rrr =  is a list of attributes 
occurring in formulas. These formulas are 
valid for simple attributes and at this time 
only this simple case is implemented in CTG. 
Now the protocol must be instantiated for the 
remained part of parameters. It is realized as 
was described in the section 5 by solving the 
problem )),()()((solve rxRrx →γ  for direct 
implementation or the problem  

)),()()((solve rxRrx ∧γ  for inverse one. STG 
generates BP-protocols as CTG, Therefore the 
termination of a protocol must be done just 
after checking its applicability. This is per-
forming according to (6a) using the same 
predicate transformer as in SRC. 

Conclusions and related approaches 

In this paper we have described inser-
tion modeling methodology, its foundations, 
implementation and applications. Insertion 
modeling was presented as a technology of 
model driven distributed system design. This 
means that the following development scheme 
is adopted. First, requirements specifications 
are defined, then an executable model is con-
structed, and at last an implementation is built 
based on results of requirement and model 
verification.  
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This scheme was successfully piloted 
in a number of industrial projects of 
Motorola. Main domains of application are 
telecommunication and telematics. The table 
below gives a short statistics about piloting. 
Project size is characterized by number of 
pages in initial requirements documentation 
and numbers of Basic Protocols in 
corresponding formalized specification.  
Fourth column demonstrates what part of 
initial documentation was formalized. column 
contains total number of defects found with 
all VRS tools and methods but sixth gives 
results of traces generators that could be used 
in further testing. The last column presents 
summary of engineering efforts required for 
piloting. 

In the proposed insertion modeling 
approach  an attributed transition system is 
considered as a system model, requirement 
specifications are defined as basic protocol 
specifications. Process part of such specifica-
tions is presented as an MSC-diagram. For 
verification of specifications algorithmic 
(model checking) and deductive (proofs) 
methods are used.  

The proposed system development 
and verification schemes are quite common 
for a number of other approaches.   

Traditional mathematical models for 
specifications of concurrent systems usually 
are based on process algebras (CSP, CCS, 
Lotos, ACP, µCRL, π-calculus, etc.), tempo-
ral and dynamic logics (LPTL, LTL, CTL, 
CTL*, PDL), and automata models (timed 
Büchi and Muller automata, abstract state ma-
chines).  

Classical process algebras (CSP [12], 
CCS [13]) are very abstract. The states of 
processes are terms; transitions specify trans-
formations of such terms. Further develop-
ment of these process algebras (ACP, µCRL, 
π-calculus) extends classical models with 
data, named channels and new process com-
positions. The theory of interaction of agents 
and environments goes further in concretiza-
tion of process models. First, it distinguish 
environment as a special agent and introduces 
new composition (insertion function) of 
agents into environment. It also introduces 
data of various types and develops a special 
action language to present processes in ab-
stract or concrete forms.    

The main emphasis is paid to Basic 
Protocol Specifications, which relate insertion 
modeling with temporal logics.  

Temporal logic is a formal specifica-
tion language for the description of behavioral 
properties of non-terminating and interacting 
(reactive) systems. Among such properties 
traditionally are distinguished safety (“some-
thing bad never happens”), liveness (“some-
thing good will eventually happen”), and 
various fairness properties (a property holds 
infinitely often under certain conditions).  

For example, Lamport’s TLA (Tem-
poral Logic of Actions) [14, 15], is oriented 
on description of such properties and is based 
on Pnueli’s temporal logic [16] with as-
signment, enriched signature, and module 
specifications. It supports types (strings, 
numbers, sets, records, tuples, functions) and 
syntactic constructs (IF, CASE, LET, etc.) 
taken from programming languages to ease 

Table 

 

Project 

Reqs & 
related 
docs in 
pages 

Number 
of BPs in 
formaliza

tion 

Coverag
e of 

original 
reqs 

Defects 
found 

Generated 
traces with 

counter-
examples 

Effort 
in 

staff-
weeks 

Telecommunication 1 400  127 50 % 11 0 5.5  
Telematics 1 200  70 100 % 10 3 5.6  
Telecommunication 2 730 192 100 % 18 7 20  
Telecommunication 3 ~1500  56 50 % 8 5 5.5  
Telematics 2 323 219 60 % 38 8 3  
Telematics 3 116  42 100 % 3 1 0.7 
Telematics 4 ~1500 3005 100 % 129 7 22,5 
Telecommunication  4 ~2000 2311 100 % 223 17 21,3 
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maintenance of large-sized specifications. Be-
haviors are considered as sequences of states. 
States themselves are assignments of values 
to variables. A system satisfies a formula iff 
that formula is true for all behaviors of this 
system. Transition relation is presented by 
formulae where the arguments are only the 
old and new states. Such formulae present ac-
tions.  

Many temporal logics are decidable 
and corresponding decision procedures exist 
for linear and branching time logics [17], pro-
positional modal logic [18], and some variants 
of CTL* [19]. In such decision procedures 
techniques from automata theory, semantic 
tableaux, or binary decision diagrams (BDD) 
[20] may be used.  

Typically, a system to be verified is 
modeled as a (finite) state transition graph, 
and the properties are formulated in an ap-
propriate temporal logic. An efficient search 
procedure is then used to determine whether 
the state transition graph satisfies the 
temporal formulae or not. This technique was 
first developed in the 1980’s by Clarke and 
Emerson [21], and by Quielle and Sifakis [22] 
and extended later by Burch et.al. [23].  

In the current version of VRS system  
temporal formulas are presented implicitly 
being realized with checking algorithms. Still, 
future versions of the system are planned to 
be extended with explicit presentation of such 
formulas. 

Among different verification tools we 
distinguishes here the SCR toolset (Software 
Cost Reduction) [24] and  Action Language 
Verifier (ALV) [25] which are rather close to 
the VRS system. 

The SCR toolset aims to verify the re-
quirement specifications of applied systems. 
SCR is based on a user-friendly table notation 
of finite state machines. There are tables for 
the description of types, constants, variables. 
Also initial restrictions, transitions and be-
havioral invariants of a specified system are 
presented with tables. System variables are 
divided into input (or monitored), output (or 
controlled), and internal variables. Static 
analysis permits to check the system model 
for presence of non-determined transitions 
and non-specified states. Dynamic (behav-
ioral) analysis is oriented on checking safety, 

fault tolerance, and different temporal proper-
ties. All these properties are interpreted as a 
safety property for a specific formula class. 
Model checker is used to find counter-exam-
ple traces. The following verification tools are 
used: TAME, specialized interface to PVS 
prover, and SALSA, which is a specialized 
solver. This solver is oriented at propositional 
(quantifier-free) formulas with linear equali-
ties and inequalities. 

The SCR toolset have much in com-
mon with VRS. Terminology is a little differ-
ent: for model description VRS uses basic 
protocols and scenarios, and SCR uses tabular 
notations,  in VRS: environment and tabular 
description, in SCR: dictionaries (of  con-
stants, types, mode classes, variables); in 
VRS:  axioms for subject domains, in SCR: 
environment assumptions dictionary. VRS 
transition consistency, completeness and 
safety checkers have SCR disjoints, coverage 
and property checkers respectively. 

In comparison with SCR the VRS 
system for static checking uses more powerful 
formulas, allowing linear equalities and ine-
qualities (both in the arithmetic of integers 
and in the arithmetic of real numbers), 
equalities for finitely enumerated types and 
variables with indexes (attributes with pa-
rameters).  

In the framework of SCR project, to 
resolve the problems of behavioral properties 
checking, groups of inter-supplementing tools 
oriented both at inconsistency search and at 
verification of specifications were created. 
The same approach to the tools development 
was exercised in the VRS project, where were 
developed tools to cover such functionalities, 
especially simulators (trace generators) for 
searching of inconsistent traces at a level of 
concrete and symbolic models, as well as 
checkers that perform verification were de-
veloped. 

Another similar tool is Action Lan-
guage Verifier (ALV) which is an infinite 
state model checker. It uses linear arithmetic 
constraints on integer variables for system 
specification which is presented in Action 
Language. Such specifications involve inte-
ger, Boolean and enumerated variables, pa-
rameterized integer constants and a set of 
modules and actions composed with synchro-
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nous and asynchronous compositions. State-
charts and SCR specifications can be easily 
translated to Action Language. Like VRS, 
ALV uses symbolic model checking tech-
niques to verify or falsify behavioral proper-
ties of the input specifications. Current ver-
sion of ALV uses two different symbolic rep-
resentations for integer variables: polyhedral 
and automata representation; for bounded in-
tegers BDD representation is used. These 
techniques permit to construct rather powerful 
symbolic model checker.  

The VRS approach uses MSC as a 
language for presenting system requirements. 
Actually, an extended MSC is realized in 
VRS checkers. This decision to orientation on 
engineering languages is in good accordance 
with other approaches to requirements verifi-
cation. Let us mention such MSC extensions 
as Live Sequence Charts (LSC [26]), Trig-
gered Message Sequence Charts (TMSC 
[27]),  Object Message Sequence Charts 
(OMSC [28]) and others.  

Future VRS development is connected 
with extension of BPS Language, and new 
algorithms for symbolic checking and invari-
ant construction.     
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