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A ternary/binary data coding algorithm and conditions under which Hopfield networks implement optimal convolutional and Hamming 
decoding algorithms has been described. Using the coding/decoding approach (an optimal Binary Signal Detection Theory, BSDT) in-
troduced a Neural Network Assembly Memory Model (NNAMM) is built. The model provides optimal (the best) basic memory performance 
and demands the use of a new memory unit architecture with two-layer Hopfield network, N-channel time gate, auxiliary reference memory, 
and two nested feedback loops. NNAMM explicitly describes the dependence on time of a memory trace retrieval, gives a possibility of 
metamemory simulation, generalized knowledge representation, and distinct description of conscious and unconscious mental processes. A 
model of smallest inseparable part or an “atom” of consciousness is also defined. The NNAMM’s neurobiological backgrounds and its 
applications to solving some interdisciplinary problems are shortly discussed. BSDT could implement the “best neural code” used in nervous 
tissues of animals and humans. 

Описані тріарно-бінарний алгоритм кодування даних та умови за яких Хопфілдовські нейронні мережі реалізують для нього 
оптимальний конволюційний та Хемінгівський алгоритми декодування. Використовуючи запропонований підхід до кодування-
декодування даних (оптимальну теорію детектування бінарних сигналів, ТДБС) будується нейросітьова ансамблева модель пам’яті 
(НСАМП). Ця модель забезпечує оптимальні (найкращі) основні характеристики пам’яті та вимагає використання нової 
архітектури елементу пам’яті що включає двошарову Хопфілдовську мережу, N-канальні часові ворота, додаткову еталонну 
пам’ять та дві вкладені петлі зворотнього зв’язку. НСАМП явно описує залежність від часу процессу видобування сліду пам’яті, 
дає можливість моделювання метапам’яті, узагальненного представлення знань та роздільного опису свідомих та підсвідомих 
ментальних процесів. Запропоновано також модель найменшої неділимої частки або “атому” свідомості. Коротко обговорюються 
нейробіологічні основи НСАМП та її застосування до вирішення деяких міждисциплінарних задач. ТДБС може реалізовувати 
“найкращий нейронний код” що використовується нервовими тканинами людей та тварин.  

1 Introduction 
Methods previously developed for nuclear spectroscopy data processing [1], [2] became a ground for a way of 

strict definition and numerical computation of basic memory performance as a function of the intensity of cue [3]. Next, 
it was shown that coding/decoding approach [3] is optimal one and on this basis a Neural Network Assembly Memory 
Model (NNAMM) has been proposed [4]. In addition to optimal (the best) basic memory performance, receiver 
operating characteristic (ROC) curves, and etc [3], [4], [5], the NNAMM explicitly describes the dependence on time of 
a memory trace retrieval, gives a possibility of one-trial learning, memory and metamemory simulation, generalized 
knowledge representation, and distinct description of conscious and unconscious mental processes. It has been shown 
that the model demands a new memory unit architecture with regular Hopfield neural network, auxiliary reference 
memory, and two nested feedback loops and that such a unit may be viewed as a model of a smallest inseparable part or 
an “atom” of consciousness. NNAMM is strongly supported by many neurobiological arguments some of them were 
introduced as counterparts to neural network (NN) memory elements for the first time. Among many other more 
obvious applications, the model provides a possibility of building quantitative NN models of some mental phenomena 
which were up to present outside of the recent computational theories (for example, the tip-of-the-tongue phenomenon 
[6] or feelings and emotions [7]).  

2 An Optimal Binary Signal Detection Theory  
An optimal Binary Signal Detection Theory (BSDT) sketched below is based on a data coding/decoding 

approach [3] where initial data are represented by ternary vectors with their components’ possible magnitudes from the 
triple set –1, 0, 1. Each ternary vector, or pattern of signals, simulates specific pattern of simultaneously (within a given 
time window) acting nerve impulses, action potentials, or “spikes” and its every component simulates the fact of the 
absence (0) or presence (±1) of spike affecting on excitatory (+1) or inhibitory (–1) synapse of the target neuron (i.e., 
the sign of the vector‘s nonzero component indicates the specific spike’s further assignment). The number of the ternary 
vector’s components is large, because central nervous system contains very much neurons, but most of them should be 
equal to 0, because most neurons are “silent” or “dormant” at the moment. This situation respects to the data sparse 
coding and we refer to initial ternary vectors’ space dimension as Nsps. Next, it is assumed that silent neurons do not 
carry any information of current particular interest and, therefore, they should be excluded from the further current 
particular consideration. Such a process (under which ternary vector’s zero components are excluded) is virtually a 
transition from sparse- to dense-coding representation. We suppose that ternary vectors are transformed into binary ones 
at the stage of initial data preprocessing when only those spikes from the initial data flood are selected which are fallen 
into a time-coincidence window of particular cell assembly allocated by a dynamic spatiotemporal synchrony 
mechanism (see Sect. 4). The dimension Ndns of densely coded binary feature vectors obtained as a result is much less 
then Nsps, Ndns << Nsps. In fact, each feature vector is quasi-binary one because its spinlike (±1) components cannot be 
shifted to other (0, 1) binary representation by the redefinition of coupling constants and thresholds and it can manifest 
but in spite of that does not manifest its zero components (although they are important for memory impairment 
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definition). Below only N-dimensional (N = Ndns) quasi-binary vectors are considered but, for short, the preposition 
“quasi” will be omitted [4]. 

A method for spinlike (±1) data production was proposed in ref. 2 where line radiation spectra (a kind of half-
tone images) were considered. Moreover, it was found that in the course of initial gradual data binarization (and their 
compression simultaneously), there is no loss of information important for the binarized data following processing. 
Hence, there exists a broad class of problems (local feature discrimination across background and noise) where spinlike 
data described naturally occur. Also we found [4] that population bursts  [8] and/or distributed bursts [9] of spiking 
activity discovered in animal nervous tissues may be viewed as counterparts to spinlike vectors needed for BSDT. 

2.1 Data Coding.  We denote a vector with components xi, i = 1,…,N, which magnitudes may be –1 or +1, as x. 
It can carry N bits of information and its dimension N is the size of a local receptive field of the NN (and convolutional) 
feature discrimination algorithm [2] or the size of a future NN memory unit (Sect. 2.2). If x represents information 
stored or that should be stored in an NN then we term it reference vector x0.  If the signs of all components of x are ran-
domly chosen with uniform probability then that is random vector xr or binary “noise”. We define also a damaged 
reference vector x(d) with damage degree of x0 d and components  
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and ui denotes marks whose magnitudes, 0 or 1, are randomly chosen with uniform probability. 
It is clear that xr takes priority over x0. If the number of marks ui = 1 is m then the fraction d of the noise 

components of x(d) is d = m/N; 0 ≤ d ≤ 1, x(0) = x0, and x(1) = xr. Since the same x(d) contains a fraction q of 
undamaged components of x0, x(d) = x(1 – q) where q is intensity of cue or cue index [3]: 

                                                              .1 dq −=  (3) 

It is clear that q = 1 – m/N is a fraction of informative (signal) components of x(d), 0 ≤ q ≤ 1, and x(q) = x(1 – d); d and 
q are discrete values. 

If d = m/N then the number of different vectors x(d) is n(d) = n(m/N) = 2mCN
m, CN

m = N!/(N – m)!/m!; if 0 ≤ d ≤ 1 
then complete finite set of all the vectors x(d) consists of ∑n(m/N) = 3N elements (m = 0,1,…,N). For specific x(d) d (a 
fraction of its noise components) and q (a fraction of its signal components) may be interpreted as noise-to-signal ratio 
and signal-to-noise ratio, respectively, and signal and noise are additive in that sense that q + d = 1. Cue index q is also 
a degree of similarity or correlation coefficient between x0 and x(d). Vectors x(d) do not contain zero components 
although they may contain a fraction of noise d which is their natural and inherent part [4].  

2.2 Data Decoding. Now for the data coding introduced we define decoding rules, an algorithm for extracting x0 

from xin = x(d) interpreted as a sample of pure noise or as x0 distorted by noise with noise-to-signal ratio d. For this 
purpose we consider a two-layer autoassociative NN with N McCalloch-Pitts model neurons in its entrance (and exit) 
layer and suppose that all cells from the NN entrance layer are linked to all exit layer cells according to the “all-to-all” 
rule.  

Following ref. 10 for learned NN, we define elements wij of synapse matrix w as  

                                                               ji
ij xxw 00 =η  (4) 

where η > 0 is a learning parameter (below η = 1); xi
0, x

j
0 are the ith and the jth components of x0, respectively. Hence, 

using the information (vector x0) that should be stored in the NN, Eq. 4 defines w unambiguously. We refer to w as a 
perfectly learned NN and stress the crucial importance of the fact that it remembers only one pattern x0 (the available 
possibility of storing other memories in the same NN was intentionally disregarded). It is also assumed that input vector 
xin is decoded (reference, memory, or state vector x0 is extracted) successfully if learned NN transforms an xin into the 
output vector xout = x0. The transformation algorithm is the following.  

For the jth NN exit layer neuron, an input signal hj is defined as 

                                                               ∑ += jiijj svwh     (5) 

where vi  is an output signal of the ith neuron of the NN entrance layer; sj  = 0.  
For the jth NN exit layer neuron, output signal vj (the jth component of xout) is calculated according to 

rectangular response function (signum function or 1 bit quantifier) with the model neuron’s triggering threshold θ: 
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where for hj = θ  the value vj = –1 was arbitrary assigned. 



If hi = xin
i then vi = xin

i. Of this fact and Eqs. 4 and 5 for the jth exit layer neuron we have: hj = ∑wijxin
i = ηx0

j 

∑x0
ixin

i  = ηx0
jQ where Q = ∑x0

ixin
i is a convolution of x0 and xin. The substitution of hj  = ηx0

jQ into Eq. 6 gives that xout 
= x0 and an input vector xin is decoded (reference vector x0 is extracted) successfully if Q > θ (if η ≠ 1 then Q > θ/η). 
Since for each xin exists such a vector x(d) that xin = x(d), inequality Q > θ can also be written as a function of d = m/N:  
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where θ is the threshold value of Q or the model neuron’s triggering threshold. Hence, above NN and convolutional 
decoding algorithms are equivalent [2] although Ineq. 7 is valid only for perfectly learned intact NNs.  

For example, directly we can find that Q = N – 2D and D = (N – Q)/2. Here D is Hamming distance between x0 
and specific x(d) or the number of their corresponding bits which are different. Thus, along with Ineq. 7 the inequality D 
< (N – θ)/2 is also valid. Moreover, Q(d) can merely be interpreted as an expression for convenient computation of 
D(d). That means that Hamming (convolutional) decoding algorithm or Hamming linear classifier directly discriminates 
the patterns xin = x(d) which are more close to x0 than Hamming distance given. Hence, NN, convolutional, and 
Hamming distance decoding algorithms mentioned are equivalent [4], [5].  

As Hamming decoding algorithm is the best (optimal) in the sense of statistical pattern recognition quality (that 
is no other algorithm cannot outperform it) [11], NN and convolutional algorithms described above are also optimal (the 
best) in that sense. Moreover, similar decoding algorithms based on locally damaged NNs may also be optimal, at least 
if their damages are not catastrophically large [4].  

2.3 Data Decoding Quality Performance. The optimality of the BSDT was just demonstrated and now we will 
describe quantitatively its decoding algorithms’ quality performance. For any (NN, convolutional, or Hamming) 
decoding algorithm, they are Pθ(d), the probability of correct decoding conditioned under the presence or absence of x0 
in the data analyzed vs. damage degree d or intensity of cue q = 1 – d, and/or Pd(F), the probability of correct decoding 
vs. model neuron triggering threshold θ or false alarm probability F (that is receiver operating characteristics or ROC 
curves [12]). For unconditional (a posteriori) and overall probabilities of correct and false decoding derived within the 
framework of the BSDT see ref. 5. 

The finiteness of the complete set of vectors x(d) (see Sect. 2.1) makes possible to find probabilities Pθ(d) using 
multiple computations; convolutional (Hamming) version of the BSDT (see Sect. 2.2) allows to derive formulae for 

Pθ(d) analytically.  
Calculation of Pθ(d) by multiple 

computations. Probabilities Pθ(d) are 
calculated as Pθ(d) = nθ(d)/n(d) where n(d) 
is a number of different randomly generated 
inputs xin = x(d) with constant damage 
degree d; nθ(d) is a number of inputs which 
lead to the emergence of the NN’s response 
xout = x0. For small N Pθ(d) can be cal-
culated exactly (Figs. 1a and 3) because 
n(d) is small and all possible inputs may be 
taken into account: n(d) = 2mCN

m and d = 
m/N (m ≤ N is a number of marks ui = 1 in 
Eq. 2). For large N Pθ(d) can be estimated 
by multiple computations approximately but 
with any given accuracy [3], [4]. 

 

Fig. 1. a) P(m,N,θ) = Pθ(d) vs. d = m/N (or q 
= 1 – m/N) and θ. Right-most point of each 
curve for each model neuron’s triggering 
threshold θ represents respective value of 
the false alarm probability F = Pθ(1). b) 
P(m/N,F) = Pd(F) vs. F and m/N. Points 
related to the same value of m/N (the same 
initial data quality) are connected with 
straight lines and make specific ROC curve. 
In both panels values of P for q = 0 (dotted 
lines), q = 2/9 (dashed lines), θ = 0 (open 
circles), and m  = 0 (crosses) are picked out. 
Examples for ideally learned NN with N = 
9. 

 
 Analytical formulae for Pθ(d). A formula for calculating the probability of correct decoding vectors xin = x(d) 

by intact NN perfectly learned to discover pattern x0 was found in ref. 5 as 
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where Cm
k denotes binomial coefficient; if kmax ≤ m then kmax = m else kmax = kmax0 and kmax0 is defined as 
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Since 0 ≤ kmax  ≤ m  ≤ N, if N is odd then – (N + 1) ≤ θ ≤ N – 1 and if N is even then – (N + 2) ≤ θ ≤ N – 2. As one can 
see from Fig. 1, P(m,N,θ) = Pθ(m/N) = Pθ(d) = Pθ(1 – q); Pθ(d) = PF(d). 

For each decoding algorithm based on a perfectly learned NN with specific distribution of its local damages, the 
expression for Pθ(d) should be derived separately. 

ROC Curves.  ROC or Pd(F) curves (Fig. 1b) are merely the other form of plotting functions Pθ(d) = PF(d) (Eqs. 
8, 9 and Fig. 1a). Hence, complete families of curves Pd(F) and PF(d) carry the same information about the BSDT’s 
decoding algorithm quality performance while pairs of particular curves Pd(F) and PF(d) contain different information 
(each specific pair of these curves has a single common point). We see that ROCs depend on the argument F and only 
one parameter, d = m/N.  

3 A Neural Network Assembly Memory Model  
The basic idea of the present work is to build a NN memory model from simple objects with simple known 

properties defined within the optimal BSDT introduced.  
In such a way a Neural Network Assembly Memory Model (NNAMM) or assembly memory for short was built 

[4] from similar interconnected (associated) and equal in right Assembly Memory Units (AMU) each of which respects 
to particular feature of a stimulus and is represented by a particular cell assembly allocated in the brain by means of a 
dynamic spatiotemporal synchrony mechanism (Sect. 4). Each AMU consists of the traditional Hopfield NN and some 
functionally new and arranged in a new manner elements among which there are N-channel time gate, reference 
memory, and two nested feedback loops. It is assumed again that specific NN remembers only one memory trace x0 
which is retrieved successfully if an input xin = x(d) initiates the emergence of the output xout = x0. In contrast to data 
decoding one-step process, NNAMM implies a many-step memory retrieval. Due to the optimality of the initial 
decoding algorithm, memory retrieval process and its performance are also optimal.  

Neurobiological plausibility of the NNAMM in a whole and its separate building blocks are discussed in Sect. 4. 
The comparison of the NNAMM with some other memory approaches (Hopfield NNs, sparsely coded Kanerva model, 
convolutional and modular/structured/compositional memories) can be found in [4].  

3.1 An Assembly Memory Unit. An AMU (Fig. 2) consists of blocks 1-6 and their internal and external 
pathways and connections designed for propagation of synchronized groups of signals (vectors x(d)) and asynchronous 
control information, respectively.  

 

 
 
Fig. 2. The flow chart of a particular assembly memory unit and its short-distance environment. Pathways and 
connections are shown in thick and thin arrows, respectively.  

 
Block 1 (a kind of N-channel time gate) transforms initial ternary sparsely coded vectors into binary (spinlike) 

densely coded ones. Here from the flood of generally asynchronous input spikes, synchronized pattern of signals in the 
form of N-dimensional feature vector xin is prepared. Block 2 is a NN memory unit learned according to Eq. 4 where 
each input xin is transformed into an output xout according to Eqs. 5 and 6. Block 3 performs the comparison of vector xout 
just now emerged with reference vector (trace) x0 from reference memory (see below). If xout =  x0 then the retrieval is 
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successful and it is finished. In opposite case, if current time of retrieval t is less then its maximal value t0 (this fact is 
checked in block 4) then the internal or implicit feedback loop 1-2-3-4-1 is activated (see below), retrieval starts again 
from block 1, and so forth. If t0, a parameter of time dependent neurons (Sect. 4), was found as insufficient to retrieve x0 
then block 5 examines whether an external reason exists to continue retrieval. If it is then the external or explicit 
feedback loop 1-2-3-4-5-6-1 is activated (see below), the count of time begins anew (block 6), and internal cycle 1-2-3-
4-1 is repeated again with the given frequency f, or time period 1/f, while t < t0.  

An AMU may be viewed as a kind of finite state “neural microcircuit” or “chip” for “anytime” or “real-time” 
computing [13] but in contrast to [13] computations are performed in binary form and the neural code used is explicitly 
known (Sect. 2).  

Reference Memory. A memory trace x0 is stored simultaneously in a particular NN memory (block 2) and in its 
corresponding auxiliary reference memory (RM) here introduced (Fig. 2). Particular RM may be interpreted as a tag or 
a card of the memory record in a memory catalog and performs two interconnected functions: verification of current 
memory retrieval results (block 3), and validation of the fact that a particular memory actually exists in the long-term 
memory store (at the stage of memory activation). Thus, specific RM is a part of “memory about memory” or 
“metamemory.”  In other words, “memory about memory” means “knowledge about memory.” Hence, RM is also a 
kind of generalized (in the form of N-bit binary code) knowledge representation. In contrast to regular NN memory 
which is a kind of computer register and is conventionally associated to real biological network, particular RM is a kind 
of slot devoted to the comparison of a current vector xout with the reference pattern x0 and may be associated to a 
specific integrate-and-fire neuron, e.g. [13]. RM provides also a possibility of synergistic coding/decoding: thanks to 
RM information extracted from a two-layer autoassociative NN with N neurons in a layer may be greater then that 
carried by N independent individual neurons. For details and description of the other AMU elements see [4].  

Two Nested Feedback Loops. All elements of the internal loop 1-2-3-4-1 (Fig. 2) run routinely in an automatic 
regime and for this reason they may be interpreted as respected to implicit (unconscious) memory. That means that 
under NNAMM all neural operations at synaptic and NN memory levels are unconscious. External loop 1-2-3-4-5-6-1is 
activated in an unpredictable manner because it relies on external (environmental and, consequently, unpredictable) 
information and in this way provides unlimited diversity of possible memory retrieval modes. For this reason an AMU 
can be viewed as a particular explicit (conscious) memory unit. An external information in block 5 used can be thought 
of as an explicit or conscious one (for distinctions between implicit and explicit memories see [14]); error detector 
neurons (Sect. 4) may participate in block 5 construction and may be interpreted as related to neural correlates of 
consciousness [15]. Hence, only at the level of a particular AMU, a possibility arises to take explicit (conscious) factors 
into account and, consequently, particular AMU is a smallest inseparable part or an “atom” of all possible explicit 
memories. Thus, an AMU may be used as a building block for construction of all the high-level conscious memories 
and conscious brain functions in general. These suggestions are consistent with the notion on the modularity of 
consciousness or the multiple small-scaled consciousness [16]. 

3.2 Numerical Example. NN local damages and respective memory impairments (Fig. 3) may be caused by 
natural reasons (that is a natural forgetting) or by the brain’s trauma or disease [4].  
 

Fig. 3. Probabilities P0(d) = P0(1 – q) for 
undamaged (curve 1) and damaged (curves 
2-6) perfectly learned NNs with N = 9 and 
θ = 0. Exact calculation results (different 
signs) are connected with interpolation 
curves. For curves 3 and 4 the number of 
“killed” entrance neurons is Nk  = 4; for 
curves 2, 5, and 6 the number of links 
disrupted between entrance and exit 
neurons is Nd = 10. Dashed lines denote 
free recall (q = 0),  recognition (q = 1), and 
cued recall (q = 1/3) probabilities (for fixed 
d the less P0(d) the greater memory 
impairment is). In the insertion 
components ±1 of the vector x0 and a 
sample of noise are shown as hyphens 
located above (+1) or below (–1) 
horizontal lines. In Figs. 1 and  3 open 
circles respect to the same values of P0(d). 

 
3.3. Basic Memory Performance. Since we define probabilities of the identification of x0 in xin =  x(d) as Pθ(d), 

Pθ(d) is also the probability of retrieving x0 from an NN tested by a series of xin with fixed cue  q. The vector xin = x0 is 
recognized as x0 with the probability Pθ(0) = 1; noise xin = xr is recognized as x0 randomly with the probability Pθ(1) = α 
< 1. Hence, α ≤ Pθ(d) ≤ 1.  

Below we consider the recall/recognition algorithm introduced as a test for the distinction of simple alternative 
statistical hypotheses.  
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Let null hypothesis H0 be such that a statistical sample xin =  x(d) is a sample of noise, i.e. d = 1 and xin = xr. By 
definition, the probability α = Pθ(1) of rejecting H0 is test significance level, Type-1 error rate, and conditional 
probability of false discovery. Noise does not contain any information about x0 and, therefore, α is also the probability of 
the recall x0 without any cue or free recall probability. Thus, α is simultaneously test significance level, Type-1 error 
rate, conditional probability of false discovery (false alarm probability), and free recall  probability. 

Alternative hypothesis H1 is such that statistical sample xin is x0 with damage degree d, i.e. xin = x(d), 0 ≤ d < 1. If 
the probability of rejecting H1, where it is true, is β then β is Type-2 error rate. Under the same condition probability of 
taking H1 is test power M = 1 – β and, since for a sample x(d) NN response x0 emerges with probability Pθ(d), M = 
Pθ(d). Each statistical sample x(d) contains a fraction q of undamaged components of x0 (that is an information about it) 
which “reminds” the learned NN about x0 and in this way “helps” to the NN to recall x0. Therefore, Pθ(d) is also the 
probability of the recall x0 with a cue q = 1 – d or cued recall  probability. Thus, Pθ(d), 0 < d < 1, is simultaneously test 
power, conditional probability of true discovery, and cued recall  probability; Pθ(0), d = 0, is recognition  probability. 

4 The NNAMM’s Neurobiological Background 
For the NNAMM substantiation besides Hebbian synaptic rule, brain’s feedback loops, bottom-up and top-down 

pathways, we use some nontraditional neurobiological arguments (see [4] for details and references). 
Lately, convincing experimental evidences have been obtained that when a subject performs an attention related 

cognitive task, cortical neurons within a small group synchronize their activity with the precision of about 10 ms in 
gamma-band frequency range, ~ 40 Hz, — that is dynamic spatiotemporal synchronization phenomenon. Within the 
NNAMM, a synchrony mechanism allocates particular cell assembly representing an assembly memory and chooses its 
respective pattern of signals, a message addressed to particular AMU in the form of the N-dimensional vector x(d) [4]. 

The first precisely aligned spike pattern of neuronal responses from synchronous cell assembly (early precise 
firing phenomenon), population bursts [8], and distributed bursts [9] of spiking neurons constitute a strong 
neurobiological ground for  vectors x(d). This assertion is consistent with Shannon information theory result that in the 
case of non-interactive neurons mutual information is carried entirely in firing rate, but for the correlational neuron 
population the information is fully conveyed by the correlational component with no information in the firing rate [17]. 

The size N of a particular AMU is estimated as ~100. The reasons are the size of fundamental signaling unit in 
cerebral cortex, the number of thalamic axons which project to a given cortical neuron, the number of relay neurons in 
cat’s visual system which is sufficient to satisfactorily reconstruction of natural-scene movies, the size of the population 
of cortical motor neurons which can control with good quality one- and three-dimensional movements of robot arms, 
and the size of the pool of spiking neurons stable propagating in complex cortical networks. The later finding supports 
also our assumption that stable propagation of vectors x(d) along external and internal pathways in Fig. 2 is 
neurobiologically well motivated. 

As a natural time scale for the memory retrieval mechanism (Sect. 3.1), decay period t0 of time dependent 
neurons is used. Such neurons start their activity when transient stimulus occurs and afterward decrease their spiking 
rate according to linear law during a period t0 that can vary from tens milliseconds to tens seconds, e.g. [18]. 

In some subcortical areas it were discovered “error detector”  neurons [19], neuronal populations which 
selectively change their firing rates only when errors were made in cognitive tasks. In the NNAMM they are used to 
design block 5 in Fig. 2. 

5 Some Applications 
The recognition algorithm based on Eqs. 5 and 6 was implemented as computer code PsNet [2] designed for 

solving the problem of local feature discriminations in one-dimensional half-tone images (“line spectra”) and for full 
quantitative description of psychometric functions obtained [1] as a result of testing human visual system.  

For damaged NNs their free and cued recall probabilities (P0(d), 0 < d ≤ 1) are less in general than for 
undamaged ones but for all NNs their recognition probabilities are the same, P0(0) = 1 (Fig. 3). Thus, for damaged NNs, 
NNAMM predicts the retain of their recognition ability and the impairment of their free and cued recalls. These agree 
with the data on episodic memory performance in patient with frontal lobe local damages [20]. Since free recall, cued 
recall, and recognition are special cases of a single unified mechanism of memory retrieval, the model supports the 
assumption about a close relationship between recall and recognition [21] and is, in first approximation, not consistent 
with the prediction that they depend on different brain systems [22].  

NNAMM became a ground for an NN model of the tip-of-the-tongue (TOT) phenomenon (in Fig. 3 curve 4, 
with a semi-plateau, corresponds to particular TOT state). The model makes possible to define and calculate the TOT’s 
strength and appearance probabilities, to join memory, psycholinguistic, and metamemory TOT’s analyses, to bridge 
speech error and naming chronometry traditions in TOT research [6].  

NNAMM provides distinct description of conscious and unconscious mental processes (Sect. 3.1). Taking this 
fact into account and using recent emotion theories, conceptual and quantitative NN models of feelings and emotions 
were proposed and applied to description of the feeling-of-knowing [7]. The model gives a chance to explain different 
feeling, emotion, or mood phenomena both in animals and humans, but its main inference is that emotions do not 
distinct conscious and unconscious mental processes but only create respective emotional background for them [7]. 

Empirical ROCs obtained in item and associative recognition tests [23] were quantitatively described and the 
values of the intensity of cue for some specific experiments were estimated [5]. It was also shown [5] that ROCs might 
be excluded from the list of findings underpinning dual-process models of recognition memory.  



6 Conclusions 
An optimal BSDT, based on it NNAMM, some their features, and applications have been discussed. For 

assembly memory activation, one-trial memory learning, relations between active and passive memory traces, free 
NNAMM parameters, memory impairments, comparison to other memory models, additional references, and 
discussions see [4]. All the NNAMM’s advantages are caused by advantages of the BSDT. We even hypothesize that 
BSDT could implement “the best neural code” [9]. The reasons are four-fold [4]: NNAMM, information theory, 
neurophysiology experiments, and computer modeling of NNs with nearly real neurophysiology parameters.  

I am grateful to Health Internetwork Access to Research Initiative (HINARI) for free on-line access to recent 
full-text journals and my family and my friends for their help and  support.  
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