
 1 

CHECKING SPANNING TREES FOR OPTIMALITY USING 
ASSOCIATIVE PARALLEL PROCESSORS AND ITS VISUALIZATION∗∗∗∗ 

A. S. Nepomniaschaya, T. V. Borets 

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Division of Russian Academy of 
Sciences, 630090, pr. Lavrentieva, 6, Novosibirsk, Russia, Fax (+7 3832) 34-37-83, Tel. (+7 3832) 34-39-94, 

E-mail:{anep,borets}@ssd.sscc.ru 

In this paper, by means of an abstract model of the SIMD type with vertical data processing (the STAR-machine), we present a simple 
associative parallel algorithm for implementing the criterion of Chin and Houck to verify minimal spanning trees in undirected graphs. This 
algorithm is given as the corresponding STAR procedure CST whose correctness is proved and time complexity is evaluated. We also provide 
an experiment of verifying two spanning trees for optimality in a given undirected graph. 

Introduction 
Associative (content-addressable) parallel systems of the SIMD type with vertical processing and simple single-bit 

processing elements are best suited to solve non-numerical problems. Such an architecture performs data parallelism at the 
base level, provides massively parallel search by contents, and allows one using two-dimensional tables as basic data 
structures [8]. However, to solve tasks on these systems, it is necessary to construct new approaches and methods  which 
take into account the advantages of this architecture. 

Here, we suggest an associative version of the criterion of Chin and Houck [1] for verifying minimal spanning trees 
in undirected graphs. In [9], Tarjan proposed a special technique, path compression on balanced trees, to compute 
functions defined on paths in trees under various assumptions. This technique is applied to solve several graph problems. 
Among them there is the criterion of Chin and Houck.  On sequential computers this algorithm takes O(m α(m,n)) time, 
where n is the number of vertices, m is the number of edges in the given graph, and α is a functional inverse of 
Ackermann's function. 

In this paper, for a given graph represented as a list of triples and for a given spanning tree, the criterion of Chin 
and Houck is implemented on the STAR-machine  as procedure CST (checking a spanning tree) which returns true if and 
only if all nontree edges of the graph satisfy the criterion. This procedure uses a new construction which defines for every 
vertex vi of the given graph positions of edges belonging to the tree path from the source vertex to the vertex vi. We prove 
correctness of the procedure CST and evaluate its complexity. We obtain that it takes O(m log n) time assuming that each 
elementary operation of the STAR-machine (its microstep) requires one unit of time.  

Model of associative parallel machine 
Let us recall our model which is based on a Staran-like associative parallel processor [2-3]. We define it as an 

abstract STAR-machine of the SIMD type with bit-serial (or vertical) processing and simple single-bit  processing 
elements (PEs). The model consists of the following components: 

• a sequential control unit (CU), where programs and scalar constants are stored; 
• an associative processing unit  consisting of p single-bit PEs; 
• a matrix memory for the associative processing unit. 
The CU broadcasts an instruction to all the PEs in unit time. All active PEs execute it in parallel while inactive PEs 

do not perform it. Activation of a PE depends on the data. It should be noted that the time of performing any instruction 
does not depend on the number of processing elements [2]. 

Input binary data are loaded in the matrix memory in the form of two-dimensional tables in which each datum 
occupies an individual row and it is updated by a dedicated processing element. It is assumed that there are more PEs than 
data. The rows are numbered from top to bottom and the columns – from left to right. Both a row and a column can be 
easily accessed. Some tables may be loaded in the matrix memory. 

The associative processing unit is represented as h vertical registers (h≥4), each consisting of p bits. The vertical 
registers can be regarded as a one-column array. The bit columns of the tabular data are stored in the registers which 
perform the necessary Boolean operations and record the search results.  

The STAR-machine run is described by means of the language STAR [4] which is an extension of Pascal. Let us 
briefly consider the STAR constructions needed for the paper. To simulate data processing in the matrix memory, we use 
data types word, slice, and table. Constants for the types slice and word are represented as a sequence of symbols of {0, 
1} enclosed within single quotation marks. The types slice and word are used for the bit column access and the bit row 
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access, respectively, and the type table is used for defining the tabular data. Assume that any variable of the type slice 
consists of p components which belong to {0, 1}. For simplicity, let us call slice any variable of the type slice. 

Now, we present some elementary operations and predicates for slices. Let X, Y be slices and i be a variable of the 
type integer. We use the following operations: 

SET(Y) sets all components of Y to '1'; 
CLR(Y) sets all components of Y to '0'; 
Y(i) selects the i-th component of Y; 
FND(Y) returns the ordinal number i of the first (or the uppermost) '1' of Y, i≥0; 
STEP(Y) returns the same result as FND(Y) and then resets the first '1' found to '0'. 
In the usual way we introduce the predicates ZERO(Y) and SOME(Y) and the bitwise Boolean operations (X and 

Y), (X or Y), (not Y), (X xor Y). 
Let T be a variable of the type table. We employ the following two operations: 
ROW(i, T) returns the i-th row of the matrix T; 
COL(i, T) returns the i-th column of T. 
Remark 1. All operations for the type slice can also be performed for the type word. 
Remark 2. Note that the STAR statements [4] are defined in the same manner as for Pascal. We will use them later 

for presenting our procedures. 

Preliminaries 
At first, let us recall some notions being used in the paper. 
Let G=(V,E) be an undirected weighted graph with the set of vertices V={1, 2, … ,n}, the set of edges E⊆V×V and 

the function w that assigns a weight to every edge. We assume that |V|=n and |E|=m. 
In the STAR-machine matrix memory an undirected weighted graph will be represented as association of the 

matrices left, right, and weight, where each edge (u,v)∈E is matched with the triple <u, v, w(u,v)>. Recall that vertices 
and weights are integers represented as binary strings. 

A path from the vertex u to the vertex v in G is a sequence of vertices u=v1, v2,…,vk=v, where (vi,vi+1)∈E for i=1, 
2,…, k-1 and k>0. 

A spanning tree T=(V, E’ ) of the given graph G is a connected acyclic subgraph of G, where E’⊆E. 
A minimal spanning tree (MST) of G is a spanning tree, where the sum of weights of the corresponding edges is 

minimal. 
Now, recall three basic procedures implemented on the STAR-machine which will be used later on. The first two 

procedures use a global slice X to select by ones positions of the rows which will be processed. 
The procedure MATCH(T, X, v, Z) from [5] defines in parallel positions of those rows of the given matrix T which 

coincide with the given pattern v written in binary code. It returns the slice Z, where Z(i)='1' if and only if ROW(i, T)=v 
and X(i)='1'. 

The procedure GREAT(T, X, v, Z) from [5] defines in parallel positions of those rows of the given matrix T which 
are greater than the given pattern v written in binary code. It returns the slice Z, where Z(i)='1' if and only if ROW(i, T)>v 
and X(i)='1'. 

The procedure CLEAR(k, F) [6] sets zeros in all columns of the matrix F, where k is the number of columns in F. 

Verifying minimal spanning trees on the RAM model 
In [9], Tarjan suggests a special technique, path compression on balanced trees, being applied to compute functions 

defined on paths in trees. Here, we consider an application of this technique to verify a minimal spanning tree in 
undirected graphs. 

Let T be a spanning tree of the given graph G. In [1], Chin and Houck present the following criterion of verifying 
minimal spanning trees in undirected graphs. 

A spanning tree T is optimum if and only if for each edge (vi, vj)∈E\E’  w(vi, vj)≥max {w(x, y): (x, y) is on the tree 
path joining vi and vj. 

Let us shortly consider an implementation of this criterion on sequential computers given in [9]. It uses the 
following data structures: 

• a graph G given as a list of m edges and their weights; 
• an unrooted spanning tree T given as arrays parent and children; 
• nontree edges given as an array pairs. 
This algorithm runs as follows. 
First, it arbitrarily chooses a root r for T. Next, for each edge (vi, vj) from the array pairs by means of the procedure 

LCA, it computes the least common ancestor ui=LCA( vi, vj). Finally, it computes the maximal weight of edges on the tree 
paths from ui to vi and from ui to vj. Combining these results, we obtain the maximal weight of an edge along the tree path 
joining vi and vj for each nontree edge (vi, vj). 
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The algorithm is realized as the procedure EVALUATE_PATHS which uses virtual trees. A virtual tree contains 
the same vertices as the real tree but different edges and labels [9]. Note that the root of a virtual tree saves the maximal 
weight of the path joining the vertices of the corresponding nontree edge. 

The procedure EVALUATE_PATHS initializes virtual trees and an array bucket. Initially for each vertex vi≠ r, we 
create a virtual tree with the vertex vi having w(parent(vi), vi) as its label. Then by means of the array bucket for each pair 
of vertices (vi, vj), we save its least common ancestor ui, that is, bucket(ui)=(vi, vj)∈ pairs: LCA(vi, vj)=ui. After that, the 
recursive procedure SEARCH(r) carries out a depth-first search to select the maximal weight on the tree path from the 
root of the current virtual tree to a vertex. During the search, each pair (vi, vj) is examined twice: once when the search is 
at vi and once when the search is at vj. When we follow parent pointers to the root r, virtual trees are merged by means of 
the procedure LINK. 

The procedure LINK(vi, vj) adds the virtual tree with the root vj to the virtual tree with the root vi and assigns a new 
label for the vertex vi as maximum of the labels for vi and vj.  

Verifying minimal spanning trees on the STAR-machine 
In this section, we present the implementation of the criterion of Chin and Houck for verifying minimal spanning 

trees on the STAR--machine. To this end, we first propose the procedure MatrixPath which defines for every vertex vi 
positions of edges belonging to the tree path from the source vertex to vi. Next, we present the procedure CST which 
returns true if and only if all nontree edges satisfy the criterion. 

On the STAR--machine, we represent a graph as association of the matrices left, right, and weight, and a spanning 
tree as a slice T in which positions of edges belonging to T are selected by ones. 

Associative algorithm for finding tree paths. Here, we first present the main idea of the procedure MatrixPath. 
Assume we know positions of edges included into the tree path from the source vertex s to a vertex vr. Then we construct 
a tree path for such a vertex vk which is adjacent to vr, the corresponding edge γ from the spanning tree T connects the 
vertices vr and vk, and the tree path from s to the vertex vk has not yet been defined. The tree path from s to vk is obtained 
by adding the position of the edge γ to the tree path from s to vr. 

Explain the meaning of the main variables being used. The procedure MatrixPath uses a global slice Y for the 
matrices left and right, in which we select by ones positions of edges from the spanning tree T not included in any tree 
path; a global slice U for the matrix code in whose every i-th row there is the binary code of the vertex vi; a variable node1 
(respectively, node2) of the type word for saving the binary code of the vertex for which the tree path from s has been 
constructed (respectively, has not been constructed) and a variable k (respectively, j) of the type integer for storing its 
decimal code; a slice N1 (respectively, N2) for storing positions of the tree edges whose left (respectively, right) vertex 
has been included in the tree path from s. 

Let us present the procedure MatrixPath. 
proc MatrixPath (left, right, code: table; T: slice(left); n: integer; var R: table); 
 var U, U1: slice(code); 
 X, Y, Z, N1, N2: slice(left); 
 node1, node2: word; 
 i, j, k: integer; 
1. Begin CLR(N1); CLR(N2); SET(U); 
2.  Y:=T; CLEAR(n, R); 
3.  node1:=ROW(1, code); 
/* The binary code of the source vertex is saved by means of node1. */ 
4.  MATCH(left, Y, node1, Z); N1:=N1 or Z; 
5.  MATCH(right, Y, node1, Z); N2:=N2 or Z; 
6.  X:=N1 or N2; 
/* Positions of the tree edges which is incident with the source vertex are selected by ones in the slice X. */ 
7.  while SOME(X) do 
8.  begin i:=STEP(X); 
/* We determine the position of the tree edge which is incident with the vertex for which the tree path has been 

obtained. */ 
9.   if N1(i)='1' then 
10.  begin node1:=ROW(i, left); 
11.   node2:=ROW( i, right); N1(i):='0'; 
12.  end 
13.  else 
14.  begin node1:=ROW(i, right); 
15.   node2:=ROW(i, left); N2(i):='0'; 
/* We save the binary code of the vertex for which the tree path has been obtained in node1, and the binary code of 

the vertex for which the tree path has not been obtained in node2. */ 
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16.  end; 
17.  Y(i):='0'; 
/* The tree edge from the i-th position is indicated as updated one. */ 
18.  MATCH(code, U, node1, U1); k:=FND(U1); 
19.  MATCH(code, U, node2, U1); j:=FND(U1); 
20.  Z:=COL(k, R); Z(i):='1'; COL(j, R):=Z; 
/* The tree path to vertex vj is obtained from the tree path to the vertex vk by adding the position of the edge (vk, vj). 

*/ 
21.  MATCH(left, Y, node2, Z); N1:=N1 or Z; 
22.  MATCH(right, Y, node2, Z); N2:=N2 or Z; 
23.  X:=N1 or N2; 
24. end; 
25. End; 
 
Correctness of the procedure MatrixPath is established by means of the following theorem. 
Theorem 1.Let an undirected graph be given as association of matrices left and right. Let code be a matrix in 

whose i-th row there is the binary representation of the vertex vi. Let a spanning tree T be given as a slice in which 
positions of edges belonging to it are selected by ones. Then the procedure MatrixPath(left, right, code, T, n, R) returns 
the matrix R in whose every j-th column positions of edges belonging to the tree path from the source vertex s to the vertex 
vj are selected by ones. 

Proof. We prove this by induction on the number of edges r included in the spanning tree T. 
Basis is verified for r=1. One can immediately verify that after performing lines 1–3, the slice Y saves the copy of 

the spanning tree T, the matrix R consists of zeros, and the variable node1 saves the binary code of the source vertex s. As 
a result of performing lines 4–6, we indicate by one in the slice N1 (respectively, N2) position of the edge from T whose 
left (respectively, right) vertex coincides with the binary code of the vertex s. Therefore by means of the slice X, we save 
the position of the edge from T being incident with the vertex s. Since X≠Θ1, we perform the cycle from line 7. 

Here, on performing line 8, by means of the operation STEP(X), we define the position i of the edge selected by 
one in the slice X. On performing lines 9–16, we first define whether the position of the selected edge belongs to the slice 
N1. If it is true, the right vertex of the selected edge has not been updated. In this case, we save the binary code of the left 
vertex in node1 and the binary code of the right vertex in node2, and perform the statement N1(i):='0'. Otherwise, we save 
the binary code of the right vertex in node1 and the binary code of the left vertex in node2, and fulfil the statement 
N2(i):='0'. 

On performing line 17, the position of the edge incident with s is selected by zero in the slice Y. Therefore, Y=Θ. 
On fulfilling lines 18–19, the variable k saves the result of decoding node1 and the variable j saves the result of decoding 
node2. On performing line 20, there is a unique '1' in the j-th column of the matrix R located in the i-th position. Hence, 
the position of the edge from T which connects the vertices s and vj is selected by one in the j-th column of the matrix R.  

Finally on performing lines 21–22, we obtain N1=N2=Θ because Y=Θ and N1(i)=N2(i)='0'. Therefore in view of 
the statement X:=N1 or N2 (line 23), we obtain X=Θ. Hence, the cycle terminates. 

Step of induction. Let the assertion be true for 1≤r≤n-2. We will prove it for spanning trees with r+1 edges. By 
inductive assumption for each l (1≤l≤r) in the l-th column of the matrix R, we select by ones positions of the tree edges 
which belong to the tree path joining the vertices s and vl. Moreover, positions of updated edges in the slice Y are selected 
by zero. Since r≤n-2 and Y≠Θ, on performing lines 21–23, we obtain X≠Θ. Therefore, we fulfil the current iteration 
starting from line 7. Using the same line of reasoning as in the basis, position of the last updated tree edge is selected by 
zero in the slice Y. Moreover, we obtain that the variable k saves the result of decoding node1 and the variable j saves the 
result of decoding node2. In addition, node2 saves the last vertex for which the tree path from s will be constructed. On 
performing line 20, we append the edge (vk, vj) to the tree path from s to the vertex vk. Therefore in the j-th column of the 
matrix R, positions of edges belonging to the tree path from s to vj are selected by ones. 

This completes the proof.□ 
Let us evaluate time complexity of the procedure MatrixPath. In view of basic procedures CLEAR and MATCH, 

execution of lines 1–6 takes O(n)+O(log n) time. The cycle while SOME(X) do is performed n-1 times because it updates 
each edge of the spanning tree. Since the basic procedure MATCH takes O(log n) time inside the cycle, we obtain that the 
procedure MatrixPath requires O(n log n) time.  

Associative algorithm for verifying minimal spanning trees Here, we first propose an auxiliary procedure 
PathPositions from [7]. 
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Let a current selected nontree edge (say, γ) be located in the i-th position of the graph representation. Let R be a 
result of carrying out the procedure MatrixPath. The procedure PathPositions determines positions of the tree edges 
belonging to the path in T which joins the end-points of γ. 

Let us present the procedure PathPositions. 
proc PathPositions(left, right, code, R: table; U: slice(code); i: integer; var X: slice(left)); 
/* R is the result of performing MatrixPath. */ 
var Y: slice(left); 
  node1, node2: word; 
  n1, n2: integer; 
1. Begin node1:=ROW(i, left); 
2.  MATCH(code, U, node1, X); 
3.  n1:=FND(X); 
/* Here, n1 is the left vertex of γ. */ 
4.  node2:=ROW(i, right); 
5.  MATCH(code, U, node2, X); 
6.  n2:=FND(X); 
/* Here, n2 is the right vertex of γ. */ 
7.  X:=COL(n1, R); 
8.  Y:=COL(n2, R); 
9.  X:=Y xor X 
/* Positions of edges from the tree path joining vn1 and vn2 are selected by ones in X. */ 
10. End. 
 
Claim 1. Let an undirected graph be given as a list of triples and the matrix code save the binary representations 

of vertices. Let U be a slice consisting of ones, R be a result of performing the procedure MatrixPath, and let i be the 
position of a nontree edge γ. Then an edge belongs to the tree path joining the end-points of γ if its position is selected by 
one in the slice X of the procedure PathPositions(left, right, code, R, U, i, X). 

This claim has been proved in [7]. 
Now, we present the main idea of representing the criterion of Chin and Houck on the STAR-machine. 
For every nontree edge (vi,vj) by means of the auxiliary procedures MatrixPath and PathPositions, we determine 

positions of edges included into the tree path joining the vertices vi and vj. Then by means of the basic procedure GREAT, 
we verify whether there is such an edge in this path whose weight is greater than the weight of the nontree edge (vi, vj). 

Let us explain the meaning of the main variables being used. 
The procedure CST uses a global slice U for the matrix code; a slice Z for saving positions of nontree edges; a 

matrix R for saving the result of the procedure MatrixPath; the variable w of the type word for selecting the weight of the 
current nontree edge.  

proc CST(left, right, weight, code: table; T: slice(left); n:  integer; var result: Boolean); 
var R: table; 
  U: slice(code); 
  X, Y, Z: slice(left); 
  w: word; 
  i: integer; 
1. Begin result:=true; SET(U); Z:=not T; 
/* Positions of nontree edges are selected by ones in the slice Z. */ 
2.  MatrixPath(left, right, code, T, n, R); 
3.  while SOME(Z) do 
4.  begin i:=STEP(Z); 
/* We select the position of the uppermost unexamined nontree edge γ in the slice Z. */ 
5.   w:=ROW(i, weight); 
/* By means of w, we save the weight of the selected nontree edge γ. */ 
6.   PathPositions(left, right, code, R, U, i, X); 
/* Positions of edges which belong to the tree path joining the vertices of γ are selected by ones in the slice X. */ 
7.   GREAT(weight, X, w, Y); 
/* We select by ones in the slice Y positions of the edges from the tree path, that join the vertices of γ, whose 

weights are larger than w(γ). */ 
8.   if SOME(Y) then 
9.   begin result:=false; exit 
10.  end; 
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11. end; 
12. End; 
 
Theorem 2. Let an undirected weighted graph be given as association of the matrices left, right, and weight. Let 

code be a matrix in whose i-th row there is the binary representation of the vertex vi. Let a spanning tree T be given as a 
slice in which positions of edges belonging to it are selected by ones. Then the procedure CST(left,right,weight,code,T,n, 
result) returns true if and only if T is a minimal spanning tree. 

Proof. We prove this by induction on the number of edges r not included in the spanning tree T. 
Basis is verified for r=1. First after initializing, the variable result has the value true, the slice U consists of ones 

and positions of nontree edges are selected by ones in the slice Z (line 1). After performing the auxiliary procedure 
MatrixPath (line 2), we construct the matrix R, in whose every j-th column positions of edges belonging to the tree path 
from the source vertex s to the vertex vj are selected by ones. Since Z≠Θ, we perform the cycle from line 3. 

Here, on fulfilling lines 4-5, we determine the position i of the unique edge selected by one in Z and its weight. 
Then on performing line 6, positions of edges that belong to the tree path joining the vertices from γ are selected by ones 
in the slice X. 

Finally, on fulfilling the basic procedure GREAT(weight, X, w, Y) positions of tree edges joining end-points of γ 
whose weights are greater than w are selected by ones in the slice Y. If there is such an edge (that is, Y≠Θ), the procedure 
CST returns false, otherwise it returns true (lines 1,16). Since Z≠Θ, the procedure terminates. 

Step of induction. Let the assertion be true for r≤n-2. We will prove it for r+1. By inductive assumption after 
updating the first r nontree edges selected by ones in the slice Z, the procedure CST returns false if and only if for a 
nontree edge γ there is such an edge σ in the tree path joining the vertices of γ, for which w(σ)>w(γ). Without loss of 
generality it is sufficient to consider the case when the criterion of Chin and Houck is fulfilled for the first r nontree edges. 
Then after updating these edges position of the last nontree edge is selected by one in the slice Z. Since Z≠Θ, we perform 
the current iteration starting from line 4. In the same manner as shown in the basis, we verify the criterion for the tree path 
which joins the vertices of the last nontree edge. Since now Z≠Θ, the procedure CST terminates and returns either the 
result true if the criterion is fulfilled for the last (r+1)-th nontree edge or the result false otherwise. 

This completes the proof.□ 
Let us evaluate time complexity of the procedure CST. In view of the procedure MatrixPath, execution of lines 1-2 

takes O(n log n) time. The cycle while SOME(Z) do is performed for all edges not included in the spanning tree, that is, 
m-n+1 times. Since the basic procedure MATCH takes O(log n) time inside the cycle, we obtain that the procedure CST 
takes O(m log n) time on the STAR–machine  having no more than m processing elements. 

An experiment 
In this section, we provide an example to illustrate the implementation of the procedure CST(left, right, weight, 

code, T, n, result) of verifying spanning tree T for optimality in an undirected graph. 
The original graph G is given in Figure 1a while the spanning tree is given in Figure 1b. In the procedure CST, the 

graph G is represented as association of matrices left, right, and weight, the spanning tree is given as a slice T, and n=6. 
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Fig. 1. An example 
 
 
 

Table 1 
 Tables Slices  The matrix R 
 Left Right Weight T Z Code 1 2 3 4 5 6 
1 001 010 010 1 0 001 0 1 1 1 1 1 
2 001 011 111 0 1 010 0 0 0 0 0 0 
3 010 011 100 1 0 011 0 0 1 0 0 0 
4 010 100 110 1 0 100 0 0 0 1 1 1 
5 011 100 110 0 1 101 0 0 0 0 0 0 
6 100 101 011 1 0 110 0 0 0 0 1 0 
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7 011 101 100 0 1  0 0 0 0 0 0 
8 100 110 111 1 0  0 0 0 0 0 1 

 
 
At first, we consider the run of procedure MatrixPath. The order of traversing of the tree T for building the matrix 

of paths is shown in Figure 2 and the matrix of paths R is given in table 1. The traversed vertices and edges are drawn by a 
fat line. The nontraversing vertices and edges are drawn by a thin line. 
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Fig. 2. The order of traversing of the tree T for building the matrix of paths. 
 
 

After performing the procedure MatrixPath, we consider the nontree edges, which positions are selected by ones in 
the slice Z. Since the slice Z doesn't consist of zeros, the procedure CST continues its run until all ones will be deleted 
from the slice Z. 
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Fig. 3 The circuits of tree T1. 

 
 
The first non-zero element in the slice Z corresponds to the nontree edge (1,3) having weight 7 and located in the 

second row of the graph representation. The circuit consisting of  this edge and the path joining vertices 1 and 3 is shown 
on Figure 3a. The weights of edges belonging to this path aren't larger than the weight of edge (1,3). Since Z≠Θ, the 
procedure continues its run. 

The next nontree edge is the fifth edge (3,4) with weight 6. The circuit consisting of  this edge and the path joining 
vertices 3 and 4 is shown on Figure 3b. Again, the weights of edges belonging to this path are not larger than the weight of 
edge (3,4). 

The last nontree edge is edge (3,5) with weight 4. The circuit consisting of  this edge and the path joining vertices 3 
and 5 is shown on Figure 3c.. However, the weight of the fourth edge (2,4) is greater than the weight of edge (3,5). 
Therefore the procedure CST stops with the result false. 

Conclusions 
We have presented a natural matrix implementation of the criterion of Chin and Houck for verifying a spanning 

tree to be a minimal one by means of the STAR--machine which is a model of associative parallel systems with vertical 
processing. To this end for a graph given as a list of triples and for a spanning tree T given as a slice, we have suggested a 
simple associative parallel algorithm which constructs the Boolean matrix in whose each i-th column positions of edges 
included in the tree path from the source vertex to the vertex vi are selected by ones. We have also presented 
implementation of the criterion of Chin and Houck using Tarjan's technique for path compression on balanced trees. Our 
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result illustrates that associative parallel systems with vertical processing allows one to use both a simple and natural data 
structure and a simple algorithm for implementing criterion of Chin and Houck. 

We are planning to employ our construction for designing new associative parallel algorithms which utilize tree 
paths. In particular, it will be used to find a fundamental set of cycles in undirected graphs relatively to a given spanning 
tree. 
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