CHECKING SPANNING TREESFOR OPTIMALITY USING
ASSOCIATIVE PARALLEL PROCESSORSAND ITSVISUALIZATION"

A. S. Nepomniaschaya, T. V. Borets

Institute of Computational Mathematics and Matheca&tGeophysics, Siberian Division of Russian Acagief
Sciences, 630090, pr. Lavrentieva, 6, NovosibiRikssia, Fax (+7 3832) 34-37-83, Tel. (+7 3832) 343,

E-mail:{anep,borets}@ssd.sscc.ru

In this paper, by means of an abstract model oStiMD type with vertical data processing (the STARehine), we present a simple
associative parallel algorithm for implementing tréerion of Chin and Houck to verify minimal spang trees in undirected graphs. This
algorithm is given as the corresponding STAR pracedCST whose correctness is proved and time cotitipls evaluated. We also provide
an experiment of verifying two spanning trees fptimality in a given undirected graph.

Introduction

Associative (content-addressable) parallel systeintise SIMD type with vertical processing and siepingle-bit
processing elements are best suited to solve norerical problems. Such an architecture performa gatallelism at the
base level, provides massively parallel search dntents, and allows one using two-dimensional &ble basic data
structures [8]. However, to solve tasks on thestesys, it is necessary to construct new approaameésnethods which
take into account the advantages of this architectu

Here, we suggest an associative version of therimit of Chin and Houck [1] for verifying minimabanning trees
in undirected graphs. In [9], Tarjan proposed acipetechnique, path compression on balanced tr@esompute
functions defined on paths in trees under vari@ssiaptions. This technique is applied to solve isd\graph problems.
Among them there is the criterion of Chin and Haou€n sequential computers this algorithm takes @(m,n)) time,
where n is the number of vertices, m is the numidfeedges in the given graph, andis a functional inverse of
Ackermann's function.

In this paper, for a given graph represented ast &fl triples and for a given spanning tree, thieedon of Chin
and Houck is implemented on the STAR-machine asequture CST (checking a spanning tree) which rsttrre if and
only if all nontree edges of the graph satisfy¢hiterion. This procedure uses a new constructibitlvdefines for every
vertex y of the given graph positions of edges belonginthéotree path from the source vertex to the vertewe prove
correctness of the procedure CST and evaluateitplexity. We obtain that it takes O(m log n) tisgesuming that each
elementary operation of the STAR-machine (its nstap) requires one unit of time.

Model of associative parallel machine

Let us recall our model which is based on a Stéikenassociative parallel processor [2-3]. We definas an
abstract STAR-machine of the SIMD type with bitigker(or vertical) processing and simple single-bjtrocessing
elements (PEs). The model consists of the folloveimigponents:

» asequential control unit (CU), where programs scalar constants are stored;

* an associative processing unit consisting single-bit PEs;

* a matrix memory for the associative processing. unit

The CU broadcasts an instruction to all the PEmittime. All active PEs execute it in parallelilghinactive PEs
do not perform it. Activation of a PE depends oa tfata. It should be noted that the time of perflognany instruction
does not depend on the number of processing elerf@nt

Input binary data are loaded in the matrix memaryhie form of two-dimensional tables in which eatdtum
occupies an individual row and it is updated byedidated processing element. It is assumed thed Hre more PEs than
data. The rows are numbered from top to bottomthadccolumns — from left to right. Both a row and@dumn can be
easily accessed. Some tables may be loaded inatrexrmemory.

The associative processing unit is representdu\astical registersht4), each consisting g bits. The vertical
registers can be regarded as a one-column array.bithcolumns of the tabular data are stored inrdgesters which
perform the necessary Boolean operations and reékersearch results.

The STAR-machine run is described by means ofdhguage STAR [4] which is an extension of Pascet.us
briefly consider the STAR constructions neededtffier paper. To simulate data processing in the rateémory, we use
data typesvord, slice, andtable. Constants for the typestice andword are represented as a sequence of symbdl of
1} enclosed within single quotation marks. The tyges andword are used for the bit column access and the bit row

“This work was supported in part by the RussiamBation for Basic Research under Grant N 03-01-9039

access, respectively, and the typble is used for defining the tabular data. Assume &mgt variable of the typdice
consists op components which belong {0, 1}. For simplicity, let us calliceany variable of the typgice.

Now, we present some elementary operations andcpted for slices. LeX, Y be slices andbe a variable of the
typeinteger. We use the following operations:

SET(Y) sets all components of Y to '1";

CLR(Y) sets all components of Y to '0';

Y(i) selects the-th component of Y;

FND(Y) returns the ordinal numbeof the first (or the uppermost) '1' of ¥0;

STEP(Y) returns the same result as FND(Y) and tksats the first '1' found to '0'".

In the usual way we introduce the predicates ZER@M SOME(Y) and the bitwise Boolean operatiodsfd
Y), XorY), (notY), (X xor V).

Let T be a variable of the typgable. We employ the following two operations:

ROW(i, T) returns théth row of the matrixT;

COL(i, T) returns thé-th column ofT.

Remark 1. All operations for the typdice can also be performed for the typerd.

Remark 2. Note that the STAR statements [4] are definedhéngame manner as for Pascal. We will use them late
for presenting our procedures.

Preliminaries

At first, let us recall some notions being usethia paper.

Let G=(V,E) be arundirectedweighted graph with the set of vertices V={1, 2,,n}, the set of edges[B/xV and
the function w that assigns a weight to every ell¢e.assume that [V|=n and |E|=m.

In the STAR-machine matrix memory an undirectedgiveid graph will be represented as associatiorhef t
matricesleft, right, andweight where each edge (ulME is matched with the triple <u, v, w(u,v)>. Reddlat vertices
and weights are integers represented as binangstri

A pathfrom the vertex u to the vertex v in G is a seqeeof vertices u=y V,,...,vi=v, where (y,v.1)OE for i=1,
2,..., k-1 and k>0.

A spanning treel=(V, E) of the given graph G is a connected acyclic sapigiof G, where 'EIE.

A minimal spanning tre€MST) of G is a spanning tree, where the sum dfjlate of the corresponding edges is
minimal.

Now, recall three basic procedures implementechenSSTAR-machine which will be used later on. Thet fiwo
procedures use a global slice X to select by onsgipns of the rows which will be processed.

The procedure MATCH(T, X, v, Z) from [5] defines jparallel positions of those rows of the given rixafrwhich
coincide with the given pattern v written in binargde. It returns the slice Z, where Z(i)="1" idaonly if ROW(i, T)=v
and X(i)="1".

The procedure GREAT(T, X, v, Z) from [5] definesparallel positions of those rows of the given xatrwhich
are greater than the given pattern v written irabjrcode. It returns the slice Z, where Z(i)="lanfd only if ROW(i, T)>v
and X(i)="1".

The procedure CLEAR(K, F) [6] sets zeros in aluoohs of the matrix F, where k is the number of oola in F.

Verifying minimal spanning trees on the RAM model

In [9], Tarjan suggests a special technique, pathpression on balanced trees, being applied to aterfpnctions
defined on paths in trees. Here, we consider aricapipn of this technique to verify a minimal spamg tree in
undirected graphs.

Let T be a spanning tree of the given graph G1]nChin and Houck present the following criteriohverifying
minimal spanning trees in undirected graphs.

A spanning tree T isptimumif and only if for each edge (W)JE\E w(vi, v;j)>max {w(X, y): (X, y) is on the tree
path joining yand y.

Let us shortly consider an implementation of thigedon on sequential computers given in [9]. Hea the
following data structures:

» agraph G given as a list sfedges and their weights;

* an unrooted spanning tree T given as arpgyentandchildren

* nontree edges given as an anpays.

This algorithm runs as follows.

First, it arbitrarily chooses a root r for T. Nefdar each edge (vvj) from the arrayairs by means of the procedure
LCA, it computes the least common ancesteL GA(v;, v;). Finally, it computes the maximal weight of edgesthe tree
paths from uto v and from wto v. Combining these results, we obtain the maximagteof an edge along the tree path
joining v and y for each nontree edge;,(v)).

The algorithm is realized as the procedure EVALUAPRTHS which uses virtual trees. tual tree contains
the same vertices as the real tree but differegegdnd labels [9]. Note that the root of a virtueé saves the maximal
weight of the path joining the vertices of the egponding nontree edge.

The procedure EVALUATE_PATHS initializes virtuaks and an arrdyucket Initially for each vertex ¥ r, we
create a virtual tree with the vertexhavingw(parent(y), v) as its label. Then by means of the atvagketfor each pair
of vertices (v, vj), we save its least common ancestpthat is,buckefu;)=(v;, vj)O pairs. LCA(v;, v)=u;. After that, the
recursive procedure SEARCH(r) carries out a deps#ti-fearch to select the maximal weight on the path from the
root of the current virtual tree to a vertex. Dgrimie search, each pair,(v;) is examined twice: once when the search is
at v and once when the search is a\When we follow parent pointers to the root rfwél trees are merged by means of
the procedure LINK.

The procedure LINK(y vj) adds the virtual tree with the rogtte the virtual tree with the root &nd assigns a new
label for the vertex;yvas maximum of the labels forand v.

Verifying minimal spanning trees on the STAR-machine

In this section, we present the implementationhef ¢riterion of Chin and Houck for verifying miniirgpanning
trees on the STAR--machine. To this end, we firsippse the procedure MatrixPath which defines f@re vertex y
positionsof edges belonging to the tree path from the sowartex to ¥ Next, we present the procedure CST which
returnstrue if and only if all nontree edges satisfy the aiis.

On the STAR--machine, we represent a graph as iasisocof the matrices left, right, and weight, aamdpanning
tree as a slice T in which positions of edges lgilunto T are selected by ones.

Associative algorithm for finding tree paths. Here, we first present the main idea of the pracedvatrixPath.
Assume we know positions of edges included intottbe path from the source vertex s to a verteXikven we construct
a tree path for such a vertexwhich is adjacent to,vthe corresponding edgefrom the spanning tree T connects the
vertices yand y, and the tree path from s to the vertghas not yet been defined. The tree path fromwg i® obtained
by adding the position of the edgéo the tree path from s te.v

Explain the meaning of the main variables beingdugde procedure MatrixPath uses a global sliceoiYtlie
matrices left and right, in which we select by opesitions of edges from the spanning tree T ndiuthed in any tree
path; a global slice U for the matrix code in whesery i-th row there is the binary code of theteew; a variable nodel
(respectively, node2) of the typeord for saving the binary code of the vertex for whible tree path from s has been
constructed (respectively, has not been constryeted a variable k (respectively, j) of the tyimeger for storing its
decimal code; a slice N1 (respectively, N2) forisig positions of the tree edges whose left (retpelg, right) vertex
has been included in the tree path from s.

Let us present the procedure MatrixPath.

proc MatrixPath (left, right, code: table; T: sliceflefn: integer; var R: table);

var U, U1: slice(code);
X, Y, Z, N1, N2: slice(left);
nodel, node2: word;

i, j, k: integer;
1. Begin CLR(N1); CLR(N2); SET(V);
2. Y:=T; CLEAR(n, R);
3. nodel:=ROW(1, code);
/* The binary code of the source vertex is savethbgns of nodel. */
4, MATCH(left, Y, nodel, Z); N1:=N1 or Z,
5. MATCH(right, Y, nodel, Z); N2:=N2 or Z;
6. X:=N1 or N2;
/* Positions of the tree edges which is inciderthwihe source vertex are selected by ones in tbe Xl */
7. while SOME(X) do
8. begin i:=STEP(X);

/* We determine the position of the tree edge wiscimcident with the vertex for which the treetpéias been
obtained. */

9. if N1(i)="1" then

10. begin nodel:=ROW(i, left);

11. node2:=ROW(i, right); N1(i):='0’
12. end

13. else

14, begin nodel:=ROW(i, right);

15. node2:=ROW(i, left); N2(i):='0'

/* We save the binary code of the vertex for whinghtree path has been obtained in nodel, anditfeypcode of
the vertex for which the tree path has not beeaiobtl in node2. */

16. end;

17. Y(i):='0"

[* The tree edge from the i-th position is indichtes updated one. */

18. MATCH(code, U, nodel, Ul); k:=FND(U1);

19. MATCH(code, U, node2, Ul); j;=FND(U1);

20. Z:=COL(k, R); Z(i):="1"; COL(j, R):=z;

* The tree path to vertex is obtained from the tree path to the vertgkywadding the position of the edge, ().
*/

21. MATCH(left, Y, node2, Z); N1:=N1 or Z,

22. MATCH(right, Y, node2, Z); N2:=N2 or Z;

23. X:=N1 or N2;

24, end;

25. End;

Correctness of the procedure MatrixPath is estadti®y means of the following theorem.

Theorem 1.Let an undirected graph be given as associatiomafrices left and right. Let code be a matrix in
whose i-th row there is the binary representatidrtie vertex v Let a spanning tree T be given as a slice in twhic
positions of edges belonging to it are selectewigs. Then the procedure MatrixPath(left, rightdeoT, n, R) returns
the matrix R in whose every j-th column positiohsdges belonging to the tree path from the souectex s to the vertex
v; are selected by ones.

Proof. We prove this by induction on the number of edgesluded in the spanning tree T.

Basis is verified for r=1. One can immediately verifyatrafter performing lines 1-3, the slice Y savesdbpy of
the spanning tree T, the matrix R consists of zeand the variable nodel saves the binary codeeo$durce vertex s. As
a result of performing lines 4—-6, we indicate by @m the slice N1 (respectively, N2) position of thdge from T whose
left (respectively, right) vertex coincides withetbinary code of the vertex s. Therefore by medikeoslice X, we save
the position of the edge from T being incident vifik vertex s. Since2@", we perform the cycle from line 7.

Here, on performing line 8, by means of the opera®TEP(X), we define the position i of the edgeded by
one in the slice X. On performing lines 9-16, wstfdlefine whether the position of the selectecedulgjongs to the slice
N1. If it is true, the right vertex of the selectedige has not been updated. In this case, we IsaN@rtary code of the left
vertex in nodel and the binary code of the rightexein node2, and perform the statement N1(i). ©@herwise, we save
the binary code of the right vertex in nodel anel timary code of the left vertex in node2, andilfulfe statement
N2(i):='0".

On performing line 17, the position of the edgadeat with s is selected by zero in the slice Yer#iore, Y©.
On fulfilling lines 18-19, the variable k saves tiesult of decoding nodel and the variable j séivesesult of decoding
node2. On performing line 20, there is a uniquén'the j-th column of the matrix R located in thil position. Hence,
the position of the edge from T which connectswviaices s and;vs selected by one in the j-th column of the mxa®i

Finally on performing lines 21-22, we obtain N1=M2because Y® and N1(i))=N2(i)="'0". Therefore in view of
the statement X:=N1 or N2 (line 23), we obtain&X=Hence, the cycle terminates.

Step of induction. Let the assertion be true fogrkn-2. We will prove it for spanning trees with r+dges. By
inductive assumption for each I{¥r) in the I-th column of the matrix R, we select dmyes positions of the tree edges
which belong to the tree path joining the vertisesd v Moreover, positions of updated edges in the sliege selected
by zero. Sincesn-2 and %O, on performing lines 21-23, we obtairt®. Therefore, we fulfil the current iteration
starting from line 7. Using the same line of reasgras in the basis, position of the last updated edge is selected by
zero in the slice Y. Moreover, we obtain that theiable k saves the result of decoding nodel amddhiable j saves the
result of decoding node2. In addition, node2 sdkiedast vertex for which the tree path from s Ww#l constructed. On
performing line 20, we append the edgg () to the tree path from s to the vertex Therefore in the j-th column of the
matrix R, positions of edges belonging to the frath from s to yare selected by ones.

This completes the proaf.

Let us evaluate time complexity of the procedurearMBath. In view of basic procedures CLEAR and M2{T,
execution of lines 1-6 takes O(n)+0O(log n) timee Hyclewhile SOME(X) do is performed n-1 times because it updates
each edge of the spanning tree. Since the basieguoe MATCH takes O(log n) time inside the cygle, obtain that the
procedure MatrixPath requires O(n log n) time.

Associative algorithm for verifying minimal spanning trees Here, we first propose an auxiliary procedure
PathPositions from [7].

! The notation %O denotes that there is at least one componemt theislice X.

4

Let a current selected nontree edge (§ape located in the i-th position of the graph esgntation. Let R be a
result of carrying out the procedure MatrixPatheTrocedure PathPositions determipesitions of the tree edges
belonging to the path in T which joins the end-poiofy.

Let us present the procedure PathPositions.

proc PathPositions(left, right, code, R: tableslice(code); i: integer; var X: slice(left));

/* R is the result of performing MatrixPath. */

var Y: slice(left);

nodel, node2: word;
nl, n2: integer;

1. Begin nodel:=ROW(i, left);

2. MATCH(code, U, nodel, X);
3. n1:=FND(X);

/* Here, nl is the left vertex of */

4, node2:=ROW(i, right);

5. MATCH(code, U, node2, X);
6. n2:=FND(X);

/* Here, n2 is the right vertex of */

7. X:=COL(n1, R);

8. Y:=COL(n2, R);

9. X:=Y xor X

/* Positions of edges from the tree path joinipgand v, are selected by ones in X. */
10. End.

Claim 1. Let an undirected graph be given as a list of #fphnd the matrix code save the binary represemsti
of vertices. Let U be a slice consisting of one®eRa result of performing the procedure MatrixRadind let i be the
position of a nontree edge Then an edge belongs to the tree path joiningetidb points of/if its position is selected by
one in the slice X of the procedure PathPositiafg(fight, code, R, U, i, X).

This claim has been proved in [7].

Now, we present the main idea of representing tiverion of Chin and Houck on the STAR-machine.

For every nontree edge;{) by means of the auxiliary procedures MatrixPatll RathPositions, we determine
positions of edges included into the tree pathifgrihe verticesvand y. Then by means of the basic procedure GREAT,
we verify whether there is such an edge in thib pdtose weight is greater than the weight of thetree edge (vv,).

Let us explain the meaning of the main variabléadased.

The procedure CST uses a global slice U for theimabde; a slice Z for saving positions of nontedges; a
matrix R for saving the result of the procedure fiA&ath; the variable w of the typeord for selecting the weight of the
current nontree edge.

proc CST(left, right, weight, code: table; T: sliedt); n: integer; var result: Boolean);

var R: table;

U: slice(code);
X, Y, Z: slice(left);
w: word;
i integer;
1. Begin result:=true; SET(U); Z:=not T;
[* Positions of nontree edges are selected by ond®e slice Z. */

2. MatrixPath(left, right, code, T, n, R);

3. while SOME(Z) do

4, begin i:=STEP(2);

/* We select the position of the uppermost unexathitontree edggin the slice Z. */

5. w:=ROW(i, weight);

/* By means of w, we save the weight of the seletatree edgg: */

6. PathPositions(left, right, code, R, U, i, X);

/* Positions of edges which belong to the tree paithing the vertices ofare selected by ones in the slice X. */
7. GREAT(weight, X, w, Y);

/* We select by ones in the slice Y positions efd@bges from the tree path, that join the vertickg, whose
weights are larger than wj. */

8. if SOME(Y) then
9. begin result:=false; exit
10. end;

11. end;
12. End;

Theorem 2. Let an undirected weighted graph be given as aafioai of the matrices left, right, and weight. Let
code be a matrix in whose i-th row there is theabjrrepresentation of the vertex lzet a spanning tree T be given as a
slice in which positions of edges belonging toré selected by ones. Then the procedure CST (¢gft,weight,code,T,n,
result) returns true if and only if T is a minimsdanning tree.

Proof. We prove this by induction on the number of edgast included in the spanning tree T.

Basis is verified for r=1. First after initializing, theariableresult has the valuérue, the slice U consists of ones
and positions of nontree edges are selected by iontee slice Z (line 1). After performing the aliaiy procedure
MatrixPath (line 2), we construct the matrix Rwhose every j-th column positions of edges beloggmthe tree path
from the source vertex s to the vertgare selected by ones. Sincgé&, we perform the cycle from line 3.

Here, on fulfilling lines 4-5, we determine the pios i of the unique edge selected by one in Z @sdveight.
Then on performing line 6, positions of edges thelbng to the tree path joining the vertices frpare selected by ones
in the slice X.

Finally, on fulfilling the basic procedure GREAT (ight, X, w, Y) positions of tree edges joining emoints ofy
whose weights are greater than w are selected &y iorthe slice Y. If there is such an edge (that+®), the procedure
CST returns false, otherwise it returns true (lihg$). Since Z0, the procedure terminates.

Step of induction. Let the assertion be true faer-2. We will prove it for r+1. By inductive assungt after
updating the first r nontree edges selected by émeke slice Z, the procedure CST returns falsanid only if for a
nontree edge there is such an edgein the tree path joining the vertices wffor which w@)>w(y). Without loss of
generality it is sufficient to consider the caseewlhe criterion of Chin and Houck is fulfilled fdre first r nontree edges.
Then after updating these edges position of thenkastree edge is selected by one in the slicareeSAZ0, we perform
the current iteration starting from line 4. In s@me manner as shown in the basis, we verify iterion for the tree path
which joins the vertices of the last nontree edgjace now 20, the procedure CST terminates and returns eitieer t
result true if the criterion is fulfilled for thast (r+1)-th nontree edge or the result false otiser.

This completes the proaf.

Let us evaluate time complexity of the procedur@ A8 view of the procedure MatrixPath, executidrimes 1-2
takes O(n log n) time. The cyckehile SOME(Z) do is performed for all edges not included in thersyiag tree, that is,
m-n+1 times. Since the basic procedure MATCH taRésg n) time inside the cycle, we obtain that finecedure CST
takes O(m log n) time on the STAR—-machine haviognore than m processing elements.

An experiment

In this section, we provide an example to illugrtie implementation of the procedure CST(lefthtiigveight,
code, T, n, result) of verifying spanning tree T dptimality in an undirected graph.

The original graph G is given in Figure 1a while 8panning tree is given in Figure 1b. In the pdace CST, the
graph G is represented as association of matrégsibht, and weight, the spanning tree is giasra slice T, and n=6.

Fig. 1. An example

Tablel
Tables Slices The matrix R
Left | Right| Weight] T | Z | Code|1 2 3 4 5 6
1| 001| o010 010 1 001 0 1 1 1 11
2| 001 011 111 g 1 01 0 O O O 01O
3| 010| 011 100 1 011 0 0 1 0 010
4| 010| 100 110 1 10 0 0 O 1 1 |1
5| 011 100 110 q 1 100 0 O O O O |O
6| 100 101 011 1 11¢ 0 0O O O 1|0

7| 011| 101 100 0O 0 00 0|0
8| 100| 110 111 0O 0 00 0|1

At first, we consider the run of procedure MatritiPalhe order of traversing of the tree T for bimfithe matrix
of paths is shown in Figure 2 and the matrix ohpa is given in table 1. The traversed verticasedges are drawn by a
fat line. The nontraversing vertices and edgeslea®n by a thin line.

Fig. 2. The order of traversing of the tree T for buildihg matrix of paths.

After performing the procedure MatrixPath, we cdesithe nontree edges, which positions are seldgtetes in
the slice Z. Since the slice Z doesn't consisterbg, the procedure CST continues its run untibaéts will be deleted
from the slice Z.

Fig. 3 The circuits of tree T1.

The first non-zero element in the slice Z corresjsoto the nontree edge (1,3) having weight 7 andtél in the
second row of the graph representation. The cimrisisting of this edge and the path joiningiceg 1 and 3 is shown
on Figure 3a. The weights of edges belonging te pEith aren't larger than the weight of edge (1SB)ce Z0O, the
procedure continues its run.

The next nontree edge is the fifth edge (3,4) widhight 6. The circuit consisting of this edge anel path joining
vertices 3 and 4 is shown on Figure 3b. Againwbights of edges belonging to this path are ngielathan the weight of
edge (3,4).

The last nontree edge is edge (3,5) with weigHih circuit consisting of this edge and the pathing vertices 3
and 5 is shown on Figure 3c.. However, the weidhthe fourth edge (2,4) is greater than the weighedge (3,5).
Therefore the procedure CST stops with the realdef

Conclusions

We have presented a natural matrix implementatfathe criterion of Chin and Houck for verifying @anning
tree to be a minimal one by means of the STAR--im&ctvhich is a model of associative parallel systemith vertical
processing. To this end for a graph given as afisiples and for a spanning tree T given adaeslve have suggested a
simple associative parallel algorithm which constsithe Boolean matrix in whose each i-th columsitmns of edges
included in the tree path from the source vertexthe vertex v are selected by ones. We have also presented
implementation of the criterion of Chin and Houdking Tarjan's technique for path compression oarzad trees. Our

7

result illustrates that associative parallel systevith vertical processing allows one to use bosingple and natural data
structure and a simple algorithm for implementinigecion of Chin and Houck.

We are planning to employ our construction for gesig new associative parallel algorithms whicHizagitree

paths. In particular, it will be used to find a flamental set of cycles in undirected graphs redtito a given spanning
tree.

wnN e

Referenses
F. Chin, D.Houck, Algorithms for Updating Minimap&nning Trees]. of Computer and System Scieneed6, 1978, 333-344.
C. C. FosterContent Addressable Parallel Procesgokéan Nostrand Reinhold Company, New York, 1976.
N. Mirenkov, The Siberian Approach for an Open-8gstHigh-Performance Computing Architectut@omputing and Control Engineering
Journal v.3, No. 3, 1992, 137-142.
A. S. Nepomniaschaya, Language STAR for Associatind Parallel Computation with Vertical Data Praieg, Proc. of the Intern. Conf.
““Parallel Computing Technologies{World Scientific, Singapure), 1991, 258-265.
A. S, Nepomniaschaya, Investigation of AssociatBearch Algorithms in Vertical Processing SysteRrmc. of the Intern. Conf. “*Parallel
Computing Technologies(Obninsk, Russia), 1993, v. 3, 631-642.
A. S. Nepomniaschaya, M. A. Dvoskina, A Simple lempkntation of Dijkstra's Shortest Path Algorithm Associative Parallel Processors,
Fundamenta InformaticadOS Press, Amsterdam, v. 43, 2000, 227-243.
A. S. Nepomniaschaya, Associative Parallel Algonghfor Computing Functions Defined on Paths in 3rBeoceedings of the Intern. Conf. on
Parallel Computing in Electrical EngineeriniEEE Computer Society, Los Alamitos, Califorr2802, 399-404.
J. L. PotterAssociative Computing: A Programming Paradigm fadsively Parallel Computer&ent State University, Plenum Press,New York
and London, 1992.
R. E. Tarjan, Applications of Path Compression afeBced Trees). of the ACMv. 26, No.4, 1979, 690-715.

