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A new approach is proposed for the numerical smiutif three-dimensional advection-diffusion equadiovhich arise, among others, in
air pollution modelling. The technique is baseddrectional operator splitting, which results inesdimensional advection-diffusion
equations. Then upstream-type difference approximstare applied for the first-order derivativesd anon-standard difference

approximations for the second-order derivativesis dpproach leads to significant qualitative imgments in the behaviour of the
numerical solutions.

Introduction

The investigation of advection-diffusion equatioirs higher dimensions is of great importance. The
atmospheric flows and heat transfer processes #isawethe concentration changes of pollutants ammonly
described by a set of partial differential equatiowhich are mathematical formulations of one orrenof the
conservation laws of physics. These include theatguos of momentum, mass and energy conservatibichvinvolve
advection and diffusion terms as a main constitukdvection-diffusion equations take the form

96 ., 0¢ 05 05 o0& o0& o0&
v, —+V,—+Vv,—=F + 1.1
ot tox,  Cox, Cox ox (/Jl ox J 0X, [,uz axzj X, [/JS OXJ (-4

where L, and V, are the eddy viscosity and the velocity comporeithe fluid, respectively, in the direction
X, (i = 1,2,3), and F is the source/sink of the quantiy. The termsy, (GE/GXi) are usually called advection (or
sometimes convection) terms, and describe the poatetion of the quantityé by the velocity field. The terms

6(,ui 0&/0x. )/axi are called diffusion (or sometimes viscous) teraml express the spreading of quandtyby the

process of turbulent diffusion. The equation is aliyuprovided with appropriately defined initial drboundary
conditions.

Since analytical solutions of advection-diffusiproblems cannot usually be found, we have to stteen
numerically. However, the numerical treatment ofiaepns of the form (1.1) is a highly complicatedk. The main
reasons for this are the following:

« the equations are nonlinear,;
* due to changes in the input parameters the eqgatimmchange the type (hyperbolic, parabolic qptél);
« the size of the discretized problem can be veryelan a real-life physical model.

Therefore, choosing a sufficiently accurate as veall efficient numerical method for solving advestaiffusion
problems is not an easy task. In this case thacghioin of operator splitting seems a good altéveatin [1] Prusov et
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al. suggest a new finite-difference method fordhe-dimensional convection-diffusion equation. @um is to extend
this method to higher dimensions by using opergtitting based on directional decomposition.

The structure of the paper is as follows. In S#cf we propose possible splitting algorithms faohpems of
the form (1.1). In Section 3 we deal with the nuicarsolution of the sub-problems obtained by sptit We close the
paper with some useful remarks and a summary afethdts.

1. Solving the three-dimensional advection-diffusion equation by operator splitting

The aim of operator splitting is to replace aniahivalue problem with a sequence of simpler peats, for
which accurate as well as efficient solvers avédlah standard program packages exist [2, 3]. Tlehamatical
background of operator splitting can be sketchedblews. Let S denote a normed space and consider the abstract
initial value problem

= Aw(t) = (A + A)w(t), tO[0,T]

w(0) = w,, (2.2)

dn(t)
dt

where W(t) JS, t O[O, T] is the unknown function, and A is a given operdtor- S, which can be decomposed

into a sum of two “simpler” operators, &and A. (By “simpler” we mean that the correspondingiéhitzalue problems
are easier to treat numerically than the originabfem.) The simplest kind of operator splittingtie so-called
sequential splitting, where we solve the followseguence of initial value problems:

% =AWO®M), tO((k-17,k7]
W ((k ~D7) = Wy, (k- D)7), 22)
and
W;Z; O - Aw@®),  t0(Kk-17,ke]
w? ((k=D7) = W (k7), (2.3)

w,, (k7) = w (k)

fork=1, 2,....n, whereT =T /n is the splitting time step, and/ (O) W,. This scheme can be extended to more

than two sub-operators in a natural way.
Another possibility is the Marchuk-Strang splittif, defined by the following algorithm:

Wji O - Aw®@),  tO(k-Dz, (k- 05)7]

W (k=D)7) = wy, ((k —1)7), (2.4)
% =AW @M), tO(k-17,kr]

w2 ((k-11) =w® ((k - 05)1), (2.5)
dwji O - Aw®(®), t0(K-05)7,ki]

w® ((k - 05)7) = w® (k7) 2.6)
w,, (k) = w® (k7)

fork=1, 2,...,n, where W, (0) = w,.

Obviously, there are several ways to define tHeaperatorsh in a splitting procedure. We can choose the
sub-operators on a physical base, e.g., we carratepthe advection and diffusion terms in Eq. (Adhysical
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decomposition) [5]. Another possibility is to segi@ the x;-, Xo- and Xs-derivatives in the equation (directional
decomposition) [6]. For the three-dimensional atieeediffusion problem the physical decompositioould lead to
advection problems, which are of hyperbolic typed aiffusion problems, which are of parabolic tygéis would
cause us difficulties in defining appropriate boamydconditions for the sub-problems. Therefore,re@ommend the
latter one, which results in three one-dimensiathlection-diffusion problems at each time stepti®adarly, if we
apply the sequential splitting, the detailed aldyoni will read as follows:

06°(M) __, 945, 9 p 0,
ot Pox, ax |t oax
D ((k=D7) = &, ((k-D7), (2.7)

j+ F., tO(k-D7kr]

&2 (t) Ly 052 | 0 u ox®
ot 2 ox, 0x,| 7 ox,

D ((k-Dr) =&Y, (K1), 2.8)

j+ F., tO(k-Drki]

&S (t 0P o ox®
E00 __, 00, 0,
ot 0%, 0%, 0X,

O ((k-17) = &2 k), (2.9)
(k) = &P (kT)

j+ Fo, tO((k-Drk7]

fork=1,2,....n, where & ,(0) = &,. If the original problem is defined over a boundpatial domain, the equations

(2.7)-(2.9) are also provided with appropriatel§imed boundary conditions.

Several numerical methods have been constructetthdogolution of the resulting one-dimensional atioa-
diffusion problems [7-12]. Recently, finite elemdiB] and spectral methods are very popular [14ier€ are also
many finite difference schemes that can be const@ccording to the number of spatial grid poimsgolved, the
number of time-levels used, and whether they apéigtxor implicit in nature [15—-42].

Standard three-point finite difference methods mraximating spatial derivatives can work well fmooth
solutions, but they fail when severe gradients iscahtinuities are present, which are common in gheck wave
problems [17-21]. Lower-order accurate finite diéiece methods, such as upstream-type finite diffavg, can be a
remedy for the numerical oscillations and dispersidcHowever, they have a large amount of “numesitslosity” that
smoothes the solution in much the same way thatipalviscosity would, but to an extent that isealistic by several
orders of magnitude [20]. Standard four-point &nitifference methods are good in their higher-oedeuracy and in
reducing numerical smearing effects [21]. But, theg plagued by their generation of spurious cgalhs or
overshoots in the neighbourhood discontinuities Ewd accuracy17, 18]. Total variation stable finite difference
schemes (TVDJ10, 11] guarantee oscillation-free solutions gyt are limited to second-order accuracy. Higheleor
accurate TVD schemes are attractive for problenth Wing computational time or with required higharcuracy
solutions [11]. But, the objection to the standhigher-order schemes comes from the additional s\ogeessary to
achieve the higher-order accuracy. This precludesuse of implicit methods since the obtained masrinot of three-
diagonal form, and it is necessary to use fictdioodes for the boundary conditions. Also, theydballow easily for
non-uniform grids, unless at the expense of therod accuracy. On the other hand, the compactnsebehat treat
functions and their derivatives as unknowns atghid nodes, like the scheme [31], are fourth-ordecurate, and
compact in the sense that they reduce to threesd@gform. The compact schemes generally consistinite
difference schemes which involve two or three gradhts. The three-point schemes fall into two @asd he first class
consists of methods which are fourth-order accui@teniform grids, such as schemes [26-28], theraior compact
implicit scheme [26-28] and the Hermite finite difnce method [29]. The second class consists tifaue that allow
variable grids such as the cubic spline methods33)) and the Hermite finite difference method [38]. In [36, 37] a
compact fourth-order finite difference scheme waisoduced with three nodal points for the convettiidfusion
equations. This scheme does not seem to suffesgixety from spurious oscillatory behaviour or nuite viscosity.

The disadvantage of the above higher-order congmmetmes involving three nodal points is that thendary
conditions are no longer sufficient and they doallmtw easily for non-uniform grids, unless at theense of the order
of accuracy. Another disadvantage of some compelcerses is the complexity of the resulting nonlinéaite
difference equations and the associated difficitgolving them efficiently. On the other hand, t@mpact scheme
with two nodal points is fourth-order accurate e¥@nnon-uniform spatial grids, and no fictitiousipts, neither extra
formulas are needed for Dirichlet boundary cond#i@38]. The discretization of the convective temght be done in
a number of ways [39, 40]. The Ellam scheme is albbbone of the best known convective schemes [41].
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In the next section we present a non-standardefitifference method for the solution of the subbpems
obtained by splitting (2.7)-(2.9).

2. A finite-difference scheme for the one-dimensional advection-diffusion problem

Consider the one-dimensional advection-diffusionagipn

0{ 6{ 0{)
2 Z5 +F, >0, O<x<l, t>0 3.1
at ax ax(/" ox K G-
with initial condition
&(x0)=n(x), 0<x<lI (3.2)

and Dirichlet boundary conditions
Fon=alt), £0,t)=4(t) t>o0, (3.3)

where V(X,t), ,u(x,t), I7(X), a(t) and ,B(t) are known functions, while the functiaf(X,t) is unknown. Let us
divide the spatial interva]0,1] of the problem intd equal parts with division pointX, < X, <...< X;_; < X;, and
denote the length of theth sub-interval byhj . Besides, divid&O,T] into N equal parts by points" = nTN™,
n=0%...,N, with time stepr . We define the grid2 ={( X, ,t"),j=04..J,n=01..N}, and denote bfj”
the approximation o€ (X;,t") .

Integrating Eq. (3.1) ax; from t" to t™ yields

n+1 o _ a( afj
= —| u—|-F | dt 3.4
§=¢7 - j{ ox ox M ax) T (3.4)
Approximating the integral on the right-hand sigetie mean-value theorem, we obtain
gz g g V360 (,08) T @)
j j ax  ax\“ ox . '

=6

wheret” <@ <t™ . For the approximation of the derlvatlvééf/ax) and [a(yaf/ax)/ax]\ we will use

the following difference relations:

=6 t=¢ t=6
(afjt =1 Ih, JERCTIN T EY BT RS (3.3)
ox), h,+h | h ' h, 6 |ox

J j-1
t=6
0 0¢ 1 Ej+1_<rj
| R e

t=6 =4

$ — 4o h,-h,_,(0°

=y + )7 1} - 3]1((9;:} (3.42)
j-1

¢, )/hj and (fj —g(j_l)/hj_l in (3.3a) and (3.4a) will be taken at
different time levels I and N+1). For construction of approximations only by tweirgs it is natural for physical
reasons to have on tl'(él +1) -th layer a pointxj as central, and to select the second one fronsttiatfrom where

The unilateral difference expressiorﬁéj+1 -

is transferred by advection to the central poinis kasy to see that the created difference scli@r&g and (3.4) has
an approximation error of the first order in. In this manner we gain the following form:
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« forv>0
t=0 n n+l _ n+1 2 - |t50

[afj -~ h, din =, +h, ‘) ) P d (3.3b)

ox), h_+h h, his otox|,

=6 n n+l _ n+1 =6
d( of 1 i \éi 9%¢|
2 y=Zs = o+ + U +T ;(3.4b
{ax(”axﬂj h.,+h {(”“1 ml h ~ ) hj_1 otox| (3.45)

« forv<O
L g n_gn
(afj - hy, == I it Y €| (3.3c)
),  h,+h, h, Yoh atax|

{i[ﬂgj}‘ = L |:(:Uj+1+:uj) i E (/1 /’11—1)5 g(_1:|'*'Ta E| (3.4c)
i

ox\" ox h+h, his otox|,

Substituting (3.3b), (3.4b) or (3.3c¢), (3.4c) in2Bwe will receive a difference scheme for the-dimeensional
advection-diffusion problem (3.1) in the followifigrm:

e forv>0
n+1_ n n _ n _”+1_ _n+1
Ei f] + 1 {hj_lV? E]+1 f] +hjv?+lfjfj—l}_
r hjy +hy h; hj
1 n n Ejn"l_f n+1 n+1 fnﬂ_fjnjll n
- 4t H ) ——|-F =0, 3.5
hj—1+hj |:(ILIJ+1 :uj) hj ( i H; 1) hj—l i (3.5)
i=12..,9-1, n=01,...,
&=nlx) j=01..3,
& =alt"), & =6"), n=01.n
e forv<oO
n+l _ n _n+l_ _n+1 n_ n
: r : “n 1 h {hi—lv?ﬂf]ﬂha*hiv? flh fl_l}
= i i1

1 n+1 n+l éjn:ll _éjnJrl n + n é]n _éj—l n
— u s+ = \u'+u J——|-F"'=0, (35b
h,,+h, {( A ) h, ( : ’_1) h, : (35D

J

j=3-13-2..,21, n=01..,
&=nlx), j=o1..3,

& :a(t“), '3 :,B(t“), n=01...N.

The templates corresponding to the scheme (3.5teren in Figures 1a and 1b.
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a) b)

-1 ] 3+l -1 ] 1+l

Fig. 1. Templates of difference networks: a) ofsheeme (3.5a); b) of the scheme (3.5b)

In this manner for the solution of the advectioffttiion problem (3.1)—(3.3) we have received a elofthe
so-called "running computation scheme" usually usedhe solution of one-dimensional wave equatiohshe first
order (see, for example [42]). Therefore, in spit¢he fact that the scheme (3.5) is formally iropiit is easily solved
in an explicit way.

3. Remarks

A thorough theoretical analysis of the finite-diface method introduced in Section 3 and somelsimp
numerical experiments demonstrating stability andvergence properties of the scheme can be fourd].int has
been shown that this scheme possesses some gquetti® of both the explicit and implicit differemechemes. It is
as economic as an explicit scheme and is stabémgipermissible grids as an implicit scheme.

The problem of convective diffusion is an exampfepmoblems for which the application of the implici
scheme (3.5) is really justified. As it is knowhetstability condition for the explicit schemes @ewis thatr should

decrease ak’. This requirement necessitates the applicaticm wiuch greater number of time steps than it isatbdt
by reasons of accuracy only. Besides, it can hagiperthe dh‘ferenceifjn+l —f]-n, j =01,...,J become as small as

disturbances arising as a result of round-off etrdrhe implicit scheme (3.5) is free from this laak it is
unconditionally stable and has an approximationresf equal order il and h. Therefore, if there is a necessity for

increasing the accuracy of the numerical solutibis possible to achieve it at the expense of éegingT and h in
equal measure.
From (3.3) and (3.4) it follows that the scheme pgach almost second order of accuracy, intrirssicentral

difference schemes for spatial derivatives by usin@ll time steps, or when the field of the gradiézf/ax of the
transferred value€ varies smoothly.

4. Summary

We considered the three-dimensional advectionsiiffu problem on a bounded domain with Dirichlet
boundary conditions. A splitting scheme based aectibnal decomposition was proposed for the smiutiThis
procedure allows us to replace the three-dimenkjomdolem with three simpler, one-dimensional adieecdiffusion
problems at each time step of the numerical integraWe proposed a non-standard finite-differemethod for the
solution of the one-dimensional sub-problems. Tithod unites the advantages of explicit and intgithemes.
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