v

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

Ingpopmavinni cucmemu

UDC 004.75

MAPPING BUSINESS PROCESSES MODELSFROM PETRI NETSINTO
EVENT-DRIVEN PROCESS CHAINS

S Zlatkin, R. Kaschek

Department of Information Systems,
Massey University, New Zealand
S.Zlatkin|R.H.Kaschek@massey.ac.nz

Business Process Reuse is an important phase Busiress Process life-cycle that for some reassnnlot attracted enough attention. To
support the reuse phase we are building a softimfnastructure called the Process Assembler. Psommsse involves many steps. In the
paper we briefly discuss all of them, but then ®oumly on the mapping from one process definitenmgliage (which is Petri Nets) into

another (Event-driven Process Chains). We btlilel mapping algorithm and support it by softwaréjch is the core of the Mapper

component of a system that is currently under coosbn. An example demonstrating the work of thypathm is also provided.

Introduction

Organizations require material resources, humasuress, and business processes to produce gosdsvires.
According to [WM99] business process s &t of one or more linked procedures or activities which collectively
realize a business aobjective or policy goal, normally within the context of an organizational structure defining
functional roles and relationships'. A market exists for material and human resour€srently no market exists for
business processes. Aiming at creating such a mkr&kes to the problem of process reuse. Procesg mequires the
existence of an environment in which the processlityjucan be assessed, business deals negotiatbrases
determined. The Process Assembler, the systemeviewiding, is supposed to be a software compothertprovides
key functionality for business process reuse.

Our initial heuristic for business process reuse(13 build-up domain specific process librarie®) (imit
modifications of the process structure to a seadilgigree, (3) take into account modifying the ressiinvolved in a
business process, (4) use an effective and effitiasiness process specification and access jadfij implement a
reuse infrastructure that is based on a reuse izag@on model such as the two-library model fortwafe reuse (see,
for example [Gr98]), and (6) put in place workatyledels of process pricing and usage.

The key functionalities of the Process Assembler ar
— Adapt a business process to the case at hand.
— Assess a business process as to whether or not it shmutéused in the case at hand.
—Map a business process, i.e., translate it from adage L into a language L.
— Display to a user the available business processes iitadleuform that can be parameterized by the user.
— Navigate the displayed business processes.
— Retrieve the business processes that best match a giveificmion.
— Specify a set of business processes. We assume curreatlsespective specifications will be obtainedeimts of an
SQL-like dedicated query language.

These key functionalities of business process reager the stages of workflow type reuse as gindiKr00].
In this paper we mainly focus on some aspects @iping function of the Process Assembler.

The rest of the paper is structured as follows: in the next section we briefly discuss the Precdssembler and
show its architecture. In section three we focusa@me aspects of business process mapping. WalieBatri Nets in
subsection 3.1 and Event-driven Process Chainalisegtion 3.2 as they are among the best develmpedccepted
process modeling techniques. We derive the mapglggrithm in subsection 3.3. This algorithm is atpaf the
Process Assembler's Mapper component. In sectiare $rovide an example illustrating how the algaritlworks.
Finally, we conclude the paper and discuss ouréuork in section 5 and provide our referenceseiction 6.

1 Process Assembler

The Process Assembler (PA) itself is a Web-baskdnration system for business process reuse. l'st iasic
functionality is thus the recording, storing, retiing, and disseminating of processes, see, e.i@5]HThe PA
distinguishing qualities are (1) it is a model lthsemponent that allows the registration of progaedeling languages
that comply to our process modeling language metdein (2) it implements associative (i.e. semariased) retrieval
of stored processes; (3) it enables users aftepitbeisioning of the respective translation progeduto translate a
process from its encoding in a process modelinguage L into an encoding in process modeling laggud. For

© H.T. 3apopoxna, 2006
I SSN 1727-4907. Ilpooaemu nporpamyBants. 2006 Ne 2-3. Cneuyianvruii eunyck 560

https://core.ac.uk/display/38331651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ingpopmauiiini cucmemu

enabling associative retrieval of processes theiRfly has a built-in process meta-model that ires process goals
which is derived from [Ka95]; and secondly integsaf thesaurus the lexical relations (for that teem e.g. [Yu96])
of which can be exploited in the process query laigg under development. In Fig. 1 we recall thdnihegel PA-
architecture from [ZKO05]. This architecture compligith the repository system architecture requiresef [Ja04].

The Registry is for registering business procesdating languages with the PA. Obviously the Regiira key
component of the PA's model based architectureitandeds to provide to the other components thetfonality
required for handling the processes. It needs twige the Repository the meta-information requitedstore and
retrieve business processes. Obviously also theeModelies on that information, as it needs tocapable of
processing processes. The Assessor componentsaEdsin qualitatively assessing the reusabilitg bfisiness process

User
Viewer
A
N 2
Q < $ A L
S I R Kt
$ o &
> @s.é\ P ?%f’ & @ L Busimess
B @ Partners
o
o L
Repository
Drivers

Process Type DBs

Fig.1. The Process Assembler Architecture

in the case at hand. Here we intend using ripplendaules for representing and acquiring the assessknowledge.
These are "if-then-else rules" that can be refingdxceptions and can be cascaded via the excdptameh or the else
branch, see, for example [PHO06]. It occurs such diba to their simplicity and their limited compii@n principle for
representing knowledge using ripple-down-rules dussimply that a knowledge engineer will be need&dally, the
Exchanger, the Mapper, and the Viewer are for ipgrand exporting business processes, transldiiginess
processes, and for having an overview of the psmsestored in the repository. Below we deal with ktapper
component and translating processes from one @ akition language to another.

There exist a number of available process defimitiamguages [MOO04]. Some of them are vendor spe(sfig.
WDL [Gr03], etc.), some are de-facto standards Bladeated and promoted by different standardinatiqanizations
(e.g. UML Activity Diagrams by OMG [OMGO03], XPDL bWorkflow Management Coalition [XPDL,WM?99], etc.),
some are well accepted for modeling processes fparticular class of problems (e.g. Petri Nets [RH®Event-driven
Process Chains [Ke92], etc.). Below in this paperfacus on mapping from Petri Nets into Event-dmiRrocess
Chains.

In the next section we first introduce those twaglaages, discuss their fields of applications, s contras.
And then we come up with the actual mapping albarit

2. Mapping from Petri Netsinto Event-driven Process Chains

2.1 Modeling Business Processes with Petri Nets. The theory of Petri Nets was developed in 60s hased on
classical graph theory and is an extension forrthebfinal state machines. Since then Petri Net¢sused for modeling
complex system behavior, from protocols and hardvestems to economic, physical and social systeahsding
business process modeling. Petri Net is built arofons: events (actions taking place in the systand conditions
(logical description of system state). Exactly,teys state controls occurrence of events. In Peatts donditions are
modeled by Places, and Events are modeled by

Transition input is a precondition of a given eyemhile output is a post-condition respectivelyadds and
transitions are connected by directed arcs. Ocooer®f event means start of respective transiatisfying event is

561

Ingpopmavinni cucmemu

represented by marker in the respective place.sitian start removes all markers, which composeeagndition, and
creates new markers, which compose a post-condition

Formally Petri Net can be defined as a three-tp = <P T ,R > whereP is a set of places] is a set
of transitions, an®R is binary flow relatorR= (P xT)O(T xP).

According to [MS] main advantages of Petri Nets are

Place Transition

Fig. 2. Petri Nets Modeling concepts

e Formal Semantics. Business process defined in terms of Petri Natsdhear precise view as semantics of
classic Petri Nets is defined formally.

« Graphical Notation. The instrument of Petri Nets represents systemraphic designations by means of
which it is possible to make respective graphs.

* Properties. The basic properties of Petri Nets are studiegithdunany years. The developed mathematical
methodology exists. It allows analyzing and inwgsting these properties when respective net is
constructed.

e Analysis. Petri Nets differ by existing of several analysisthods.

The following can be considered as other featufé&etri Nets:

e Simultaneity. In Petri Nets model two resolved non-interactevgnts can occur independently from each
other. There is no necessity to synchronize evdritewt is not required by modeled system. But, whe
synchronization is necessary, to model it is easy.

* Asynchronous nature. In Petri Nets the concept of time is absent.dans that there is no rigid time order of
events that reflects a real life. The structur®efri Nets comprises all necessary informatiordffinition of
possible sequences of events.

* Non-determination. The order of occurrence of events is one of psssupposed by the basic structure. If
during any moment of time more than one transiimmuthorized, any of several possible transitioas
become "the next" that started. The choice of etiattansition is carried out by non-determined wiagy,
randomly. This feature of Petri Nets reflects tfaat, that in a real vital situation, where soméaas occur
simultaneously, the arising order of occurrencewants is not unequivocal; more likely any of pblsevent
sequences can occur. However, the partial ordecairrence of event is unique.

* Primitive events. Start of transition (event) is considered asitis¢éant. That is, the probability of occurrence
of two and more events simultaneously is equaleim.zNon-primitive events are broken rigorimitive, or
represent them in the form of squares (when negegsaunderstanding of system as a whole), anadhigisie -
in the form of laths.

Thus, Petri Nets are ideal means for modeling afs¢hprocesses or systems in which events occur
asynchronously and independently, and systems thihdistributed control in which some business psses are
carried out simultaneously.

As shown in [MOO04] using Petri Nets in an expliimtm for business process modeling is not suithieleause
graphical notation is not intuitively clear and bese it is not possible to model all types of psses. Though, a
number of modeling languages, such as XPDL [XP@Elkeloped by Workflow Management Coalition, andiifé¢ts
Markup Language, used for interchanging of PetisNéarkup Language, are developed based on Pefsi Miso on
the base of Petri Nets new process and workflowdetilng language was created - YAWL [AHO03] (Yet Ahet
Workflow Language).

2.2 Modeling Business Processes with Event-driven Process Chains. The strength of Event-driven Process
Chains (EPC) lies on its easy-to-understand notdtiat is capable of portraying business informmaigstem while at
the same time incorporating other important featuwech as functions, data, organizational struciae information
resources as already described before. This maR€&saEwidely acceptable standard to denote buspresgsses. In
the following the elements used in EPC diagram bélldescribed:

e Event. Events are passive elements in EPC. They desgriber what circumstances a function or a process
works or which state a function or a process res@kamples of events are “requirement capturadgtérial
on stock”, etc. In the EPC graph an event is regresl as hexagon.

* Function. Functions are active elements in EPC. They mdkeltasks or activities within the company.
Functions describe transformations from an ingtake to a resulting state. In case different tegpktates can
occur, the selection of the respective resultirdestan be modeled explicitly as a decision functising

562

Ingpopmauiiini cucmemu

logical connectors. Functions can be refined intotlher EPC. In this case it is called hierarchfoalction.
Examples of functions are capture requirement, kclmeaterial on stock, etc. In the EPC graph a famcts
represented as rounded rectangle.

e Organization unit. Organization units determine which person or pizgtion within the structure of an
enterprise is responsible for a specific functiBrRamples are sales department, sales manager,r@noent
manager, etc. It is represented as an ellipseawttrtical line.

« Information, material, or resource object. In the EPC the information, material, or resousbgcts portray
objects in the real world, for example businessadlsj entities, etc., which can be input data sgras the
basis for a function, or output data produced fynation. Examples are material, order, etc. InEREC graph
such an object is represented as rectangle.

e Process path. Process paths serve as navigation aid in the ER€y show the connection from or to other
processes. A process path is represented in ERCfiaxction and event symbol (function symbol innfrof
event symbol).

e Contral flow. A control flow connects events with functionspgess paths, or logical connectors creating
chronological sequence and logical interdependsrméween them. A control flow is represented dasied
arrow.

e Logical connector. In the EPC the logical relationships between elets in the control flow, that is, events
and functions, are described by logical connecifigh the help of logical connectors it is possitesplit the
control flow from one flow to two or more flows amal synchronize the control flow from two or motews
to one flow. There are three kinds of logical rielaships defined in EPC:

0 Branch/Merge. Branch and merge correspond to making decisiowlath path to choose among
several control flows. A branch may have one inegméontrol flow and two or more outgoing
control flows. When the condition is fulfilled, aamch activates exactly only one of the outgoing
control flows and deactivates the others. The @npairt of a branch is a merge. A merge may have
two or more incoming control flows and one outgoiogntrol flow. A merge synchronizes an
activated and the deactivated alternatives. Théralowill then be passed to the next element dfier
merge. A branch in the EPC is represented by aniogeXOR, whereas a merge is represented as a
closing XOR connectors.

o Fork/Join. Fork and join correspond to activating all paithg¢he control flow concurrently. A fork
may have one incoming control flow and two or moutgoing control flows. When the condition is
fulfilled, a fork activates all of the outgoing doml flows in parallel. A join may have two or more
incoming control flows and one outgoing controlviloA join synchronizes all activated incoming
control flows. In the EPC diagram how the concuckelachieved is not a matter. In reality the
concurrency can be achieved by true parallelisthyovirtual concurrency achieved by interleaving.
A fork in the EPC is represented by an opening AMBereas a join is represented as a closing AND
connectors.

0 OR. An OR relationship corresponds to activating amemore paths among control flows. An
opening OR connector may have one incoming cofitel and two or more outgoing control flows.
When the condition is fulfilled, an opening OR centor activates one or more control flows and
deactivates the rest of them. The counterpartisfishthe closing OR connector. When at least dne o
the incoming control flows is activated, the cl@si®R connector will pass the control to the next
element after it.

« Information flow. Information flows show the connection betweenctions and input or output data, upon
which the function reads, changes or writes.

« Organization unit assignment. Organization unit assignments show the connedigtmween an organization
unit and the function it is responsible for.

Formally event-driven process chain can be defasd four-tupleEPC = <E ,F ,C.D > (here we consider

only the control aspect of the EPC notation), wherds a set of eventd;: is a set of functionsC is a set of logical
connectors, and D is flow relation (a set of arcs) such

that D =(E XF)O(F XE)O(E XC)O(CXE)O(F XC)O(CXF)O(CXC).
We additionally distinguish three subse¥ [C,A [JC,0 OC of XOR-, and-, and or- connectors

respectively.
rocess |\ '/’\" ---\' --\'
&~ =) ©@®OG

k / Logical connectors

--"_"a-\ —————— » Cantrol flow
Organizational Information’ Ao
. . —_— o
q/ T /,I P Information Iow\.
— — Crganization unit assignment

Fig. 3. EPC Modeling Concepts

563

Ingpopmavinni cucmemu

After knowing the elements in the EPC, the nexp $éehow to use these elements to model a buspresgss
using EPC. The following are some hints and coimggan connecting these elements to form an ERgrdim (a
formal description of syntactical correctness oERC diagram will be described later):

e Anevent can only be followed by a function.

e Afunction has always a following event.

* Inasingle EPC graph without process paths, thplgmust have at least one start event and onevamd. In
other words, a graph must be started and endedewéthts, not with functions.

» If the graphs have process paths that link therthérsource graph the process path should be ph @&nd of
the graph after the end event, and in the targgthgthe process path should be put at the begirofitige
graph before the start event.

* A combination of functions and events can be aaudewsing logical connectors. Logical connectors loan
placed between functions on the one hand and ewentke other hand, but the alternation of functiand
events must always be maintained.

 Aneventis a passive element

* Afunction is an active element

e Logical connectors should match, meaning that aenimg XOR serving as a branch should be closed by
another XOR connector. The same rule applies tdjin using AND connector and OR connector.

* All elements must be connected to the control flbecause an isolated element would have no meaming
contribution to the whole process.

In order to be able to exchange EPC between diffaomls and systems Mendling and Nuttgens (see(#MN
have developed an XML-based interchange formaEf@nt-driven Process Chains called the EPC Markamgluage
(EPML).

3.3 Mapping Algorithm. To achieve mapping we follow some recommendatidn&atst given in [Aa98] but
use them in opposite directions (i.e. from PetrisNe EPC). In this it is suggested to map plaoesvents as both are
passive elements, and transitions to functionctgeaones (see Fig. 4).

Mapping the binary flow relation of Petri Nets cains six cases. Sequences of places and trans{ieasFig.
5-a and 5-b) are mapped one-to-one as sequenegemt and functions respectively.

In case a place is followed by several transiti®e® Fig.5-c) only one may fire. That means théocehshould
be made. The choice in EPC is modeled by the u3dt-splitter. When a place is a result of sevémahsitions (see
Fig. 5-e), it is taken when any (the first, to berenprecise) of the transitions fires. In EPC itrisdeled by the use of
XOR-joiner.

In case a transition is followed by several plasse Fig. 5-d) all the places are taken. That éschse of
parallelism which is in EPC modeled by the use NDAsplitter. Transition following several placegésFig. 5-f) fires
when all the places are taken. In EPC it is modbledND-joiner.

|::> Tn::>

Fig. 4. Mapping basic element

To start with the mapping algorithm we first make assumption that a Petri Net starts and terminsitsa
place or places, i.elt OPN, ‘t#0, t" # 0, where't is the pre-domain df(i.e. the set of places followed by a
transitiont), andt” is the post-domain df(i.e. a set of places following a transitiypnWe also define that initially sets

of events, functions and logical connectors for thrgiet EPC are empty as well as sets of placedranditions that
have been already mapped during the algorithm dxec(step 1).

We defineP, as a set of initial places (step 1.1). For evdace in that set we introduce a respective event

(according to recommendation given above) and add a set of events of the target EPC (step M&).use the
symbol = to demonstrate the introduction routine.

If P, is empty, which means that the net is emptypos empty, which means that we reach the final place

algorithms stops (step 2). Otherwise we definepibgt-domain of all initial places (step 2.1) anddach transition in
this set that has not been yet mapped (becausessiiqte loops) we introduce a respective functiosh add it to a set of
functions of the target EPC (step 2.2). We thercklim®w many places are followed by each not yetpadgransition

from a set defined on step 2.1, and how many tiiansifollow each place frorf, . In case those numbers greater than

1 we introduce AND-joiner and “connect” it with thespective function (step 2.3) or we introduce X§iRtter and
“connect” the respective event with it (step 2.4ypectively. Then we define events to be joinedp(s2.5) and

564

Ingpopmauiiini cucmemu

a)

28 T8
e) -?- @ﬁé
YVa ug

Fig. 5 — Mapping control flows

functions to be chosen (step 2.6). In step 2.7 ddemaces that have been just mapped to a spetiB s and define a
set of not-mapped transitions that should be mapp&t

Step 3 (including all sub-steps) is analogical teps? (we rather swap places and transitions an®-Adhd

XOR- connectors).
After step 3 is complete we return to step 2, chelakther we reach the final places and continwesihot.

The full algorithm is the following:
1.P'=0,7T'=0,E=0,F =0,C=0

11 P0={p:'p:D}
120pUP, = &UE

2.If (Po = D) or (p' = D) thenexit else:
21T, ={t:t0p",Op 0P}
220t0T,\T ' = fOF
230t0T,\T ,|'tp 1= alA ;& ,fi ID
240p0OP,,|p" P1= %0OX ;& X XD
2.5 ey, (60, %) 0D ,(p,t)OR
”m:{ 1= (e, f)OD
nn>1= (e,a)dD
2.6 Lep, (60, %) 0D ,(p,t)OR
Ifl't|={ 1= (%,f)OD
nn>1= (%,a)JD
27P"=P, 0P’
28T, =T,\T"'

s1P, ={p: pOt",0t0T,}
320p0OP,\P' = eUE
330pOP,\P',|'pP 1= %0OX ;& & XID

565

Ingpopmavinni cucmemu

340tOT,, |t p1= alA ;(f a XID
35 Of, (fr,a) 0D , (t,p)0OR
i pE 1= (fi,e)0D
nn>1= (fi,x)0D
36 Of, (f,a)OD , (t,p)0OR
. 1= (a,®)0D
(P &.6)
nn>1= (a,%)JD
37T '=T,0T7"
38P, =P, \P'

Loop to 2.

3. Example

To demonstrate how the algorithm works lets hal@ok at the simplified process of annual leave @pibn.
After a respective process was initiated employeates application and submits it to the Head qfdbenent (HoD).
HoD in turn approves it or rejects (we do not cdasithe situation when the application may be rsdrto the
employee for editing). If the application is redtemployee is notified about the decision. In éaseapproved HoD
first proceeds the application (issues an orderratifies human resource section) and then notifiessmployee. Petri
Net in Fig. 6 shows that process, whegemeans “process startedd; — “application created’p, — “application
submitted”, p; — “application checked’p, — “order issued”,ps — “human resources notifiedf — “application
finished”,t; means “create applicatiort; — “submit application”t; — “check application”, — “proceed” ts — “notify
employee” ts — “notify employee” OK means application is approveé<l) means application is rejected.

PN =<P |T ’R>
P = {po, P1, P2 P3, P4, Ps, Pe}
T ={ty, to ts ta, ts, te}

R ={(po ta), (t1, Pa), (P1, 1), (2, P2)s (P2 ta), (s, Pa)s (Ps, ta), (s, te), (4, Pa), (ta, Ps), (Pa, ts), (Ps, ts), (s, Pe) 5 (T,
Pe)}
By applying the algorithm from the previous sectige get the following EPC:

EPC =(E,F .C,D)

E={enq & &5 &5 &4 5,60 ¢

F={fy fi3 fi5 fty fis, figd

C={x a3 a3 x}

D ={(ey ft),(fiy &), (s i), (fiz), (@5 ft 9, (frse), @ ox), &K, ft o), &k i o), f A1)

(an,6p4), (A1,605), (€04,@2), E0s,a2), @2,fts), (fs X2), fte X2),K 2606)}
The graphical view of this chain is given in Figlf/is now possible to edit the EPC for furthetcamation. That
includes assigning organization units responsiieefich function, specify documents, etc.

Ps

Fig. 6 — Petri Net for Annual Leave Application Pess

566

Ingpopmauiiini cucmemu

Create

application

Application
created

Submit

application

Application
submitted

Check

application

/Application not!
approved

N

Notify
smeosee
Human

resources Order issued
notified

Notify
employee

Application
finished

Fig. 7 — Event-driven Process Chain for
Annual Leave Application Process

Conclusions and Future work

In this paper we have derived an algorithm for niagprocess models presented as Petri Nets to HEviaen

Process Chains. We support this algorithm by saéwieveloped. That software is a part of the Magpenponent of
the Process Assembler, the system aimed to suBpsimess Process Reuse.

We are currently finishing algorithm and its softevaealization for mapping process models giveERC to

WDL, the internal language of “@enterprise” [GrO8prkflow management systems. Once created we \aWeh
support for mapping on all phases of business grolife-cycle, i.e. from conceptual modeling thrbwgmulation and
detailed modeling to automation within workflow nagement system.

wn

No gk~

©

[Aa98] van der Aalst, W.M.P.: Formalization and Meation of Event-driven Process Chains. Comput8tjence Reports 98/01, Eindhoven
University of Technology, Eindhoven, 1998.

[AHO2] van der Aalst, W.M.P.; van Hee, K.: Workflawanagement: Models, Methods, and Systems, MITSP2E92.

[AHO3] van der Aalst, W.; ter Hofstede, A.: YAWL:Y¬her Workflow Language, QUT Technical rep&iT-TR-2003-04, Queensland
University of Technology, Brisbane, 2003.

[Gro8] Graham, I.: Requirements Engineering anditRByevelopment: A Rigorous Object-Oriented Apprgaitidison-Wesley, 1998.

[Gr03] Groiss Informatics: System Administratiorpfimentversion 6.1.1, URL: http://www.groiss.cor@p3.

[Ha05] Havey, M.: Essential Business Process MadelD'Reilly, ISBN: 0-596-00843-0, August 2005.

[Hi95] Hirschheim, R.; Klein, H. K.; Lyytinen, K.Information Systems Development and Data Modeli@gnceptual and Philosophical
Foundations, Cambridge University Press, 1995.

[Ja04] Jablonski, S.; Petrov, I.; Meiler, C.; Maydr: Guide to Web Application and Platform Arcleiteres, Springer, 2004.

567

Ingpopmavinni cucmemu

9.
10.

11.

568

[Ka95] Kaschek, R.; Kohl, C.; Mayr, H.: CooperationAn Abstraction Concepts suitable for Businesxc®ss Reengineering, In: ReTIS'95,
OCG, 1995.

[Ke92] Keller, G.; Nittgens, M.; Scheer, A.-W.:rBantische Profienodellierung auf der Grundlage "Ereignis- gestareRroz@ketten
(EPK)", in: Scheer, A.-W. (Hrsg.): Veroffentlichueig des Instituts fur Wirtschaftsinformatik, Heft, 8narbriicken 1992.

[Kr00] Kradolfer, M.: A Workflow Metamodel Supponty Dynamic, Reuse based Model Evolution, PhD Thésisversity of Zurich, 2000.
URL:

http://www.ifi.unizh.ch/ifiadmin/staff/rofrei/Disgéationen/Jahr 2000/thesis kradolfer.pdf

[MS] Martynova, O.; Shundeev, A.: Modeling and Arsas of Business Processes using Petri Nets (isi&us

[MNO4] Mendling, J.; Nittgens, M.: Exchanging EP@dhess Process Models with EPML. In: M. Nittgend/endling, eds.: Proc. of the 1st
Gl Workshop XML4BPM - XML Interchange Formats fousiness Process Management" at Modellierung 20@4big Germany, pages 61-
79, March 2004.

[MOO04] Miheev, A.; Orlov, M.: Perspective of Workflv Management Systems, PC Week, 2004. URL: hitww.pcweek.ru (in Russian).
[OMGO03] Object Management Group, OMG Unified Modgli Language Specification, Version 1.5,
http://www.omg.org/technology/documents/formal/urh , March 2003.

[PHO6] Pham, S. B.; Hoffmann, A.: Intelligent Suppéor Building Knowledge Bases for Natural LangeaBrocessing, In: Intelligent
Assistant Systems, Idea Group, 2006.

[WM99] Workflow Management Coalition Terminology @slossary, Document Number WFMC-TC- 1011, Febrd&§9.

[XPDL] Workflow Process Definition Interface - XMLProcess Definition Language, Document Number WFMIZ1D25, URL:
http://ww.wfmc.org.

[Yu96] Yule, G.: The Study of Language, Cambridgavérsity Press, 1996.

[ZKO05] Zlatkin, S.; Kaschek, R.: Towards AmplifyirBusiness Process Reuse, In: ER 2005 WorkshopssShlime 3770, Springer, 2005.

