
Паралельне програмування. Розподілені системи і мережі 

© A.S. Nepomniaschaya, 2008 
ISSN 1727-4907. Проблеми програмування. 2008. № 2-3. Спеціальний випуск 97 

UDC 519.172 

PARALLEL IMPLEMENTATION OF ITALIANO'S INCREMENTAL 
ALGORITHM FOR DYNAMIC UPDATING THE TRANSITIVE CLOSU RE 

A.S. Nepomniaschaya 

Institute of Computational Mathematics and Mathematical Geophysics,  
Siberian Division of Russian Academy of Sciences,  

630090, Novosibirsk, Russia, pr. Lavrentieva, 6,  
Fax: (383) 330 8783; Phone: (383) 330 8994. 

E-mail: anep@ssd.sscc.ru 

The transitive closure (or reachability) problem in a directed graph consists in finding whether there is a path between any two vertices. In 
this paper, we first study the problem of  parallelization of Italiano's algorithm for dynamic updating the transitive closure after inserting a 
new arc into the graph  represented as a list of arcs. To this end, by means of the data structure first proposed in [9], Italiano's incremental 
algorithm is represented in a natural way on a model of an associative parallel processor with vertical processing (the STAR-machine).  
Associative version of Italiano's incremental algorithm is given as procedure InsertArc for the STAR-machine. We prove correctness of this 
procedure and evaluate its time complexity. We also compare implementations of Italiano's incremental algorithm and its associative version 
and present the main advantages of the associative version. 

Проблема транзитивного замыкания (или достижимости) в ориентированном графе состоит в определении того, существует ли 
путь между любыми двумя вершинами. В данной статье впервые исследуется задача параллельной реализации алгоритма 
Итальяно для динамической обработки транзитивного замыкания после добавления к графу новой дуги для случая, когда граф 
задается в виде списка дуг. С этой целью с помощью структуры данных, впервые предложенной в работе [9], инкрементальный 
алгоритм Итальяно естественным образом представляется на модели ассоциативного параллельного процессора с вертикальной 
обработкой данных (STAR- машине). Ассоциативная версия инкрементального алгоритма Итальяно задается в виде процедуры 
InsertArc для STAR- машины. Доказывается корректность этой процедуры и оценивается ее временная сложность. Также 
проводится сравнение выполнения инкрементального алгоритма Итальяно и его ассоциативной версии и приводятся основные 
преимущества ассоциативной версии. 

Introduction 

In many applications, graphs are subject to discrete changes, such as insertions and deletions of edges or 
vertices. The goal of a dynamic algorithm is to update efficiently the solution of a problem after dynamic changes rather 
than to recompute the entire graph from scratch each time. An algorithm is called fully dynamic if the update operations 
include both insertions and deletions of edges or vertices, and it is called partially dynamic if only one type of an 
update, either insertions or deletions, is allowed. A partially dynamic algorithm is called incremental if it supports only 
insertions, while it is called decremental if it supports only deletions. 

The transitive closure problem in a directed graph G with n vertices and m edges consists in finding whether 
there is a path between any two vertices in G. In the fully dynamic transitive closure problem a directed graph is 
updated under an intermixed sequence of edge insertions, edge deletions, and two types of queries: a Boolean query for 
vertices i and j that returns yes if there is a path from i to j and no otherwise, and a path query that returns an actual path 
from i to j if it exists. 

We focus on incremental algorithms for the transitive closure problem. The first incremental algorithm was 
given by Ibaraki and Katoh [1]. Their algorithm takes O(n3) time over any sequence of insertions. For a sequence of m 
insertions, Italiano [2] and La Poutr'e and Leeuwen [3] improved this estimation to O(mn), time, where m is the number 
of edges in the final graph. In [3], Yellin proposed an incremental algorithm for bounded degree graphs which requires 
O(dm*) time for m insertions, where d is the maximum outdegree of the final graph and m* is the number of edges in 
the final transitive closure graph. All of these algorithms perform a Boolean query in O(1) time. The incremental 
algorithm of La Poutr'e and Leeuwen [3] does not support a path query but other above-mentioned algorithms perform a 
path query in time proportional to the length of the path. 

In [4], Frigioni et al. presented an experimental study of a group of dynamic algorithms for the transitive closure. 
In particular, the authors proposed a variant of Italiano's algorithms [2, 5], called  Ital-Gen, whose decremental part 
applies to a general graph and any sequence of edge deletions takes O(m2) worst-case time. As shown in [4], in the case 
of path queries, Italiano's incremental algorithm was practically always the fastest among the dynamic algorithms of 
Yellin, La Poutr'e and Leeuwen, Ital-Gen, and a randomized algorithm of Henzinger and King [6], while for dense 
directed acyclic graphs (DAGs) Italiano's decremental algorithm was better than the other algorithms. For sparse DAGs, 
the other algorithms including Ital-Gen are faster than Italiano's decremental algorithm. 

In [7], we proposed a data structure for implementing in a natural way Italiano's decremental algorithm for 
updating the transitive closure on associative (or content addressable) parallel processors. Such an architecture is mainly 
oriented to solve non-numerical problems. We simulate the run of associative parallel systems with vertical processing 
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by means of the STAR-machine [8]. Following Foster [9], time complexity of an algorithm is measured by counting all 
elementary operations of the STAR-machine (its microsteps) performed in the worst case. 

In this paper, we provide an associative version of Italiano's incremental algorithm for dynamic updating the 
transitive closure. The associative version of Italiano's incremental algorithm is given as a procedure InsertArc , whose 
correctness is proved. We show that on the STAR-machine, this procedure takes O(nlog n) time per an insertion. We 
also obtain that the associative algorithm performs Boolean and path queries in the same time as Italiano's incremental 
algorithm. Finally, we compare implementations of Italiano's incremental algorithm and its associative version and 
enumerate the main advantages of the associative version. 

1. A model of associative parallel machine 

Here, we propose a short description of the model. It is defined as an abstract STAR-machine of the SIMD type 
with the vertical data processing [8]. It consists of the following components: 

• a sequential control unit (CU), where programs and scalar constants are stored; 
• an associative processing unit consisting of p single-bit processing elements (PEs); 
• a matrix memory for the associative processing unit. 

The CU passes an instruction to all PEs in one unit of time. All active PEs execute it in parallel while inactive 
PEs do not perform it. An activation of a PE depends on the data. 

Input binary data are loaded in the matrix memory in the form of two-dimensional tables in which each data item 
occupies an individual row and it is updated by a dedicated processing element. The rows are numbered from top to 
bottom and the columns – from left to right. Both a row and a column can be easily accessed. Some tables may be 
loaded in the matrix memory. 

An associative processing unit is represented as h vertical registers each consisting of p bits. Vertical registers 
can be regarded as a one-column array. The bit columns of the tabular data are stored in the registers which perform the 
necessary Boolean operations. 

Its run is described by means of the language STAR being an extension of Pascal. Let us briefly consider the 
STAR constructions needed for the paper. To simulate the data processing in the matrix memory, we use data types 
word, slice, and table. Constants for the types slice and word are represented as a sequence of symbols of the set {0, 1} 
enclosed within single quotation marks. The types slice and word are used for the bit column access and the bit row 
access, respectively, and the type table is used for defining the tabular data. Assume that any variable of the type slice 
consists of p components which belong to {0, 1}. For simplicity let us call slice any variable of the type slice. 

Now we present some elementary operations and a predicate for slices. 
Let X, Y be variables of the type slice and i be a variable of the type integer. We use the following operations: 

SET(Y) sets all components of  Y  to  '1'; 
CLR(Y) sets all components of Y to '0'; 
Y(i) selects the i-th component of Y; 
FND(Y) returns the ordinal number i of the first (or the uppermost) '1' of Y; 
STEP(Y) returns the same result as FND(Y) and then resets the first found '1' to '0'. 

It should be noted that operations SET(Y) and CLR(Y) are used as a separate statement. The operations FND(Y) 
and STEP(Y) are used as the right part of the assignment statement while the operation Y(i) can be used both in the left 
part and in the right part of the assignment statement. 

In the usual way, we introduce the predicate SOME(Y) and the bitwise Boolean operations: X and Y, X or Y, not 
Y, X xor Y. 

Note that the predicate SOME(Y) and all operations for the type slice are also performed for the type word. 
We will also employ the bitwise Boolean operations between a variable w of the type word and a variable Y of 

the type slice, where the number of bits in w coincides with the number of bits in Y. 
Let T be a variable of the type table. We employ the following elementary operations: 

ROW(i,T) returns the i-th row of the matrix T; 
COL(i,T) returns its i-th column. 

Remark 1. 
Note that the STAR statements are defined in the same manner as for |Pascal. We will use them later for 

presenting our procedures. 

2. Preliminaries 

Let us present some notions being used in the paper. 
Let G = (V, E) be a directed graph (digraph) with the set of vertices V= 1, 2, ..., n and the set of directed edges 

(arcs) E. We assume that |V| = n, and |E| = m. 
An arc e from i to j is denoted by  e = (i, j), where the vertex i is the head of e (or father) and the vertex j is its 

tail (or son). 
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A sequence of arcs e1, e2, ..., ek is a path from the head of e1 to the tail of ek, if the tail of ei is the head of ei +1 for       
1 ≤ i≤ k-1.  

A vertex v is reachable from u if there is a directed path from u to v (u-v path). In such a case u is called an 
ancestor of v and v is called a descendant of u. 

The transitive closure of a directed graph G = (V, E) is a directed graph G* = (V, E*) such that an arc (u,v) ∈ E* 
if and only if the vertex v is reachable from u in G. 

A spanning tree Tu is a connected acyclic subgraph of G with the root vertex  u that cointains all descendants    
of u. 

3. Italiano's incremental algorithm for updating the transitive closure 

We first recall the data structure proposed by Italiano [2] to support the efficient insertion of arcs in a digraph 
and the  Boolean and the path queries. 

For every vertex u ∈ V, Desc[u] is a spanning tree with the root u. The transitive closure of a graph G is 
represented as a set of all Desc[u]. In addition, an n × n matrix of pointers Index is maintained which allows fast access 
to vertices in these trees. This matrix is defined as follows. Its every component Index[i, j] points to the vertex j in the 
spanning tree Desc[i] if j ∈ Desc[i] and it is a Null pointer otherwise. 

Now we explain the main idea of Italiano's incremental algorithm. 
Let a new arc γ  = (i, j) be added to a digraph G. The data structure is updated only if there is no  previous path 

from  i to j. Insertion of an arc may create new paths from any ancestor r of the vertex i to any descendant of the vertex j 
if there was no previous path from r to j in G. In this case, the spanning tree Desc[r] is maintained taking into account 
the descendants of j and the r-th row of the matrix Index. Namely, the common vertices in the trees Desc[r] and  Desc[j] 
are deleted from the copy of Desc[j]. Then the pruned copy of Desc[j] is linked to the vertex i in Desc[r]. 

A Boolean query for vertices i and j is performed in O(1) time by checking Index[i, j]. If every vertex in each 
spanning tree is provided with an additional pointer to the parent, then a path query is carried out by means of a bottom-
up traversal in Desc[i] from j to the root i and it takes O(l) time, where l is the length of i - j path. 

4. Associative version of Italiano's incremental algorithm 

In this section, a graph is represented as association of matrices Left and Right, where every arc (u, v) occupies 
an individual row, and u ∈ Left and v ∈ Right. 

To design the associative version of Italiano's incremental algorithm, we use the following data structure first 
proposed in [7]: 

• an association of matrices  Left and  Right and a global slice X, where positions of arcs belonging to G are 
marked with '1'; 

• an n × logn matrix Code, whose every i-th row saves the binary representation of the vertex i; 
• an m × n Boolean matrix Trans, whose every i-th column saves by '1'  the positions of arcs belonging to the 

spanning tree Ti; 
• an n × n  Boolean matrix Nodes, whose every i-th column saves by '1'  the positions of vertices that belong to 

the spanning tree Ti. 

Let us enumerate the following two properties of matrices Nodes and Trans. 

Fact 1. In every  i-th  row of the matrix  Nodes,  the roots of spanning trees that include the vertex i, are marked 
with '1'. 

Fact 2. In every i-th row of the matrix Trans, the roots of all spanning trees that include the arc written in the i-th 
row of the graph representation are marked with '1'. 

Let an arc (i, j) be added to the graph G. Let a spanning tree Tr include the vertex i and  not include the vertex j. 
We first present the associative parallel algorithm that updates the spanning tree Tr after adding the arc (i, j) to the graph 
G. It performs the following steps. 

Step 1. By means of a slice, say Z, save positions of vertices from the spanning tree Tj that do not belong to Tr. 
Then add these vertices to the r-th column of the matrix Nodes. 

Step 2. For every vertex p ≠ j selected by '1' in the slice Z, determine the position of an arc from Tj entering this 
vertex and include this arc into Tr. 

On the STAR-machine, this algorithm is implemented as a procedure ChangeTree. 
Now we propose the associative parallel algorithm that updates the graph after adding the arc (i, j). It runs as 

follows. 

Step 1. Include the position of the arc (i, j) into the association of matrices Left and Right. 
Step 2. Determine the roots of trees that include the vertex i and do not include the vertex j. Let such roots be 

marked with '1' in a row, say w. 
Step 3. Include the position of the arc (i,j) into those spanning trees of the matrix Trans whose roots correspond 

to '1' in the row w. 
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Step 4. While w does not consist of zeros, save the position r of its leftmost bit '1'. Then set '0' in the r-th bit of w. 
Further update the spanning tree Tr by means of the associative algorithm proposed above. 

On the STAR-machine, this algorithm is implemented as a procedure InsertArc . 

5. Implementation of the associative version of Italiano's incremental algorithm on the  
STAR-machine 

In this section, we present the procedures ChangeTree and InsertArc  and prove their correctness. 
We first consider the procedure ChangeTree that maintains a spanning tree after inserting a new arc to the 

graph. 
Now we propose the following procedure. 

procedure ChangeTree(Right: table; Code: table; r,j: integer; var Nodes: table; 
 var Trans: table); 

/* The spanning tree Tr  will be updated after inserting the arc (i,j) into the graph. */ 
var X1,X2,Y: slice(Left); 

  Z,Z1,Z2,Z3: slice(Nodes);  
  q,p: integer;  
  v: word(Code); 

1. Begin Z1:= COL(r,Nodes); Z2:= COL(j,Nodes); 
2.  Z3:= Z1 and Z2; 

/* The slice Z3 saves the vertices belonging to the spanning tree Tr and the spanning tree Tj. */ 
3. Z:= Z2 and (not Z3); 

/* The slice Z saves vertices from Tj that will be included into the spanning tree Tr. */ 
4. Z1:= Z1 or Z; 
5. COL(r,Nodes):= Z1; 

/* The new vertices for the spanning tree Tr are added to the matrix Nodes. */ 
6. Z(j):='0'; 

/* The vertex j is deleted from the slice Z. */ 
7. Y:= COL(r,Trans); 

/* The slice Y saves positions of arcs from Tr */ 
8.  X1:= COL(j,Trans); 

/* The slice X1 saves positions of arcs from Tj. */ 
9. while SOME(Z) do 
10.         begin q:=STEP(Z); v:= ROW(q,Code); 
11.                MATCH(Right,X1,v,X2); 
12.                p:= FND(X2); 
13.                Y(p):='1'; 

/* We include into the slice Y the arc from the p-th position of the graph representation  
    that enters the vertex q. */ 

14.            end; 
15.       COL(r,Trans):= Y; 
16.  End; 

Proposition 1. Let a directed graph G be given as association of matrices Left and Right along with the global 
slice X, and its transitive closure be given as the matrix  Trans. Let matrices Code and Nodes be also given. Let an arc 
(i,j) be added to the spanning tree Tr. Let Z be a slice that saves by '1' vertices from the spanning tree Tj that do not 
belong to Tr. Then after performing the procedure ChangeTree, the vertices from the slice Z are added to the r-th 
column of the matrix Nodes and positions of arcs from Tj entering vertices from Z are added to the r-th column of the 
matrix Trans. 

Proof (Sketch.) We prove this by contradiction. Let all conditions of proposition 1 be performed. However, 
there is such a vertex s ∈ Tj that s ∉ Tr and after execution of the procedure ChangeTree we obtain the following two 
properties: 

1) the spanning tree Tr does not include the vertex s, that is, the s-th bit of the r-th column in the matrix Nodes is 
equal to '0' ; 

2) the arc, entering the vertex s, does not belong to Tr, that is, the position of the arc from Tj entering the vertex s 
is marked with '0' in the r-th column of the matrix Trans. 

We will prove that these properties contradict to execution of the  procedure ChangeTree. 
Let us assume that the first property is correct. One can immediately check that after performing lines 1–2, the 

slice Z3 saves by '1' the vertices that belong to Tr and Tj. Since s ∉  Tr, we obtain that Z3(s) = '0'. After performing line 
3, the vertices from Tj not belonging to Tr will be marked with '1' in the slice Z. Since by the assumption s ∈ Tj  and s ∉ 
Tr, we obtain that Z(s) = '1'. Therefore after fulfilling line 4, we obtain that Z1(s) = '1'. Hence after performing line 5, 
the s-th bit in the r-th column of the matrix Nodes is equal to '1'. Since the execution of lines 6-16 does not change the 
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matrix Nodes, we obtain the contradiction with the assumption that s ∉  Tr after execution of the procedure 
ChangeTree. 

Now we assume that the second property is correct. After performing lines 7–8, the slice Y saves the spanning 
tree Tr and the slice X1 saves the spanning tree Tj. Let us analyze the execution of the cycle in line 9 for q=s. After 
performing lines 10-12, we determine the position p of an arc, say γ, entering the vertex s in Tj. Since every vertex in a 
tree has a unique father, we mark the position of γ with '1' in the slice Y. Obviously, after fulfilling line 15, the position 
of γ entering the vertex s in Tj will be marked with '1' in the spanning tree Tr. It contradicts to the second property. 

This completes the proof. 
If an arc (i, j) is inserted into the graph, we maintain all spanning trees that include the vertex i and do not 

include the vertex j. 
Now, we provide the following procedure. 

procedure InsertArc(Code: table; i, j: integer; var Left, Right: table; var X: slice(Left);  
var Trance: table; var Nodes: table); 

/* Here, the arc (i,j) will be included into the given graph. */ 
var w,w1,w2: word(Nodes); 

v1,v2: word(Code); 
r,k: integer; 

1. Begin v1:=ROW(i,Code); v2:= ROW(j,Code); 
2.  k:=FND(notX); X(k):='1'; 
3. ROW(k,Left):=v1; ROW(k,Right):= v2; 

/* The arc  (i,j)  is written in the  k-th row of matrices Left and Right. */ 
4. w1:=ROW(i,Nodes); w2:= ROW(j,Nodes); 
5. w:=w1and(notw2); 

/* The word  w  saves by  '1'  the roots of trees that will be changed after inserting  
the arc (i,j) into the graph. */ 

6. ROW(k,Trans):= w; 
/* The arc (i,j) is simultaneously included into all trees marked with '1' in w. */ 

7. while SOME(w) do 
8. begin r:= STEP(w); 
9.  ChangeTree(Right,Code,r,j,Nodes,Trans); 
10. end; 
11.End; 

Proposition 2. Let a directed graph G  be given as association of matrices Left and Right along with the global 
slice X, and its transitive closure be given as the matrix Trans. Let matrices Code and Nodes be also given. Let an arc γ 
=(i,j) be inserted into the graph G. Then, after performing the procedure InsertArc, the position of the arc  γ  is marked 
with '1' in the slice  X. Moreover, every spanning tree that includes the vertex i and does not include the vertex j is 
updated as shown in Proposition 1. 

Proof (Sketch.) We prove this by induction on the number of spanning trees l in the matrix Trans being changed 
after insertion of the arc γ into the graph G. 

Basis is checked for l = 1. After performing lines 1 – 3, we determine the position of the row in the graph 
representation, where γ will be written, and mark it with '1' in the slice X. 

In view of Fact 1, after fulfilling lines 4-5, the row w saves the roots of spanning trees that will be changed after 
including γ in G. In view of Fact 2, after performing line 6, the arc γ is simultaneously included into all spanning trees 
whose roots are marked with '1' in w. Since l =1, the cycle in line 7 performs only once. Here, we first determine the 
root r of a spanning tree that will be updated (line 8). Since the position of the arc γ has been included into Tr, we can 
apply the procedure ChangeTree. After its execution, the updated spanning tree Tr will be written in the r-th column of 
the matrix Trans and the updated set of its vertices will be written in the r-th column of the matrix Nodes. 

Step of induction. Let the assertion be true for l ≥ 1 spanning trees being changed after inserting γ into G. We 
will prove it for l+1 spanning trees. By analogy with the basis after performing lines 1 – 6, the arc (i, j) has been 
included into the graph representation, its position has been marked with '1' in the slice X, the row w saves roots of trees 
being changed after inserting γ into G, and the arc γ has been included into all spanning trees whose roots are marked 
with '1' in w. By the inductive assumption, after maintaining the first l spanning trees, whose roots are marked with '1' in 
w, the changed l trees will be written in the corresponding columns of the matrix Trans and the changed sets of their 
vertices will be written in the corresponding columns of the matrix Nodes. Since there is a single bit '1' in w, we 
determine the root of the last (l + 1)-th spanning tree and maintain it by means of the procedure ChangeTree. 

This completes the proof. 
Now we evaluate time complexity of the procedure InsertArc . 
To this end, we have to determine the total number of vertices being updated after inserting an arc to the 

transitive closure. In view of performing the procedure ChangeTree, at most all vertices of a subtree rooted at the tail 
of the inserted arc are updated. Therefore the procedure InsertArc  takes O(nlog n) time per an insertion, where the 
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factor log n appears due to the use of the basic procedure MATCH . One can check that space complexity of the 
procedure InsertArc  is O(mn) bits. 

On the STAR-machine, a Boolean query for vertices i and j is carried out in O(1) time by checking the j-th bit of 
the i-th column in the matrix Nodes. A path query for vertices i and j is performed by means of a bottom-up traversal in 
the spanning tree Ti from the vertex j to the root i using the procedure MATCH . It takes O(llogn) time, where l is the 
length of the path. 

Let us compare two implementations. 

• Italiano's incremental algorithm checks all vertices in each spanning tree to determine whether it includes the 
vertex i and does not include the vertex j. The associative version simultaneously determines the roots of trees that 
include the vertex i and do not include the vertex j. 

• To determine the vertices from the spanning tree Tj that should be added to Tr, Italiano's incremental 
algorithm checks whether any vertex from Tj belongs to Tr. The associative version simultaneously determines those 
vertices from Tj that should be added to Tr. 

• To perform a path query, for every vertex j in every spanning tree, Italiano's incremental algorithm uses an 
additional pointer to its parent. The associative version determines the parent of any vertex by means of the basic 
procedure MATCH . 

• To link the pruned copy of Desk[j] and the vertex i in Desk[r], Italiano's incremental algorithm updates the 
spanning tree Desk[r] and the matrix Index. The associative version determines the position of any arc from the pruned 
copy of Tj in the graph representation and includes it into the r-th column of the matrix Trans. Moreover, the positions 
of the new vertices are included into the p-th column of the matrix Nodes.  

Conclusions 

We have proposed a natural and efficient implementation of Italiano's incremental algorithm for dynamic 
updating the transitive closure on the STAR-machine having no less than m PEs. The associative version of Italiano's 
incremental algorithm is represented as procedure InsertArc  whose correctness is proved. We have obtained that this 
procedure  takes O(nlogn) time per an insertion assuming that each microstep of the STAR-machine takes one unit of 
time. Space complexity of this procedure is O(mn) bits. 

We have also compared implementations of Italiano's incremental algorithm and its associative version and 
enumerated the main advantages of the associative version. 

We are planning to design associative versions of both Italiano's algorithms for dynamic updating the transitive 
closure for the case when the given graph is represented as an adjacency matrix. 
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