v

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

Teopemuuni ma memooo0a02iuHi OCHOGU NPOZPAMYBCAHHA

UDC 519.681.3

ONTOLOGICAL MODELSIN OTSL

[.S. Anureev

Siberian Division of the Russian Academy of Science
A.P. Ershov Institute of Informatics Systems,
630090 Novosibirsk, Russia, ac. Lavrentiev ave., 6,
Fax: +7 383 332 3494; phone: +7 383 330 6360.
E-mail: anureev@iis.nsk.su
OTSL' is a language of description of ontological trtiosi systems [1]. Ontological transition systeme farmalism for description of

semantics of computer systems that combines tramsystems with ontological models. In this papenstructs of OTSL specifying the
ontological models of ontological transition systeisipresented. Formal semantics of these constridefined.

OTSL — s13bIK ONHCAHHST OHTOJOTMYECKUX CHCTeM mepexonoB [1]. OHTonormueckue CHCTEMBI MEPEX0J0B — (OPMAIH3M Ul OMHMCAHUS
CEMAHTUKH KOMIBIOTEPHBIX CHCTEM, KOTOPBII KOMOMHUPYET CHCTEMBI IEPeXOJO0B C OHTOJOTMYECKHMH MoAensMu. B mamHolt pabote
npezcrTasieHsl KoHCTpykuun OTSL, cnenuduImpyromie OHTONOrHYECKHE MOJIEIH B OHTOJIIOTMYECKUX CHCTEMax mepexojoB. OnpesencHa
(opmanbHas ceMaHTHKA JAHHBIX KOHCTPYKITHIA.

Introduction

The state transition systems are a well-known fdisma for description of operational semantics of
programming languages and program models. A commaynto rigorously define the operational semaniigsneered
by Gordon Plotkin in his paper "A Structural Appcbao Operational Semantics" [2], is to providetates transition
system for the language of interest.

A state transition system is defined as an abstremthine which consists of a set of states andsitians
between states. On the one hand, simplicity ofnitedfh of these systems makes them a universal dtism for
description of the behavior of systems of differaature (algorithms, programs, program models, cderpsystems,
and so on). On the other hand, it leads to a lb#seaconceptual structure of systems in their desaons.

A natural question is how to enrich the statesmatansitions of transition systems to make trsys¢éems more
‘conceptually capacious’, having preserved theiregality.

A logical-algebraic approach to solution of thiolplem was suggested by Yuri Gurevich, based ardhbed
concept of an abstract state machine [3, 4]. ASMtmerly known as evolving algebras, are a spediad of
transition systems. The states of ASMs can berarpialgebras. The choice of an appropriate algsigrzature allows
us to adapt ASMs to problem domains. The ASM apgrohas already proven to be suitable for largeescal
specifications of realistic programming languadeslPD]. Other applications of ASMs to various domaian be found
in [11].

The ASM theory is the basis for Abstract State MaeH anguage [12] developed by Microsoft and XASM
(Anlauff's eXtensible ASMs) [13], an open sourcepiementation.

In this paper, the ontological approa¢h solution of this problem is suggested, basedrad the concept of an
ontological transition system. OTSare a special kind of transition systems. An O@8 be regarded as a transition
system which has the following properties:

— there is a conceptual structure (a sets of con@qtsa set of relations) which is common for ates of the

transition system;

— there is a function of retrieving the content oistlhonceptual structure from the states of thesttim

system.

Formally, an ontological transition system consistsa transition system and ontological model. Umt an
ontological model consists of a set of objectsplmgty, and meaning function which defines the valakconcepts and
relations for each state of the transition system.

On the basis of OTSs, the ontological transitiostesy language OTSL has been developed. It incltwles
sublanguages: a language of actions and a langafafggmulas. Actions specify the transitions of GT$ormulas
specify the ontological entities of OTSs. In thiappr, the language of formulas is presented. Arge®mn of the
language of actions can be found in [14].

The paper has the following structure. Section fnde the ontological transition systems and relaatities.

1 OTSL is an abbreviation for Ontological Transit®pstem Language.

2 ASMs are an abbreviation for Abstract State Magkin

® This approach is called the method of operatiomablogical semantics.
* OTSs are an abbreviation for Ontological Transiystems.

© I.S. Anureev, 2008
ISSN 1727-4907. IIpo6siemu nporpamyBanus. 2008. Ne 2-3. Crneuiansnuii unyck 41

https://core.ac.uk/display/38331467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Teopemuuni ma memooo0a02iuHi OCHOBU NPOZPAMYBCAHHA

Section 3 sketches out the basic notions of thelQasguage. The base constructs of the languafrmiulas such as
terms, concept expressions and formulas are pesbant Sections 4, 5, and 6, respectively. Sectioprésents
additional constructs which can be used in formulasthe one hand, these constructs are reduciltletbase formula
constructs. On the other hand, they enlarge a ponakexpressiveness of the language of formulasti@s 8 and 9
define concept declarations and relation declamaticespectively. They are used to specify conceplations, and the
values of concepts and relations.

This research is partially supported by the gré@y@€1-00464a and 08-01-00899%om RFBR, and by the
integration grant 14 from SB RAS.

1. Ontological Transition Systems

This section defines ontological transition systemd related entities.

An unlabelled transition system tS is defined gmia (st, tr). The setis called a set of states. The function tr
% sti’st—°boof is called a transition relation. The property tr&') means that there is a transition from théesSt
to the state St'.

A labelled transition system tS is defined as@er{l, st, tr). The set | is called a set of labdlhe set st is called
a set of states. The functiondr stUst—(l—bool) is called a transition relation. The propettySt, St)(L) means that
there is a transition from the state St to thees&it with the label L.

An ontology of a system describes its conceptuakctire. It consists of a set of concepts and afsetlations.
Concepts define the kinds of sequences of objddiseosystem. In particular, they define the kimd®bjects of the
system. Relations define the kinds of interrelatibetween objects.

Formally, an ontology ont is defined as a pair f&), The set co is called a set of concepts obtitelogy ont.
The set re is called a set of relations of the logtoont.

An ontological transition system consists of aafetbjects, transition system, ontology and meariurgtion
which define the values of concepts and relatimrsefich state of the transition system. The vafua concept is
defined as a subset of the set of sequences aftebjehe value of a relation is defined as a bimalgtion on sequences
of objects.

Formally, an ontological transition system otsesined as a quadruple (ob, tr, ont, val). The beisaalled a set
of objects. Let se be a set of sequences of objEktsset st of states of the OTS is defined dovist

st = ob— se.

The function vale (codst—2se?)e ! (reUst—>2sdlse) is called a meaning function. The set val(@pjsScalled
a value of the concept Co in the state St. A secpi&e< val(Co, St) is called an instance of the conceptirCthe
state St. The set val(Re, St) is called a valub®felation Re in the state St. A pair (Se, $e'yal(Re, St) is called an
instance of the relation Re in the state St. Thpiesece St(Ob) is called a value of the object Othénstate St. The
value of an object defines its structure and objedtich interrelate with it. The values of objeate used to retrieve
information about the values of concepts and i@hati

A triple (ob, ont, val) is called an ontological de of the OTS ots.

2. Ontological Transition System Language

This section sketches out the basic notions of OTSL

Terminals in grammar of OTSL are divided into keydsand objects. Keywords identify constructs ofSDT
Objects of OTSL represent objects of OTSs.

The set kW of keywords is built in the following ya

kw =22 Brjg =~ 1@ T TOD

® In this paper, an entity is often defined by tlene of a set which contains all instances of thigyeThis name is
also used as a nonterminal in grammar rules. Utideagreement, this name starts with a small |eftee name of an
element of the set coincides with the name of #igossibly with additional indexes and strokeg)ept for the first
letter which is capitalized. For example, hsteis a set of states. It defines the entity ‘stafélenSt, St andSt,
are states.

® & means ‘belongs to'.

"4 means ‘Cartesian product’.

8 X_Y means the set of all total functions fromo Y.

°bool means the sétrue, false}

192X means the set of all subsets of theXset

1 X—YeX'—Y’, where XNX'=2, means the set of all total functions which acinfrX to Y and from X’ to Y.
Symbols?z andN means ‘empty set’ and ‘intersection’, respectively
12.:= means ‘has the form’ in grammar rules.

42

Teopemuuni ma memooo0a02iuHi OCHOGU NPOZPAMYBCAHHA

| and | or | not | implies | iff | :=9,+

where #... is any sequence of letters and digits ftoarset {a,...,z, A,...,Z, 0,...,9} starting with # extdor #i
and #o.

The set ob of objects is an arbitrary set suchdahat kW =2.
The set sOl=* ob of special objects is built in the following ya

sOb ::=true | new | val | #i | #0 | 0 | she]|eo.

Special objects represent the specific-purposectsbjghich are common for all OTSs.

Basic nonterminals in grammar of OTSL are dividetb isequences, formulas, actions, and OTS dedagati
Sequences are the main datatype of OTSL. Formplkaifg the values of concepts and relations in OTamcepts
and relations of OTSs themselves are representebjegts in OTSL: c& ob A*®reC ob. Actions specify transitions
of OTSs. OTS declarations specify OTSs.

The sets se and nSe of sequences and nonemptynsegurespectively, are built in the following way:

se:=() | nSe,
nse::= ob | ob nSe.

Let us note that, by definition, ébse /A ob< nSe. The sequence () is called the empty sequence.
The concatenation function cen sédse—se is defined on sequences:

con(NSe, NSe’) = NSe NS& con((), Se) = con(Se, ()) = Se.

The equality relation = séise—bool, and weak equality relation& sélse—bool are defined on sequences:

— Se =Se'=true, if Se and Se' are the same sezjuemdt Se = Se' = false, otherwise.

- The weak equality relation on sequences is defaedollows: Se ~ Se' = true, if the sequence S& is
permutation of the sequence Se', and Se ~ Sese; fatherwise.

Formulas and actions are built from terms and gonegpressions. Semantics of terms, concept exprsss
formulas and actions are defined by the meaningtiom val that has the following form for these styocts:

val € st— (te'® — se) for terms,

val € st— (coExp’ — 2se)for concept expressions,
val € st— (fo'® — bool) for formulas,

val € stY st— (act® — bool) for actions.

The semantics is defined in the context of an O&@atation, i.e. the OTS declaration is an implcgument of
the meaning function val for these constructs.

Terms are used to construct sequences of objdutssdquence val(St)(Te) is called the value otéhm Te in
the state St.

Similar to concepts, concept expressions definekihés of sequences of objects. They can be comsidas
anonymous concepts. The set val(St)(CoExp) of sempseof objects is called the value of the conesqprression
CoExp in the state St. A sequence Seval(St)(CoExp) is called an instance of the cohepression CoExp in the
state St.

The object val(St)(Fo) is called the value of tbenfula Fo in the state St. A formula Fo is truaistate St, if
val(St)(Fo)# (). Otherwise, the formula Fo is false in theestat.

Actions change states of OTSs. They are labeldrémsition relations. The meaning function val éamtions
coincides with the transition relation tr.

Terms, concept expressions, and formulas are defin8ections 4, 5 and 6, respectively. Actionsd®#ned in
[14].

There are five basic concepts in OTSL: o, s, eand,eo. Their values depend on no state:

vV #st(val(o, St) = ob/\ val(s, St) = se\ val(e, St) = {(} A

13| separates alternatives and means ‘or’ in gramuies.r
14 means ‘is a subset of’.

5 A means ‘and’.

%te means the set of terms.

" coExp means the set of concept expressions.

8fo means the set of formulas.

Yact means the set of actions.

20/ means ‘for all’.

Teopemuuni ma memooo0a02iuHi OCHOBU NPOZPAMYBCAHHA

val(ns, St) = nS@\ val(eo, St) = obJ#* {()}).

An OTS declaration is a sequence of OTS declaratiembers. OTS declaration members are divided into
concept declarations, relation declarations, aasition declarations:

otsDeé? ::= otsDecMerf? | otsDecMem otsDec,
otsDecMem ::= coDét| reDeé” | trDec®,
coDec ::=#cob {fo},

reDec ::= #r ob {fo },

trDec ::=#t {act }.

The concept declaration #c Ob{Fo} defines the cph&b with specification Fo. The special objeé # used
in the specification Fo of the concept Ob to réfeinstances of the concept Ob. The value of tleept Ob in a state
St is defined as the set of sequences Se sucthéhfiirmula Fo(#-Sef? is true in the state St.

The relation declaration #r Ob{Fo} defines the tiela Ob with specification Fo. The special objets and
#0°° are used in the specification Fo of the relatiant@refer to instances of the relation Ob. Theigaif the relation
Ob in a state St is defined as the set of pairs$89 of sequences such that the formula ke@e, #68—Se’) is true in
the state St.

The transition declaration #t {Act} defines a sétransitions labeled by objects. The special abjids used in
the action Act to refer to the object which labgis initiates) the transition. A transition fromstate St to a state St
with a label Ob belongs to this set, if val(St,)@tt(#i — Ob)) = true.

3. Terms
Terms are are built in the following way:
te ;== eSe | ob | obV | teCom.

The object value obV and term composition teConmdafned below.
The value of the empty sequence is the empty segueself:

val(St)(0) = 0.

The value of an object is the object itself:
val(St)(Ob) = Ob.

The object value is defined as follows:
obV ::=? ob.

The value of the object value ?0b in a state Btdssalue of the object Ob in the state St:
val(St)(?0b) = St(Ob).

The term composition teCom is defined as follows:
teCom ::=te te.

The value of a composition of terms is concatenatiothe values of the terms:
val(St)(Te Te'") = con(val(St)(Te), val(St)(Te")).

2L U means ‘union’.

*otsDec means the set of OTS declarations.

% otsDecMem means the set of OTS declaration members.

% coDec means the set of concept declarations.

reDec means the set of relation declarations.

*trDec means the set of transition declarations.

*’i means ‘instance’.

% The entities defined by grammar rules (terms, fdam and so on) are represented as labeled tr@esatiespond to
their grammar structure. Therefore in the seqie,'tree’ terminology (positions, substitutions aswon) is used for
these entities. Heré(L ; -« T4, ...,L , < T,) means a tree which is obtained from the Trd® replacement of all
occurences of leaves with the labels ..., L , by the tree¥,, ..., T |, respectively.

2§ means ‘input’.

%0 means ‘output’.

44

Teopemuuni ma memooo0a02iuHi OCHOGU NPOZPAMYBCAHHA

4. Concept expressions
The set coExp of concept expressions is built énfttiowing way:
COExp ::=co | im | prelm,

where the image im and preimage prelm are defirdolb

Let OtsDec be an OTS declaration. Let us defineastics of the above-mentioned kinds of conceptesgions
in the context of OtsDec.

The value val(St)(Co) of the concept Co in theesgttis defined as the value of the concept Co:

val(St)(Co) = vaf(Co, St).
The set im of images is defined as follows:
im ::=re <te.
The value of an image Re<Te in a state St is tlag@of the value of the relation Re for the set(§8(Te)}:
val(St)(Re<Te) = {Se|(val(St)(Te), Se) val’4Re, St)}.
The set prelm of preimages is defined as follows:
prelm ::=re > te.

The value of a preimage Re>Te in a state St isptleémage of the value of the relation Re for thé se
{val(St)(Te)}:

val(St)(Re>Te) = {Se | (Se, val(St)(Te}) val(Re, St)}.

A relation Re is called an attribute of a sequeBedn a state St, if there is at most one sequSticguch that
(Se, Se")e val(Re, St). A relation Re is called an attribafea sequence Se, if Re is an attribute of theesgzpiSe in
each state St. A relation Re is called a mandattiripute of a sequence Se in a state St, if tisgrest one sequence St’
such that (Se, Se¥ val(Re, St). A relation Re is called a mandatdtyitaute of a sequence Se, if Re is a mandatory
attribute of the sequence Se in each state Stithhude Re of a sequence Se is said to have tlhe \&e’ in a state St,
if the set val(St)(Re<Se) = {Se’}. The value of atribute Re of a sequence Se is said to be indéatate in a state St,
if the set val(St)(Re<Se) =

A relation Re is called an attribute of a conceptilCa state St, if the relation Re is an attribafteach instance
of the concept Co in the state St. A relation Reaited an attribute of a concept Co, if the relatRe is an attribute of
the concept Co in each state St. A relation Raliead a mandatory attribute of a concept Co imatesst, if the relation
Re is a mandatory attribute of each instance ofcthecept Co in the state St. A relation Re is dallemandatory
attribute of a concept Co, if the relation Re mandatory attribute of the concept Co in each Sate

5. Formulas

This section defines formulas and the relatediestit
The set fo of formulas is built in the following wa

fo ::=aFo | pFo | gFo | dFo | bFo.

The sets aFo, pFo, qFo, dFo, and bFo of atomicutasn propositional formulas, quantified formuldgnamic
formulas, and bracketed formulas, respectivelydafered below.
The set aFo of atomic formulas is built in thedaling way:

aFo ::=te| mem | eq | WEQ.
The membership mem, equality eq and weak equakig are defined below.
The set mem of memberships is built in the folloywway:
mem ::= te:CoEXxp.
A membership Te:CoExp is true in a state St, ifuhkie of the term Te is an instance of the conegptession
CoExp:
val(St)(Te:CoExp) = true, if val(St)(Te¥ val(St)(CoExp),
val(St)(Te:CoExp) = (), otherwise.
The set eq of equalities is built in the followingy:
eq:=te =te.
An equality Te=Te' is true in a state St, if théuea of terms Te and Te' in the state St are equal:

%1 As shown in Section 8, the valuewafi(Co, St) depends o®tsDec .
%2 As shown in Section 9, the valuevafi(Re, St) depends o®tsDec .

Teopemuuni ma memooo0a02iuHi OCHOBU NPOZPAMYBCAHHA

val(St)(Te = Te’") = true,

if val(St)(Te) = val(Gte’),

val(St)(Te = Te’) = (), otherwise.
The set wEq of weak equalities is built in thedaling way:

eq ::=te ~ te.

An equality Te ~ Te'is true in a state St, if thdues of terms Te and Te' in the state St are lyeajial:

val(St)(Te ~ Te’) = true,

if val(St)(Te) ~ val{§re’),

val(St)(Te ~ Te’) = (), otherwise.
The set pFo of propositional formulas is built wiie help of logical connectives: negation not,janation and,
disjunction or, implication implies, and equivalenif:
pFo ::=not fo | fo and fo | fo or fo | fo im@iéo | fo iff fo.
with their usual semantics:
val(St)(not Fo) = true, if val(St)(Fo) = (),
val(St)(not Fo) = (), otherwise.
val(St)(Fo and Fo’) = true, if val(St)(Fe)() /\ val(St)(Fo)# (),

val(St)(Fo and Fo’) = (),

otherwise.

val(St)(Fo or Fo’) = true, if val(St)(F&) () V val(St)(Fo")# (),
val(St)(Fo or Fo’) = (), otherwise.

val(St)(Fo implies Fo") = true, if val(St)(F&)() = val(St)(Fo")# (),
val(St)(Fo implies Fo’) = (), otherwise.

val(St)(Fo iff Fo’) = true,

if val(St)(Fo} () ©3**val(St)(Fo')# (),

val(St)(Fo iff Fo’) = (), otherwise.

The set gFo of quantified formulas is built witle thelp of existential (?) and universal (!) quaets
gFo:=(?(bin)fo)|(!(bin)fo)
bin::= ob : coExp | bin bin

with their usual semantics:

val(St)((?(Obl:CoExpl

... Obn:CoExpn)Fo)) = trde, i

33 (A1 Eval(St)(CoExpl), ..., Areval(St)(CoExpn))(val(St)(Fo(OBXAL, ..., Obr—An)) # (),

val(St)((?(Obl:CoExpl

val(St)((!(Ob1:CoExpl .

... Obn:CoExpn)Fo)) = (),ethise.
.. Obn:CoExpn)Fo)) = truk, i

V(A1 < val(St)(CoExpl), ..., ArEval(St)(CoExpn))(val(St)(Fo(OBLAL, ..., Obnr—An)) # (),

val(St)((!(Ob1:CoExpl .

.. Obn:CoExpn)Fo)) = (), ettvise.

The elements of the set bin are called bindings.
Dynamic formulas are built with the help of dynardgic modalities

drFo:=(?{act}fo)|(!{act}fo)

with the usual semantics:

val(St)((?{Act}Fo)) = true, if 3 St'(tr(St,St")(Act)/\ val(St’) (Fo)}~()),
val(St)((?{Act}Fo)) = (), otherwise.
val(St)(({Act}Fo)) = true, if V St'(tr(St,St") (Acty=val(St') (Fo)}-(),
val(St)(({Act}Fo)) = (), otherwise.

The set bFo of bracketed formulas is built in thiéofving way:

bFo ::=(fo).

Brackets are used to define the order of computatfcubformulas in formulas:

33 = means ‘implication’.

3 & means ‘equivalence’.

% 3[X1, ..., Xn](X) means3 X1
®[X1, ..., Xn](X) means¥ X1

46

... AXn(X), where 3 X(Y) means ‘there is X such that Y’.
... VXn(X).

Teopemuuni ma memooo0a02iuHi OCHOGU NPOZPAMYBCAHHA

val(St)((Fo)) = val(St)(Fo).

The order of computation is also specified by ptyosnd associativity of operations. Operationsleted below
in the descending order:

=~ not and or implies iff.

Example. The formula A or B and C = D is equivalenthe formula A or (B and (C = D)).
In addition, the operations and and or are lefbissive.
Example. The formula A and B and C is equivalerthteoformula (A and B) and C.

6. Additional formula constructs

This section presents additional constructs wharh lze used in formulas. On the one hand, thesdrootsare
reducible to the basic formula constructs. On ttieeiohand, they enlarge the conceptual expressigesiethe OTSL
language. These constructs include anonymous sbgect anonymous sequences. They are used in glésens. To
introduce them, the set te of terms is redefined.

The set te of terms is built in the following way:

te ::=eSe | ob | obC | teCom | anOb | anSe,

The sets anOb and anSe of anonymous objects angiranas sequences, respectively, are defined below.
The set anOb of anonymous objects is built in thewing way:

anOb = (=te)|(te)|(~te).

An anonymous object (= Te) represents any objecivib the value equal to the value of the term fiehie
state St, i.e. St(Ob) = val(St)(Te). An anonymobct (Te) is a synonym for (= Te).

An anonymous object (~ Te) represents any objecivifibthe value weakly equal to the value of thentf e in
the state St, i.e. St(Ob) ~ val(St)(Te).

An anonymous object{’ Te) is implicitly bound by the existential quaieif ?, i.e. any formula Fo such that
Fog®=(c Te) is equivalent to the formula (?(Ob:0)(Fo[OBEnd ?0te Te)). This requirement guarantees existence of
at least one object which satisfies the formulafd has the value defined by the term Te.

The set anSe of anonymous sequences is built ifolbeving way:

anSe ::=*: coExp.

An anonymous sequence *:CoExp represents any segum such that Se val(St)(CoExp). An anonymous
sequence Se is implicitly bound by the existentjahntifier ?, i.e. any formula Fo such that Foq :€0Exp is
equivalent to the formula (?(Ob:CoExp)Fo[Ob]q). §mequirement guarantees existence of at leastsegaence
Se=val(St)(CoExp) which satisfies the formula Fo.

Anonymous objects and anonymous sequences cardbeilsk to other constructs. Their semantics isndelf
by the reduction function reé aFe—qFo. This function normalizes atomic formulas, éhating anonymous objects
and anonymous sequences:

red(Fo) = (?(Ob:o)red(?Ob=Te) and red(Fo[ObJ§foq = (=Te),
red(Fo) = (?(Ob:o)red(?Ob=Te) and red(Fo[ObJ§fjoq = (Te),
red(Fo) = (?(Ob:o)red(?0Ob~Te) and red(Fo[Obl§f}pq = (~Te),
red(Fo) = (?(Ob:CoExp)red(Fo[Ob]q)), if Foq =GhExp),
red(Fo) = Fo, otherwise.

Example. Let an OTS specify a referral database. The ftanftis surname Smith *:s) is equivalent to the
formula (?(X:0 Y:s Z:s)?X = Y surname Smith Z)ntans that there exists at least one object wittstiiname Smith
in the state of the referral database.

Example. Let an OTS specify a database of vacancies. @haula *:employer is equivalent to the formula
(?(X:0)X:employer). It means that there existseasst one employer in the state of the databasacafineies.

7. Concept Declarations

This section presents concept declarations whiehuaed to define concepts of OTSs, as well as dheey of
concepts.

Let CoDec be a concept declaration of the form #c{Ep}. The object Ob is called a concept declairethe
concept declaration CoDec. The formula Fo is callegecification of the concept Ob.

Yo 4=, -~}.
%8 X, means a subtree of the tiéén the positiory.
9IX[Y] q Mmeans a tree which is obtained from the Xdwy replacement of a subtree in the positidoy the treey.

47

Teopemuuni ma memooo0a02iuHi OCHOBU NPOZPAMYBCAHHA

The set co(OtsDec) is called a set of conceptsadeatiin the OTS declaration OtsDec, if
co(OtsDec) = {Co= ob | d[CoDec & OtsDec, Fo](CoDec = #c Co {Fo})}.

Thus, co(OtsDec) is the set of concepts declaredricept declarations which are members of OtsDec.
The function vale co(OtsDecjISt—20b is called a meaning function declared by th&@e€claration OtsDec,

val(Co,St) = {Ob |[d[CoDec € OtsDec, Fo](CoDec = #c Co {Foh val(St)(Fo(#—0b))# ())}.

The special object #i is used in the specificafforof the concept Co to refer to the sequences fhenvalue of
the concept Co which is declared in the concepiadation CoDec.

Example. The declaration #c emptyConcept {()} defines toacept emptyConcept. Its value is the empty set in
any state.

Example. The declaration #c object {#:0} defines the cqgstcabject. The value of the concept object is e s
of all objects in any state.

Example. The declaration #c document {#i:0 and ?documenis*:s } defines the concept document. Instances
of the concept document are defined as objects fhanvalue of the object documents. For examplthdfstate St is
defined by Table 1, then val(document, St) = {A, B}

Example. The declaration #c document {#i:0 and ?#i ~ doenint:s} defines the concept document. Instances
of the concept document are defined as objects thaththeir values include the object document. &le, if the
state St is defined by Table 2, then val(docunm@nt= {A, B}.

Table 1 Table 2
Object Value Object Value
Documents| AB A document B
A B B C document A
B A C B

Example. The declaration #c document {#i:0 and ? #i = doent *:s} defines the concept document. Instances
of the concept document are defined as objects thaththeir values include the object documenthasfitst element.
For example, if the state St is defined by Tabl#hén val(document, St) = {A}.

Example. The declaration #c makeReport {#i=makeReportjirdef the concept makeReport. The value of the
concept makeReport consists of one object makeRdporany state. Concepts of this form are usedefresent
procedures. Arguments of these procedures arefigaely the values of the concepts for each state.

8. Relation Declarations

This section presents relation declarations whiehused to define relations of OTSs, as well asvieges of
relations.

Let ReDec be a relation declaration of the formO#r {Fo}. The object Ob is called a relation decthia the
relation declaration ReDec. The formula Fo is chiespecification of the relation Ob.

The set re(OtsDec) is called a set of relationsaded in the OTS declaration OtsDec, if

re(OtsDec) = {Reob | 3[ReDec& OtsDec, Fo](ReDec = #c Re {Fo})}.

Thus, re(OtsDec) is the set of relations declangtié relation declarations which are members eD@t.
The function vale re(OtsDecd)iSt—2a0b is called a meaning function declared by th&S@e&claration OtsDec,

val(Re, St)=
{(Ob,0b’) | 3[ReDec< OtsDec, Fo](ReDec = #r Re {Fo} val(St)(Fo(#i— Ob, #o— Ob’)) # ())}.

The special objects #i and #o0 are used in the fipatodn Fo of the relation Re to refer to the ffiasd the second
components of pairs from the value of the relaB@which is declared in the relation declaratiob&a

Example. The declaration #r synonym {#i:word and #o:womH &synonymGroup ~ #i #0 *:s} defines the
relation synonym on words. According to this deafimn, two words are synonyms, if they are botHuded in the
value of the concept synonymGroup.

Example. The declaration

#r title {#i:document and #o:text and ?#i = sa&utw title #0 *:s}

48

Teopemuuni ma memooo0a02iuHi OCHOGU NPOZPAMYBCAHHA

defines the relation title. According to this dealion, the text #o is the title of the documentr#ihe state St, if
source B title #0 is a prefix of the value of #i fmme object B. This form of representation ofridation value is used
for concepts with a fixed order of attributes. histexample, source is the first attribute with tadue B, title is the
second attribute with the value #i, the rest aflaites represented by C follows title.

Example. The declaration #r title {#i:document and #o:tard ? #i[l(= title #0) *:s} defines the relation title.
According to this declaration, the text #o is title ©f the document #i in the state St, if thes@n object B such that B
€ St(#i) and St(B) = title #o.

Example. The declaration

#r expression {#i:expressionStatement and #oesgion and ?#i = #0 ;}

defines the relation expression. According to theclaration, the expression #0 is an expressiorthef
expression statement #i in the state St, if theevaf #i in the state St has the form #o.

Conclusion

This paper is further development of the OTSL lagg intended for description of ontological trapsit
systems. This language is divided into two sublaggs: a language of formulas and a language afrectiThe
language of actions which specify the transitioh€DdSs was presented in [14]. The language of féamuvhich
specify the ontological models of OTSs was preskimtehis paper.

The advantages of the language of formulas arellasvt:

It has a formal semantics.

It defines a conceptual structure of states of OTSs

It provides the use of natural intuitive terminoldg specifications.

Anureev |.S. Ontological Transition Systems // Joint NCC&IISIBtin, Series Computer Science. — 2007. — Vol.-2B. 13 — 24.

Gordon D. Plotkin. A Structural Approach to Operational Seties. (1981) Tech. Rep. DAIMI FN-19, Computer 8cie Department, Aarhus
University, Aarhus, Denmark.

Gurevich Y. Abstract state machines: An Overview of the Prdje¢Foundations of Information and Knowledge ®yss$". Lect. Notes Comput.
Sci. — 2004. — Vol. 2942. — P. 6-13.

4. Gurevich Y. Evolving Algebras. Lipari Guide // SpecificationdaValidation Methods. — Oxford University Pres893. — P. 9-36.

5. Sork R, Byrger E. Java and the Java Virtual Machine: Definition, iffeation, Validation. Springer—Verlag, 2001.

6. Byrger E., FrujaN., Vincenzo Gervasi, R. §tk: A high—level modular definition of C#. Theoro@put. 2005. — Sci. 336(2/3). — P. 235-284.
7

8

N

w

ITU-T Recommendation Z.100 Annex F: SDL Formal Semaridiefinition, International Telecommunications &miITU), Geneva, 2000.
. Gurevich Y., J. Huggins. The Semantics of the C Programming Language.ct. Idotes Comput. Sci. — 1993. — Vol. 702. — P-309.

9. Byrger E., Rosenzweig D. A Mathematical Definition of Full Prolog // Sciemof Computer Programming. — 1994. — Vol. 24. 249-286.

10. Kutter P., Pierantonio A. The Formal Specification of Oberon // J. of Uns@rComputer Science. — 1997. — N 3(5). — P. 443-50

11. Huggins J. Abstract State Machines Web Page. — http://wwve.eecich.edu/gasm.

12. AsmL: The Abstract State Machine Language. — Referbftareual. 2002. — http://research.microsoft.com/fsalédoc/AsmL2_Reference.doc.

13. XasM — An Extensible, Component—-Based Abstract Statehvias Language. — http://xasm.sourceforge.net/Xa¢dd/XasmAnl00.html

14. Anureev |.S A Language of Actions in Ontological Transitions8yms // Joint NCC&IIS Bulletin, Series ComputeieBce. — 2007. — Vol. 26.
P. 16 — 25.

49

