
Інструментальні засоби та середовища програмування

© Chapyzhenka A., Ragozin D., Umnov A., 2005
20 ISSN 1727-4907. Проблеми програмування. 2005. № 4

УДК 004.273

A. V. Chapyzhenka, D.V. Ragozin, A.L. Umnov

LOW-POWER ARCHITECTURE FOR CIL-CODE HARDWARE
PROCESSOR

In the article the authors present the architecture of a hardware CIL processor, which is capable to execute CIL
instructions as native code. The CIL hardware engine is implemented on the top of the low-power DSP
architecture, and the CIL processor has two execution cores: DSP and CIL. Such solution allows to execute
both CIL and DSP instruction sets as native instructions sets and gain performance in common multimedia
tasks. Therefore, the DSP-based CIL processor may be targeted for multimedia digital home and even
embedded applications. The research was sponsored by RFP 2 Microsoft Corp. grant.

Introduction
The use of the stack-based hardware

microprocessor, which represents stack-based
programming model like Java virtual machine
(JVM) or CIL virtual machine (CIL-VM), has
both advantages and disadvantages. Although
the stack-based programming model has ad-
vantages in uniformity: instructions have no
address field, stack effects are predefined, the
instruction set is homogeneous – the stack is a
serial device, where the maximum execution
speed can not exceed one instruction per clock,
because any two consequential instructions al-
ways have dependence on the top-of-stack cell.
But despite some computational inefficiency,
the stack processor model is well suitable for
virtual machine implementations. In internal
representation the program is usually repre-
sented as a sequence of addresses of procedures
and instructions. If the stack machine instruc-
tion can be represented by a standardized num-
ber, the software may be executed on any proc-
essor which has a table, representing the rela-
tion between the standard instruction set and
local instructions. This stack machine principle
is the basis of Java and CIL machine concepts,
and allows us to have a semi-machine-inde-
pendent way of software execution. Also, the
code generation for the stack-based execution

model is quite simple, and some earlier internal
compiler program representations were devel-
oped with the use of stack-based code.

From the point of view of hardware, the
stack machine is the simplest way to execute
machine codes. There is no address informa-
tion, instruction decoding is very simple, and
instruction execution cycle is very short, be-
cause there are no additional multiplex
switches for read and write ports of the register
file. The stack machine register file consists of
the top-of-stack register with a read and write
port and the under-the-top-of-stack register
with a read port (fig. 1). Such a structure has
limited ability for parallel execution, but has
small complexity and low power consumption,
because there are no large multiplex switches
for read and write ports of the non-existent
register file.

The hardware execution of code, based
on stack utilization paradigm, has nearly forty
year long history. The basic concepts of hard-
ware stack-based processors were developed in
early 60s-70s [1], but the software development
languages resembled the Forth [2] language – a
kind of high level macroassembler for basic
stack machine instruction set. The best known
stack processor is Patriot Scientific PSC-
1000A [3], which is intended for Java program

Fig. 1. Structural scheme of the stack processor

Top-of-stack
register (S)

2nd register
(T)

other stack
registers

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/38331459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Інструментальні засоби та середовища програмування

 21

execution. PSC 1000A is a typical stack
processor and has typical stack machine
advantages and disadvantages

So, there are good technical solutions
for the basic CIL-code hardware processor im-
plementation. At this development stage meta
information utilization is not considered, be-
cause in extreme case all meta information
checking instructions may be implemented as a
low level microcode. A full featured CIL-code
processor may be implemented as software on
top of a very simple (basic) stack processor.

Here we have a very important problem
– what the trade-off between the simplicity of
hardware implementation and execution effi-
ciency is. This problem escalates other impor-
tant problem – what kinds of tasks must be
executed efficiently on the target hardware
processor? Each hardware must have the target
market, and concrete hardware implementation
must be driven by target applications and the
target market.

The paper consists of 4 parts. Part 1 de-
scribes the target market and possible applica-
tions for the CIL-code processor. In Part 1
common trends in processor architectures are
discussed. Part 2 describes a case for the CIL-
code processor core implementation. Also the
kernel implementation of the CIL processor is
discussed, jointly with additional features, such
as caches for meta information, which are in-
tended to speed up the CIL-code processor. In
Part 3 software decisions for supporting the
CIL processor are considered. In Part 4 possi-
ble system software implementations are dis-
cussed. In conclusion we outline our plans for
the future.

1. Application target for the CIL-code
processor

At present the .NET technology has
such a direct competitor as Java technology,
which is used primarily in such mobile devices
as smart cards and mobile phones. Different
PDA devices, Internet terminals, home desk-
tops use mainstream processors such as Intel®
x86 family, ARM-based chips and other de-
vices. To start targeting the CIL processor we
will discuss both markets: the “computer” mar-
ket and the mobile devices market.

The market of PDAs, laptops, desktop
computers requires processors with usually

high computational power, despite the con-
sumed electrical energy. E.g. the latest 3.4-3.6
GHz processors with 85-90W power consump-
tion are available on the market now, and the
upper limit for frequency for the nearest years
is near 10 GHz. The number of distinct archi-
tectures has become very small: Intel® x86,
IBM Power, Sun UltraSPARC, Intel® Itanium
families, most of them are based on the super-
scalar architectures with specialized compo-
nents for improving available scalar parallelism
such as multithreading. On the other hand some
architectures are specialized for high perform-
ance computations such as Itanium with ex-
plicitly defined parallelism. Some hardware
expert say that there is no room for new com-
petitors at the desktop processor market.

The market of mobile devices is differ-
ent from the “computer” market in its require-
ments to the computational units: it requires
high computational power with very low en-
ergy consumption. The maximum consumed
energy is computed from the capacity of par-
ticular batteries and the time of device uninter-
ruptible work. So, the current consumption of
the processor must be between several milli-
amperes and tens of microamperes. The num-
ber of possible architectures exceeds thousands
because the market accepts any developed
technical solution, even if the new processor
architecture has unique peculiarities that in-
volve full reprogramming of the application.
Good examples are VLIW-chips, the chips with
specialized integrated devices, DSP chips.

To concern possible hardware platform,
some considerations about the possible target
market for the CIL processor based devices
must be done.

1.1. Target market for the hardware
CIL processor. We will start the discussion by
some real life example. Different handheld de-
vices are very popular in Japan. Many stan-
dards, like 3G for mobile phones, and the
phones with ability of video data transmission
were originally started and originated in Japan,
as well as different Internet-related services
such as chats and news over mobile phones
(before wide spreading of Wi-Fi hot-spots). On
the other hand, the handheld devices and PDAs
aren’t so widely spread in other countries, in
comparison to Japan. Some sociologists say,
that Japanese people spend too much time

Інструментальні засоби та середовища програмування

 22

during their morning trips on the electric trains
to the office and evening trips home. The latest
electronic devices are used for entertaining
people during their trips (up to 2 hours) to and
from work.

So, some type of the devices may be
intended to serve specific needs of a particular
groups of people. The targets of the .NET tech-
nology are similar to those of Java technology.
The .NET software is intended for the execu-
tion model “once written – executed on any
platform” for the software transmission over
the Internet and safe execution on different
hardware platforms. But primarily .NET tech-
nology is a newer programming model, in-
tended for different Web-oriented services,
distributed business databases, online transac-
tions, CRM system support, logistic support,
etc. Also .NET is a good technology for differ-
ent computational devices’ convergence - .NET
software must be enabled for mobile phones,
PDAs, different handhelds, notebooks, desktop
computers; it must be delivered over all possi-
ble network connections: cable and wireless.
Here the .NET technology is the basis technol-
ogy for connecting different devices, that is
why any application consists of several thou-
sands of classes combined into assemblies, and
can be loaded up to some mobile device on
demand. Every mobile device can have only
basic set of integrated .NET classes, other nec-
essary classes may be downloaded from the
application servers on demand. Depending on
available resources of the mobile device, some
assemblies can be cashed (if the device has
enough memory). A detailed technical descrip-
tion of application transmission via Internet is
beyond the scope of our paper.

Due to the fast growth of wireless tech-
nologies, all notebooks, most of desktop chip-
sets, PDA devices will be have some kind of
wireless adapter in a year or two. The necessity
of different devices integration into uniformly
managed network with automatically organized
intranet, personal data sharing and future mo-
bile agent software model leads to future con-
vergence of technologies and involves the use
of an integrating software paradigm like Java
or .NET technologies. In case of mobile de-
vices, Java is supported in Java oriented
coprosessors, such as [3] or technology like
Jazelle [4], where two additional pipeline

stages are integrated in ARM processor. These
two pipeline stages decode Java instructions so
that their direct execution over the ARM RISC-
type architecture is implemented. The hardware
CIL processor allows direct support of .NET
software inside the different mobile devices.

There are several basic assumptions that
must be considered first. The hardware CIL
processor can not be a competitor of desktop
processors, mobile processors and PDA ones,
but the end-user specialized devices, like Web-
terminals, Web-browsers, interactive televi-
sion, house control systems and other hardware
are the proper target. The desktop computer
processors and the notebook processors have
too much computational power, on the other
hand mobile phones aren’t ready to handle big
applications. So, the hardware CIL-processor
must target an intermediate position between
the mobile phone processor and powerful proc-
essors for PDAs, like XScale (600 Mhz) or TI
OMAP (ARM core + DSP C55 core). For ex-
ample now video playback is not common for
most mobile phones (even high resolution color
displays aren’t used in nowadays mobile de-
vices), and the screen size is not enough to
handle most database-oriented applications. So,
the proper suggestion can be made that the tar-
get for the hardware CIL processor should be
mobile phones and PDA devices, oriented for
distributed Intetner-related content processing.

There are important additional require-
ments to the CIL processor. First, the CIL
processor must be capable of operating with
different data, because the modern Internet
content includes many video and audio files,
animation. Without such files the Internet con-
tent is not very impressive for a typical user.
So, the CIL processor must handle such tasks
as MPEG1/2/3 files playback, MPEG4 and
DVD video playback, Flash playing, JPEG en-
coding and decoding, utilizing 96kHz 6-chan-
nel audio and 1280x1024 screen resolution, 32-
bit color. Second, the energy consumption of
the CIL processor must be very low. It is a very
important marketing issue, and there is a good
modern example. Before the appearance of
Pentium® M processors (Centrino) most note-
books could operate using battery only for 2-
2.5 hours, so that a mobile user had to have an
additional battery feeling uncomfortable be-
cause of the short work time of the notebook.

Інструментальні засоби та середовища програмування

 23

The Pentium® M energy saving technology
brings the user up to 5 hours of time (that al-
lows taking the notebook from office to home
without power supply in the evening, reading
and answering e-mail stored into Outlook, ed-
iting some documents, and finally seeing new
thriller on DVD before going to bed). The
power consumption technology improvement
appeared even more important than integrated
Wi-Fi network adapter.

Due to the nature of the CIL processor
based on the stack virtual machine, most of the
DSP-related operations (required for multime-
dia processing) will be implemented with high
penalties in execution in comparison with tra-
ditionally used RISC and superscalar proces-
sors. So, the challenging task is the implemen-
tation of the CIL supporting processor with low
power consumption, which also has to handle
DSP tasks effectively.

After positioning the hardware CIL
processor in the market, the next thing to dis-
cuss is existing (embedded) processor archi-
tectures and the basic ideas that can be used for
the CIL processor implementation.

1.2. Discussion of available processor
and cores at market. The stack paradigm used
the in .NET specification [5] suggest the idea to
try a stack processor as the prototype for the
CIL processor implementation.

The stack processor has a significant
limitation on the available parallelism because
arithmetical expressions can be computed only
sequentially (but may be computed in parallel
on several stacks inside one processor) at each
stack implemented in the processor. Also, the
formal stack paradigm does not operate with
address registers (there is at least one address
register in minimal stack processor), but most
of DSPs and general purpose processors have
4-8 address registers with different modes of
address arithmetic. The arithmetical stack is
usually overloaded with addresses update op-
erations (an example is given below) if the ad-
dress registers are not implemented.

The limited ability for parallelism is an
inherent peculiarity of the stack expression
evaluator – by definition. That is why a routing
scheme (multiplexer) for transferring data from
stack top registers to ALU and back to the top-
of-stack register is not used, buses are used in-
stead. The memory is connected to these buses

by 2-to-1 multiplexers (routing 2 data path into
one). So, the ALU operation execution scheme
is very low power consuming, because the en-
ergy is consumed only while data change oc-
curs between stack registers and ALU func-
tional units. Usually the functional units are
scattered over the die and there are no local
sources for overheat. That is why in case of the
stack processor there is limited parallelism but
low energy consumption.

Well-known RISC processors and
cores, like ARM, SPARC, MIPS and well-
known extended DSP processors (AD
SHARCs, TI TMS) have quite a large register
file. But, RISC instructions usually have a
regular structure, and every register may be
commutated to any input of any functional unit.
Also, the outputs of any functional unit can be
commutated as the source to any register. The
commutation system (the multiplexer) for the
register file is very complex for any RISC–
paradigm register file. The complexity of the
multiplexer structure grows as quadratic func-
tion of the number of registers and read/write
ports (e.g. AD SHARC-21k processor has 10
read ports and 6 write ports and 16 fourty-bit
general purpose integer/floating point regis-
ters), and the overall length of wires grows as
cubic function of the number of registers in the
register file. The consumed energy is formed
from two sources: the energy consumed by
switching transistors (quadratic function) and
the energy consumed by leakage in wires – a
wire has internal capacitance and a leakage of
current because the surrounding dielectric does
not have ideal characteristics. Thus the main
source of the high energy consumption is the
large number of transistors in the multiplexer
and the big length of wires. (Precise formulas
for energy consumption calculation can be
found in [6]. Due to the nature of the RISC
processor, the solution of the problem of the
high energy consumption is not trivial because
the multiplexer is very large, the number of
register and read/write ports is big and depends
on available parallelism inside the chip. Any
attempt to decrease the number of ports leads
to decrease of the potential parallelism of the
RISC processor (fig. 2).

For example, to count resources needed
for a typical DSP procedure, the resources nec-
essary for convolution computation will be

Інструментальні засоби та середовища програмування

 24

counted:
2 memory accesses require: 2 write

ports, 2 data buses to memory; 2 read ports for
the address register file;

2 address increments require: 2 write
ports for the address register file;

1 multiplication and 1 addition require:
2+2 read ports, 1+1 write ports or

jointly 1 multiplication + addition
(MAC) require: 3 read ports, 1 write port.

Finally, there are 6 (5 if the MAC is
used) read ports (2 ports for the address register
file) and 6 (5 if the MAC is used) write ports (2
ports for address register file) for the convolu-
tion operation.

The most convenient approach for de-
creasing the size of the register file multiplexer
is specialization of the register files. The ad-
dress register file, the common precision reg-
ister file (small sized), the accumulator register
file (2-4 registers) could be detached. Addi-
tionally the address register file is partitioned
into two parts, each part controls a distinct
memory space. Finally, each part of the address
register file has 1 read and 1 write port, the ar-
ithmetical register file must have 2 write ports
and 2 read ports, accumulators must have 2
read ports and 2 write ports (or 1 write and 1
read ports depending on implementation of the
MAC unit). The typical structure of the register

file on DSPs is shown at fig. 3.
Here the register file is partitioned into

chunks, which are “strongly” connected to par-
ticular ALUs (functional units). But, in DSP
case the multiplexer size is reduced, so the time
for signal passing through the multiplexer is
reduced and the multiplexer power consump-
tion is also reduced significantly.

As should be noted, the superscalar
RISC and CISC processors are not considered,
because they have too much energy consump-
tion per MIPS (MFLOPS), have very large die
size and need an external chipset for function-
ing properly and they have low abilities for
external devices support.

Before possible architectures are dis-
cussed a reference must be made for research
projects devoted to hardware implementation
of object-oriented processors. The CIL abstract
machine supports a rich and powerful class and
object model, which represents the sum of ob-
ject oriented paradigm implementation prac-
tices. Even internally CIL uses objects, utiliz-
ing “pure” machine types such as integers and
addresses only for compatibility with external
APIs. Another important issue is the garbage
collector, which services are the only way to
allocate memory block for storing an object.

The CIL processor is not the first chip
with the support of the object oriented model.

Register
file

ALU 1

ALU 3

ALU 2

read ports

write
ports

Fig. 2. Structure of the arithmetical unit of RISC processor

Register
file

ALU 1

ALU 3

ALU 2

read ports

write
ports

Fig. 3. The structure of the arithmetical unit of the digital signal processor

Інструментальні засоби та середовища програмування

 25

The first truly object oriented language is the
Smalltalk-80. Many researchers tried to define
and implement an effective architecture for the
Smalltalk code execution, such as Swamp [7]
or Sword32 [8]. The main difference between
the Smalltalk execution engine and the CIL en-
gine is that Smalltalk was not projected for ef-
fective execution on the microprocessors. E.g.
all internal types such as integers and floats are
treated as objects. The paradigm is very con-
venient for an application programmer, but ex-
tremely complicated for hardware implementa-
tion of the Smalltalk processor. To overcome
the difficulties of the object oriented paradigm
handling the processor uses a special pointer to
the current object (“this” in the C++ language)
and pointer to the object class run-time infor-
mation. So, a method call or a field access
would be performed much faster with the use
of the cached this pointer. The projected CIL
processor must also have the abilities to speed
up the object oriented paradigm instructions,
but the paradigm support must be localized for
the CIL execution engine.

1.3. Architectures of low power con-
sumption processors and benchmarking re-
sults. According to the requirements to the CIL
processor, it must support a stack-based in-
struction set, effectively handle DSP tasks and
have low power consumption. That is why
much attention will be paid to the large grow-
ing market of DSP processors, which satisfies
the latter two requirements for the CIL proces-
sor (efficient DSP and low power consump-
tion).

A very good study of different DSP
processor architectures was performed in BDTI
(Berkeley Design Technology, Inc) DSP labs
[9]. For more than ten years BDTI specialists
have been publishing the “DSP buyer guide”,
where DSPs and DSP cores are shortly dis-
cussed. BDTI covers DSPs available on the
market at present time, the peculiarities of dif-
ferent DSPs, the computational efficiency of
different algorithms, the energy consumption
of different DSP algorithms and other business
issues of DSP processors, answering the ques-
tion “What DSP should I buy?”.

Considering the BDTI labs reports
about DSP market during 2004 [10], we can
find at least four large groups of DSPs on the
DSP market now: 1) VLIW-DSPs with high

peak performance, 32-bit datapath; 2) high-per-
formance classical DSPs and RISC-like DSPs
with 32-bit datapaths; 3) low-end classical
DSPs with 16-bit datapath; 4) low-end DSPs
with controller abilities.

The DSPs with the highest peak com-
putation power are VLIW-DSPs, such as well-
known Texas Instruments TMS320Cx60 fam-
ily. The TMS Cx60 family has frequencies up
to 700 Mhz (2003 year), several chips (C6415)
have an integrated floating-point unit and a PCI
controller. TMS Сx60 chips have VLIW ar-
chitecture with a variable-length long instruc-
tion word. The chip can execute up to eight
atomic instructions per clock and has register
files, partitioned into 2 parts, A and B, each
part has 16 registers (Cx62/Cx67 chips) or 32
registers (Cx64 chips). The energy consump-
tion of the Cx60 processors is quite high, be-
cause the chip has a large register file, caches
on its die and a cross-bar unit for handling
VLIW instructions, therefore sometimes an
external cooling engine is required. The com-
petitors of the Cx60 chips are chips Tiger-
SHARC (by Analog Devices) which have an
integrated SIMD engine for multiplying and
accumulation numbers, with an operating fre-
quency up to 400-500 Mhz (2004). Another
high performance processor is Star Core SC140
chip from Motorola, a multi-issue processor
with 4 computational units, which can execute
up to 8 atomic commands per cycle, it has 16
general purpose registers and 16 address regis-
ters. All those high performance chips have
high computational power but high energy con-
sumption in comparison to classical DSP proc-
essors.

A wide category of chips are classical
DSP processors and DSP processors, which
have like-RISC architecture. The Analog De-
vices ADSP-2106x processor is an example of
RISC-like DSP processor. It has a large register
file (16 registers), fourty-bit wide, which can
handle 32-bit integer numbers or 40-bit ex-
tended single precision floating-point numbers.
One operation is encoded in a processor in-
struction usually, but the chip can execute a
memory access (dual) jointly with a computa-
tional operation or a dual memory access
jointly with a computational or MAC opera-
tion. For handling MAC operations, the register
file is partitioned into 4 chunks, each consists

Інструментальні засоби та середовища програмування

 26

of 4 registers. The analogous processors on the
market are the TMS Cx54 from Texas Instru-
ments, the DSP56311 chip from Motorola, the
DSP 16000 chip from Lucent/Agere. These
processors provide 32-bit computations, are
capable of video operating, audio decoding,
etc. The capabilities of these processors are
enough for most multimedia tasks, listed in the
first part of current chapter.

A good example of the latest trends in
classical DSP architectures is Micro Signal Ar-
chitecture (MSA) developed jointly by Analog
Devices and Intel Inc. [11]. Now it is produced
by Analog Devices and named BF-535xx
“Blackfin”. It is based on modified Harward
architecture. Its data arithmetic unit contains
eight 32-bit registers, each can be used as two
16-bit registers. The ALU of the processor
contains two 16*16 multipliers, two 40-bit split
ALUs, a 40-bit shifter, four 8-bit video ALUs
and two 40-bit split accumulators. The accu-
mulators are separated from the main register
file. The address generation units contain six
32-bit general purpose registers, four 32-bit ad-
dress register for circular buffers, a frame
pointer and a dual stack pointer for user and
kernel spaces.

Also, there are low-end 16-bit classical
DSPs such as ADSP-2189, Motorola DSP1620,
etc, which are used for different telecommuni-
cation applications for 8-bit or 16-bit sound
samples processing. These processors are used
if there is no need for high performance DSPs
and there are strong requirements to low power
consumption.

The additional class of DSP processors
is mixed DSP controllers, such as MicroChip
dsPICs. Their appearance was caused by the
necessity of mixing DSP processing and differ-

ent controller tasks. These chips usually are
microcontrollers, improved with the second
memory bus, the MAC and the dual memory
access instruction for providing the
convolution kernel execution in one
instruction. The clock speed of the DSP
controllers is near 30 – 40 MHz.

Another large piece of the processor
market for mobile devices is processors, which
appeared due to the PDA market growth. The
best representative of this market piece is In-
tel® XScale, based on well-known ARM ar-
chitecture, it is efficient and low-power RISC
processor. But, in comparison to most DSPs
used in cellular phones, XScale processor, the
kernel performance of which is comparable to
the performance of the ARM7 kernel, has
higher power consumption and lower perform-
ance on typical DSP applications in compari-
son with classical DSPs. XScale performs DSP
jointly with a special coprocessor, which has
only one bus to the memory, so can not per-
form typical operations as efficiently as DSP.

As examples of performance cores, dis-
cussed in the BDTI 2004 year report [12,13],
chips Texas Instruments Cx64, Motorola Star-
Core SC140, Texas Instrument Cx55, Analog
Devices BF53x “Blackfin”, Texas Instruments
OMAP, and Intel Xscale PXA2xx are dis-
cussed. The basic performance marks for the
processors are showed in the table 1.

In the first column there are the special
marks: “(+)” and “(-)”. The “(+)” denotes that
the higher value in the row is the better, the “(-
)” denotes that the lower value in the row is the
better. Here the top speed processor is an 8-is-
sue VLIW TI C6414 from the C64 family. It
has the highest frequency and can execute up to
8 simple instruction during one cycle. But it

Table 1. Performance marks by BDTI Labs

Mark

TI
C5502/

300Mhz,
classic
DSP

ADI BF53x/
600Mhz,
RISC-like

DSP

TI C6414/
720Mhz,

VLIW DSP

Motorola
SC140 /300

Mhz,
VLIW-DSP

Intel
PXA2xx,
400Mhz,

RISC

Speed mark(+) 1460 3360 6480 3430 930
Memory use(-) 146 140 256 144 140
Perf/mW(+) 11.8 16.9 16.1

(300Mhz)
13.7 2.6

(200Mhz)
Cost/$(+) 146.2 375.9

(400Mhz)
98.3
(500Mhz)

29 25.6
(300Mhz)

Інструментальні засоби та середовища програмування

 27

has too much memory consumption, because of
the large command words, moderate energy
efficiency and poor cost characteristics. So, this
processor must be involved in the application,
where the performance is critical and the cost is
not under consideration. Of interest can be also
is ADI BF53x processor, which is 3-issue, has
a high frequency, good energy efficiency and a
moderate price. On the other hand, a 6-issue
VLIW SC140 has less speed and is less energy
efficient than the TI C6414, regardless of the
chip frequency. But the SC140 has a high chip
price. The TI C5502 has quite a low speed and
a moderate price, but consumes low energy and
has a low memory use. In comparison to other
architectures, the XScale processor, based on
RISC ARM kernel, has a high frequency but a
low speed and very low energy efficiency at
200MHz frequency, and finally a high price.

So, the conclusion based on the table
would be quite unpleasant for commonly used
general purpose processors (GPPs): most
RISC-based processors aren’t so effective in
the energy consumption and aren’t effective for
DSP tasks. Even the most popular RISC-based
XScale, involved by success of previous ARM
families, which are famous for the good speed
and the low energy consumption, loses 5-8
times in media tasks in comparison to classical
DSP families. Inside the DSP families it is no-
ticeable that the DSPs have good speed char-
acteristics because of the irregular parallelism,
used for computations. Common DSP proces-
sors are 3-issue and can execute 2-3 instruc-
tions per cycle inside the DSP kernel. The most
important peculiarity of most DSP instruction
sets is the ability to execute an arithmetic and a

data movement instruction in parallel. The
high-performance DSPs with VLIW architec-
ture executes at least 4 instructions in parallel.
E.g. the Motorola SC140 is a 6-issue processor;
the TI C6414 is an 8-issue processor. The sur-
prisingly good results of the Blackfin chip can
be explained because it also has the frequency
which is twice as higher as the frequency of
other chips.

The speed marks for some other proces-
sors are in the table 2 [13].

The good results are shown by the
Agere Systems DSP16xxx kernel, the Analog
Devices TigerSHARC high-end processors,
and the Texas Instruments C6414 processor,
which has a fantastic frequency 1 GHz.

From the point of view of the CIL
hardware processor there is no urgent need for
the highest frequency. To make use of fine-
grain parallelism hidden in common CIL code
it is necessary to have a superscalar parallelizer
with shadow registers, reservation stations and
other stuff. The parallelizer is a complex thing,
it consumes much energy and requires many
extra thousands of transistors on the die. Be-
cause of its high energy consumption a super-
scalar processor can not be used inside mobile
devices in case of current technology. But
without a parallelizer engine, the “wide” par-
allelism, which is available on 6-issue and 8-
issue VLIW processors like the SC140 and the
TI C6414 can not be utilized. Also, the VLIW-
DSP energy consumption is quite high, but the
increased computational power allows to have
energy efficiency comparable to classic DSP
processors. So, a good preliminary solution is
to use DSP as the basis for the hardware CIL

Table 2. Speed marks by BDTI Labs
Chip BDTI2000

speed mark
Chip BDTI2000

speed mark
Agere DSP 164xx 285 Mhz 1360 ADI ADSP-219x 160 Mhz 410
ADI ADSP-BF-5xx (Blackfin)
750 Mhz

4190 ADI ADSP TS201S
(TigerSHARC) 600 Mhz

6400

FreeScale DSP563xx 275 Mhz 820 Freescale MSC81xx (SC140)
300Mhz

3370

Intel PXA255/PXA266
(XScale) 400Mhz

930 Renesas SH772x (SH3-DSP)
200 Mhz

490

Intel PXA27x (XScale +
Wireless MMX) 624MHz

2140 TI TMS320C54x 160 Mhz 500

TI TMS320C55x 300 MHz 1460 TI TMS320C62x 300 Mhz 1920
TI TMS320C64x 1GHz 9130

Інструментальні засоби та середовища програмування

 28

processor implementation. By the way, the
limited parallelism of classic DSPs allows to
execute a computation and a data load instruc-
tions in parallel, so even quite a simple CIL
instruction decoder can combine computation
on the top of the stack with data loading for the
next instruction.

Additionally to the BDTI benchmarks,
the comparison of different procedures for
copying the memory region (100 words) for
different processors is presented in table 3. The
code size and the execution time characteristics
are provided. The memory copying function is
selected, because it utilizes memory and ad-
dress computations highly without high ALU
utilization and allows to estimate imperfections
in the stack processor paradigm.

We assume that there are no penalties
for the memory access. The summary informa-
tion on the code is presented in the table 4.

So, the code size is growing from the
DSPs up to the stack processors. Of course, if
the stack processor has a special instruction for
memory block copying (like CMOVE), the

code will be much smaller, but the comparison
will have no sense. But a real stack processor
has a few resources for handling data which
can be processed in parallel. In extreme case a
stack processor can only operate with the top of
the stack. E.g., comparing arithmetic stack
paradigms, which are used inside CIL [5] and
FORTH-94 [2] standard (both are based on the
abstract stack machine), we see clearly, that
stack implementations are quite different
(table 5).

The stack implementation for the
FORTH-94 virtual machine requires that all
stack elements should be visible and able to be
fetched, so all stack elements are completely
addressable. This is helpful in the situations,
when there are subexpressions, which interme-
diate results are used more than once. In other
cases a recalculation may be used for saving
some data into a temporary variable or for fu-
ture calculations. If only the top the of stack
may be used, the possibilities for the temporary
storing of local variables and intermediate re-
sults are very limited. As FORTH-94 paradigm

Table 3. Comparison of different procedures for copying a memory region
DSP RISC Stack with address reg

(ADR1 ADR2) ON
STACK

Stack without address
register
(ADR1 ADR2) on stack

R1 = DM(I0, M0);
DO LCNTR = 99, M2
R1 = DM(I0, M0) ||
DM(I4, M4) = R1;
M2:
DM(I4, M4) = R1;

LD R0,100
M1:
LD R1,[A0++]
ST [A1++],R1
SUB R0,R0,1
BRNZ M1

A!
LIT 100
LIT 0
(DO)
DUP @ A++!
WORD+
(LOOP) DROP

LIT 100
LIT 0
(DO)
2DUP @ !
LIT WORD
DUP D+
(LOOP) 2DROP

Table 4. Code sizes for copying a memory region
 DSP RISC Stack with

address register
Stack without
address register

Internal cycle
size, bytes

4 (8 if without dual
memory access)

16 6 9

Time, cycles 101 (200 if without
dual memory access)

400 600 800

Table 5. Stack-based instructions for CIL and Forth paradigm
CIL instructions for stack operations Forth-94 instructions for stack operations
DROP – removes top of stack
element
DUP – duplicates top of stack

DROP – removes top of stack
DUP – duplicates top of stack
2DUP – duplicates two topmost elements of stack
ROLL <n> - moves n-th element to the top of stack, other
elements are moved deeper into stack up to n-th cell

Інструментальні засоби та середовища програмування

 29

requires thar all stack elements should be ad-
dressable, the only possible implementation of
such a stack is the random access memory
(RAM) with hardware implemented the top-of-
stack pointer. Such RAM implementation is
very inefficient, because it uses at least one
write or one read operation from the RAM per
an instruction. On the contrary, the stack im-
plementation with access only to the top-of-
stack register does not require RAM-like im-
plementation of the stack, but the overflow or
the underflow conditions require large memory
block transitions (from the stack to the memory
and from the memory to the stack). The stack
with a limited depth where only 4 or 8 top ele-
ments of the stack are accessible, and the other
elements are not is implemented in the Novix
processors [1]. But in case of the CIL processor
the statement that it involves only the top ele-
ments to be visible is incorrect in general. A
called method uses a set of parameters and lo-
cal variables, also this pointer is employed. The
parameters are loaded into the stack by the
callee method; the local variables also must be
located in some stack. So, the current arith-
metical stack requires only two top elements to
be visible, but all arguments and local variables
are located in the stack which must be organ-
ized as RAM. Here there is a field for optimi-
zations in a JIT compiler – all method arithme-
tic may be optimized for utilizing the register
file only.

In the chapter the most interesting im-
plementations of embedded processors used in
industry were discussed. The hardware CIL
processor will not be something unusual and so
different from any existing processor. In the
next chapter the architecture of the hardware
CIL processor will be discussed.

2. The architecture of the hardware CIL
processor

Due to the list of the main properties of
the CIL processor, it is necessary for the proc-
essor: 1) to consume low power from energy
supply; 2) to handle efficiently DSP tasks; 3) to
execute directly or through moderate-sized de-
coder the hardware CIL code.

The basic idea which underlies the CIL
processor implementation is a direct execution
of the DSP code and of the hardware CIL code,
so that the target is a mix of a real DSP proces-

sor and a hardware CIL decoder and control
unit.

2.1. The high-level model of the CIL
processor. The essence of the trick is that the
CIL processor consists of two chips. So the
processor is able to execute library code used
for media operations efficiently. Such proces-
sor implementation is very useful for the soft-
ware implementation of different communica-
tion protocols in smart phones, e.g. convolu-
tion, adaptive filtration, Viterbi decoding,
software radio procedures. Communication
protocols, wireless link protocols, audio co-
decs, video codecs must be implemented as li-
braries in the DSP native code, that allows to
have a very efficient and low energy consum-
ing library code.

On the other hand, the CIL instruction
decoder is intended for direct execution of
downloaded (from Internet) business applica-
tion code. Usually the applications, oriented for
visual processing (database front-ends, Internet
forms, accounting information), have no need
for complex code optimizations, because most
of work inside the front-end applications is
done inside visual forms and components, but
all the database processing with large data
amounts is carried on external servers. The
media information is processed with the use of
the DSP-optimized multimedia libraries.

From the point of view of the processor
software model, the programmer has two in-
struction sets in one processor: a DSP set and a
CIL set. This scheme is similar to
ARM/Thumb instruction sets available in
ARM cores. Depending on the desired
execution mode, the processor decoder can be
switched between the DSP and the CIL
instruction sets decoding.

From the point of view of the hardware,
there is a DSP processor, which has all classi-
cal DSP attributes as two address and data
buses, a dual address generation unit and a
high-performance MAC unit. The processor
has two instruction decoders, they allow to de-
code the native DSP instructions and the CIL
instructions. The execution of the CIL code is
supported by internal control buses (for the ac-
cess to the meta-information) and additional
direct-mapping or associative caches, intended
for caching most often used object and class
information.

Інструментальні засоби та середовища програмування

 30

The high-level hardware structure of the
CIL processor is shown in fig. 5.

The CIL processor has the structure,
which is an extended version of the classical
DSP one. The processor has four external
buses. The main data bus (X-bus) and the sec-
ondary data bus (Y-bus) are used for arithmeti-
cal data transfers from/to caches and external
memory. The X and the Y space address bus
are used for address generation for the memory
access. The main arithmetic unit is used for
general computations, during a clock cycle two
data words may be read or written to/from
memory spaces. The X and the Y bus address
generation units form addresses for the mem-
ory accesses, the instruction and data cache
unit stores data (at least 32 code words for in-
structions) and the system control unit for
interrupt handling. The native DSP instruction
set decoder decodes native DSP instructions,
the additional CIL instruction decoder maps a
CIL instruction into DSP core control signals.
The CIL decoder operates jointly with caches
for the CIL meta-information, which are
intended for speeding up the common object

model operations for the CIL. An example for
such operation is the translation of the object
field handler for a particular class into an offset
from the start of the object location into the
memory and the appropriate access operation
for current field type. If compared to any Java
processor, CIL involves many extra
difficulties, because the Java code is “ready”
for direct execution without any additional
translation operations. Here the CIL meta-
information caches help to shadow time taken
for the “handler-to-address” translation in the
pipeline, so that the memory access operations
using object/field/method/etc handlers are
performed in short time in case of cache hits.
The precise size of different caches and the
method for the data mapping in each cache will
be determined after profiling the target CIL ap-
plications set. For any software application
these caches are invisible.

2.2. The ALU architecture for the
processor. The most interesting unit is the
main arithmetic unit, which is operating in two
modes. The first mode is the DSP mode. The
ALU performs “register-to-register” arithmetic

Fig. 4. High-level structure of the CIL processor implementation

The hardware CIL processor

DSP-core
hardware CIL executor

CIL structures support

DSP library: audio codecs, video co-
decs, telecommunication protocol imple-
mentations, wireless protocol implemen-
tations, software radio protocol imple-
mentations, software modems, multime-
dia processing libraries

Standard class CIL-code
libraries, application spe-
cific CIL-code libraries

CIL application

Application
server

Main data bus (X)

Main arithmetic
unit

Secondary data bus (Y)

X data bus address
generation unit

X-space address bus

Y-space address bus

Y data bus address
generation unit

Instruction and data
cache unit, system

control unit

CIL meta-
information caches

CIL instruction decoder

native DSP set
instruction decoder

Fig 5. High-level structure scheme of the CIL processor

Інструментальні засоби та середовища програмування

 31

instructions and receives and sends data for the
memory transfers. The second mode is the
stack computation mode; where several internal
DSP registers are used as the topmost stack
registers (for the CIL model only two registers
are needed). The other stack registers are im-
plemented as a shadow stack for one of the
DSP-mode registers, which is used in the stack
mode as the “under-the-top” register.

The arithmetic unit architecture must be
discussed from the point of view of the low en-
ergy consumption. As there is no way to de-
crease the number of arithmetic functional
units (there is a minimal set of necessary func-
tionality), the most appropriate way to decrease
the energy consumption is simplification of the
connection network between the register file
and the functional units. Another important is-
sue is extension of the available internal pipe-
line parallelism.

The examples of such low-power DSP
design are Agere (former Lucent) cores
DSP1600 and DSP16000 [14]. The main idea
of the design is high specialization of the func-
tional units and the register file. Due to the
structure of the most often used DSP algo-
rithms, there is no need in full interconnection
scheme between all register files and the func-
tional units. For example, the register file can
be divided at least into two parts: the single
length register file (integer or fixed point) and
the double-length register file (fixed-point) or
accumulators. In case of the most often used
DSP operations such as matrix multiplication
or convolution ∑=

i
iihxy (∑ −=

i
iNihxy), the

MAC unit inputs are always connected to the
single precision register file, and the intermedi-
ate result (double-precision) can be connected
to input of the accumulator register file. The
addition of the intermediate results may be per-
formed only using extended precision adder
connected to the accumulator register file only.

The structure of the DSP specialized
ALU unit with reduced internal connection is
presented in fig. 6.

Here the ALU is divided into two parts.
The first (upper) part consists of two multipli-
ers, which can multiply single precision words
in one cycle. All data loaded into the core is
routed using the X-space and the Y-space vec-
tor input registers. These registers are vector

(twice wide as the integer) so a double preci-
sion number can be loaded during one data
transfer and further can be processed as two
single precision numbers. The scheme allows
performing two multiplications simultaneously.
There are some practical limitations on oper-
ands of the multiplier, e.g. it is impossible to
perform identical computations on both multi-
pliers. The cross-bar commutation unit per-
forms result shifting before the multiplication.
The results of multiplications are handled in
the temporary product registers. All data from
the X space and the Y space registers can be
shifted before the multiplication and after
passing to the product register. The data from
the X (or the Y if necessary) register can pass
the scheme by if there is no need in the multi-
plication. Also the temporary result registers
can be uploaded to the data memory or the pro-
gram memory buses.

The second part of the ALU consists of
several functional units and the register file.
There are strong restrictions on the commuta-
tion scheme, but usually these restrictions do
not affect performance computations. E.g. one
of the operands of the ALU can be only an ac-
cumulator register. Also operands of the quad-
ruple adder are restricted to input registers,
both the temporary product register and two
accumulator registers from different halves of
the register file. The quadruple adder is in-
tended for complex number computations, in
particular for the complex number multiplica-
tion. The special functional unit inputs are even
more restricted in operands – usually only the
registers from different halves of the register
file may be used as operands. Three outputs of
the functional units are multiplexed to write
ports of the first part (even registers) or the
second part (odd registers) of the register file.
Also the outputs of the register file are com-
mutated from even or odd registers for reduc-
ing the size of the multiplexer unit. Also the
output of the register file can be commutated to
the memory write port.

The accumulator registers A0, A1 are
used as shadow stack registers. The hardware
stack with 8 or 16 registers is connected to the
A1 register, so that shadow arguments of each
stack instruction are registers A0 and A1. But,
the hardware stack is not necessary for stack-
based computations, because under CIL execu-

Інструментальні засоби та середовища програмування

 32

tion one of internal buses (usually for the pro-
gram memory) is free of memory access near
75% of the time. Most of CIL commands take
1 byte of the memory and during one access to
the program memory up to four CIL instruc-
tions can be loaded into prefetch buffer. For
overflow and underflow cases the hardware
stack can be connected to the memory bus for
block memory transfers, and so the program
memory data bus can be used. The number of
upper stack registers, mapped on the accumu-
lators, can not exceed 2. The explanation of
this fact is simple: under the CIL stack model
all computations use no more than 2 registers
and affect only the top of stack register. Be-
cause three ALUs use two write ports for the
register file, all write ports may be utilized in
the CIL execution mode. E.g. a common arith-
metical expression like (a+b)*c usually evalu-
ates as LD_A LD_B + LD_C *. Further, the in-
struction “+” and the instruction “LD_C” can
be combined and executed in one cycle, be-
cause the data memory bus is always free dur-
ing CIL computational operations. The result

of the arithmetic operation (“+”) will be placed
into A1 register, the load instruction result -
into A0 register.

 So in the specified ALU architecture
the size of all multiplexers is reduced because
the number of input and output ports is re-
duced. The multiplexer is divided when possi-
ble into smaller ones, and even removed if
there is no need in extra commutation abilities.

In the chapter a specific option for the
CIL execution has not been discussed yet. Sev-
eral CIL operation such as addition, subtrac-
tion, multiplication, division are typed – for
different types of operations the operation are
coded identically – so the CIL instruction “+”
may represent an integer of floating point op-
eration. E.g. the accumulator registers in the
register file usually have extra bits (“guard
bits”) for preventing accumulator overflow
during convolution fixed point operations. For
supporting the type model, extra tag bits are
added to each register to represent the internal
type (integer, float, address type). During the
instruction decoding, at the last pipeline stage

X-memory space
vector input register

Y-memory space
vector input register

Shifter Shifter Shifter Shifter

Cross bar commutation unit

Single * Single
multiplier

Single * Single
multiplier

temporary
product register

1

temporary
product register

2

Shifter Shifter

ALU
adder

special
functional unit

MUX
Shifter

MUX MUX

Cross bar commutation unit

A0 (top of stack in CIL)

A1 (2nd stack reg-r in CIL)

An

…

accumulator
register file hardware stack

control

saturation unit saturation unit saturation unit saturation unit

Cross bar commutation unit

Data Memory Bus Program Memory Bus

Fig. 6. The structure scheme of the ALU unit

Інструментальні засоби та середовища програмування

 33

the operand tags will be analyzed and proper
functional unit will be activated. Tag bits re-
quire at least 5 bits per each register and have
quite simple logic for type analysis and pro-
ducing a type of result. There is no need in
handling additional type index in the tag, be-
cause the type of an object may be determined
in run-time using the RTTI (Real Tile Type In-
formation) mechanism.

2.3. Address generation units for the
processors. The other important units are ad-
dress generation units, which drive data fetch
engine for two memory spaces. The address
generation units must support most address
generation schemes, which are used in the DSP
applications. These addressing schemes are: 1)
register + immediate offset; 2) register with
automatic programmable increment or decre-
ment, pre- or post; 3) circular window (for the
convolution) with programmable automatic
decrement or increment, pre- or post; 4) bit re-
versing addressing for Fourier transformation.
The structural scheme of the address generation
unit is quite common and represented in fig. 7.

The address generation unit consists of
an address adder, several multiplexers and ad-
dress register files. The width of the adder
equals to the width of the address register.
There are several sources for the bus address.
Any pointer register or pointer to beginning of
circular buffer may be added to one of the in-
dex registers or the immediate value (from the
instruction or byte/word increment addressing
mode) and stored in the pointer register. Also,
the pointer register or the pointer to circular
buffer may be multiplexed in the address bus.
So, the possible addressing modes are: 1)

pointer+index;2) circular start + index; 3)
pointer+offset; 4) circular+offset; the offset
may be zero. Any pointer register may be in-
cremented by the offset or index register con-
tent. The comparator is used for comparing the
stored address with the address of the end of
the circular buffer and clearing the stored ad-
dress with the beginning of the circular buffer.
The structure of the address generation unit is
quite simple, and the sizes of different register
files may be simply adjusted for a particular
design. On the right side of figure 6 a simpli-
fied structure is presented. If there is no need
for one of the memory spaces in a circular
buffer addressing (usually a circular buffer for
only one memory space is necessary) the
structure is simplified. Here the only the ad-
dressing modes pointer+index or pointer+offset
with increment by the index or the offset are
possible, but these available modes cover all
user needs. Note, that for negative address in-
crements the address of the start of the circular
buffer must be above the address of the end of
the circular buffer, in comparison to other
processors, where in case of negative incre-
ments, the addresses of the start and the end of
the circular buffer must not be swapped.

2.4. Decoder unit of the processor.
Such simple principles form the kernel of the
DSP processor. Further targeting is provided
by engineering practice: we mean implementa-
tion of particular functional units, integration
of necessary memory controllers on the chip,
implementation of interrupt controller, watch-
dog timer and interval counters, input/output
ports and interfaces for different external de-
vices. The implementation of such devices is

 immediate value or
standard increment

index register file
 (2-4-8 registers)

MUX

+

MUX

MUX

DEMUX

file of pointers
to beginning of
circular buffer
(2-4 registers)

MUX

file of pointers to
end of circular
buffer (2-4
registers)

Comparator

pointer
register file to address bus

immediate value or
standard increment

index register file
 (2-4-8 registers)

MUX

+

pointer
register file

to address bus

Fig. 7. Structural schemes of the common address generation units

Інструментальні засоби та середовища програмування

 34

not principal and is not covered in the paper, as
most devices can be added into VHDL/Verilog
design without many efforts, and do not influ-
ence computational power of the projected
processor. The ALU and the address generation
units are the key features for high computa-
tional power, high memory bandwidth and de-
fine peak performance of the processor.

The last complicated thing in the CIL
processor is the decoding unit, which must op-
erate in the two modes: the genuine DSP and
the CIL interpretation mode. The DSP inter-
pretation mode is quite straightforward and
may be realized using commonly used tri-
staged pipeline for the instruction decoding in
simple DSPs. The described ALU unit is inter-
nally pipelined for the multiplication and
common ALU functional units, so during one
DSP instruction the internal scalar parallelism
of the pipelined ALU is utilized. Additionally,
a DSP instruction in common cases drives both
address generation units for forming necessary
addressing modes. The full list of DSP instruc-
tion will be generated after considering all de-
sign issues.

The CIL instruction set has only one
way to implement, so the task is to design a de-
coder, which will transform (at duplicated
pipeline stages) a CIL instruction into a set of
control signals for the ALU and the address
generation units. Complex commands will gen-
erate an exception, and such an instruction can
be implemented internally in fast ROM as na-
tive DSP code. Meta-information caches will
be used for speeding up meta-information ac-
cess.

A special instruction will be provided
for changing current instruction set from the
CIL to the DSP and backwards. The cached
registers may be mapped directly to A0 and A1

accumulators (i.e. without a special switching
circuit), the stack pointer will be mapped to one
of the pointer registers in the address genera-
tion unit for the program memory bus.

2.5. Meta-information cache memory.
No doubt searching inside the meta-informa-
tion tables takes too much time even if access
is provided in a sorted out column with the
help of logarithmic search algorithms. The only
solution is to provide several distinct small
cache memories for handling the most often
used data in scratchpad memories. The scratch-
pad memories must be tuned for caching only
some fragments of the main memory, organ-
ized as a table with rows of constant length
with the key value at the beginning of each
row. Selected rows of the table are cached in
the scratchpad memory (fig. 8).

In fig. 8 the principle of cache organi-
zation is presented. As each meta-information
object is addressed in a unique way by the in-
dex, the index is used as a tag in the cache
memory. The scheme is useful e.g. for pa-
rameters, when a small consequent region of
the data table is used because a multi-way
cache is useless, in such case the one way
cache may be built with the help of a small
SRAM block and a comparator (as shown in
fig. 8). If cache mapping is not direct, the num-
ber of ways in the current cache may be in-
creased, up to 2-4 or even 8. Inside the cache
memory the least significant bits of an item
number may be used as the tag. The cache way
is constructed on a small SRAM block with a
comparator, so the cache way implementation
is quite compact and allows implementation of
dozens of caches on the die. For example, a
preliminary solution for metadata cache or-
ganization is represented in table 6.

 information

accessed chunk
table in main memory

information access

index

fetch from RAM using LSB of
the index as the address

index as
the key

comparator

MUX
Yes or No

from other cache ways

Fig. 8. The meta-information cache memory principle

Інструментальні засоби та середовища програмування

 35

Note, that several metadata tables must
not be implemented as the cache memories, for
example such as File and Assembly tables.
These tables are used only by system software
(for example, the software for downloaded CIL
code verification) and very rarely. Also, most
metadata tables are transformed during loading
for the most appropriate format for future data
utilization inside the hardware. For example,
Field metadata is not very useful for direct
utilization, because the actual information is
contained in the five meta-information tables
related to the “Field” table. To fill the proces-
sor pipeline in time the value of the field offset
and the field access type (representing actual
type and length for a loading/storing operation)
must be located in the cache. The instructions
for field access must start search for the field
descriptor in the field descriptor cache at the
decoding stage and load into the decoder the
field offset and the appropriate access instruc-
tion (read or write) in one or two cycles. At the
next pipeline stage (or at the current stage) the
base object address, which is directly trans-
formed from object descriptor in parallel to the
field decoding, is added to the field offset, and
at the next pipeline stage a value may be loaded
from or stored to the object. So that, the object
access instruction may be implemented during
maximum three or four processor cycles. Of

course, in case of cache misses, time of the in-
struction performing will be increased.

The minimal set of caches metadata ta-
bles can be determined considering all CIL in-
structions which use metadata tables in some
way. The following metadata tokens are used:
1) Method, represents entries from MethodDef
or MemberRef tables; 2) Field, represents en-
tries from FieldDef or MemberRef; 3) Type,
represents entries from TypeDef, TypeRef or
TypeSpec tables; 4) Signature (entry from
StandAloneSig table); 5) String; 6) Constant.
The this pointer also must be cached for
speeding up ldarg.0 instruction and access to
the RTTI information of the current object.

We assume that metadata tables are
saved for further processing. But most tables
are not suitable for the direct use in the cache.
Some summary of the tables will be used as
“cached metadata tables”. The content of the
cached tables allows to speed up most often
prepared operations like field access, method
invocation, determining RTTI address. The
preliminary layout for the cached tables is rep-
resented in table 7.

All rows in the cache tables starts with
unique index which is used for the row location
in the cache. In most cases run time type
checking for method invocation and field ac-
cess is superfluous, so technically the method

Table 6. Cache implementation parameters
Direct cache mapping 2- or 4- way cache mappings
ManifestResource, ExportedType,
Param, MethodDef, InterfaceImpl

DeclSecurity, Constant, Field, Property, MemberRef,
MethodImpl, TypeDef, TypeRef, EventMap, Event

Table 7. Layout for the cached meta-information tables
Table Fields Comment

index key value, 4 bytes
implementation address (VMT offset) 4 bytes
number of arguments 2 bytes
number of locals 2 bytes

1. Method

returned value type 1 byte
index key value, 4 bytes
offset from the start of object 3 bytes

2. Field
6. Constant

internal field type 1 byte
Index key value, 4 bytes
address of definition 4 bytes
Length 3 bytes

3. Type

Tag 1 byte
Index key value, 4 bytes 4. String

5. MemberRef String address 4 bytes

Інструментальні засоби та середовища програмування

 36

invocation and the field access uses the same
principles as in common RISC processor. The
“internal field type” is a tag for the CIL proces-
sor type.

The basic operation for the cache access
may be implemented in the following way. The
arguments for such instruction are: the cache
number for a metadata table (programmed in-
side the instruction), the index for the cache
access (for searching inside the cache), the off-
set for the necessary information in the cache
line (programmed into the instruction too) and
some optional information (like the width of
data). So, the cache access instructions must be
performed in two steps: 1) using the cache
number and a row index it tries to locate row in
the cache, in case of cache miss the missed row
must be loaded from the main memory, a lo-
cated row will be loaded into the output buffer;
2) the instruction may read the required infor-
mation using the offset from the output buffer.
At high frequencies these operations must be
performed in two cycles.

The Java object model is quite simple,
because all fields and object references are ex-
pressed in bytes and there is a direct instruction
for data loading and storing instructions. The
.NET metadata model requires additional run-
time checking and quite high computational
overhead. The special caches and fast access
decrease time waste, but in each metadata-re-
lated instruction several cycles will be wasted
by filling the processor pipeline by additional
atomic instructions for the cache access.

Of course additional cache memories
can only increase the energy consumption of
the processor, but here there is a tradeoff be-
tween efficient implementation and the energy
consumption. The energy consumption of
caches is spread over the chip, and only one or
two caches are used simultaneously, so the en-
ergy consumption is not significant in compari-
son with the ALU and the memory controllers’
energy consumption. But the metadata caches
can speed up most of instructions related to
object model, such as jmp, call, callvirt, ldftn,
ldvirtfnt, ldfld/ldflda, stfld, ldsfld/ldsflda, stsfld,
cpobj, ldobj, stobj, box/unbox, initobj, sizeof,
ldstr. (Other instructions implement a complex
functionality and it is better to implement them
in the DSP microcode using the hardware ex-
ception mechanism.

3. Software support for the CIL processor
The hardware CIL processor is only

part of development works. The final device is
a sum of a DSP-enhanced CIL processor, an
exception microcode, a firmware, reduced sys-
tem libraries and possible end-user application.

The hierarchy of the system software
must be something like following:

Exception microcode. If a processor
instruction can not be implemented in hardware
(e.g. floating point operation in a fixed-point
processor), an exception will be raised. The ex-
ception involves execution of a sequence of
microcodes, stored into a fast ROM inside the
processor. This method also addresses all
cases, there class hierarchy checks are in-
volved. The exception microcode is completely
supported in the processor instructions, in-
cluding the DSP and the CIL sets. In reality,
the exception microcode is part of the proces-
sor. Only DSP instructions may be used in the
microcode, because the CIL set has a higher
level of abstraction than the DSP set and needs
extra support in hardware. The DSP set in-
cludes all instructions that drive the CIL code
execution.

Class library, as covered in the
ECMA-335 standard. All standard classes must
be implemented as the system library for pro-
viding basic functionality for external applica-
tions. There is a tradeoff between many addi-
tional class implementations on the chip and
downloading the class libraries via wireless or
cable channel from neighbor servers. The basic
class library must be localized, e.g. RS-232
channel or display may serve as the standard
input and the standard output, and the file sys-
tem may be based on simple file systems such
as ROM file system or RAM file system (used
in Unix world) or FAT16/32 file system, de-
pending on a particular application.

Supporting system libraries, intended
for loading and executing remote applications
and supporting the basic network protocols like
IP, UDP and TCP, optionally wireless commu-
nications may be provided. These libraries may
include a request broker, a linker, a loader, a
code verification system, a meta-information
transformation library for converting it into
cache-ready format. Because of high complex-
ity of network protocols networking libraries
creation is not part of the project.

Інструментальні засоби та середовища програмування

 37

The supporting libraries depend on
available system devices for the input and out-
put. The minimal projected set of system de-
vices are: 1) the output device, like LCD text
panel, LCD graphics panel or external SVGA
monitor with library support; 2) the input de-
vice like joystick, mouse or keyboard with li-
brary support; 3) an external memory storage
with library support of a simple file system
(e.g. FAT16); 4) a network adapter with device
driver support; 5) a RS-232 channel with li-
brary support.

Multimedia libraries, intended for
processing multimedia content. These libraries
may be implemented in DSP instructions and
can include multi-format video and audio play-
back code. Creation of these libraries either is
not a part of the project.

User application. At the top of the
software hierarchy there is a user application,
stored in ROM/Flash memory or downloaded
from the Internet. In real life, the application
may be implemented in the DSP or the CIL
code, utilizing all the libraries available on the
chip and from the network channels.

Just in time compiler for the CIL
code. The CIL processor has dual architecture -
it incorporates the CIL and the DSP instruction
sets support. But also the current DSP archi-
tecture has good mapping abilities for JIT
compiler. Like in hardware implementation, the
arithmetic stack will be mapped on the accu-
mulator register file, so performance of com-
putational instructions generated by a JIT-com-
piler is nearly equal to the projected CIL proc-
essor. But real speedup will be achieved in the
JIT-compiler in object-model related optimiza-
tions. E.g. for static object access most of
common type-checking operations and field
descriptor translations are superfluous. Usually
the JIT-compiler utilizes well-known tech-
niques of graph rewriting (and code generation)
[15]. For processors with large register files
and scalar parallelism additional optimizations
for improving register allocation are used. The
DSP processor has quite a simple system ar-
chitecture, so direct techniques of consequent
CIL code transformation into the DSP code
step by step, instruction by instruction are ap-
plicable. Further, the JIT can outperform the
hardware implementation in case of optimizing
stack accesses, required by executed methods

and proper optimization of the object informa-
tion. But, possible JIT optimizations for CIL
model are subject for a separate paper.

Also there is an important question
about available development toolkit. It is pos-
sible to design the DSP chip which will have a
well-known instruction set, but none of the ex-
isting compilers can support effectively joint
DSP+CIL model. There are GNU CC [16]
based compilers, with CIL and some DSP sup-
port, but the joint paradigm has not been im-
plemented yet. Independent of existing soft-
ware, the basic development tools such as as-
sembler can be made for the CIL processor.
Also, using well known abilities of the GNU
CC package, the GCC compiler can be retar-
geted to a small subset of DSP and CIL in-
structions, so enabling the existing C code to
be used on the CIL processor.

Conclusions
In the paper the basic concepts for the

CIL processor implementation are discussed.
We have supposed the processor target market
– the market of mobile devices connected to
the Internet, where the .NET technology can
compete with other integrating technologies.
The requirements for the CIL processor are
suggested: 1) good performance in multimedia
applications; 2) low power consumption. An
effective solution for the CIL processor archi-
tecture has been suggested: the CIL processor
is based on the classic DSP kernel with the ad-
ditional CIL instruction set decoder. The DSP
kernel was selected as kernel for the CIL proc-
essor because of high speed in multimedia
tasks, low energy consumption and quite sim-
ple in implementation. Such kernel is well
suited for mobile applications, multimedia ap-
plications, DSP applications and network soft-
ware. In the paper the DPS kernel implementa-
tion was discussed and necessary explanations
are given. The structural schemes for the units
which affects the chip performance (the ALU
the address generation units, the meta-informa-
tion caches) are presented in the paper. Finally,
all levels of software support (from the ROM
exception code up to user applications) are dis-
cussed in the paper. The paper gives the good
basics for future technical development and
implementation practices, also the paper de-
scribes technical implementation issues and
gives a good overview of the project outline.

Інструментальні засоби та середовища програмування

 38

1. Koopman Ph. J., Stack Computers: the new wave.
Chichester: Ellis Horwood Ltd., 1989.
2. American National Standards Institute, Inc. Technical
Committee X3J14. American National Standard for In-
formation Systems - Programming Languages // Forth.
ANSI X3.215-1994. - 250 p.
3. Patriot Scientific Ignite Core. - http://www.ptsc.com/
Download/download/IGNITE_Processor_Reference_Ma
nual.pdf
4. ARM Jazelle technology. Overview. –
 http://www.arm.com/products/ solutions/Jazelle.html
5. Standard ECMA-335. Common Language Infrastruc-
ture (CLI). - http://www.ecma-international.org/ publica-
tions/files/ecma-st/ECMA-335.pdf.
6. Register Organization for Media Processing. // S.
Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi, J.
Owens / In Proc. of 6th annual Intern. Symp. on High-
Performance Computer Architecture (HPCA), 2000. - P.
375 – 386.
7. Swamp: A fast processor for SmallTalk-80. / D.
Lewis, D. Galloway, R. Francis, B. Thomson // ACM
OOPSLA’86 Proc., Sept. 1986. - P. 131 – 139.
8. Nojiri T., Kawasaki S., Sakoda K. Microprogramma-
ble processor for object-oriented architecture // Proc. of
IEEE ACCA, 13th Intern. symp. on Computer Architec-
ture, 1986. - P. 74 – 81.
9. The BDTIMark2000™: A Summary Measure of DSP
speed. Berkeley Design Technology Inc., Febr. 2003. -
http://www.bdti.com/articles/bdtimark2000.pdf.
10. Benchmarking Processor for DSP applications.
Berkeley Design Technology Inc., 2004. -
http://www.bdti.com/articles/20040219_TIDC_Bench-
marking.pdf.
11. R. Kolagotla, J. Fridman, B. Aldrich, M. Hoffman,
W. Anderson, M. Allen, D. Witt, R. Dunton, L. Booth /
High performance dual MAC DSP architecture. // IEEE
Signal Processing Magazine, July 2002. - P. 42 – 53.
12. Trends and performance in Processors for Digital
Signal Processing. Berkeley Design Technology Inc,
2003. - http://www.bdti.com/articles/
20030522_Trends_and_Performance.pdf
13. BDTIMark2000™/BDTISimMark2000™ Scores for
Fixed Point Packaged Processors. Berkeley Design
Technology Inc, July 2004. http://www.bdti.com/

articles/chip_fixed_scores.pdf
14. Agere Systems. DSP16000 core reference manual. -
http://www.agere.com/enterprise_metro_access/docs/M
N02027.pdf
15. . Overview of the IBM Java Just-in-Time Compiler /
T. Suganuma, T. Ogasavara, M. Takeuchi, T. Yasue, M.
Kawahito, K. Ishizaki, H. Komatsu, T. Nakatani // IBM
Systems Journal. 2000. - 39, No 1, p. 175 – 193. -
http://www.research.ibm.com/journal/sj/391/suganu-
ma.pdf.
16. GNU Compiler Collection. - http://gcc.gnu.org

Date received 05.07.05

Об авторах
Алексей Владимирович Чепыженко

старший инженер

Место работы автора:
ЗАО А/О Интел, Санкт-Петербург,
E-mail: alex_drom@yahoo.com.

Дмитрий Васильевич Рагозин:
канд. техн. наук.,
старший научный сотрудник

Место работы автора:
ЗАО А/O Интел, Нижний Новгород,
E-mail: ragozin@wl.unn.ru.

Алексей Львович Умнов:
канд. физ.-мат. наук,
доцент кафедры электродинамики

Место работы автора:
Нижегородского государственного универ-
ситета им. Лобачевского,
E-mail: umnov@wl.unn.ru.

