
Інструментальні засоби та середовища програмування 

 

© Chapyzhenka A., Ragozin D., Umnov A., 2005 
20 ISSN 1727-4907. Проблеми програмування. 2005. № 4 

 

УДК 004.273 

 

A. V. Chapyzhenka, D.V. Ragozin, A.L. Umnov 

LOW-POWER ARCHITECTURE FOR CIL-CODE HARDWARE 
PROCESSOR 
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Introduction 
The use of the stack-based hardware 

microprocessor, which represents stack-based 
programming model like Java virtual machine 
(JVM) or CIL virtual machine (CIL-VM), has 
both advantages and disadvantages. Although 
the stack-based programming model has ad-
vantages in uniformity: instructions have no 
address field, stack effects are predefined, the 
instruction set is homogeneous – the stack is a 
serial device, where the maximum execution 
speed can not exceed one instruction per clock, 
because any two consequential instructions al-
ways have dependence on the top-of-stack cell. 
But despite some computational inefficiency, 
the stack processor model is well suitable for 
virtual machine implementations. In internal 
representation the program is usually repre-
sented as a sequence of addresses of procedures 
and instructions. If the stack machine instruc-
tion can be represented by a standardized num-
ber, the software may be executed on any proc-
essor which has a table, representing the rela-
tion between the standard instruction set and 
local instructions. This stack machine principle 
is the basis of Java and CIL machine concepts, 
and allows us to have a semi-machine-inde-
pendent way of software execution. Also, the 
code generation for the stack-based execution 

model is quite simple, and some earlier internal 
compiler program representations were devel-
oped with the use of stack-based code. 

From the point of view of hardware, the 
stack machine is the simplest way to execute 
machine codes. There is no address informa-
tion, instruction decoding is very simple, and 
instruction execution cycle is very short, be-
cause there are no additional multiplex 
switches for read and write ports of the register 
file. The stack machine register file consists of 
the top-of-stack register with a read and write 
port and the under-the-top-of-stack register 
with a read port (fig. 1). Such a structure has 
limited ability for parallel execution, but has 
small complexity and low power consumption, 
because there are no large multiplex switches 
for read and write ports of the non-existent 
register file. 

The hardware execution of code, based 
on stack utilization paradigm, has nearly forty 
year long history. The basic concepts of hard-
ware stack-based processors were developed in 
early 60s-70s [1], but the software development 
languages resembled the Forth [2] language – a 
kind of high level macroassembler for basic 
stack machine instruction set. The best known 
stack processor is Patriot Scientific PSC-
1000A [3], which is intended for Java program 

Fig. 1. Structural scheme of the stack processor 
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execution. PSC 1000A is a typical stack 
processor and has typical stack machine 
advantages and disadvantages 

So, there are good technical solutions 
for the basic CIL-code hardware processor im-
plementation. At this development stage meta 
information utilization is not considered, be-
cause in extreme case all meta information 
checking instructions may be implemented as a 
low level microcode. A full featured CIL-code 
processor may be implemented as software on 
top of a very simple (basic) stack processor. 

Here we have a very important problem 
– what the trade-off between the simplicity of 
hardware implementation and execution effi-
ciency is. This problem escalates other impor-
tant problem – what kinds of tasks must be 
executed efficiently on the target hardware 
processor? Each hardware must have the target 
market, and concrete hardware implementation 
must be driven by target applications and the 
target market. 

The paper consists of 4 parts. Part 1 de-
scribes the target market and possible applica-
tions for the CIL-code processor. In Part 1 
common trends in processor architectures are 
discussed. Part 2 describes a case for the CIL-
code processor core implementation. Also the 
kernel implementation of the CIL processor is 
discussed, jointly with additional features, such 
as caches for meta information, which are in-
tended to speed up the CIL-code processor. In 
Part 3 software decisions for supporting the 
CIL processor are considered. In Part 4 possi-
ble system software implementations are dis-
cussed. In conclusion we outline our plans for 
the future. 

1. Application target for the CIL-code 
processor 

At present the .NET technology has 
such a direct competitor as Java technology, 
which is used primarily in such mobile devices 
as smart cards and mobile phones. Different 
PDA devices, Internet terminals, home desk-
tops use mainstream processors such as Intel® 
x86 family, ARM-based chips and other de-
vices. To start targeting the CIL processor we 
will discuss both markets: the “computer” mar-
ket and the mobile devices market. 

The market of PDAs, laptops, desktop 
computers requires processors with usually 

high computational power, despite the con-
sumed electrical energy. E.g. the latest 3.4-3.6 
GHz processors with 85-90W power consump-
tion are available on the market now, and the 
upper limit for frequency for the nearest years 
is near 10 GHz. The number of distinct archi-
tectures has become very small: Intel® x86, 
IBM Power, Sun UltraSPARC, Intel® Itanium 
families, most of them are based on the super-
scalar architectures with specialized compo-
nents for improving available scalar parallelism 
such as multithreading. On the other hand some 
architectures are specialized for high perform-
ance computations such as Itanium with ex-
plicitly defined parallelism. Some hardware 
expert say that there is no room for new com-
petitors at the desktop processor market. 

The market of mobile devices is differ-
ent from the “computer” market in its require-
ments to the computational units: it requires 
high computational power with very low en-
ergy consumption. The maximum consumed 
energy is computed from the capacity of par-
ticular batteries and the time of device uninter-
ruptible work. So, the current consumption of 
the processor must be between several milli-
amperes and tens of microamperes. The num-
ber of possible architectures exceeds thousands 
because the market accepts any developed 
technical solution, even if the new processor 
architecture has unique peculiarities that in-
volve full reprogramming of the application. 
Good examples are VLIW-chips, the chips with 
specialized integrated devices, DSP chips. 

To concern possible hardware platform, 
some considerations about the possible target 
market for the CIL processor based devices 
must be done. 

1.1. Target market for the hardware 
CIL processor. We will start the discussion by 
some real life example. Different handheld de-
vices are very popular in Japan. Many stan-
dards, like 3G for mobile phones, and the 
phones with ability of video data transmission 
were originally started and originated in Japan, 
as well as different Internet-related services 
such as chats and news over mobile phones 
(before wide spreading of Wi-Fi hot-spots). On 
the other hand, the handheld devices and PDAs 
aren’t so widely spread in other countries, in 
comparison to Japan. Some sociologists say, 
that Japanese people spend too much time 
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during their morning trips on the electric trains 
to the office and evening trips home. The latest 
electronic devices are used for entertaining 
people during their trips (up to 2 hours) to and 
from work. 

So, some type of the devices may be 
intended to serve specific needs of a particular 
groups of people. The targets of the .NET tech-
nology are similar to those of Java technology. 
The .NET software is intended for the execu-
tion model “once written – executed on any 
platform” for the software transmission over 
the Internet and safe execution on different 
hardware platforms. But primarily .NET tech-
nology is a newer programming model, in-
tended for different Web-oriented services, 
distributed business databases, online transac-
tions, CRM system support, logistic support, 
etc. Also .NET is a good technology for differ-
ent computational devices’ convergence - .NET 
software must be enabled for mobile phones, 
PDAs, different handhelds, notebooks, desktop 
computers; it must be delivered over all possi-
ble network connections: cable and wireless. 
Here the .NET technology is the basis technol-
ogy for connecting different devices, that is 
why any application consists of several thou-
sands of classes combined into assemblies, and 
can be loaded up to some mobile device on 
demand. Every mobile device can have only 
basic set of integrated .NET classes, other nec-
essary classes may be downloaded from the 
application servers on demand. Depending on 
available resources of the mobile device, some 
assemblies can be cashed (if the device has 
enough memory). A detailed technical descrip-
tion of application transmission via Internet is 
beyond the scope of our paper.  

Due to the fast growth of wireless tech-
nologies, all notebooks, most of desktop chip-
sets, PDA devices will be have some kind of 
wireless adapter in a year or two. The necessity 
of different devices integration into uniformly 
managed network with automatically organized 
intranet, personal data sharing and future mo-
bile agent software model leads to future con-
vergence of technologies and involves the use 
of an integrating software paradigm like Java 
or .NET technologies. In case of mobile de-
vices, Java is supported in Java oriented 
coprosessors, such as [3] or technology like 
Jazelle [4], where two additional pipeline 

stages are integrated in ARM processor. These 
two pipeline stages decode Java instructions so 
that their direct execution over the ARM RISC-
type architecture is implemented. The hardware 
CIL processor allows direct support of .NET 
software inside the different mobile devices. 

There are several basic assumptions that 
must be considered first. The hardware CIL 
processor can not be a competitor of desktop 
processors, mobile processors and PDA ones, 
but the end-user specialized devices, like Web-
terminals, Web-browsers, interactive televi-
sion, house control systems and other hardware 
are the proper target. The desktop computer 
processors and the notebook processors have 
too much computational power, on the other 
hand mobile phones aren’t ready to handle big 
applications. So, the hardware CIL-processor 
must target an intermediate position between 
the mobile phone processor and powerful proc-
essors for PDAs, like XScale (600 Mhz) or TI 
OMAP (ARM core + DSP C55 core). For ex-
ample now video playback is not common for 
most mobile phones (even high resolution color 
displays aren’t used in nowadays mobile de-
vices), and the screen size is not enough to 
handle most database-oriented applications. So, 
the proper suggestion can be made that the tar-
get for the hardware CIL processor should be 
mobile phones and PDA devices, oriented for 
distributed Intetner-related content processing. 

There are important additional require-
ments to the CIL processor. First, the CIL 
processor must be capable of operating with 
different data, because the modern Internet 
content includes many video and audio files, 
animation. Without such files the Internet con-
tent is not very impressive for a typical user. 
So, the CIL processor must handle such tasks 
as MPEG1/2/3 files playback, MPEG4 and 
DVD video playback, Flash playing, JPEG en-
coding and decoding, utilizing 96kHz 6-chan-
nel audio and 1280x1024 screen resolution, 32-
bit color. Second, the energy consumption of 
the CIL processor must be very low. It is a very 
important marketing issue, and there is a good 
modern example. Before the appearance of 
Pentium® M processors (Centrino) most note-
books could operate using battery only for 2-
2.5 hours, so that a mobile user had to have an 
additional battery feeling uncomfortable be-
cause of the short work time of the notebook. 
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The Pentium® M energy saving technology 
brings the user up to 5 hours of time (that al-
lows taking the notebook from office to home 
without power supply in the evening, reading 
and answering e-mail stored into Outlook, ed-
iting some documents, and finally seeing new 
thriller on DVD before going to bed). The 
power consumption technology improvement 
appeared even more important than integrated 
Wi-Fi network adapter. 

Due to the nature of the CIL processor 
based on the stack virtual machine, most of the 
DSP-related operations (required for multime-
dia processing) will be implemented with high 
penalties in execution in comparison with tra-
ditionally used RISC and superscalar proces-
sors. So, the challenging task is the implemen-
tation of the CIL supporting processor with low 
power consumption, which also has to handle 
DSP tasks effectively. 

After positioning the hardware CIL 
processor in the market, the next thing to dis-
cuss is existing (embedded) processor archi-
tectures and the basic ideas that can be used for 
the CIL processor implementation. 

1.2. Discussion of available processor 
and cores at market. The stack paradigm used 
the in .NET specification [5] suggest the idea to 
try a stack processor as the prototype for the 
CIL processor implementation. 

The stack processor has a significant 
limitation on the available parallelism because 
arithmetical expressions can be computed only 
sequentially (but may be computed in parallel 
on several stacks inside one processor) at each 
stack implemented in the processor. Also, the 
formal stack paradigm does not operate with 
address registers (there is at least one address 
register in minimal stack processor), but most 
of DSPs and general purpose processors have 
4-8 address registers with different modes of 
address arithmetic. The arithmetical stack is 
usually overloaded with addresses update op-
erations (an example is given below) if the ad-
dress registers are not implemented. 

The limited ability for parallelism is an 
inherent peculiarity of the stack expression 
evaluator – by definition. That is why a routing 
scheme (multiplexer) for transferring data from 
stack top registers to ALU and back to the top-
of-stack register is not used, buses are used in-
stead. The memory is connected to these buses 

by 2-to-1 multiplexers (routing 2 data path into 
one). So, the ALU operation execution scheme 
is very low power consuming, because the en-
ergy is consumed only while data change oc-
curs between stack registers and ALU func-
tional units. Usually the functional units are 
scattered over the die and there are no local 
sources for overheat. That is why in case of the 
stack processor there is limited parallelism but 
low energy consumption. 

Well-known RISC processors and 
cores, like ARM, SPARC, MIPS and well-
known extended DSP processors (AD 
SHARCs, TI TMS) have quite a large register 
file. But, RISC instructions usually have a 
regular structure, and every register may be 
commutated to any input of any functional unit. 
Also, the outputs of any functional unit can be 
commutated as the source to any register. The 
commutation system (the multiplexer) for the 
register file is very complex for any RISC–
paradigm register file. The complexity of the 
multiplexer structure grows as quadratic func-
tion of the number of registers and read/write 
ports (e.g. AD SHARC-21k processor has 10 
read ports and 6 write ports and 16 fourty-bit 
general purpose integer/floating point regis-
ters), and the overall length of wires grows as 
cubic function of the number of registers in the 
register file. The consumed energy is formed 
from two sources: the energy consumed by 
switching transistors (quadratic function) and 
the energy consumed by leakage in wires – a 
wire has internal capacitance and a leakage of 
current because the surrounding dielectric does 
not have ideal characteristics. Thus the main 
source of the high energy consumption is the 
large number of transistors in the multiplexer 
and the big length of wires. (Precise formulas 
for energy consumption calculation can be 
found in [6]. Due to the nature of the RISC 
processor, the solution of the problem of the 
high energy consumption is not trivial because 
the multiplexer is very large, the number of 
register and read/write ports is big and depends 
on available parallelism inside the chip. Any 
attempt to decrease the number of ports leads 
to decrease of the potential parallelism of the 
RISC processor (fig. 2). 

For example, to count resources needed 
for a typical DSP procedure, the resources nec-
essary for convolution computation will be 
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counted: 
2 memory accesses require: 2 write 

ports, 2 data buses to memory; 2 read ports for 
the address register file; 

2 address increments require: 2 write 
ports for the address register file; 

1 multiplication and 1 addition require: 
2+2 read ports, 1+1 write ports or 

jointly 1 multiplication + addition 
(MAC) require: 3 read ports, 1 write port. 

Finally, there are 6 (5 if the MAC is 
used) read ports (2 ports for the address register 
file) and 6 (5 if the MAC is used) write ports (2 
ports for address register file) for the convolu-
tion operation.  

The most convenient approach for de-
creasing the size of the register file multiplexer 
is specialization of the register files. The ad-
dress register file, the common precision reg-
ister file (small sized), the accumulator register 
file (2-4 registers) could be detached. Addi-
tionally the address register file is partitioned 
into two parts, each part controls a distinct 
memory space. Finally, each part of the address 
register file has 1 read and 1 write port, the ar-
ithmetical register file must have 2 write ports 
and 2 read ports, accumulators must have 2 
read ports and 2 write ports (or 1 write and 1 
read ports depending on implementation of the 
MAC unit). The typical structure of the register 

file on DSPs is shown at fig. 3. 
Here the register file is partitioned into 

chunks, which are “strongly” connected to par-
ticular ALUs (functional units). But, in DSP 
case the multiplexer size is reduced, so the time 
for signal passing through the multiplexer is 
reduced and the multiplexer power consump-
tion is also reduced significantly. 

As should be noted, the superscalar 
RISC and CISC processors are not considered, 
because they have too much energy consump-
tion per MIPS  (MFLOPS), have very large die 
size and need an external chipset for function-
ing properly and they have low abilities for 
external devices support. 

Before possible architectures are dis-
cussed a reference must be made for research 
projects devoted to hardware implementation 
of object-oriented processors. The CIL abstract 
machine supports a rich and powerful class and 
object model, which represents the sum of ob-
ject oriented paradigm implementation prac-
tices. Even internally CIL uses objects, utiliz-
ing “pure” machine types such as integers and 
addresses only for compatibility with external 
APIs. Another important issue is the garbage 
collector, which services are the only way to 
allocate memory block for storing an object. 

The CIL processor is not the first chip 
with the support of the object oriented model. 
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Fig. 2. Structure of the arithmetical unit of RISC processor 

 

Register 
file 

ALU 1 

ALU 3 

ALU 2 

read ports 

write 
ports 

 

Fig. 3. The structure of the arithmetical unit of the digital signal processor 
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The first truly object oriented language is the 
Smalltalk-80. Many researchers tried to define 
and implement an effective architecture for the 
Smalltalk code execution, such as Swamp [7] 
or Sword32 [8]. The main difference between 
the Smalltalk execution engine and the CIL en-
gine is that Smalltalk was not projected for ef-
fective execution on the microprocessors. E.g. 
all internal types such as integers and floats are 
treated as objects. The paradigm is very con-
venient for an application programmer, but ex-
tremely complicated for hardware implementa-
tion of the Smalltalk processor. To overcome 
the difficulties of the object oriented paradigm 
handling the processor uses a special pointer to 
the current object (“this” in the C++ language) 
and pointer to the object class run-time infor-
mation. So, a method call or a field access 
would be performed much faster with the use 
of the cached this pointer. The projected CIL 
processor must also have the abilities to speed 
up the object oriented paradigm instructions, 
but the paradigm support must be localized for 
the CIL execution engine. 

1.3. Architectures of low power con-
sumption processors and benchmarking re-
sults. According to the requirements to the CIL 
processor, it must support a stack-based in-
struction set, effectively handle DSP tasks and 
have low power consumption. That is why 
much attention will be paid to the large grow-
ing market of DSP processors, which satisfies 
the latter two requirements for the CIL proces-
sor (efficient DSP and low power consump-
tion). 

A very good study of different DSP 
processor architectures was performed in BDTI 
(Berkeley Design Technology, Inc) DSP labs 
[9]. For more than ten years BDTI specialists 
have been publishing the “DSP buyer guide”, 
where DSPs and DSP cores are shortly dis-
cussed. BDTI covers DSPs available on the 
market at present time, the peculiarities of dif-
ferent DSPs, the computational efficiency of 
different algorithms, the energy consumption 
of different DSP algorithms and other business 
issues of DSP processors, answering the ques-
tion “What DSP should I buy?”. 

Considering the BDTI labs reports 
about DSP market during 2004 [10], we can 
find at least four large groups of DSPs on the 
DSP market now: 1) VLIW-DSPs with high 

peak performance, 32-bit datapath; 2) high-per-
formance classical DSPs and RISC-like DSPs 
with 32-bit datapaths; 3) low-end classical 
DSPs with 16-bit datapath; 4) low-end DSPs 
with controller abilities. 

The DSPs with the highest peak com-
putation power are VLIW-DSPs, such as well-
known Texas Instruments TMS320Cx60 fam-
ily. The TMS Cx60 family has frequencies up 
to 700 Mhz (2003 year), several chips (C6415) 
have an integrated floating-point unit and a PCI 
controller. TMS Сx60 chips have VLIW ar-
chitecture with a variable-length long instruc-
tion word. The chip can execute up to eight 
atomic instructions per clock and has register 
files, partitioned into 2 parts, A and B, each 
part has 16 registers (Cx62/Cx67 chips) or 32 
registers (Cx64 chips). The energy consump-
tion of the Cx60 processors is quite high, be-
cause the chip has a large register file, caches 
on its die and a cross-bar unit for handling 
VLIW instructions, therefore sometimes an 
external cooling engine is required. The com-
petitors of the Cx60 chips are chips Tiger-
SHARC (by Analog Devices) which have an 
integrated SIMD engine for multiplying and 
accumulation numbers, with an operating fre-
quency up to 400-500 Mhz (2004). Another 
high performance processor is Star Core SC140 
chip from Motorola, a multi-issue processor 
with 4 computational units, which can execute 
up to 8 atomic commands per cycle, it has 16 
general purpose registers and 16 address regis-
ters. All those high performance chips have 
high computational power but high energy con-
sumption in comparison to classical DSP proc-
essors.  

A wide category of chips are classical 
DSP processors and DSP processors, which 
have like-RISC architecture. The Analog De-
vices ADSP-2106x processor is an example of 
RISC-like DSP processor. It has a large register 
file (16 registers), fourty-bit wide, which can 
handle 32-bit integer numbers or 40-bit ex-
tended single precision floating-point numbers. 
One operation is encoded in a processor in-
struction usually, but the chip can execute a 
memory access (dual) jointly with a computa-
tional operation or a dual memory access 
jointly with a computational or MAC opera-
tion. For handling MAC operations, the register 
file is partitioned into 4 chunks, each consists 



Інструментальні засоби та середовища програмування 

 26 

of 4 registers. The analogous processors on the 
market are the TMS Cx54 from Texas Instru-
ments, the DSP56311 chip from Motorola, the 
DSP 16000 chip from Lucent/Agere. These 
processors provide 32-bit computations, are 
capable of video operating, audio decoding, 
etc. The capabilities of these processors are 
enough for most multimedia tasks, listed in the 
first part of current chapter. 

A good example of the latest trends in 
classical DSP architectures is Micro Signal Ar-
chitecture (MSA) developed jointly by Analog 
Devices and Intel Inc. [11]. Now it is produced 
by Analog Devices and named BF-535xx 
“Blackfin”. It is based on modified Harward 
architecture. Its data arithmetic unit contains 
eight 32-bit registers, each can be used as two 
16-bit registers. The ALU of the processor 
contains two 16*16 multipliers, two 40-bit split 
ALUs, a 40-bit shifter, four 8-bit video ALUs 
and two 40-bit split accumulators. The accu-
mulators are separated from the main register 
file. The address generation units contain six 
32-bit general purpose registers, four 32-bit ad-
dress register for circular buffers, a frame 
pointer and a dual stack pointer for user and 
kernel spaces. 

Also, there are low-end 16-bit classical 
DSPs such as ADSP-2189, Motorola DSP1620, 
etc, which are used for different telecommuni-
cation applications for 8-bit or 16-bit sound 
samples processing. These processors are used 
if there is no need for high performance DSPs 
and there are strong requirements to low power 
consumption. 

The additional class of DSP processors 
is mixed DSP controllers, such as MicroChip 
dsPICs. Their appearance was caused by the 
necessity of mixing DSP processing and differ-

ent controller tasks. These chips usually are 
microcontrollers, improved with the second 
memory bus, the MAC and the dual memory 
access instruction for providing the 
convolution kernel execution in one 
instruction. The clock speed of the DSP 
controllers is near 30 – 40 MHz. 

Another large piece of the processor 
market for mobile devices is processors, which 
appeared due to the PDA market growth. The 
best representative of this market piece is In-
tel® XScale, based on well-known ARM ar-
chitecture, it is efficient and low-power RISC 
processor. But, in comparison to most DSPs 
used in cellular phones, XScale processor, the 
kernel performance of which is comparable to 
the performance of the ARM7 kernel, has 
higher power consumption and lower perform-
ance on typical DSP applications in compari-
son with classical DSPs. XScale performs DSP 
jointly with a special coprocessor, which has 
only one bus to the memory, so can not per-
form typical operations as efficiently as DSP. 

As examples of performance cores, dis-
cussed in the BDTI 2004 year report [12,13], 
chips Texas Instruments Cx64, Motorola Star-
Core SC140, Texas Instrument Cx55, Analog 
Devices BF53x “Blackfin”, Texas Instruments 
OMAP, and Intel Xscale PXA2xx are dis-
cussed. The basic performance marks for the 
processors are showed in the table 1. 

In the first column there are the special 
marks: “(+)” and “(-)”. The “(+)” denotes that 
the higher value in the row is the better, the “(-
)” denotes that the lower value in the row is the 
better. Here the top speed processor is an 8-is-
sue VLIW TI C6414 from the C64 family. It 
has the highest frequency and can execute up to 
8 simple instruction during one cycle. But it 

Table 1. Performance marks by BDTI Labs 

Mark 

TI 
C5502/ 

300Mhz, 
classic 
DSP 

ADI BF53x/ 
600Mhz, 
RISC-like 

DSP 

TI C6414/ 
720Mhz, 

VLIW DSP 

Motorola 
SC140 /300 

Mhz, 
VLIW-DSP 

Intel 
PXA2xx, 
400Mhz, 

RISC 

Speed mark(+) 1460 3360 6480 3430 930 
Memory use(-) 146 140 256 144 140 
Perf/mW(+) 11.8 16.9 16.1 

(300Mhz) 
13.7 2.6 

(200Mhz) 
Cost/$(+) 146.2 375.9 

(400Mhz) 
98.3 
(500Mhz) 

29 25.6 
(300Mhz) 
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has too much memory consumption, because of 
the large command words, moderate energy 
efficiency and poor cost characteristics. So, this 
processor must be involved in the application, 
where the performance is critical and the cost is 
not under consideration. Of interest can be also 
is ADI BF53x processor, which is 3-issue, has 
a high frequency, good energy efficiency and a 
moderate price. On the other hand, a 6-issue 
VLIW SC140 has less speed and is less energy 
efficient than the TI C6414, regardless of the 
chip frequency. But the SC140 has a high chip 
price. The TI C5502 has quite a low speed and 
a moderate price, but consumes low energy and 
has a low memory use. In comparison to other 
architectures, the XScale processor, based on 
RISC ARM kernel, has a high frequency but a 
low speed and very low energy efficiency at 
200MHz frequency, and finally a high price. 

So, the conclusion based on the table 
would be quite unpleasant for commonly used 
general purpose processors (GPPs): most 
RISC-based processors aren’t so effective in 
the energy consumption and aren’t effective for 
DSP tasks. Even the most popular RISC-based 
XScale, involved by success of previous ARM 
families, which are famous for the good speed 
and the low energy consumption, loses 5-8 
times in media tasks in comparison to classical 
DSP families. Inside the DSP families it is no-
ticeable that the DSPs have good speed char-
acteristics because of the irregular parallelism, 
used for computations. Common DSP proces-
sors are 3-issue and can execute 2-3 instruc-
tions per cycle inside the DSP kernel. The most 
important peculiarity of most DSP instruction 
sets is the ability to execute an arithmetic and a 

data movement instruction in parallel. The 
high-performance DSPs with VLIW architec-
ture executes at least 4 instructions in parallel. 
E.g. the Motorola SC140 is a 6-issue processor; 
the TI C6414 is an 8-issue processor. The sur-
prisingly good results of the Blackfin chip can 
be explained because it also has the frequency 
which is twice as higher as the frequency of 
other chips.  

The speed marks for some other proces-
sors are in the table 2 [13]. 

The good results are shown by the 
Agere Systems DSP16xxx kernel, the Analog 
Devices TigerSHARC high-end processors, 
and the Texas Instruments C6414 processor, 
which has a fantastic frequency 1 GHz. 

From the point of view of the CIL 
hardware processor there is no urgent need for 
the highest frequency. To make use of fine-
grain parallelism hidden in common CIL code 
it is necessary to have a superscalar parallelizer 
with shadow registers, reservation stations and 
other stuff. The parallelizer is a complex thing, 
it consumes much energy and requires many 
extra thousands of transistors on the die. Be-
cause of its high energy consumption a super-
scalar processor can not be used inside mobile 
devices in case of current technology. But 
without a parallelizer engine, the “wide” par-
allelism, which is available on 6-issue and 8-
issue VLIW processors like the SC140 and the 
TI C6414 can not be utilized. Also, the VLIW-
DSP energy consumption is quite high, but the 
increased computational power allows to have 
energy efficiency comparable to classic DSP 
processors. So, a good preliminary solution is 
to use DSP as the basis for the hardware CIL 

Table 2. Speed marks by BDTI Labs  
Chip BDTI2000 

speed mark 
Chip BDTI2000 

speed mark 
Agere DSP 164xx 285 Mhz 1360 ADI ADSP-219x 160 Mhz 410 
ADI ADSP-BF-5xx (Blackfin) 
750 Mhz 

4190 ADI ADSP TS201S 
(TigerSHARC) 600 Mhz 

6400 

FreeScale DSP563xx 275 Mhz 820 Freescale MSC81xx (SC140) 
300Mhz 

3370 

Intel PXA255/PXA266  
(XScale) 400Mhz 

930 Renesas SH772x (SH3-DSP) 
200 Mhz 

490 

Intel PXA27x (XScale + 
Wireless MMX) 624MHz 

2140 TI TMS320C54x 160 Mhz 500 

TI TMS320C55x 300 MHz 1460 TI TMS320C62x 300 Mhz 1920 
TI TMS320C64x 1GHz 9130   



Інструментальні засоби та середовища програмування 

 28 

processor implementation. By the way, the 
limited parallelism of classic DSPs allows to 
execute a computation and a data load instruc-
tions in parallel, so even quite a simple CIL 
instruction decoder can combine computation 
on the top of the stack with data loading for the 
next instruction. 

Additionally to the BDTI benchmarks, 
the comparison of different procedures for 
copying the memory region (100 words) for 
different processors is presented in table 3. The 
code size and the execution time characteristics 
are provided. The memory copying function is 
selected, because it utilizes memory and ad-
dress computations highly without high ALU 
utilization and allows to estimate imperfections 
in the stack processor paradigm. 

We assume that there are no penalties 
for the memory access. The summary informa-
tion on the code is presented in the table 4. 

So, the code size is growing from the 
DSPs up to the stack processors. Of course, if 
the stack processor has a special instruction for 
memory block copying (like CMOVE), the 

code will be much smaller, but the comparison 
will have no sense. But a real stack processor 
has a few resources for handling data which 
can be processed in parallel. In extreme case a 
stack processor can only operate with the top of 
the stack. E.g., comparing arithmetic stack 
paradigms, which are used inside CIL [5] and 
FORTH-94 [2] standard (both are based on the 
abstract stack machine), we see clearly, that 
stack implementations are quite different 
(table 5). 

The stack implementation for the 
FORTH-94 virtual machine requires that all 
stack elements should be visible and able to be 
fetched, so all stack elements are completely 
addressable. This is helpful in the situations, 
when there are subexpressions, which interme-
diate results are used more than once. In other 
cases a recalculation may be used for saving 
some data into a temporary variable or for fu-
ture calculations. If only the top the of stack 
may be used, the possibilities for the temporary 
storing of local variables and intermediate re-
sults are very limited. As FORTH-94 paradigm 

Table 3. Comparison of different procedures for copying a memory region 
DSP RISC Stack with address reg 

(ADR1 ADR2) ON 
STACK 

Stack without address 
register 
(ADR1 ADR2) on stack 

R1 = DM(I0, M0); 
DO LCNTR = 99, M2 
R1 = DM(I0, M0) || 
DM(I4, M4) = R1; 
M2: 
DM(I4, M4) = R1; 

LD   R0,100 
M1: 
LD   R1,[A0++] 
ST   [A1++],R1 
SUB  R0,R0,1 
BRNZ M1 

A! 
LIT   100 
LIT   0 
(DO) 
DUP @  A++! 
WORD+ 
(LOOP)  DROP 

LIT   100 
LIT   0 
(DO) 
2DUP @ ! 
LIT   WORD 
DUP   D+ 
(LOOP) 2DROP 

Table 4. Code sizes for copying a memory region 
 DSP RISC Stack with 

address register 
Stack without 
address register 

Internal cycle 
size, bytes 

4 (8 if without dual 
memory access) 

16 6 9 

Time, cycles 101 (200 if without 
dual memory access) 

400 600 800 

Table 5. Stack-based instructions for CIL and Forth paradigm 
CIL instructions for stack operations Forth-94 instructions for stack operations 
DROP – removes top of stack 
element 
DUP – duplicates top of stack 

DROP – removes top of stack 
DUP – duplicates top of stack 
2DUP – duplicates two topmost elements of stack 
ROLL <n> - moves n-th element to the top of stack, other 
elements are moved deeper into stack up to n-th cell 
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requires thar all stack elements should be ad-
dressable, the only possible implementation of 
such a stack is the random access memory 
(RAM) with hardware implemented the top-of-
stack pointer. Such RAM implementation is 
very inefficient, because it uses at least one 
write or one read operation from the RAM per 
an instruction. On the contrary, the stack im-
plementation with access only to the top-of-
stack register does not require RAM-like im-
plementation of the stack, but the overflow or 
the underflow conditions require large memory 
block transitions (from the stack to the memory 
and from the memory to the stack). The stack 
with a limited depth where only 4 or 8 top ele-
ments of the stack are accessible, and the other 
elements are not is implemented in the Novix 
processors [1]. But in case of the CIL processor 
the statement that it involves only the top ele-
ments to be visible is incorrect in general. A 
called method uses a set of parameters and lo-
cal variables, also this pointer is employed. The 
parameters are loaded into the stack by the 
callee method; the local variables also must be 
located in some stack. So, the current arith-
metical stack requires only two top elements to 
be visible, but all arguments and local variables 
are located in the stack which must be organ-
ized as RAM. Here there is a field for optimi-
zations in a JIT compiler – all method arithme-
tic may be optimized for utilizing the register 
file only.  

In the chapter the most interesting im-
plementations of embedded processors used in 
industry were discussed. The hardware CIL 
processor will not be something unusual and so 
different from any existing processor. In the 
next chapter the architecture of the hardware 
CIL processor will be discussed. 

2. The architecture of the hardware CIL 
processor 

Due to the list of the main properties of 
the CIL processor, it is necessary for the proc-
essor: 1) to consume low power from energy 
supply; 2) to handle efficiently DSP tasks; 3) to 
execute directly or through moderate-sized de-
coder the hardware CIL code. 

The basic idea which underlies the CIL 
processor implementation is a direct execution 
of the DSP code and of the hardware CIL code, 
so that the target is a mix of a real DSP proces-

sor and a hardware CIL decoder and control 
unit. 

2.1. The high-level model of the CIL 
processor. The essence of the trick is that the 
CIL processor consists of two chips. So the 
processor is able to execute library code used 
for media operations efficiently. Such proces-
sor implementation is very useful for the soft-
ware implementation of different communica-
tion protocols in smart phones, e.g. convolu-
tion, adaptive filtration, Viterbi decoding, 
software radio procedures. Communication 
protocols, wireless link protocols, audio co-
decs, video codecs must be implemented as li-
braries in the DSP native code, that allows to 
have a very efficient and low energy consum-
ing library code. 

On the other hand, the CIL instruction 
decoder is intended for direct execution of 
downloaded (from Internet) business applica-
tion code. Usually the applications, oriented for 
visual processing (database front-ends, Internet 
forms, accounting information), have no need 
for complex code optimizations, because most 
of work inside the front-end applications is 
done inside visual forms and components, but 
all the database processing with large data 
amounts is carried on external servers. The 
media information is processed with the use of 
the DSP-optimized multimedia libraries. 

From the point of view of the processor 
software model, the programmer has two in-
struction sets in one processor: a DSP set and a 
CIL set. This scheme is similar to 
ARM/Thumb instruction sets available in 
ARM cores. Depending on the desired 
execution mode, the processor decoder can be 
switched between the DSP and the CIL 
instruction sets decoding. 

From the point of view of the hardware, 
there is a DSP processor, which has all classi-
cal DSP attributes as two address and data 
buses, a dual address generation unit and a 
high-performance MAC unit. The processor 
has two instruction decoders, they allow to de-
code the native DSP instructions and the CIL 
instructions. The execution of the CIL code is 
supported by internal control buses (for the ac-
cess to the meta-information) and additional 
direct-mapping or associative caches, intended 
for caching most often used object and class 
information. 
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The high-level hardware structure of the 
CIL processor is shown in fig. 5. 

The CIL processor has the structure, 
which is an extended version of the classical 
DSP one. The processor has four external 
buses. The main data bus (X-bus) and the sec-
ondary data bus (Y-bus) are used for arithmeti-
cal data transfers from/to caches and external 
memory. The X and the Y space address bus 
are used for address generation for the memory 
access. The main arithmetic unit is used for 
general computations, during a clock cycle two 
data words may be read or written to/from 
memory spaces. The X and the Y bus address 
generation units form addresses for the mem-
ory accesses, the instruction and data cache 
unit stores data (at least 32 code words for in-
structions) and the system control unit for 
interrupt handling. The native DSP instruction 
set decoder decodes native DSP instructions, 
the additional CIL instruction decoder maps a 
CIL instruction into DSP core control signals. 
The CIL decoder operates jointly with caches 
for the CIL meta-information, which are 
intended for speeding up the common object 

model operations for the CIL. An example for 
such operation is the translation of the object 
field handler for a particular class into an offset 
from the start of the object location into the 
memory and the appropriate access operation 
for current field type. If compared to any Java 
processor, CIL involves many extra 
difficulties, because the Java code is “ready” 
for direct execution without any additional 
translation operations. Here the CIL meta-
information caches help to shadow time taken 
for the “handler-to-address” translation in the 
pipeline, so that the memory access operations 
using object/field/method/etc handlers are 
performed in short time in case of cache hits. 
The precise size of different caches and the 
method for the data mapping in each cache will 
be determined after profiling the target CIL ap-
plications set. For any software application 
these caches are invisible. 

2.2. The ALU architecture for the 
processor. The most interesting unit is the 
main arithmetic unit, which is operating in two 
modes. The first mode is the DSP mode. The 
ALU performs “register-to-register” arithmetic 

Fig. 4. High-level structure of the CIL processor implementation 

 

The hardware CIL processor 

DSP-core 
hardware CIL executor 

CIL structures support 

DSP library: audio codecs, video co-
decs, telecommunication protocol imple-
mentations, wireless protocol implemen-
tations, software radio protocol imple-
mentations, software modems, multime-
dia processing libraries 

Standard class CIL-code 
libraries, application spe-
cific CIL-code libraries 

CIL application 

Application 
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Fig 5. High-level structure scheme of the CIL processor 
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instructions and receives and sends data for the 
memory transfers. The second mode is the 
stack computation mode; where several internal 
DSP registers are used as the topmost stack 
registers (for the CIL model only two registers 
are needed). The other stack registers are im-
plemented as a shadow stack for one of the 
DSP-mode registers, which is used in the stack 
mode as the “under-the-top” register. 

The arithmetic unit architecture must be 
discussed from the point of view of the low en-
ergy consumption. As there is no way to de-
crease the number of arithmetic functional 
units (there is a minimal set of necessary func-
tionality), the most appropriate way to decrease 
the energy consumption is simplification of the 
connection network between the register file 
and the functional units. Another important is-
sue is extension of the available internal pipe-
line parallelism. 

The examples of such low-power DSP 
design are Agere (former Lucent) cores 
DSP1600 and DSP16000 [14]. The main idea 
of the design is high specialization of the func-
tional units and the register file. Due to the 
structure of the most often used DSP algo-
rithms, there is no need in full interconnection 
scheme between all register files and the func-
tional units. For example, the register file can 
be divided at least into two parts: the single 
length register file (integer or fixed point) and 
the double-length register file (fixed-point) or 
accumulators. In case of the most often used 
DSP operations such as matrix multiplication 
or convolution ∑=

i
iihxy ( ∑ −=

i
iNihxy ), the 

MAC unit inputs are always connected to the 
single precision register file, and the intermedi-
ate result (double-precision) can be connected 
to input of the accumulator register file. The 
addition of the intermediate results may be per-
formed only using extended precision adder 
connected to the accumulator register file only. 

The structure of the DSP specialized 
ALU unit with reduced internal connection is 
presented in fig. 6.  

Here the ALU is divided into two parts. 
The first (upper) part consists of two multipli-
ers, which can multiply single precision words 
in one cycle. All data loaded into the core is 
routed using the X-space and the Y-space vec-
tor input registers. These registers are vector 

(twice wide as the integer) so a double preci-
sion number can be loaded during one data 
transfer and further can be processed as two 
single precision numbers. The scheme allows 
performing two multiplications simultaneously. 
There are some practical limitations on oper-
ands of the multiplier, e.g. it is impossible to 
perform identical computations on both multi-
pliers. The cross-bar commutation unit per-
forms result shifting before the multiplication. 
The results of multiplications are handled in 
the temporary product registers. All data from 
the X space and the Y space registers can be 
shifted before the multiplication and after 
passing to the product register. The data from 
the X (or the Y if necessary) register can pass 
the scheme by if there is no need in the multi-
plication. Also the temporary result registers 
can be uploaded to the data memory or the pro-
gram memory buses.  

The second part of the ALU consists of 
several functional units and the register file. 
There are strong restrictions on the commuta-
tion scheme, but usually these restrictions do 
not affect performance computations. E.g. one 
of the operands of the ALU can be only an ac-
cumulator register. Also operands of the quad-
ruple adder are restricted to input registers, 
both the temporary product register and two 
accumulator registers from different halves of 
the register file. The quadruple adder is in-
tended for complex number computations, in 
particular for the complex number multiplica-
tion. The special functional unit inputs are even 
more restricted in operands – usually only the 
registers from different halves of the register 
file may be used as operands. Three outputs of 
the functional units are multiplexed to write 
ports of the first part (even registers) or the 
second part (odd registers) of the register file. 
Also the outputs of the register file are com-
mutated from even or odd registers for reduc-
ing the size of the multiplexer unit. Also the 
output of the register file can be commutated to 
the memory write port. 

The accumulator registers A0, A1 are 
used as shadow stack registers. The hardware 
stack with 8 or 16 registers is connected to the 
A1 register, so that shadow arguments of each 
stack instruction are registers A0 and A1. But, 
the hardware stack is not necessary for stack-
based computations, because under CIL execu-
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tion one of internal buses (usually for the pro-
gram memory) is free of memory access near 
75% of the time. Most of CIL commands take 
1 byte of the memory and during one access to 
the program memory up to four CIL instruc-
tions can be loaded into prefetch buffer. For 
overflow and underflow cases the hardware 
stack can be connected to the memory bus for 
block memory transfers, and so the program 
memory data bus can be used. The number of 
upper stack registers, mapped on the accumu-
lators, can not exceed 2. The explanation of 
this fact is simple: under the CIL stack model 
all computations use no more than 2 registers 
and affect only the top of stack register. Be-
cause three ALUs use two write ports for the 
register file, all write ports may be utilized in 
the CIL execution mode. E.g. a common arith-
metical expression like (a+b)*c usually evalu-
ates as LD_A LD_B + LD_C *. Further, the in-
struction “+” and the instruction “LD_C” can 
be combined and executed in one cycle, be-
cause the data memory bus is always free dur-
ing CIL computational operations. The result 

of the arithmetic operation (“+”) will be placed 
into A1 register, the load instruction result - 
into A0 register. 

 So in the specified ALU architecture 
the size of all multiplexers is reduced because 
the number of input and output ports is re-
duced. The multiplexer is divided when possi-
ble into smaller ones, and even removed if 
there is no need in extra commutation abilities. 

In the chapter a specific option for the 
CIL execution has not been discussed yet. Sev-
eral CIL operation such as addition, subtrac-
tion, multiplication, division are typed – for 
different types of operations the operation are 
coded identically – so the CIL instruction “+” 
may represent an integer of floating point op-
eration. E.g. the accumulator registers in the 
register file usually have extra bits (“guard 
bits”) for preventing accumulator overflow 
during convolution fixed point operations. For 
supporting the type model, extra tag bits are 
added to each register to represent the internal 
type (integer, float, address type). During the 
instruction decoding, at the last pipeline stage 
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the operand tags will be analyzed and proper 
functional unit will be activated. Tag bits re-
quire at least 5 bits per each register and have 
quite simple logic for type analysis and pro-
ducing a type of result. There is no need in 
handling additional type index in the tag, be-
cause the type of an object may be determined 
in run-time using the RTTI (Real Tile Type In-
formation) mechanism. 

2.3. Address generation units for the 
processors. The other important units are ad-
dress generation units, which drive data fetch 
engine for two memory spaces. The address 
generation units must support most address 
generation schemes, which are used in the DSP 
applications. These addressing schemes are: 1) 
register + immediate offset; 2) register with 
automatic programmable increment or decre-
ment, pre- or post; 3) circular window (for the 
convolution) with programmable automatic 
decrement or increment, pre- or post; 4) bit re-
versing addressing for Fourier transformation. 
The structural scheme of the address generation 
unit is quite common and represented in fig. 7. 

The address generation unit consists of 
an address adder, several multiplexers and ad-
dress register files. The width of the adder 
equals to the width of the address register. 
There are several sources for the bus address. 
Any pointer register or pointer to beginning of 
circular buffer may be added to one of the in-
dex registers or the immediate value (from the 
instruction or byte/word increment addressing 
mode) and stored in the pointer register. Also, 
the pointer register or the pointer to circular 
buffer may be multiplexed in the address bus. 
So, the possible addressing modes are: 1) 

pointer+index;2) circular start + index; 3) 
pointer+offset; 4) circular+offset; the offset 
may be zero. Any pointer register may be in-
cremented by the offset or index register con-
tent. The comparator is used for comparing the 
stored address with the address of the end of 
the circular buffer and clearing the stored ad-
dress with the beginning of the circular buffer. 
The structure of the address generation unit is 
quite simple, and the sizes of different register 
files may be simply adjusted for a particular 
design. On the right side of figure 6 a simpli-
fied structure is presented. If there is no need 
for one of the memory spaces in a circular 
buffer addressing (usually a circular buffer for 
only one memory space is necessary) the 
structure is simplified. Here the only the ad-
dressing modes pointer+index or pointer+offset 
with increment by the index or the offset are 
possible, but these available modes cover all 
user needs. Note, that for negative address in-
crements the address of the start of the circular 
buffer must be above the address of the end of 
the circular buffer, in comparison to other 
processors, where in case of negative incre-
ments, the addresses of the start and the end of 
the circular buffer must not be swapped. 

2.4. Decoder unit of the processor. 
Such simple principles form the kernel of the 
DSP processor. Further targeting is provided 
by engineering practice: we mean implementa-
tion of particular functional units, integration 
of necessary memory controllers on the chip, 
implementation of interrupt controller, watch-
dog timer and interval counters, input/output 
ports and interfaces for different external de-
vices. The implementation of such devices is 
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not principal and is not covered in the paper, as 
most devices can be added into VHDL/Verilog 
design without many efforts, and do not influ-
ence computational power of the projected 
processor. The ALU and the address generation 
units are the key features for high computa-
tional power, high memory bandwidth and de-
fine peak performance of the processor. 

The last complicated thing in the CIL 
processor is the decoding unit, which must op-
erate in the two modes: the genuine DSP and 
the CIL interpretation mode. The DSP inter-
pretation mode is quite straightforward and 
may be realized using commonly used tri-
staged pipeline for the instruction decoding in 
simple DSPs. The described ALU unit is inter-
nally pipelined for the multiplication and 
common ALU functional units, so during one 
DSP instruction the internal scalar parallelism 
of the pipelined ALU is utilized. Additionally, 
a DSP instruction in common cases drives both 
address generation units for forming necessary 
addressing modes. The full list of DSP instruc-
tion will be generated after considering all de-
sign issues. 

The CIL instruction set has only one 
way to implement, so the task is to design a de-
coder, which will transform (at duplicated 
pipeline stages) a CIL instruction into a set of 
control signals for the ALU and the address 
generation units. Complex commands will gen-
erate an exception, and such an instruction can 
be implemented internally in fast ROM as na-
tive DSP code. Meta-information caches will 
be used for speeding up meta-information ac-
cess. 

A special instruction will be provided 
for changing current instruction set from the 
CIL to the DSP and backwards. The cached 
registers may be mapped directly to A0 and A1 

accumulators (i.e. without a special switching 
circuit), the stack pointer will be mapped to one 
of the pointer registers in the address genera-
tion unit for the program memory bus. 

2.5. Meta-information cache memory. 
No doubt searching inside the meta-informa-
tion tables takes too much time even if access 
is provided in a sorted out column with the 
help of logarithmic search algorithms. The only 
solution is to provide several distinct small 
cache memories for handling the most often 
used data in scratchpad memories. The scratch-
pad memories must be tuned for caching only 
some fragments of the main memory, organ-
ized as a table with rows of constant length 
with the key value at the beginning of each 
row. Selected rows of the table are cached in 
the scratchpad memory (fig. 8). 

In fig. 8 the principle of cache organi-
zation is presented. As each meta-information 
object is addressed in a unique way by the in-
dex, the index is used as a tag in the cache 
memory. The scheme is useful e.g. for pa-
rameters, when a small consequent region of 
the data table is used because a multi-way 
cache is useless, in such case the one way 
cache may be built with the help of  a small 
SRAM block and a comparator (as shown in 
fig. 8). If cache mapping is not direct, the num-
ber of ways in the current cache may be in-
creased, up to 2-4 or even 8. Inside the cache 
memory the least significant bits of an item 
number may be used as the tag. The cache way 
is constructed on a small SRAM block with a 
comparator, so the cache way implementation 
is quite compact and allows implementation of 
dozens of caches on the die. For example, a 
preliminary solution for metadata cache or-
ganization is represented in table 6. 
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Fig. 8. The meta-information cache memory principle 
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Note, that several metadata tables must 
not be implemented as the cache memories, for 
example such as File and Assembly tables. 
These tables are used only by system software 
(for example, the software for downloaded CIL 
code verification) and very rarely. Also, most 
metadata tables are transformed during loading 
for the most appropriate format for future data 
utilization inside the hardware. For example, 
Field metadata is not very useful for direct 
utilization, because the actual information is 
contained in the five meta-information tables 
related to the “Field” table. To fill the proces-
sor pipeline in time the value of the field offset 
and the field access type (representing actual 
type and length for a loading/storing operation) 
must be located in the cache. The instructions 
for field access must start search for the field 
descriptor in the field descriptor cache at the 
decoding stage and load into the decoder the 
field offset and the appropriate access instruc-
tion (read or write) in one or two cycles. At the 
next pipeline stage (or at the current stage) the 
base object address, which is directly trans-
formed from object descriptor in parallel to the 
field decoding, is added to the field offset, and 
at the next pipeline stage a value may be loaded 
from or stored to the object. So that, the object 
access instruction may be implemented during 
maximum three or four processor cycles. Of 

course, in case of cache misses, time of the in-
struction performing will be increased. 

The minimal set of caches metadata ta-
bles can be determined considering all CIL in-
structions which use metadata tables in some 
way. The following metadata tokens are used: 
1) Method, represents entries from MethodDef 
or MemberRef tables; 2) Field, represents en-
tries from FieldDef or MemberRef; 3) Type, 
represents entries from TypeDef, TypeRef or 
TypeSpec tables; 4) Signature (entry from 
StandAloneSig table); 5) String; 6) Constant. 
The this pointer also must be cached for 
speeding up ldarg.0 instruction and access to 
the RTTI information of the current object.  

We assume that metadata tables are 
saved for further processing. But most tables 
are not suitable for the direct use in the cache. 
Some summary of the tables will be used as 
“cached metadata tables”. The content of the 
cached tables allows to speed up most often 
prepared operations like field access, method 
invocation, determining RTTI address. The 
preliminary layout for the cached tables is rep-
resented in table 7. 

All rows in the cache tables starts with 
unique index which is used for the row location 
in the cache. In most cases run time type 
checking for method invocation and field ac-
cess is superfluous, so technically the method 

Table 6. Cache implementation parameters 
Direct cache mapping 2- or 4- way cache mappings 
ManifestResource, ExportedType, 
Param, MethodDef, InterfaceImpl 

DeclSecurity, Constant, Field, Property, MemberRef, 
MethodImpl, TypeDef, TypeRef, EventMap, Event 

Table 7. Layout for the cached meta-information tables 
Table Fields Comment 

index key value, 4 bytes 
implementation address (VMT offset) 4 bytes 
number of arguments 2 bytes 
number of locals 2 bytes 

1. Method 

returned value type 1 byte 
index key value, 4 bytes 
offset from the start of object 3 bytes 

2. Field 
6. Constant 

internal field type 1 byte 
Index key value, 4 bytes 
address of definition 4 bytes 
Length 3 bytes 

3. Type 

Tag 1 byte 
Index key value, 4 bytes 4. String 

5. MemberRef String address 4 bytes 
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invocation and the field access uses the same 
principles as in common RISC processor. The 
“internal field type” is a tag for the CIL proces-
sor type. 

The basic operation for the cache access 
may be implemented in the following way. The 
arguments for such instruction are: the cache 
number for a metadata table (programmed in-
side the instruction), the index for the cache 
access (for searching inside the cache), the off-
set for the necessary information in the cache 
line (programmed into the instruction too) and 
some optional information (like the width of 
data). So, the cache access instructions must be 
performed in two steps: 1) using the cache 
number and a row index it tries to locate row in 
the cache, in case of cache miss the missed row 
must be loaded from the main memory, a lo-
cated row will be loaded into the output buffer; 
2) the instruction may read the required infor-
mation using the offset from the output buffer. 
At high frequencies these operations must be 
performed in two cycles. 

The Java object model is quite simple, 
because all fields and object references are ex-
pressed in bytes and there is a direct instruction 
for data loading and storing instructions. The 
.NET metadata model requires additional run-
time checking and quite high computational 
overhead. The special caches and fast access 
decrease time waste, but in each metadata-re-
lated instruction several cycles will be wasted 
by filling the processor pipeline by additional 
atomic instructions for the cache access. 

Of course additional cache memories 
can only increase the energy consumption of 
the processor, but here there is a tradeoff be-
tween efficient implementation and the energy 
consumption. The energy consumption of 
caches is spread over the chip, and only one or 
two caches are used simultaneously, so the en-
ergy consumption is not significant in compari-
son with the ALU and the memory controllers’ 
energy consumption. But the metadata caches 
can speed up most of instructions related to 
object model, such as jmp, call, callvirt, ldftn, 
ldvirtfnt, ldfld/ldflda, stfld, ldsfld/ldsflda, stsfld, 
cpobj, ldobj, stobj, box/unbox, initobj, sizeof, 
ldstr. (Other instructions implement a complex 
functionality and it is better to implement them 
in the DSP microcode using the hardware ex-
ception mechanism. 

3. Software support for the CIL processor 
The hardware CIL processor is only 

part of development works. The final device is 
a sum of a DSP-enhanced CIL processor, an 
exception microcode, a firmware, reduced sys-
tem libraries and possible end-user application. 

The hierarchy of the system software 
must be something like following: 

Exception microcode. If a processor 
instruction can not be implemented in hardware 
(e.g. floating point operation in a fixed-point 
processor), an exception will be raised. The ex-
ception involves execution of a sequence of 
microcodes, stored into a fast ROM inside the 
processor. This method also addresses all 
cases, there class hierarchy checks are in-
volved. The exception microcode is completely 
supported in the processor instructions, in-
cluding the DSP and the CIL sets. In reality, 
the exception microcode is part of the proces-
sor. Only DSP instructions may be used in the 
microcode, because the CIL set has a higher 
level of abstraction than the DSP set and needs 
extra support in hardware. The DSP set in-
cludes all instructions that drive the CIL code 
execution. 

Class library, as covered in the 
ECMA-335 standard. All standard classes must 
be implemented as the system library for pro-
viding basic functionality for external applica-
tions. There is a tradeoff between many addi-
tional class implementations on the chip and 
downloading the class libraries via wireless or 
cable channel from neighbor servers. The basic 
class library must be localized, e.g. RS-232 
channel or display may serve as the standard 
input and the standard output, and the file sys-
tem may be based on simple file systems such 
as ROM file system or RAM file system (used 
in Unix world) or FAT16/32 file system, de-
pending on a particular application. 

Supporting system libraries, intended 
for loading and executing remote applications 
and supporting the basic network protocols like 
IP, UDP and TCP, optionally wireless commu-
nications may be provided. These libraries may 
include a request broker, a linker, a loader, a 
code verification system, a meta-information 
transformation library for converting it into 
cache-ready format. Because of high complex-
ity of network protocols networking libraries 
creation is not part of the project. 
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The supporting libraries depend on 
available system devices for the input and out-
put. The minimal projected set of system de-
vices are: 1) the output device, like LCD text 
panel, LCD graphics panel or external SVGA 
monitor with library support; 2) the input de-
vice like joystick, mouse or keyboard with li-
brary support; 3) an external memory storage 
with library support of a simple file system 
(e.g. FAT16); 4) a network adapter with device 
driver support; 5) a RS-232 channel with li-
brary support. 

Multimedia libraries, intended for 
processing multimedia content. These libraries 
may be implemented in DSP instructions and 
can include multi-format video and audio play-
back code. Creation of these libraries either is 
not a part of the project. 

User application. At the top of the 
software hierarchy there is a user application, 
stored in ROM/Flash memory or downloaded 
from the Internet. In real life, the application 
may be implemented in the DSP or the CIL 
code, utilizing all the libraries available on the 
chip and from the network channels. 

Just in time compiler for the CIL 
code. The CIL processor has dual architecture - 
it incorporates the CIL and the DSP instruction 
sets support. But also the current DSP archi-
tecture has good mapping abilities for JIT 
compiler. Like in hardware implementation, the 
arithmetic stack will be mapped on the accu-
mulator register file, so performance of com-
putational instructions generated by a JIT-com-
piler is nearly equal to the projected CIL proc-
essor. But real speedup will be achieved in the 
JIT-compiler in object-model related optimiza-
tions. E.g. for static object access most of 
common type-checking operations and field 
descriptor translations are superfluous. Usually 
the JIT-compiler utilizes well-known tech-
niques of graph rewriting (and code generation) 
[15]. For processors with large register files 
and scalar parallelism additional optimizations 
for improving register allocation are used. The 
DSP processor has quite a simple system ar-
chitecture, so direct techniques of consequent 
CIL code transformation into the DSP code 
step by step, instruction by instruction are ap-
plicable. Further, the JIT can outperform the 
hardware implementation in case of optimizing 
stack accesses, required by executed methods 

and proper optimization of the object informa-
tion. But, possible JIT optimizations for CIL 
model are subject for a separate paper. 

Also there is an important question 
about available development toolkit. It is pos-
sible to design the DSP chip which will have a 
well-known instruction set, but none of the ex-
isting compilers can support effectively joint 
DSP+CIL model. There are GNU CC [16] 
based compilers, with CIL and some DSP sup-
port, but the joint paradigm has not been im-
plemented yet. Independent of existing soft-
ware, the basic development tools such as as-
sembler can be made for the CIL processor. 
Also, using well known abilities of the GNU 
CC package, the GCC compiler can be retar-
geted to a small subset of DSP and CIL in-
structions, so enabling the existing C code to 
be used on the CIL processor. 

 

Conclusions 
In the paper the basic concepts for the 

CIL processor implementation are discussed. 
We have supposed the processor target market 
– the market of mobile devices connected to 
the Internet, where the .NET technology can 
compete with other integrating technologies. 
The requirements for the CIL processor are 
suggested: 1) good performance in multimedia 
applications; 2) low power consumption. An 
effective solution for the CIL processor archi-
tecture has been suggested: the CIL processor 
is based on the classic DSP kernel with the ad-
ditional CIL instruction set decoder. The DSP 
kernel was selected as kernel for the CIL proc-
essor because of high speed in multimedia 
tasks, low energy consumption and quite sim-
ple in implementation. Such kernel is well 
suited for mobile applications, multimedia ap-
plications, DSP applications and network soft-
ware. In the paper the DPS kernel implementa-
tion was discussed and necessary explanations 
are given. The structural schemes for the units 
which affects the chip performance (the ALU 
the address generation units, the meta-informa-
tion caches) are presented in the paper. Finally, 
all levels of software support (from the ROM 
exception code up to user applications) are dis-
cussed in the paper. The paper gives the good 
basics for future technical development and 
implementation practices, also the paper de-
scribes technical implementation issues and 
gives a good overview of the project outline. 
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