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Abstract

The Canadian Traveler Problem (CTP) is a challenging path planning problem on
stochastic graphs where some edges are blocked with certain probabilities and status
of edges can be disambiguated only upon reaching an end vertex. The goal is to devise
a traversal policy that results in the shortest expected traversal length between a given
starting vertex and a termination vertex.

The organization of this thesis is as follows: In the first chapter we define CTP and its
variant SOSP and present an extensive literature review related to these problems. In
the second chapter, we introduce an optimal algorithm for the problem, based on an
MDP formulation which is a new improvement on AO* search that takes advantage of
the special problem structure in CTP. The new algorithm is called CAO*, which stands
for AO* with Caching. CAO* uses a caching mechanism and makes use of admissible
upper bounds for dynamic state-space pruning. CAO* is not polynomial-time, but it can
dramatically shorten the execution time needed to find an exact solution for moderately
sized instances. We present computational experiments on a realistic variant of the
problem involving an actual maritime minefield data set.

In the third chapter, we introduce a simple, yet fast and effective penalty-based heuristic
for CTP that can be used in an online fashion. We present computational experiments
involving real-world and synthetic data that suggest our algorithm finds near-optimal
policies in very short execution times.

Another efficient method for sub-optimally solving CTP, rollout-based algorithms, have
also been shown to provide high quality policies for CTP. In the final chapter, we com-
pare the two algorithmic frameworks via computational experiments involving Delaunay
and grid graphs using one specific penalty-based algorithm and four rollout-based algo-
rithms. Our results indicate that the penalty-based algorithm executes several orders of
magnitude faster than rollout-based ones while also providing better policies, suggest-
ing that penalty-based algorithms stand as a prominent candidate for fast and efficient
sub-optimal solution of CTP.

Keywords: Probabilistic path planning, Canadian traveler problem, Markov decision
process, AO* search



Kanadalı Gezgin Problemi İçin AO* ve Ceza Tabanlı Algoritmalar

Ömer Furkan ŞAHİN

Öz

Kanadalı Gezgin Problemi (KGP), stokastik graflarda, bazı kenarların belli bir olasılığa
göre kapalı veya açık olabildiği ve bu kenarların ancak komşu noktalarının ziyaret
edilmesi suretiyle geçilebilirliklerinin tespit edilebildiği, zorlu bir güzergah planlama prob-
lemidir. Bu problemde hedef, belirli bir başlangıç ve bitiş noktası arasındaki en kısa
beklenen gezinme uzunluğunu veren gezinme planınıbulmaktır.

Bu tezin organizasyonu şu şekildedir: Birinci bölümde, CTP ve SOSP’nin formülasy-
onları ve bu problemleri konu alan geniş bir literatür taraması sunulacaktır. İkinci
bölümde, mevcut AO* arama algoritmasına, KGP’nin problem yapısından faydalan-
maya olanak tanıyacak iyileştirmeler yapılarak elde ettiğimiz, MDP tabanlı bir op-
timal algoritma tanıtılacaktır. Bu yeni algoritma, CAO*, önbelleklemeli AO* (AO*
with caching) olarak adlandırılmıştır. CAO*, daha önce ziyaret edilmiş durumların her
seferinde yeniden genişletilmesinin önüne geçen önbellekleme mekanizması ve durum-
uzayını dinamik olarak budamaya olanak tanıyan kabul edilebilir alt sınırlar kullan-
ması olmak üzere iki önemli özelliğe sahiptir. CAO* polinom zamanlı degildir, ancak bu
özellikleri sayesinde orta ölçekli problemler için optimal sonuçlar bulmada çözüm süresini
ciddi ölçüde kısaltmaktadır. Son olarak, bu bölümde gerçek, mayınlı deniz alanı verileri
kullanılarak hazırlanmış bilgisayar simülasyonları sunulacaktır.

Üçüncü bölümde, KGP için, çevrimiçi uygulanabilir, basit, fakat hızlı ve etkili bir ceza-
tabanlı sezgisel tanıtılacaktır. Ardından bu sezgiselin optimale çok yakın çözümler
verdiğini gösteren bilgisayar simülasyonları sunulacaktır.

KGP’nin suboptimal çözümünde bir diğer etkili yöntem olan, örnekleme tabanlı algo-
ritmaların, KGP için yüksek kaliteli çözümler ürettiğini gösteren bir çalışma literatürde
mevcuttur. Son bölümde, bu iki algoritmik çatının Delaunay ve grid graflar üzerinde,
bir adet ceza-tabanlı ve dört adet örnekleme tabanlı algoritma kullanılarak bilgisayar
simülasyonları üzerinde karşılaştırması yapılacaktır. Karşılaştırmalarımızda ceza ta-
banlı algoritmamızın, hem çözüm hızı hem de çözüm kalitesi açısından rollout tabanlı al-
goritmalara üstünlük sağlamış olması, ceza tabanlı algoritmaların, KGP’nin suboptimal
çözümünde hızlı ve efektif bir aday olabileceğini göstermektedir.

Anahtar Sözcükler: Olasılıksal güzergah planlama, Kanadalı Gezgin Problemi, Markov
karar süreçleri, AO* arama
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Chapter 1

Introduction

1.1 Overview

In this thesis, a stochastic shortest path problem in the presence of a dynamic learning

capability is considered. In a specific variant of this problem, a spatial arrangement of

obstacles needs to be traversed and the actual status of these obstacles can be disam-

biguated during the traversal. This problem has important practical applications in path

planning in partially known environments such as robot navigation [1, 2], adaptive trans-

portation systems [3–5], and minefield countermeasures [6–8]. Several exact algorithms

and heuristics for this problem are available in the literature [9–14]. In this chapter, we

provide formulation for the problem and an extensive literature review.

1.2 The Canadian Traveler Problem

CTP can formally be defined as follows: Let G = (V,E) be an undirected graph with

designated vertices s, t 2 V, and suppose there is a function ` : E ! R�0

assigning

a length to each edge; the goal here is to find a shortest s, t traversal (walk) in G.

However, not all of the edges may indeed be traversable. In particular, for a given subset

E0 ✓ E of edges called stochastic edges, there is a function ⇢ : E0 ! [0, 1) such that,

for each edge e 2 E0, ⇢(e), called the mark of edge e, is the probability that e is not

traversable independent of the other edges. The edges in E \ E0 are called deterministic

edges and they are known a priori to be traversable. For any edge e 2 E0, when the

1
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traversal is at an endpoint of e, the agent has the option to disambiguate e, that is,

learn whether e is traversable. Edges cannot be traversed until they are known to be

traversable, and the traversability status of each edge is static and will never change over

the course of the traversal. To avoid infinite expected length, we assume the existence

of a (possibly very long) s, t path consisting of deterministic edges. Of course, if the

agent follows any particular policy then the traversal is still random and will unfold

depending on the results of the disambiguations. Thus, the traversal’s distribution is

specified through ⇢. The agent’s goal is to find an optimal policy in the sense of having

shortest expected length. Finding such an optimal policy is the Canadian Traveler

Problem (CTP). Without loss of generality, we additionally assume that there is a limit

K  N on the number of available disambiguations where N := |E0|.

1.2.1 The Discrete Stochastic Obstacle Scene Problem

The Stochastic Obstacle Scene Problem (SOSP) is inherently a continuous-space path

planning problem. In continuous-space SOSP, an agent wishes to navigate from one

given location to another through an arrangement of arbitrarily shaped regions in an

obstacle field which are possibly obstacles. At the outset, the agent is given the respective

probabilities that the regions are truly obstacles, called the mark of the region. Only

when situated on a region’s boundary, the agent has the option to disambiguate the

region, i.e., learn if the region is truly an obstacle. The goal here is to find a policy that

decides what and where to disambiguate en route so as to minimize the expected length

of the traversal. Without loss of generality, we assume disk-shaped obstacles with the

same radii.

In D-SOSP, we consider a discrete approximation of SOSP which is, for simplicity and

convenience, a grid graph G on [1, 1] ⇥ [i
max

, j
max

] with diagonal edges where i
max

and

j
max

are given integers. Lengths of diagonal edges are taken as
p
2 and 1 for non-diagonal

edges. One vertex in G is designated as the starting point s, another vertex is designated

as the termination point t, and the agent is to walk from s to t in G, only traversing edges

that do not intersect any untraversable or ambiguous disks. If an edge intersects any

ambiguous disk, then a disambiguation of the disk may be performed at the endpoint

that is outside of the disk. As before, the goal is to develop a policy that minimizes the

expected length of the traversal by effective exploitation of the disambiguation capability.
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1.3 Literature Review

Introduced by Papadimitriou and Yannakakis (1991), the Canadian Traveler Problem

(CTP) is a challenging probabilistic path planning problem that has recently received

considerable attention. CTP is concerned with an agent traversing a graph where some

edges are blocked with certain probabilities and the status of these edges can be disam-

biguated dynamically upon reaching an incident vertex. Given a starting vertex s and a

termination vertex t, the goal is to devise a policy that results in the shortest s, t walk

in an expected sense. CTP has been shown to be PSPACE-Complete [16], suggesting

that not only its computational complexity is intractable, but its space complexity is

intractable as well.

Despite its computational difficulty, CTP stands as an important problem from both

practical and theoretical viewpoints. First, CTP and closely related problems has im-

portant practical applications in path planning in partially known environments such

as robot navigation [1, 2], adaptive transportation systems [3–5], and minefield coun-

termeasures [6–8]. Second, from a theoretical point of view, CTP has rather interesting

characteristics in the sense that it can be cast both as a Markov Decision Process (MDP)

with exponentially many states, or as a Partially Observable MDP (POMDP) with deter-

ministic observations. In this regard, CTP belongs to an intermediate class of problems

called Deterministic POMDPs [14], which allow for state uncertainty but avoid the in-

herent complexity of noisy observations [17].

Regarding variants of CTP, of particular interest is the Discrete Stochastic Obstacle

Scene Problem (D-SOSP) that has practical path planning applications in naval mine-

fields [18–21]. D-SOSP is essentially a variant of CTP on grid graphs with probabilistic

dependency among groups of edges. Specifically, this problem is a grid graph discretiza-

tion of continuous-space SOSP wherein an agent needs to swiftly navigate from one given

location to another through an arrangement of arbitrarily shaped regions in an obsta-

cle field which are possible obstacles. At the outset, the agent is given the respective

probabilities that the regions are truly obstacles and, only when situated on a region’s

boundary, the agent has the option to disambiguate the region, i.e., learn at a cost if

the region is truly an obstacle. The goal here is to find a policy that decides what and

where to disambiguate en route so as to minimize the expected length of the traver-

sal. Several heuristics and approximation algorithms have been introduced for CTP in
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the literature [9–11] and optimal algorithms for certain special cases of CTP have been

proposed [12–14].

1.4 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 casts CTP as a finite-horizon MDP and a Deterministic POMDP and provides

the corresponding Bellman equation. Then, an exact algorithm called CAO* Algorithm

is introduced for CTP following up with the computational experiments to evaluate the

performance of the exact algorithm.

In Chapter 3, a heuristic framework for CTP, called Penalty-Based Algorithms is pre-

sented. DT Algorithm, which belongs to Penalty-Based Algorithms framework, is tested

on two different simulation environments, using CAO* as the benchmark. Computa-

tional experiments showed that this heuristic provides near-optimal results in very short

execution times.

Chapter 4 provides a set of computational experiments to compare the penalty-based

DT Algorithm against rollout-based algorithms for CTP on several different simulation

environments. Our results indicate that DTA runs significantly faster than rollout-based

algorithms while providing better policies.



Chapter 2

An AO* Based Exact Algorithm for

the Canadian Traveler Problem

2.1 Introduction

In this chapter, the following contributions are presented:

1. We present explicit formulations of CTP as a finite-horizon MDP as well as a

Deterministic POMDP.

2. Based on the MDP formulation, we introduce an optimal algorithm for CTP, which

is a new improvement on AO* search that makes two key improvements by utilizing

the special problem structure of CTP: (1) it employs a state caching mechanism

to avoid re-expansion of previously visited states (hence, the solution structure it

maintains is a graph and not a tree), and (2) it prunes the solution graph using

dynamic upper bounds (in addition to lower bounds as in standard AO*) during

both node expansion and cost propagation. We call our optimal algorithm CAO*,

which stands for AO* with Caching.

3. We present computational experiments comparing CAO* to AO*, value iteration,

and two other state-of-the-art algorithms on general Delaunay and grid graph-based

CTP instances as well as the D-SOSP variant of CTP. Our choice of D-SOSP for

computational experiments is that we believe D-SOSP is perhaps one of the most

realistic variants of CTP in the literature.

5
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CAO* is not polynomial-time, yet it is still relevant for the following reasons:

1. As illustrated in our computational experiments, it can drastically shorten the

execution time needed to find an exact solution to realistic instances of the D-

SOSP variant. In fact, our experiments indicate that CAO* can provide close to

a 800-fold increase in run time compared to value iteration, and about 1,800-fold

increase against classical AO*. Value iteration did not even run in some of our

experiments due to its excessive memory requirements.

2. It can be used to benchmark performance of heuristic algorithms for general CTP

against the optimal solution on reasonably sized instances.

3. It can potentially be used in conjunction with approximation schemes for the prob-

lem, both within the stochastic dynamic programming (SDP) framework [9, 22] or

the MDP framework [23, 24].

The rest of this chapter is organized as follows: Section 2.2 casts CTP as a finite-horizon

MDP and a Deterministic POMDP. This section also develops the Bellman equation

corresponding to the MDP formulation. Section 2.3 introduces the CAO* Algorithm for

CTP. Section 2.4 presents our computational experiments. A summary and conclusions

are presented in Section 2.5. We note that the terms “solution" and “policy" are used

interchangeably in this manuscript.

2.2 MDP and POMDP Formulations

CTP can formally be defined as follows: Let G = (V,E) be an undirected graph with

designated vertices s, t 2 V, and suppose there is a function ` : E ! R�0

assigning

a length to each edge; the goal here is to find a shortest s, t traversal (walk) in G.

However, not all of the edges may indeed be traversable. In particular, for a given subset

E0 ✓ E of edges called stochastic edges, there is a function ⇢ : E0 ! [0, 1) such that,

for each edge e 2 E0, ⇢(e), called the mark of edge e, is the probability that e is not

traversable independent of the other edges. The edges in E \ E0 are called deterministic

edges and they are known a priori to be traversable. For any edge e 2 E0, when the

traversal is at an endpoint of e, the agent has the option to disambiguate e, that is,

learn whether e is traversable. Edges cannot be traversed until they are known to be
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traversable, and the traversability status of each edge is static and will never change over

the course of the traversal. To avoid infinite expected length, we assume the existence

of a (possibly very long) s, t path consisting of deterministic edges. Of course, if the

agent follows any particular policy then the traversal is still random and will unfold

depending on the results of the disambiguations. Thus, the traversal’s distribution is

specified through ⇢. The agent’s goal is to find an optimal policy in the sense of having

shortest expected length. Finding such an optimal policy is the Canadian Traveler

Problem (CTP). Without loss of generality, we additionally assume that there is a limit

K  N on the number of available disambiguations where N := |E0|.

2.2.1 MDP Formulation and The Bellman Equation

A Markov Decision Process (MDP) is a 4-tuple < S,A, T ,R > of states, actions, tran-

sition function, and rewards respectively where

• S is a set of states: At every stage k = 0, 1, 2, . . . ,K (where K is the final stage, or

K = 1), the agent is at one of these states;

• A is a set of actions: At every stage, the agent chooses one of them depending on

what his current state is;

• T : S⇥A⇥S ! [0, 1] is the state-transition function: For any s, s0 2 S and ↵ 2 A,

T (s,↵, s0) is the probability of ending up in state s0 in the next stage given that

the agent is at state s in the current stage and chooses action ↵; and,

• R : S ⇥ A ! R is the reward function: R(s,↵) represents the immediate reward

the agent gains for choosing action ↵ at state s.

The agent’s objective is to maximize the expected sum of rewards, i.e., E
⇥PK

k=0

Rk

⇤
,

where Rk is the reward received at stage k. CTP can be cast as a finite-horizon MDP

as follows:

• States: In order to keep track of the agent’s current knowledge of the status of

the stochastic edges, we define the information vector I 2 {“A",“T",“U"}N , such

that, for all i = 1, 2, . . . , N , the i-th entry of I is “A", “T", or “U”, depending on
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whether the current status of the i-th stochastic edge is, respectively, ambiguous,

traversable, or untraversable.

Let Y be the union of s, t, and the set of all disambiguation vertices, i.e., endpoints

of stochastic edges. If there are certain vertices at which multiple stochastic edges

can be disambiguated, these vertices are included in Y with their respective mul-

tiplicities. The MDP state space S is defined as Y ⇥ {“A",“T",“U"}N . The state

space thus represents possible disambiguation vertices at which the agent may be at

a particular stage, coupled with information that describes the agent’s knowledge

at that stage.

• Actions: The set of actions A is Y\{s}, i.e., all the vertices where a disambiguation

can be performed and the termination vertex.

• State Transition Function: Given a state and an action, the state transitioned

into is comprised of the vertex identified in the action and the information vector

of the previous state updated to indicate whether the stochastic edge identified in

the action is traversable or not. The respective probabilities are specified according

to the mark of the disambiguated edge.

• Rewards: The reward for a specific action at any particular state is the negative of

the shortest path distance between the vertex identified in the state and the vertex

identified in the action—avoiding all ambiguous and untraversable stochastic edges

as indicated by that state’s information vector.

The above state space, set of actions, rewards, and state transition function comprise a

Markov decision process with K stages (or N stages if there is no limit on the number

of available disambiguations).

We now present the Bellman equation corresponding to the above MDP formulation,

which can be solved via value iteration. The notation used in the Bellman equation is

defined below.

• For s = (y, I) 2 S and stage k  K, the value function V ⇤
k : S ! R is defined

as the negative of the shortest expected y� t path length under an optimal policy

when the status of the underlying graph is I and there are k disambiguations left.
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• For any y, y0 2 Y and information vector I, q(y, y0, I) is defined as the length of the

shortest y� y0 path while avoiding all the untraversable and ambiguous stochastic

edges as indicated by I.

• For any y 2 Y, Iy is defined as the component of I corresponding to the stochastic

edge associated with y.

• For any y 2 Y , ⇢(y) is defined as the mark of the stochastic edge associated with

y.

• For information vector I and y 2 Y, TI,y and UI,y are defined as the information

vectors whose components are the same as I except at the component correspond-

ing to y, which is set to “T" and “U”, respectively.

For k = 1, . . . ,K, and s = (y, I) 2 S, the Bellman equation is as follows:

V ⇤
k (s) = max

y02Y s.t.

y0=t
or

Iy0=“A"

�
� q(y, y0, I) + ⇢(y0)V ⇤

k�1

(y0, TI,y0) + (1� ⇢(y0))V ⇤
k�1

(y0, UI,y0)
 
. (2.1)

The optimal solution to CTP is then given by �V ⇤
K(s, (“A",. . . ,“A")). Note that value

iteration entails exhaustively back-solving complete stages from stage 1 up to stage K,

where stage 0 values V ⇤
0

(y, I) are given by �q(y, t, I). Due to the exponentially many

number of states, value iteration is not practical for CTP, as illustrated in our com-

putational experiments. Yet, the MDP formulation provides valuable insight into the

structure of CTP and illustrate its difficulty.

2.2.2 Deterministic POMDP Formulation

A POMDP is denoted as a 6-tuple < S,A, T ,R,⌦, O > where

• S,A, T , and R denote a Markov Decision Process;

• ⌦ is a set of observations the agent can make; and,

• O : S⇥A⇥S⇥⌦ ! [0, 1] is the observation function: For each current state, action,

and resulting state, it specifies a probability distribution over possible observations.

Specifically, O(s,↵, s0, o) is the probability of observing o when the agent is at state

s, chooses action ↵, and ends up in state s0.
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An intermediate class of problems between MDPs and POMDPs is Deterministic POMDPs,

which allow for state uncertainty (as in POMDPs) but assume perfect observations (as

in MDPs) [17]. As discussed in Bnaya et al. [14], CTP can in fact be cast as a Determin-

istic POMDP. In this section, we present an explicit Deterministic POMDP formulation

of CTP. We believe that this aspect of CTP is rather important from a theoretical point

of view as it offers an insight into the inherent relationship between MDPs and Deter-

ministic POMDPs, and opens up the possibility of adapting existing MDP/ POMDP

algorithms to other Deterministic POMDP/ MDP problems.

We cast CTP as a Deterministic POMDP by trimming the set of information vectors to

{“T",“U"}N and folding the ambiguity of stochastic edges into ambiguity of the informa-

tion vector, hence the“partial observability" of the state. In our POMDP formulation,

we assume that there is no limit on the number of available disambiguations. The mo-

tivation for this assumption is that the reward for each state/ action pair needs to be

specified a priori and the agent may have to re-disambiguate certain stochastic edges

in order to traverse the shortest path used to calculate this reward. We formulate the

components of < S,A, T ,R,⌦, O > as follows:

• States: The POMDP information vector is defined as I 0 2 {“T",“U"}N such that,

for all i = 1, 2, . . . , N , the i-th entry of I 0 is “T" or “U”. For each disambiguation

vertex y 2 Y , we introduce two points: yout that is an exact copy of y (called an

out-point), and yin that is y infinitesimally perturbed from its location towards the

other endpoint of the edge (called an in-point)—yin cannot be arrived at unless

the associated stochastic edge is traversable. Let Y 0 be the union of s, t, and, the

in- and out-points associated with each disambiguation vertex. The POMDP state

space is defined as Y 0 ⇥ I 0. We shall refer to the location component of a given

state as the state point.

• Actions: The set of actions is Y 0\{s}.

• State Transition Function: Given a state and an action, the state point of the

state transitioned into is the point as identified by the action. The information

vector of state transitioned into is always the same as the information vector of the

current state.
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• Rewards: At any state whose state point is an out-point, the reward for choosing

the corresponding in-point as the action is 0 if the associated stochastic edge is

traversable, and �1 otherwise. For any other state/ action pair, the reward is

the negative of the shortest path distance between the state point and the action

avoiding all the stochastic edges (regardless of their actual status) except the one

that the agent is currently traversing.

• Observations: The set of observations ⌦ is {traversable, untraversable}.

• Observation Probabilities: Since state transitions are always deterministic, the

observations only need to be specified for state/ action pairs based on the actual

status of the stochastic edges associated with the actions.

Observe that in the above formulation, state transitions and observations are determinis-

tic and all the ambiguity is folded into the information vector. The information vector, on

the other hand, represents the agent’s current knowledge of the underlying graph, whose

probability distribution (called the belief state in POMDP terminology) is specified by

the marks of the stochastic edges.

2.3 The CAO* Algorithm

In this section, we first define AO trees, which can be used to represent a given CTP

instance where the edges correspond to sequential decisions that can be made and their

probabilistic outcomes. We then describe the AO* Algorithm for searching AO trees and

introduce the CAO* Algorithm for CTP.

2.3.1 AO Trees

AO trees can be used to selectively search partial solutions of the optimality conditions

without exhaustively back-solving complete stages as in value iteration [25].

An AO tree is defined as a rooted tree T = (N,A) with a function ` : A ! R�0

assigning

a length to each arc, and a function p : A ! [0, 1] assigning a probability to each arc.

The node set N is partitioned into a set of AND nodes, denoted by NA, and a set of OR

nodes, denoted by NO. All arcs emanating from OR nodes have probability one.
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Denote by S(n) the successors of the node n 2 N in the AO tree. A function g : N ! R�0

is said to be consistent on a collection of nodes C 2 N provided that, for all n 2 C, the

following three conditions are satisfied:

• if n 2 NA, g(n) =
P

n02S(n)
⇥
p((n, n0

)) · (`(n, n0
) + g(n0

))

⇤
,

• if n 2 NO, g(n) = minn02S(n){`(n, n0
) + g(n0

)}, and,

• if n 2 N is a leaf node, g(n) is zero.

The function f : N ! R�0

that is consistent on N is called the cost-to-go function and

f(n) is called the true label of node n. Typically, ` and p are given explicitly, and f is

implicitly defined via ` and p. For instance, within the context of CTP, f denotes the

negative of the value function V ⇤ defined in Section 2.2.1. Given an AO tree, the goal

is to compute the true label of the root node, which denotes the optimal value of an

underlying decision problem.

With an appropriately chosen AO tree, a CTP instance can be solved by computing

the true label of the root node. Specifically, associated with each node n is a state

sn = (yn, In) from the state space S = Y ⇥ {“A",“T",“U"}N . The root r is an OR node

with yr = s and Ir = (“A”, . . . , “A”), which is the first level in the tree. All subse-

quent odd levels consist of OR nodes corresponding to possible disambiguation vertices

and even levels consist of AND nodes which are either leaf nodes denoting direct traver-

sal to termination, or, have two successors each of whom corresponds to traversable/

untraversable disambiguation outcomes1. In particular, for any arc a = (n, n0
) 2 A,

• If n 2 NO, `(a) is set to q(yn, yn0 , In) and p(a) is set to one.

• If n 2 NA, `(a) is set to zero; p(a) is set to ⇢(yn) if n0 corresponds to a untraversable

disambiguation outcome and 1� ⇢(yn) otherwise.

Note that this construction is essentially a mapping of all the actions the agent can choose

and all the disambiguation outcomes that can occur. In particular, this construction

ensures that f(n) is the negative of V ⇤
(sn) for any node n 2 NO.

1In this work, we adopt the convention that each disambiguation resolves the ambiguity of exactly
one stochastic edge. This convention especially makes sense when cost of disambiguation is nonzero.
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In an AO tree representation of CTP, the optimal disambiguation policy is a collection C

of all the arcs whose lengths are explicitly included in the calculation of f(r). Specifically,

we first define the function m : NO ! NA such that m(n) := argminn02S(n){`(n, n0
) +

f(n0
)} for any n 2 NO. The collection C can be found recursively as follows:

Step 1. Set C := ; and nm := r.

Step 2. If m(nm) is a leaf node, augment C by (nm,m(nm)). Otherwise, augment C by

(nm,m(nm)), (m(nm), n0
), and (m(nm), n00

) where n0 and n00 are the successors of

(m(nm)).

Step 3. Set nm := n0. If nm is a leaf node, stop. Otherwise go to Step 2.

Step 4. Set nm := n00. If nm is a leaf node, stop. Otherwise go to Step 2.

As an example, Figure 2.1 illustrates a simple CTP instance with two stochastic and three

deterministic edges. In the figure, solid lines denote deterministic edges and dashed ones

denote stochastic edges. Numbers above each edge denote the edge’s length and marks

of stochastic edges are shown in parentheses next to the edge length.

s t

y1

y2

1

10

3 (.4)

2.8 (.2)

Figure 2.1: A simple CTP instance with two stochastic edges (denoted by dashed
lines) and three deterministic edges (denoted by solid lines). Length of each edge is

given above the edge. Shown in parantheses are the marks of stochastic edges.

The complete AO tree corresponding to this instance is shown in Figure 2.2. OR nodes

(corresponding to the actions the agent can take) are depicted by squares and AND nodes

(corresponding to probabilistic outcomes of the agent’s actions) by circles. In the figure,

the letters “U" and “T" next to arcs emanating from AND nodes denote untraversable and

traversable disambiguation outcomes respectively. The numbers next to arcs emanating

from OR nodes denote their length and thick-bordered circles represent leaf nodes.
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s, (A,A)

y1, (A,A) t, (A,A) y2, (A,A)

y1, (T,A)y1, (U,A)

t, (U,A) y2, (U,A) t, (T, A) y2, (T,A)

y2, (U,U) y2, (U,T) y2, (T,U) y2, (T,T)

t, (U,U) t, (U,T) t, (T,U) t, (T,T)

y2, (A,T)y2, (A,U)

t, (A,U) y1, (A,U) t, (A,T) y1, (A,T)

y1, (U,U) y1, (T,U) y1, (U,T) y1, (T,T)

t, (U,U) t, (T,U) t, (U,T) t, (T,T)

10

11

.4

.2.2 .4 .4

.2

11 1 3 1

11 2.8 2.8 11

11 1 2.8 1

11 3 11 3

TU

Figure 2.2: The complete AO tree corresponding to the CTP instance shown in
Figure 2.1. OR nodes are depicted by squares and AND nodes by circles.

The benefit of the AO tree representation is that, as shown in Section 2.3.2, it allows

for selectively evaluating the value function in a top-down fashion rather than back-

computing all of them for every stage as in value iteration.

2.3.2 The AO* Algorithm

Theoretically, an optimal solution to a problem represented by an AO tree can be deter-

mined by computing f(n) for all n 2 N in a bottom-up fashion. However, the exponential

number of nodes in the AO tree representation of CTP makes this approach prohibitively

expensive. On the other hand, not all the nodes’ true labels need to be calculated to

determine the true label of the root node. We define searching an AO tree as identifying

the nodes that are of interest in determining the true label of the root node.

The classical AO* Algorithm for searching AO trees [26, 27] improves upon the brute

force approach by utilizating admissible lower bounds hlower
: N ! R�0

, called heuristic
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labels, which are lower bounds that are guaranteed not to overestimate the true label

of any node. These lower bounds guide the search in a top-down fashion so that only a

small portion of the complete AO tree is examined. Note that even though the labels are

referred to as “heuristic" in the AO* terminology, the AO* Algorithm itself is optimal as

long these lower bounds are admissible.

The AO* Algorithm grows a solution tree S = (N0,A0
), which is a subtree of the complete

AO tree and a representation of partial solutions of the optimality conditions. S initially

consists of only the root node r, and is gradually augmented by two alternating steps,

expansion and propagation, until f(r) is computed. A node n0 2 N0 is said to be terminal

if f(n0
) has been calculated. In the expansion step, the non-terminal leaf node with

the lowest hlower value, called the expansion node and denoted by n0
e, is found and its

successors are added to S. The successors are then are assigned lower heuristic labels. In

the propagation step, hlower
(n0

e) is recalculated using the labels of its successors—true

labels for successors that are leaf nodes in the complete AO tree and lower heuristic labels

otherwise—and the new label is propagated up S until a node is reached whose lower

heuristic label is not affected. Terminal status of nodes are also updated accordingly

during the propagation step.

For instance, the solution tree associated with the instance in Figure 2.1 is shown in

Figure 2.3. This solution tree is interpreted in the following way: At the outset, the

optimal decision for the agent is to disambiguate the edge (y
2

, t). If it turns out to

be traversable, then traverse to t and stop. Otherwise, follow the y
2

, s, y
1

path and

disambiguate the edge (y
1

, t). If it turns out to be traversable, then traverse to t and

stop. Otherwise, traverse the y
1

, s, t path and stop. Node true labels can then be

calculated as follows: f(y
1

, (“A",“U")) = (0.6)(3) + (0.4)(11) = 6.2; f(y
2

, (“A",“A")) =

(0.8)(2.8) + (0.2)(1 + 6.2) = 3.68. The optimal expected path length is then calculated

as f(r) = f(s, (“A",“A")) = 1 + 3.68 = 4.68.

In CTP, an admissible lower bound on f(n) for any n 2 N is available in the form

of the deterministic shortest path length from yn to termination while avoiding only

untraversable stochastic edges as indicated by In. That is, during the calculation of this

yn � t shortest path, ambiguous stochastic edges in In are assumed to be traversable

(in addition to the deterministic edges and other stochastic edges that have already

been found to be traversable), and only the stochastic edges that have been found to be
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s, (A,A) y2, (A,A)

y2, (A,T)

y2, (A,U) y1, (A,U)

t, (A,T)

y1, (U,U)

y1, (T,U)

t, (U,U)

t, (T,U)
1

2.8

1

3

11

.2

.4

T

U

T

U

Figure 2.3: The solution tree (shown horizontally) corresponding to the CTP instance
shown in Figure 2.1.

untraversable are avoided. We call these “natural" admissible lower bounds and denote

by ˆhlower
(n). Only in the best case scenario all the ambiguous stochastic edges would

be revealed to be traversable for the rest of the traversal from yn to t, and therefore
ˆhlower

(n) never overestimates f(n). Thus, one can employ these lower bounds to solve

CTP using the AO* Algorithm.

2.3.3 The CAO* Algorithm

CTP has two important properties that can be fruitfully exploited:

• Admissible Upper Bounds: For a node n 2 N, we call an upper bound “admis-

sible" if it never underestimates the node’s true label f(n). Similar to the natural

admissible lower bounds, a naturally admissible upper bound on f(n) for n 2 N is

also available in the form of the deterministic shortest path length from yn to termi-

nation while avoiding ambiguous stochastic edges in addition to the untraversable

ones as indicated by In. We denote these upper bounds by ˆhuppernatural(n) .

Note that f(n) for n 2 N is in fact the shortest expected yn � t path length under

the information state In, which essentially stands as a CTP instance itself. Thus,

sub-optimal, yet fast algorithms designed for CTP can be executed for the instance

corresponding to n, which would also be an admissible upper bound on f(n). In

this work, we advocate utilization of the DT Algorithm for CTP [21]. The DT

Algorithm is sub-optimal, but it runs in a fraction of a second in general and yields

good solutions. (This algorithm was originally cast for D-SOSP, but it can be

modified for general CTP in a straightforward manner [28]). The expected path

length obtained by the DT Algorithm for node n shall be denoted by ˆhupperDT (n).
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Given the above two admissible upper bounds for a node n, we define ˆhupper(n) to

be the tighter of the two; that is,

ˆhupper(n) := min

�
ˆhuppernatural(n),

ˆhupperDT (n)
�
.

• State Overlaps in the AO Tree: The agent might end up at the same particular

state in the AO tree representation after visiting different sequences of states.

Therefore, some of the states can reside in multiple nodes in the AO tree when

K > 1.

The fact that the same state can reside in different nodes in the AO tree is illustrated in

Figure 2.5 for the simple CTP instance in Figure 2.4. This instance has three stochastic

and four deterministic edges. As shown in Figure 2.5, the state s = (y
3

, (“U",“U",“A"))

can be reached at from two different paths. Namely, under the scenario where both

of the stochastic edges (y
1

, y
3

) and (y
2

, y
3

) are untraversable, the agent can arrive at s

either by disambiguating first the edge (y
1

, y
3

) and then (y
2

, y
3

); or by disambiguating

first the edge (y
2

, y
3

) and then (y
1

, y
3

). CAO* caches the AND node corresponding to s

upon first encounter. Upon the second encounter, CAO* adds the corresponding parent/

child links and avoids generation of a new node for s. Whenever the heuristic label of s

changes, this change is propagated recursively for both of its parents.

s t

y1

y2

y3

Figure 2.4: A CTP instance with three stochastic and four deterministic edges.

In this section, we present the CAO* Algorithm that is an improvement on AO* that

takes advantage of the above two properties of CTP. Key features of CAO* are as follows:

• Feature #1: Expansion of OR Nodes: CAO* only expands OR nodes. Dur-

ing the expansion of no 2 NO, the following nodes are automatically generated

and added to the AO tree: successor AND nodes na 2 NA denoting traver-

sal to reachable endpoints of currently stochastic edges, their two children OR
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s, (A,A,A)

y1, (A,A,A)

y2, (A,A,A)

y1, (U,A,A)

y1, (T,A,A)

y2, (A,U,A)

y2, (T,A,A)

y2, (U,U,A)

y2, (U,T,A)

y1, (U,U,A)

y1, (T,U,A)

y2, (U,A,A)

y1, (A,U,A)

y3, (U,U,A)

...

...

...

...

...

...

...

...

...

...

...

...

T

U

Figure 2.5: The partial AO tree corresponding to the CTP instance shown in Fig-
ure 2.4 illustrating the state overlap phenomena. The state (y3, (“U",“U",“A")) can be

reached at from two different paths.

nodes (corresponding to traversable and untraversable disambiguation outcomes),

and an AND node representing direct traversal to termination—but only when

`(no, na)+
ˆhlower

(na)  ˆhupper(no). For the AND nodes added to the AO tree, their

heuristic labels hlower
(na) are initialized to ˆhlower

(na). Note that these heuristic

labels are continuously updated during the cost propagation steps, providing bet-

ter and better lower bounds during the search until the true node label has been

calculated, after which the node is marked as terminal.

• Feature #2: Caching of AND Nodes: CAO* maintains a cache of all the

AND nodes added to the AO tree thus far in a hash map data structure. During

the expansion step, whenever a new AND node is to be added to the tree, CAO*

checks the cache to see if this node has already been generated. If so, it adds this

AND node to the children list of the OR node that is being expanded and also

adds the OR node to the cached AND node’s parents list. If this AND node is

not in the cache, a new AND node is created and it is linked to the OR parent

that is being expanded, after which this AND node is added to the cache. Thus,

in CAO*, an OR node has only one parent and possibly many children whereas
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an AND node has only two children and possibly many parents. During the cost

propagation step, updated costs are propagated recursively for each parent of AND

nodes.

The fact that an AND node can have multiple parents indicate that the data

structure maintained by CAO* is technically a graph and not a tree, albeit a graph

with a special tree-like structure in the sense that OR parents of an AND node

reside exactly one level up from that AND node. With a slight abuse of terminology,

we shall continue to refer to this structure as an AO tree.

• Feature #3: Dynamic AND Node Pruning: Whenever a new AND node na

is generated and added to the tree, CAO* computes and stores its admissible upper

bound ˆhupper(na) (this upper bound is computed only once). As the updated hlower

labels are propagated up the solution tree, these new labels are used to dynamically

prune “bad" AND children of OR parents. Specifically, denote the OR parent by

no and its children by na. Bad AND nodes n0
a are defined as nodes for which the

following holds:

`(no, n
0
a) +

ˆhlower
(n0

a) > min

na
[`(no, na) +

ˆhupper(na)].

• Feature #4: Reduced Overhead Cost: If there is only one disambiguation left

at the current expansion node, its true label is calculated and the node is marked

as terminal. This feature eliminates the overhead cost of individually considering

the successors of this OR node in future expansions.

2.4 Computational Experiments

Our goal in this section is to empirically assess the performance of CAO* on (1) general

CTP instances on random Delaunay and grid graphs, and (2) the D-SOSP variant of

CTP, which is essentially CTP with probabilistic dependency among edges.

2.4.1 The BAO* and PAO* Algorithms

Of particular interest is the BAO* Algorithm introduced in [29] for D-SOSP. BAO* is

similar to CAO* in the sense that it is also based on the AO* Algorithm. However,
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BAO* differs from CAO* in three major ways: (1) BAO* is cast for D-SOSP whereas

CAO* is presented for general CTP, (2) BAO* does not employ any state caching logic,

and (3) BAO* uses the static zero-risk s, t path length for pruning. Here, the zero-risk

s, t path is defined as the shortest s, t path over the grid graph avoiding all stochastic

edges, that is, the edges intersecting any disks. In contrast, CAO* avoids re-addition of

previously encountered states to the AO tree via a state caching mechanism and uses

the admissible upper bounds at a node level for dynamic state-space pruning.

Another AO*-based algorithm for CTP is the PAO* Algorithm presented in [12]. PAO*

shares certain basic characteristics with CAO* and BAO* as all three are based on the

classical AO* search. In that regard, PAO* also maintains and updates a partial solu-

tion tree. However, PAO* also maintains a complete AO tree representing the problem

instance at hand during its execution. Yet, for a given CTP instance, the corresponding

complete AO tree has exponentially many nodes and this observation essentially renders

PAO* infeasible in relatively large problem instances. Thus, whereas PAO* requires stor-

age of the complete AO tree in memory at all times until termination, CAO* attempts

to minimize its memory footprint by maintaining as few nodes as possible via its caching

mechanism and node pruning techniques.

One other feature of PAO* is that whenever a new lower bound is found for a node, PAO*

scans the complete AO tree, finds the same nodes and updates their bounds accordingly,

which is referred to as “sideways neighbors" updating. On the other hand, scanning of

the complete AO tree for relevant sideways neighbors results in significant computational

burden. In contrast, CAO* eliminates the need for such neighbor updating as the caching

mechanism in CAO* is specifically designed to avoid recreation of the same nodes.

A third difference between CAO* and PAO* is that CAO* makes use of cost upper

bounds for node pruning in the partial AO tree whenever possible whereas PAO* does

not make use of any upper bounds nor it calls for any node pruning techniques. Our

computational experiments involve comparison of CAO* against BAO* and PAO* in

addition to standard AO* and value iteration.
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2.4.2 Experimental Setup

Our computational experiments are comprised of four different simulation environments:

Environments A and B empirically assess relative performance of CAO* against VI, AO*,

BAO*, and PAO* on relatively small random problem instances where the algorithms can

generally converge to optimality within a time limit of 5 hours per given problem instance.

In particular, Environment A involves random CTP instances over Delaunay graphs with

100 vertices and 10⇥10 grid graphs respectively. On the other hand, Environment B

involves random D-SOSP instances over a 20⇥15 grid with 10 and 15 disks respectively.

Environments C and D measure performance of CAO* on relatively large D-SOSP in-

stances. Specifically, Environment C is concerned with a real-world D-SOSP problem

instance called COBRA data from a maritime minefield application, and Environment

D deals with 6 random COBRA-like D-SOSP problem instances.

The experiments were conducted on a PC with a 3.9 GHz Intel Core i7 processor with 16

GB of memory. The algorithms were implemented in Java based on the jgrapht software

package. Deterministic shortest path lengths in our experiments were computed using the

A* Algorithm where the admissible heuristic used was the Euclidean distance between

the start and end grid vertices.

2.4.3 Simulation Environment A

This environment is concerned with random CTP instances over Delaunay and grid

graphs, which are illustrated in Figure 2.6 respectively:

• Delaunay graphs with 100 vertices whose coordinates are randomly chosen over

the region [1,100]⇥[1,100] on the plane. Edge lengths are set to the Euclidean

distance between their end vertices and the two farthest vertices of the graph are

designated as the starting and termination vertices respectively. Each grid edge has

a 0.25 probability of being stochastic and marks of stochastic edges are sampled

from the uniform distribution.

• Grid graphs where i
max

= j
max

= 10. The starting and termination vertices are

taken as s = (5, 10) and t = (5, 1). As in Delaunay graphs, each edge has a 0.25

probability of being stochastic with uniform marks.
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Figure 2.6: Experimental Delaunay and grid graph realizations in Simulation Envi-
ronment A. Stochastic edges are shown in bold.

Table 2.1 compares relative performances of value AO*, BAO*, PAO*, and CAO* in this

simulation environment for 10 experimental realizations for each graph type conditioned

on having an admissible s, t path (to avoid infinite expected path length) for K = 1, . . . 4.

As discussed in Section 1.2, K denotes the number of available disambiguations. For

instance, in the case of K = 3, the agent is allowed to disambiguate at most 3 ambiguous

graph edges in its s, t traversal. Value iteration (VI) was not included in the comparisons

due to its excessive memory requirements. The other algorithms were given a time limit

of 5 hours for each problem instance for convergence to optimality. Any runs that did

not fully converge to the optimal solution for a given problem instance within the time

limit were terminated and excluded from the results.

Table 2.1 indicates that as K increases, performance gap between CAO* and the other

algorithms becomes even wider. Classical AO* and PAO* can only solve CTP instances

upto K = 2 whereas BAO* can solve upto K = 3 within the 5 hour limit. On the other

hand, CAO* can solve instances with K = 4 within several seconds.

2.4.4 Simulation Environment B

In this environment, we generated random D-SOSP instances over a grid with i
max

= 20

and j
max

= 15 with disk marks sampled from the uniform distribution and disk centers

sampled over the region [3, 18] ⇥ [3, 12] with disk radii taken as 2. The starting and

termination vertices were taken as s = (10, 15) and t = (10, 1). In particular, this setup
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Table 2.1: Run time comparison of AO*, BAO*, and CAO* in Environment A in
seconds. In the table, “-" stands for insufficient memory whereas “*" stands for non-

convergence to optimality within 5 hours.

AO* BAO* PAO* CAO*

Type K Mean Std. Mean Std. Mean Std. Mean Std.

Delaunay 1 5.64 1.19 4.73 1.93 0.45 0.14 0.13 0.07
2 5,643 1,917 293.25 112.5 77.52 35.41 0.61 0.29
3 * * 4,871 2,425 * * 1.92 1.14
4 * * * * - - 4.82 3.96

Grid 1 7.18 1.76 5.34 1.93 0.45 0.14 0.17 0.09
2 7,750 2,514 337.09 128.6 109.92 41.04 0.84 0.37
3 * * 6,065 3,134 * * 2.58 1.31
4 * * * * - - 5.43 4.29

ensures that there is always an admissible path from s to t. This simulation environment

is illustrated in Figure 2.7 for N = 10 where N denotes the total number of disks.

0 5 10 15 20
0

2

4

6

8

10

12

14

16 s

t

Figure 2.7: An experimental realization in Simulation Environment B with N = 10.
Stochastic edges, i.e., grid edges intersecting disks are shown in bold.

We compared performances of VI, AO*, BAO*, PAO*, and CAO* for N = 10, 15 with

K = 1, 2. Note that due to edge dependencies in D-SOSP, K here corresponds to

the maximum number of ambiguous disks that can possibly be disambiguated in the

agent’s s, t traversal. Table 2.2 shows the mean run times of the algorithms for 50

experimental realizations for each N,K combination listed along with their respective

standard deviations. VI did not even run for N = 15 for either K due to insufficient

memory. As seen in the table, mean AO* run time was less than that of VI for N =

10,K = 1. However, since the same state can reside in multiple nodes in the AO
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tree when K > 1, the number of AO* expansions can exceed the number of value

function evaluations in VI, causing AO* run time surpass VI run time, as illustrated for

N = 10,K = 2. On the other hand, CAO* avoids such re-expansions using a caching

mechanism. In fact, over all the N,K combinations, CAO* was 270 times faster than

BAO*, 400 times faster than PAO*, 770 times faster than VI, and 1,850 times faster than

AO* on the average; illustrating the relative effectiveness of CAO* in solving random

instances in Environment B.

Table 2.2: Run time comparison of VI, AO*, BAO*, and CAO* in Environment B in
seconds. In the table, “-" stands for insufficient memory.

VI AO* BAO* PAO* CAO*

N K Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

10 1 23.03 59.76 3.93 0.25 3.02 0.30 1.03 0.21 0.01 0.01
2 223.2 37.81 781.2 200.4 121.2 109.8 60.13 21.33 0.13 0.14

15 1 - - 1.98 0.12 1.59 0.12 0.63 0.13 0.02 0.01
2 - - 397.8 126.6 46.85 27.32 133.47 45.38 0.47 0.38

Overall 123.14 48.78 296.35 82.00 43.19 34.47 64.41 16.76 0.16 0.14

2.4.5 Simulation Environment C

This environment consists of a U.S. Navy minefield data set called the COBRA data

with 39 disks [8, 19–21, 30]. The COBRA data set is the only publicly available real-

world instance of SOSP within the context of maritime minefield countermeasures, which

constitute a rather important application area of SOSP and CTP in general. In the

COBRA data, disk centers are inside the region [10, 90] ⇥ [10, 90]; the starting point is

s = (54, 80); the termination point is t = (54, 10); and disk radii are taken as 5. This

data set is illustrated in Figure 3.1 and tabulated in Table A.1 in Appendix A.

Table 2.3 presents the run time, number of expanded/ cached/ revisted/ pruned nodes

respectively for CAO* on the COBRA data set for K = 1, . . . , 5. CAO* execution time

ranged from 7.32 seconds (for K = 1) up to 38.18 minutes (for K = 5). For K = 2,

CAO* execution time was 6.5 minutes whereas that of BAO* was 37.63 hours. Thus,

for K = 2, CAO* was about 350 times faster than BAO* on the COBRA data set.

For K = 8, number of nodes cached by CAO* per Feature #2 was about 0.45 million.

These cached nodes were revisited about 2.7 million times during the execution of the

algorithm, illustrating the benefits of the caching logic in CAO*. On the other hand, the
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Figure 2.8: Illustration of the COBRA data where gray intensity reflects marks of
disk with darker tones indicating a higher mark. Grid edges are not shown for clarity.

number of nodes pruned per Feature #3 for the same K value was about 3 million, which

suggests that state-space search speed in D-SOSP can increased dramatically by dynamic

node pruning. Table 2.3 indicates that the caching mechanism and the dynamic node

pruning feature provide significant benefits for other K values as well. In particular, note

that due to the need for the agent to keep track of the status of all disks in D-SOSP, its

theoretical computational complexity is O(3

K
). Examining the run times in Table 2.3,

we observe that empirical complexity of CAO* on the COBRA data set is roughly O(2

K
).

Table 2.3: Performance of CAO* on the COBRA data set (Simulation Environment
B). The columns denote the run time, number of expanded/ cached/ revisted/ pruned

nodes respectively.

K Run Time (sec) Expanded Cached Revisited Pruned
1 7.32 1 0 0 888
2 390.0 116 13,397 87,578 100,879
3 935.4 293 32,740 140,892 166,259
4 1,735.8 556 68,615 253,703 304,265
5 2,291.4 756 76,017 310,474 340,260
6 3,992.0 1,361 128,809 619,671 666,510
7 7,693.2 2,639 221,024 1,119,870 1,244,721
8 18,874.8 6,702 455,587 2,745,991 3,024,832

2.4.6 Simulation Environment D

Our goal in this section is to empirically assess general performance of CAO* on COBRA-

like D-SOSP instances. This simulation environment consists of six COBRA-like in-

stances with 39 disk-shaped obstacles with a radius of 5 over a square grid with i
max

=
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j
max

= 100. Centers of these disks were sampled randomly over the region [10, 90] ⇥

[10, 90]. To make the disk layout challenging, the zero-risk s, t path lengths were con-

ditioned to be at least 130 units. The starting and termination vertices were taken as

s = (50, 100) and t = (50, 1). These six instances are shown in Figure 2.9 and are

tabulated in Appendix A.

Table 2.4 shows the average run time and node statistics for CAO* on the six COBRA-like

problem instances for K = 1, . . . , 4. For K = 4, CAO* cached about 0.3 million nodes on

the average. These cached nodes were revisited about 2.4 million times, underlying the

importance of node caching in CAO*. In addition, CAO* pruned about 2.6 million nodes

per Feature #3 for K = 4 on the average. Overall, Table 2.4 suggests that the caching

and dynamic node pruning mechanisms result in significant computational savings when

searching for the optimal policy in D-SOSP variant of CTP.

Table 2.4: CAO* performance averaged over the six COBRA-like instances in Simu-
lation Environment C.

K Run Time (sec) Expanded Cached Revisited Pruned

1 7.1 1 0 0 1,066.33
2 850.2 209.50 18,968.67 192,534.67 211,297.33
3 4,356.5 1,299.83 124,998.33 983,029.50 1,086,003.50
4 12,312.2 3,617.83 329,153.00 2,438,186.83 2,637,055.17

2.5 Summary and Conclusions

CTP is a difficult stochastic optimization problem that has practical applications in a

number of probabilistic path planning domains. In this chapter, we first discuss Deter-

ministic POMDP roots of CTP and present MDP and Deterministic POMDP formula-

tions. Next, we introduce CAO* for CTP, which is an exact algorithm based on AO*

search that takes advantage of CTP’s special problem structure. In particular, CAO*

uses a caching mechanism to avoid re-expansion of previously visited states and makes

use of admissible lower and upper bounds at a node level for dynamic state-space prun-

ing. CAO* is not polynomial time, but our experiments indicate that CAO* examines

only a very small fraction of the state space and uses substantially less computational

resources compared to AO* and value iteration to find an exact solution for CTP. In one

particular case on general grid-based CTP instances, CAO* found the optimal solution
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in several seconds whereas classical AO* was halted after 5 hours and value iteration did

not even execute due to excessive memory needs. In one set of experiments involving

D-SOSP instances, CAO* executed 770 times faster than value iteration and 1,850 times

faster than the classical AO* Algorithm.

CAO* utilizes admissible lower and upper bounds at a node level for dynamic node

pruning. One potential direction for future research would be to identify bounds tighter

than those discussed in this chapter, which would potentially result in more aggressive

node pruning and consequently reduce execution time. One other exciting direction for

future research would be to use CAO* in conjunction with approximation schemes for

CTP [9, 22–24]. CAO* can also be converted into a heuristic method by employing

stronger, yet sub-optimal pruning techniques. In addition, CAO* can be employed to

solve other variants of CTP and benchmarked against optimal solution methods other

than those considered in this chapter.
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Figure 2.9: Six COBRA-like D-SOSP instances used in Simulation Environment D.



Chapter 3

A Fast and Effective Online

Algorithm for the Canadian

Traveler Problem

3.1 Introduction

There are several approximation and sub-optimal algorithms available in the literature

for CTP [9–11] and there exist optimal algorithms for several special cases [13, 14]. In

the previous chapter we show that CAO* significantly shortens the run time needed to

find an exact solution to moderately-sized instances of D-SOSP and general CTPs. It

is illustrated that CAO* runs several orders of magnitude faster than BAO*, AO*, and

value iteration. Thus, we use CAO* in our computational experiments for the purpose

of finding the optimal policy.

Regarding sub-optimal algorithms for CTP, of particular interest is the Distance-to-

Termination (DT) Algorithm that has been originally proposed for D-SOSP by Aksakalli

and Ari [21]. This algorithm involves successive calculation of deterministic shortest

paths with respect to a specific edge weight function during the agent’s traversal. The

authors present computational experiments that compare performance of the DT Al-

gorithm against optimal policies obtained by the BAO* Algorithm on relatively small

D-SOSP instances. Apart from DT, there are other heuristics for CTP in the literature

as well. Eyerich et al. [11] evaluates these rollout-based heuristics both theoretically

29
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and empirically. Detailed discussion and computational experiments focusing on rollout-

based heuristics can be found in Chapter 3.

The contribution of this chapter is two-fold: (1) we show how the DT Algorithm can

easily be adapted for general CTP and, (2) we provide computational experiments to

empirically assess performance of the DT Algorithm on the D-SOSP variant where the

optimal policies are obtained by the CAO* Algorithm. In particular, CAO* allows us to

solve much larger problem instances to better benchmark DT Algorithm’s performance.

We present experiments involving both real-world and synthetic data. Our results in-

dicate that the DT Algorithm finds near-optimal policies in very short execution times

and, its superior performance and computational savings are maintained on large prob-

lem instances as well. In what follows, we present adaptation of the DT Algorithm for

general CTP, which is followed by our computational experiments.

3.2 The DT Algorithm

First introduced by Aksakalli and Ari [21], the notion of penalty-based algorithms for

D-SOSP is a heuristic framework that involves successive calculation of deterministic

shortest paths with respect to a specific edge weight function during the agent’s s � t

traversal. The idea behind using an edge weight function is to discourage traversing

stochastic edges by assigning them additional weights. A penalty-based algorithm within

the context of CTP employs the navigate-disambiguate-repeat (NDR) strategy described

below:

1. Find the deterministic shortest path from start s to termination t in the graph

where all the edge weights are assigned by the weight function.

2. Traverse the path until a vertex associated with an ambiguous stochastic edge is

reached.

3. Since an ambiguous edge cannot be traversed, disambiguate the edge from the

current vertex. Set the blockage probability to zero if the edge has been found to

be traversable, and 1 otherwise.

4. Set the current vertex as the new starting vertex s and repeat 1 through 3 above

until t is reached.
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Aksakalli and Ari [21] generalizes the weight functions utilized in NDR strategy, using

the notion of “penalty functions":

wF
D(e) := `E(e) + 1e2E0 · F (e), (3.1)

As a result, it is now possible to plug in different penalty functions to obtain different

weight calculations. In fact, apart from DT Algorithm, the article includes an extensive

discussion of two other penalty functions, Simulated Risk Disambiguation Algorithm

(SRA) [8] and Reset Disambiguation Algorithm (RDA) [19]. In SRA, the penalty func-

tion F is specified as FSR(e) := ↵ log(1�⇢(e))�1 whereas it is defined as FRD(e) :=
c(e)

1�⇢(e)

for RDA. The first function is motivated by the idea of risk simulation (temporarily as-

suming that ambiguous edges are riskily traversable), where the second function is based

on the idea of using the optimal weights for parallel graphs on arbitrary instances. A

major disadvantage of SRA is that it requires to tune the parameter ↵ for improved

performance, thus, increased computational time. The lack of a tuning parameter, as it

has been empirically shown, provides a significant advantage for RDA in terms of run

time. However, despite its better performance and lack of tuning parameters, the weight

function FRD cannot be used when the disambiguation cost is zero. In other words, in

a setting where the agent performs the disambiguation by simply a clear line of sight,

FRD is not applicable.

The above mentioned disadvantages of FSR and FRD reveals the quest to find a better

penalty function. After extensive computational experiments, Aksakalli and Ari [21]

observed that the penalty function FDT (e) := c(e) +
⇣

dt(e)
1�⇢(e)

⌘� log(1�⇢(e))
consistently

outperformed both of the former functions in most of the instances. The new function

utilized the cost parameter as an additive term and it was monotonically nondecreasing in

c(e) and ⇢(e) for edges that intersect possible-obstacles in discretized SOSP. In particular

DT algorithm uses the following weight for D-SOSP:

wDTA
D (e) := `(e) + 1e2E0 ·

⇣
c(e) +

⇣ dt(e)

1� p(e)

⌘� log(1�p(e))⌘

Above, 1 is the indicator function and dt(e) denotes the distance of edge e’s midpoint

to t, hence the name “distance-to-termination". The DT Algorithm thus calculates at

most K deterministic paths and therefore it is extremely fast. It can also be used in an

online fashion as the agent traverses the graph. Note, however, that computation of the
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expected path length requires O(2

K
) path calculations. The authors, however, make the

following observation regrading the DT Algorithm:

“Despite the fact that DTA performed remarkably well [. . .] in our simulations, it may

or may not perform at the same level on obstacle fields with different topologies or with

non-circular obstacle regions. Further research on instances with different characteristics

is required in order to confirm that high performance of DTA is consistent across various

problem settings. To that end, it might as well be the case that perhaps a different

penalty function outperforms that of DTA in certain problem environments. Nonetheless,

the NDR strategy guided by appropriate penalty functions seems to be an efficient and

effective algorithmic framework for SOSP, and this chapter could be seen as a show case

of this framework using the DT penalty function on an important real-world variant of

the problem".

3.3 Computational Experiments

In this section, performance of the DT Algorithm is empirically compared to CAO* on

the D-SOSP variant of CTP. The computational experiments are conducted in a mar-

itime minefield navigation domain. Our simulations were performed in two different

environments: Environment 1 that is concerned with a real-world data set, and Envi-

ronment 2 that involves synthetic data. In both environments, we consider cases with

disambiguation limit K = 1, . . . , 5 and disambiguation cost c = 0, 2, 4, 6.

3.3.1 Environment 1

In the first environment, we consider a U.S. Navy minefield data set, called COBRA data,

which was used in [7, 8, 19, 20]. This data set has 39 disk-shaped potential obstacles

with disk radius r = 5 on a 100 ⇥ 100 integer lattice. A visual representation of the

COBRA environment is shown in Figure 3.1.

Table 3.1 shows the experiment results performed on the COBRA data set where the

“zero-risk" column denotes the length of the s � t path avoiding all disks without per-

forming any disambiguations. On the average, policies found by the DT Algorithm was

only 1.3% worse than the optimal policy, yet mean DT run time was 7.8 seconds, which
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Figure 3.1: Illustration of COBRA data set. The gray intensity of disks reflect
probability of the disks being true obstacles.

Table 3.1: Performance of the DT Algorithm on COBRA data set for the K, c com-
binations listed.

Expected Distance (units) Run Time (seconds)

K c Zero- OPT DTA % OPT DTA Ratio
Risk Diff.

1 0 104.33 80.02 80.17 0.18 7.32 3.46 2.12
2 104.33 82.02 82.17 0.18 5.47 3.21 1.70
4 104.33 84.02 84.17 0.17 8.39 3.71 2.26
6 104.33 86.02 86.17 0.17 8.04 3.68 2.18

2 0 104.33 75.47 80.25 6.34 389.80 4.50 86.62
2 104.33 79.47 79.74 0.34 1404.12 4.72 297.48
4 104.33 81.77 81.94 0.21 707.33 4.47 158.24
6 104.33 83.98 84.15 0.21 1422.32 4.81 295.70

3 0 104.33 74.20 78.20 5.39 935.58 9.49 98.59
2 104.33 79.27 79.78 0.63 4261.26 10.43 408.56
4 104.33 81.73 82.02 0.36 1582.92 9.70 163.19
6 104.33 83.97 84.27 0.35 1304.64 9.56 136.47

4 0 104.33 73.81 76.93 4.23 1736.94 9.80 177.24
2 104.33 79.02 79.54 0.66 4241.33 11.08 382.79
4 104.33 81.56 81.82 0.31 2579.95 10.01 257.74
6 104.33 83.85 84.09 0.29 2224.39 10.22 217.65

5 0 104.33 73.51 76.93 4.64 2291.41 10.10 226.87
2 104.33 79.01 79.54 0.67 4992.36 11.92 418.82
4 104.33 81.56 81.82 0.32 3802.77 11.21 339.23
6 104.33 83.85 84.09 0.29 3202.90 11.08 289.07

Mean 104.33 80.40 81.39 1.30 1855.46 7.86 198.13
Std. 0.00 3.72 2.59 2.02 1565.04 3.25 138.14

Median 104.33 81.56 81.82 0.32 1502.62 9.63 156.03
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is about 200 times faster than CAO*. In fact, median percent difference for DT in terms

of expected path length was merely 0.3%.

3.3.2 Environment 2

In Environment 2, we randomly sampled six “COBRA-like" instances with 39 disks with

a radius of 5 units on a 100 ⇥ 100 integer lattice. To make the environment even more

challenging, the instances were conditioned to have a zero-risk path length of at least

130 units. The results are shown in Table 3.2. Similar to Environment 1, DT Algorithm

found solutions very close to the optimal within very short execution times. On the

average, policies found by the DT Algorithm was 3.17% worse than the optimal policy.

However, mean DT run time was 8.15 seconds, which is about 740 times faster than

CAO*. In fact, DT Algorithm ran up to 3300 times faster than CAO*. On the other

hand, median percent difference for DT in terms of expected path length was only 0.96%.

It can be also observed that computational benefits of DT Algorithm get more significant

as the disambiguation limit K is increased.

3.4 Conclusions and Future Research

3.4.1 Conclusions

CTP is a difficult stochastic path planning problem and D-SOSP is perhaps the most

realistic variant of CTP. These problems have practical applications in robot navigation,

adaptive traffic routing, and mine-field navigation. In this chapter, we consider the DT

Algorithm for CTP, which is a sub-optimal online algorithm that is fast and effective.

This algorithm involves successive calculation of deterministic shortest paths with respect

to a certain edge weight function during the agent’s traversal. We provide computational

experiments to empirically assess performance of the DT Algorithm on the D-SOSP

variant. In our experiments, the optimal policies are obtained by the CAO* Algorithm,

which is a state-of-the-art exact algorithm for CTP based on the classical AO* Search.

We present computational experiments involving both real-world and synthetic data.

Our results indicate that the DT Algorithm finds near-optimal policies in very short

execution times.
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Table 3.2: Average performance of the DT Algorithm on six COBRA-like data sets
for the K, c combinations listed.

Expected Distance (units) Run Time (seconds)

K c Zero- OPT DTA % OPT DTA Ratio
Risk Diff.

1 0 138.27 119.21 132.70 11.32 10.01 3.44 2.91
2 138.27 121.21 134.70 11.13 10.44 4.01 2.60
4 138.27 123.21 137.03 11.22 10.12 4.03 2.51
6 138.27 125.21 131.01 4.63 9.94 3.76 2.64

2 0 138.27 110.52 112.16 1.49 1214.73 4.22 287.85
2 138.27 113.58 114.96 1.21 1376.05 5.13 268.24
4 138.27 116.38 116.83 0.39 1413.53 5.13 275.54
6 138.27 119.17 123.63 3.75 1609.05 5.59 287.84

3 0 138.27 107.72 109.71 1.85 6179.67 11.02 560.77
2 138.27 111.21 112.65 1.29 5249.41 9.98 525.99
4 138.27 114.36 115.50 1.00 4987.30 9.72 513.10
6 138.27 117.34 118.68 1.15 4808.78 9.79 491.19

4 0 138.27 106.22 109.10 2.71 17609.29 11.45 1537.93
2 138.27 110.76 112.10 1.20 12125.10 11.37 1066.41
4 138.27 113.97 115.01 0.91 8897.27 10.68 833.08
6 138.27 116.97 118.04 0.91 7911.87 10.04 788.03

5 0 138.27 105.54 109.00 3.27 35590.07 10.76 3307.63
2 138.27 110.17 112.03 1.69 17621.04 10.92 1613.65
4 138.27 113.45 114.69 1.09 13920.19 10.92 1274.74
6 138.27 116.53 117.80 1.09 13065.81 10.94 1194.31

Mean 138.27 114.64 118.37 3.17 7680.98 8.15 741.85
Std. 0.00 5.42 8.75 3.63 8832.52 3.19 788.59

Median 138.27 114.16 115.26 0.96 5118.35 9.89 517.79

3.4.2 Limitations and Future Research

Computational benefits of the DT Algorithm become more significant as the problem

instances get larger. In particular, our results show that percent deviation from the

optimal policies found by the DT Algorithm can be as low as 0.2%, and DT can run

up to 3300 times faster than CAO*. However, the computational experiments presented

in this chapter is limited only to D-SOSP instances. Although a comparison of DT

Algorithm with several other heuristics for general CTP instances is presented in the

following chapter, a thorough comparison of heuristic methods, including DT Algorithm,

for solving D-SOSP is currently not available in the literature. We leave for the future

research, benchmarking and comparing different heuristics for SOSP and D-SOSP.



Chapter 4

A Comparison of Penalty and

Rollout-Based Policies for the

Canadian Traveler Problem

4.1 Introduction

Approximation algorithms and heuristics for CTP are available in the literature [9, 10,

31]. In this context, [11] made a significant contribution by introducing and evaluating

sampling-based (also known as rollout-based) probabilistic algorithms for CTP on both

theoretical and empirical fronts. Although they show that a new UCT-based [32] rollout

algorithm (called Optimistic UCT) converges to a global optimum, a major limitation

of rollout-based approaches in general is that they do not scale well with large instances

in terms of execution time. Hence, the need for efficient and effective CTP algorithms

arises.

A penalty-based algorithm for CTP generalizes the well-known optimism approach by

incorporating a penalty term in the agent’s traversal that discourages the agent from

traversing edges that are farther away from the termination and/or edges that have high

blockage probability. In particular, a penalty-based algorithm calls for successive exe-

cution of a deterministic shortest path algorithm with respect to a particular penalty

function until the agent’s arrival at the termination. One particular penalty-based al-

gorithm called the Distance-to-Termination (DT) Algorithm was evaluated by utilizing

36
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CAO* as a benchmark and it was shown to find high quality policies in very short exe-

cution times [28]. One attractive feature of penalty-based algorithms is that they scale

quite well in terms of the problem size relative to rollout-based approaches.

Our goal in this chapter is to compare the penalty-based DT Algorithm against four

rollout-based ones both in terms of execution time and solution quality for random CTP

instances defined on Delaunay and grid graphs. Our purpose is to assess relative merits

of these two algorithmic frameworks on an empirical basis. The rest of this manuscript is

organized as follows: Section 2 is devoted to formal definition of CTP. Section 3 describes

the penalty and rollout-based algorithms. The computational experiments are presented

in Section 4, which is followed by a summary and our conclusions.

4.2 Algorithms for CTP

We consider a total of six algorithms for CTP. The first algorithm is Optimism that

does not require any rollouts, yet it can be used as a benchmark due to its simplicity

and popularity. The next four are the rollout-based methods: Hindsight Optimization,

Optimistic Rollout, Blind UCT, and Optimistic UCT. The last algorithm is the penalty-

based DT Algorithm (DTA).

4.2.1 Optimism (OMT)

The Optimism Algorithm (OMT) employs a popular technique from robotic motion

planning called free-space assumption. The agent assumes that all edges are traversable

and calculates the deterministic shortest path and re-calculates it again whenever a

blocked edge is encountered. Optimistic policy does not take probabilistic information

(in this case blockage probabilities) into account. Within the context of CTP, OMT

employs the following navigate-disambiguate-repeat (NDR) strategy:

1. Find the deterministic s, t shortest path in the graph where all the edge weights

are set to the edge lengths. That is,

wOMT
(e) := `(e)
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2. Traverse the path until a node associated with an ambiguous stochastic edge is

reached.

3. Since an ambiguous edge cannot be traversed, disambiguate the edge from the

current node. Set the blockage probability to zero if the edge has been found to be

traversable, and 1 otherwise.

4. Set the current node as the new starting node s and repeat 1 through 3 until t is

reached.

Despite its simplicity, Optimism is a common approach for solving both CTP [33] and

robotic motion planning problems [34, 35]. Hence, it can be considered as a baseline for

evaluating solution quality of CTP algorithms.

4.2.2 Hindsight Optimization (HOP)

Hindsight optimization (HOP) solves a sequence of determinized problems to calculate

a policy in a stochastic setting. However, unlike Optimism, HOP uses graph-specific

probabilistic information by generating a set of samples from the graph and performs a

sequence of actions called rollouts. In each rollout, HOP creates a determinized instance

of the graph where some edges are blocked and some are traversable according to their

blockage probabilities. Next, the algorithm solves a deterministic shortest path problem

in each rollout to estimate an average travel cost to determine the next action. The

algorithm determines the next course of action by greedily choosing the step that gives

the minimum average travel cost estimate. The number of rollouts, denoted by N, is an

algorithm parameter. Solution quality is directly proportional to N while run time is

inversely proportional. In our experiments, for all rollout-based algorithms, N is fixed to

10,000 which has been shown to provide a good trade-off between solution quality and

run time [11].

HOP has been successfully used in various domains such as network control [36] and

probabilistic planning [37, 38]. However, as N approaches to infinity, it has been observed

that HOP often converges to a suboptimal policy for CTP [11].
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4.2.3 Optimistic Rollout (ORO)

In order to address the suboptimality issue of HOP, optimistic rollout (ORO) approach

makes a subtle modification to the rollout mechanism [11]. Both algorithms perform

N number of rollouts to compute cost estimates to select the next action. However,

ORO executes the optimistic policy to assign the distance traveled as the rollout cost.

In other words, in ORO rollouts, the underlying deterministic subgraph is hidden to the

agent (whereas in HOP, it is revealed to the agent, hence the deterministic shortest path

calculations). In practice, the agent traverses the deterministic subgraph while following

the optimistic policy, and it re-plans the path whenever a blocked edge is encountered.

ORO selects successor edges which give the minimum optimistic policy cost until the

termination node is reached.

4.2.4 Blind UCT (UCTB)

Introduced by Kocsis and Szepesvári [32], UCT (Upper Confidence Bounds Applied to

Trees) has shown success in sequential decision making problems ranging from multi-

armed bandit problems to general Markov Decision Processes [37, 39], including CTP

[11]. UCT follows the logic of the previous algorithms and calculates a cost estimate

by averaging the cost of N rollouts. Similar to ORO, in every rollout, the underlying

subgraph is hidden to the agent. However, how the algorithm chooses the next action

during the rollouts is quite different from the previous algorithms. Let b denote the

initial belief state of the agent prior to its s, t traversal. Starting from the belief state b,

� =< b, b
1

, . . . , bi > is called a belief sequence consisting of a particular order of belief

states. In each rollout, a belief state is added to the sequence until the agent reaches the

termination node.

The critical part is how UCT selects a b0 amongst the alternative successor states

b0
1

, . . . , b0n. This is where the fundamental difference between the previous rollout-based

algorithms and UCT reveals itself. In HOP and ORO, each rollout is an independent

simulation whereas in UCT, rollouts affect each other to allow exploiting the graph-

specific information. In simple terms, to select the next action, UCT biases the selection

towards successors that (1) produce low cost estimates and (2) remain unexplored in the

previous rollouts. This trade-off between exploitation and exploration is balanced with
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respect to what is called the UCT Formula below:

B
⇣
logRk

(⇢)

Rk
(⇢i)

⌘
1/2

� cost(⇢, ⇢i)� Ck
(⇢i)

In the above expression,

• ⇢i denotes the sequence ⇢ that is extended with the belief state bi.

• cost(⇢, ⇢i) is cost of traversing from ⇢ to ⇢i,

• Rk
(�) denotes the number of rollouts starting with � among rollouts 1 through k,

and

• Ck
(�) is the average travel cost of rollouts Rk

(�).

To avoid the case where Rk = 0 that makes the UCT Formula approach to 1, the

algorithm starts the first m rollouts with visiting ⇢’s each successor once. By selecting

the ⇢i that maximizes the UCT Formula, UCT optimizes the trade-off explained above.

4.2.5 Optimistic UCT (UCTO)

The UCT Algorithm explained above will be referred to as Blind UCT (UCTB) in the

following sections. To improve solution quality and speed of convergence, Eyerich et al.

[11] modifies UCTB by incorporating the optimistic approach, which they refer to as

UCTO. Specifically, UCTO operates as follows:

1. During the rollouts, it breaks ties for unvisited successors by picking the one that

gives the lowest optimistic policy cost.

2. It defines Rk
(�) and Ck

(�) using M additional rollouts for the successor belief

states while calculating the cost of belief states using the optimistic policy.

Thus, during the initial rollouts, OMT helps UCTO to select better paths earlier by

sensing it during the additional M rollouts. A reasonable number of additional rollouts

M is determined empirically, which is taken as 20 in our computational experiments.
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4.3 Computational Experiments

This section empirically compares performance of the above six algorithms for CTP

instances defined on two different graph types: (1) classical Delaunay graphs on the

plane and (2) grid graphs, which are essentially 8-adjacency integer lattices. An example

of a Delaunay graph consisting of 20 nodes and 48 edges is shown in Figure 4.1 whereas

an example of a 10x10 grid graph is illustrated in Figure 4.2.

Figure 4.1: A Delaunay graph consisting of 20 nodes and 48 edges.

For both graph types, blockage probabilities are sampled from Beta probability distribu-

tion parameterized via what we call sensor accuracy and denote by � [10]. Specifically,

in any CTP instance, for randomly chosen 50% of the edges, blockage probabilities are

sampled from Beta(4� �, 4 + �) (denoting unblocked edges in reality) and the blockage

probabilities of the other 50% of the edges are sampled from Beta(4 + �, 4 � �) (this

Figure 4.2: A CTP instance on a 10x10 grid graph. Blocked edges are represented
by bold edges.
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time denoting blocked edges in reality). The motivation for introducing the sensor ac-

curacy parameter is to generate meaningful blockage probabilities which are obtained

from sensors in practice in general. A real-life application of sensor-obtained blockage

probabilities within a probabilistic path planning domain can be found in a U.S. Navy

minefield data set called the COBRA data [30].

As � approaches to 0 (lowest sensor accuracy), the sensor will render “useless" information

about the blockage status of graph edges. On the other hand, as � approaches to 4

(highest sensor accuracy), the sensor will render almost “perfect" information [10]. For

each graph size on both Delaunay and grid graphs, we consider two sensor accuracy

levels: � = 2 and � = 3, which we designate as low and high sensor accuracy, respectively.

Probability density plots of the respective � values are shown in Figures 4.3 and 4.4.
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Figure 4.3: Blockage probability density plots for � = 2 for the Beta distribution.
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Figure 4.4: Blockage probability density plots for � = 3 for the Beta distribution.
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For both graph types, we consider two parameters for the random CTP instances: graph

size and sensor accuracy. We use three different graph sizes for Delaunay graphs: small

graphs with 20 nodes, moderate graphs with 100 nodes, and large graphs with 250 nodes.

For grid-based graphs, we consider two graph sizes: 10x10 lattices with 420 edges and

20x20 lattices with 1640 edges.

For all parameter combinations, each algorithm is tested on a total of 900 instances

for Delaunay graphs with 20 and 100 nodes as well as 10x10 grid graphs: 30 blockage

probability realizations each from 30 different graphs. Due to high complexity and ex-

cessive run time requirements for larger problems, we perform 100 runs (10 realizations

each from 10 different graphs) for both Delaunay graphs with 250 nodes and 20x20 grid

graphs. Each graph was modeled to consist of only stochastic edges. The computational

experiments were performed on a PC with a quad-core 3.60 GHz processor and 16 GB

of memory. All algorithms were implemented in C++.

At this point, a clarification is in order. Definition of CTP calls for minimization of

expected s, t path length cost. However, for a given CTP instance, computation of

this quantity for any algorithm is exponential in the number of stochastic edges and it

is prohibitively expensive. Therefore, as in Eyerich et al. [11], we first sample what is

called a “weather" from the probability distribution of the stochastic edges to determine

the actual blockage status of these edges. Next, based on the outcome of this sampling

procedure, we form a deterministic graph where some of these edges are blocked and

the others are not. Finally, we execute the algorithm under consideration and find the

actual travel cost of the s, t path.

4.3.1 Delaunay Graph Results

Experimental results on Delaunay graphs are summarized in Table 4.1. We observe

that regarding rollout-based algorithms, UCTO exhibits the best overall performance in

general, which is in line with the results of Eyerich et al. [11]. For low sensor accuracy,

i.e., for � = 2, DTA outperforms all other algorithms, though not by a large margin

in the case of rollout-based algorithms. On the other hand, for high sensor accuracy,

that is, for � = 3, superiority of DTA against OMT and rollout-based algorithms is

more pronounced, indicating DTA’s sensitivity to reliable sensor information. In all

combinations considered, DTA outperformed OMT by up to 53.4% and UCTO by up
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Table 4.1: Average cost of algorithms for Delaunay graphs. Lowest policy cost for
each parameter combination is denoted in bold. Last two columns show how much DT

is better than OMT and UCTO respectively in percentages

Average Distance Percent Difference

� Size OMT DT UCTO UCTB HOP ORO DT-OMT DT-UCTO

2 20 1938 1546 1551 2024 1593 1582 25.4 0.3
50 2543 1892 1954 3573 2147 2020 34.4 3.3
250 2554 1934 2010 4186 2247 2077 32.1 3.9

3 20 2035 1509 1540 2134 1562 1606 34.9 2.1
50 2630 1715 1854 3564 1899 1937 53.4 8.1
250 2634 1741 1870 3456 1842 1932 51.3 7.4

Mean 2389 1723 1797 3156 1882 1859 38.6 4.2
Median 2549 1728 1862 3510 1871 1935 34.6 3.6

Std. 316 174 203 874 280 212 11.2 3.0

Table 4.2: Average cost of algorithms for grid-based graphs. Lowest algorithms cost
for each parameter combination is denoted in bold. Last two columns show how much

DT is better than OMT and UCTO respectively in percentages.

Average Distance Percent Difference

� Size OMT DT UCTO UCTB HOP ORO DT-OMT DT-UCTO

2 10x10 16.1 13.7 14.0 - 13.9 14.1 17.9 2.2
20x20 31.3 25.9 26.6 - 26.7 26.4 20.7 2.9

3 10x10 16.0 12.9 13.3 - 13.2 13.4 23.7 2.6
20x20 29.4 24.2 25.0 - 24.6 25.4 21.4 3.2

Mean 23.2 19.2 19.7 - 19.6 19.9 20.9 2.8
Median 22.8 18.9 19.5 - 19.4 19.8 21.1 2.8

Std. 8.3 6.8 7.1 - 7.0 6.9 2.4 0.3

to 8.1%. In particular, the cost of the policies found by DT was better than OMT and

UCTO by 38.6% and 4.2% respectively on the average.

In terms of run time, our results show that rollout-based policies do not scale well with

large instances, which can be seen in both Figure 4.5 and Table 4.3. On the other hand,

one major advantage of penalty-based algorithms is that they scale relatively gracefully

with the graph size1. In all of our tests, DTA ran extremely fast. In particular, whereas

UCTO ran in 95.2 seconds on graphs with 250 nodes, DTA ran in merely 0.3 seconds,
1With at most n successive deterministic shortest path computations, run time of DTA (as well as

Optimism) can be seen to be O(n2
log n) where n is the number of graph nodes.



Chapter 4. A Comparison of Penalty and Rollout-Based Policies for the Canadian
Traveler Problem 45

Table 4.3: Run time averages (in seconds) of algorithms on Delaunay graphs.

Size OMT DT UCTO UCTB HOP ORO

20 0.1 0.1 0.6 1.4 0.6 1.7
100 0.1 0.2 18.5 104.5 10.5 51.5
250 0.2 0.3 95.2 747.3 48.8 326.2

Table 4.4: Run time averages (in seconds) of algorithms on grid-based graphs.

Size OMT DT UCTO UCTB HOP ORO

10x10 0.0 0.0 11.6 � 9.1 45.1
20x20 0.1 0.2 117.5 � 70.6 453.6

which is about a 320-fold computational advantage. Of course, this is in addition to a

4.2% improvement in solution quality of DTA over UCTO on the average.
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Figure 4.5: Average run time as a function of size on Delaunay graphs.

4.3.2 Grid Graph Results

Grid graph results are shown in Table 4.2 and Table 4.4 for solution quality and execution

time respectively. Despite the high memory capacity, UCTB failed to yield a solution

for grid graphs, hence the “�" mark in the tables. Similar to Delaunay graphs, DTA

outperformed OMT by upto 23.7% and UCTO by upto 3.2%. On the average, the cost
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of the policies found by DTA was better than OMT by 20.9% and UCTO by 2.8%

respectively. In terms of execution time, DT ran about 220 times faster than UCTO

on 10x10 grid graphs and about 40 times faster on 20x20 grid graphs. In particular, on

20x20 grid graphs, DT ran in just 0.2 seconds on the average whereas UCTO completed

in 117.5 seconds. Solution quality improvement of DTA was even higher with the high

sensor accuracy.

4.4 Conclusions and Future Research

4.4.1 Conclusions

This chapter provides a set of computational experiments to compare the penalty-based

DT Algorithm against rollout-based algorithms for CTP on random problem instances

defined on Delaunay and grid graphs. Our results indicate that DTA runs significantly

faster than rollout-based algorithms while providing better policies in general. Run

time advantages of DTA are even more pronounced as graph sizes get larger. As for

solution quality, DTA outperformed all other algorithms in all combinations for both

sensor accuracy levels in our tests, which we believe is quite remarkable especially taking

into account how simple it is and how quickly it finds a solution.

4.4.2 Limitations and Future Research

There is one particular issue regarding sensitivity of DTA’s solution quality to sensor

accuracy. As illustrated in the previous section, relative performance of DTA seems to

increase as � increases for � � 2. However, in our limited experiments for lower values

of �, performance of DTA took a turn for the worse, this time sometimes being out-

performed by even OMT, i.e., the Optimism Algorithm. We suspect that this behavior

is related to the specific form of the DT penalty function that seems to require a good

amount of separability between densities of blocked and unblocked edge probabilities.

This observation, on the other hand, brings up the question whether penalty functions

other than DT exist that could potentially result in better policies in the case of poorly

performing sensors. We actually conducted limited experiments where we attempted to
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improve upon the DT penalty function for specific CTP instances with poor sensor accu-

racy on a case by case basis using stochastic optimization techniques, and our preliminary

results are very encouraging. We leave it to future research to devise efficient method-

ologies for identification of an appropriate penalty function for a given CTP instance in

the case of poor sensor accuracy.



Appendix A

Problem Instances in Simulation

Environments C and D

This appendix presents x� and y�coordinates of disk centers and disk marks in the

COBRA data set in Simulation Environment C, and the six COBRA-like instances in

Simulation Environment D.

Table A.1: Center coordinates and marks of COBRA disks.

X Y Mark X Y Mark X Y Mark

46.13 39.61 0.0731 50.49 24.26 0.1033 83.62 16.33 0.1165
30.21 54.62 0.1379 56.83 20.50 0.1527 44.87 66.45 0.1668
47.88 34.51 0.1718 40.55 76.93 0.1939 43.43 26.22 0.2575
21.93 53.22 0.3309 69.82 51.65 0.4353 65.64 11.08 0.4412
37.36 29.94 0.4917 29.47 37.21 0.5215 59.42 20.11 0.5418
38.90 57.22 0.5609 32.07 31.37 0.5745 45.71 24.83 0.5831
86.12 15.83 0.5902 52.01 56.80 0.5994 41.14 27.41 0.6200
8.43 74.26 0.6399 37.00 43.89 0.6416 72.53 18.22 0.6527
22.98 40.29 0.6543 70.33 18.61 0.6564 29.78 32.15 0.6566
63.54 24.81 0.1887 64.04 37.65 0.5149 27.00 37.97 0.5280
46.07 71.00 0.5609 65.16 64.01 0.5653 37.36 18.03 0.6108
39.43 70.31 0.6171 75.51 42.83 0.6189 76.11 55.73 0.6405
38.29 44.20 0.6444 28.16 64.10 0.6567 64.55 50.98 0.8515

48
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Table A.2: Center coordinates and marks of COBRA-like Instance 1 disks.

X Y Mark X Y Mark X Y Mark

23.75 37.63 0.8804 65.31 22.57 0.3669 12.40 83.31 0.2423
86.69 36.95 0.9049 81.09 18.74 0.1917 62.04 34.20 0.1082
18.73 32.54 0.9539 39.09 57.18 0.5187 14.34 59.59 0.4565
16.94 28.37 0.8486 87.64 11.69 0.3810 40.25 36.77 0.5199
10.65 42.96 0.7621 79.20 60.80 0.0325 17.90 68.62 0.6199
62.21 24.77 0.7717 67.61 29.75 0.1414 44.40 28.21 0.1133
68.55 61.27 0.7142 89.76 39.35 0.2766 80.05 28.30 0.0271
10.06 84.25 0.5365 37.88 44.97 0.0108 31.16 35.74 0.3034
37.70 64.10 0.7436 52.64 23.22 0.4036 13.06 53.85 0.3261
44.69 33.62 0.9618 89.85 77.80 0.5890 63.42 26.61 0.2082
58.09 63.85 0.6684 56.70 63.69 0.2837 15.77 26.91 0.1618
63.82 46.92 0.9428 49.16 24.65 0.0986 21.40 48.30 0.1972
10.54 43.81 0.0287 72.13 20.21 0.1118 65.26 41.93 0.0476

Table A.3: Center coordinates and marks of COBRA-like Instance 2 disks.

X Y Mark X Y Mark X Y Mark

30.98 60.41 0.7944 72.12 36.75 0.2640 83.97 42.34 0.1246
30.95 36.73 0.8726 12.74 44.21 0.1369 10.97 61.46 0.1880
17.86 81.16 0.7772 87.57 78.57 0.2491 13.43 11.50 0.2190
48.93 49.11 0.4122 48.42 66.21 0.4743 24.94 71.51 0.7333
14.69 32.45 0.9290 65.13 35.39 0.1255 84.74 51.76 0.1242
58.16 64.48 0.5905 80.21 24.78 0.2227 75.53 82.68 0.3199
48.73 68.31 0.7618 77.77 17.87 0.2898 26.10 65.97 0.0531
20.08 29.51 0.8261 29.72 15.46 0.1679 63.89 33.08 0.2655
65.05 62.04 0.7553 56.01 42.31 0.3119 73.92 56.05 0.1632
52.23 38.43 0.6611 18.24 16.52 0.0861 27.34 84.19 0.1225
85.70 50.82 0.8955 12.68 29.04 0.2650 56.44 72.07 0.5423
79.36 60.72 0.6665 63.81 24.37 0.2717 16.20 68.20 0.4354
39.60 63.99 0.3790 81.77 82.80 0.1760 63.06 79.72 0.1297

Table A.4: Center coordinates and marks of COBRA-like Instance 3 disks.

X Y Mark X Y Mark X Y Mark

77.15 65.28 0.7048 27.33 47.70 0.2749 48.92 89.60 0.3360
73.77 61.05 0.5863 35.01 27.29 0.2170 45.44 40.09 0.1764
16.80 42.48 0.9004 53.61 69.05 0.1746 42.67 71.53 0.0910
85.16 59.52 0.6005 27.48 84.77 0.0296 60.11 40.51 0.2268
74.26 18.83 0.7814 58.32 49.09 0.6145 61.03 48.82 0.2949
31.98 63.07 0.9297 30.45 80.46 0.2131 62.31 71.09 0.3926
60.27 46.45 0.6989 71.00 75.81 0.3175 76.02 30.62 0.4548
34.19 76.00 0.9041 73.63 81.94 0.5261 88.72 75.02 0.3445
44.02 89.02 0.6599 32.19 58.00 0.2372 21.48 41.50 0.1210
34.00 54.69 0.7674 51.97 67.70 0.5056 46.25 14.54 0.2130
38.36 69.72 0.3458 81.04 73.33 0.2313 21.55 89.82 0.3643
40.27 21.31 0.6137 40.47 29.63 0.0691 14.69 60.59 0.3980
58.78 15.02 0.1049 73.10 42.19 0.1516 16.16 39.55 0.1375
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Table A.5: Center coordinates and marks of COBRA-like Instance 4 disks.

X Y Mark X Y Mark X Y Mark

87.21 49.82 0.8058 43.87 28.81 0.5957 85.75 42.41 0.0252
10.95 17.43 0.3995 40.90 28.34 0.1219 45.54 44.68 0.2982
74.31 34.23 0.7832 15.12 43.51 0.2227 20.17 21.00 0.2097
18.74 12.83 0.5614 65.29 81.10 0.3898 19.94 35.67 0.2502
60.30 24.76 0.6654 31.48 30.27 0.4503 62.32 15.66 0.4404
25.62 33.70 0.6517 79.54 13.94 0.2005 27.48 27.29 0.2953
58.13 57.05 0.7858 57.80 12.52 0.1078 75.77 11.95 0.1755
58.35 76.47 0.8536 58.20 51.43 0.2258 22.40 68.44 0.1889
43.18 30.81 0.8654 78.15 85.88 0.4560 60.46 73.90 0.2337
58.94 16.54 0.6941 52.49 27.72 0.2839 74.44 41.07 0.1890
37.83 63.85 0.7916 11.73 77.43 0.3284 63.35 46.24 0.1606
62.23 10.74 0.6698 23.97 18.63 0.1335 66.46 19.63 0.3633
64.30 47.21 0.3774 70.95 14.07 0.2097 47.31 70.67 0.2289

Table A.6: Center coordinates and marks of COBRA-like Instance 5 disks.

X Y Mark X Y Mark X Y Mark

36.32 24.37 0.6272 65.94 42.26 0.4206 36.02 77.85 0.3244
15.40 37.67 0.9315 72.09 60.68 0.4938 81.81 56.67 0.3617
10.86 65.42 0.6859 11.82 67.85 0.1556 39.00 56.25 0.1567
80.21 31.00 0.8989 55.49 22.14 0.1318 26.69 31.36 0.2118
31.69 28.43 0.7812 16.66 34.62 0.1264 71.98 17.37 0.1334
55.33 65.94 0.8342 65.64 72.41 0.6362 49.51 77.68 0.3143
84.54 22.33 0.8894 79.30 27.57 0.1957 60.44 13.13 0.1756
43.49 89.68 0.5151 79.07 68.00 0.0291 29.78 69.28 0.1434
66.28 10.63 0.6631 55.86 16.23 0.2242 50.84 63.61 0.0675
58.99 25.40 0.6119 73.54 27.45 0.5146 46.21 24.52 0.2760
35.95 56.48 0.9661 29.26 81.33 0.2240 41.10 40.04 0.2130
11.53 60.81 0.1599 67.11 53.72 0.4518 58.66 23.42 0.6586
62.29 16.99 0.3447 82.32 88.59 0.1547 29.61 49.01 0.1834

Table A.7: Center coordinates and marks of COBRA-like Instance 6 disks.

X Y Mark X Y Mark X Y Mark

30.33 49.03 0.8858 39.55 19.38 0.3212 38.96 88.68 0.2409
84.91 78.84 0.9142 11.14 21.92 0.3143 41.64 27.85 0.1364
37.17 51.30 0.9008 80.66 65.64 0.1711 22.88 72.99 0.0836
21.55 49.25 0.6354 10.23 73.50 0.1004 28.06 76.60 0.4545
43.94 35.52 0.6747 26.92 31.11 0.1540 71.94 76.94 0.2831
38.42 55.24 0.9313 82.51 20.42 0.1432 20.65 57.60 0.0234
17.16 37.25 0.9138 31.01 37.74 0.4742 21.38 27.16 0.4543
33.32 65.31 0.8391 54.31 83.29 0.3468 47.02 64.52 0.5741
27.66 41.70 0.5527 36.27 83.66 0.2067 76.04 70.91 0.1244
19.97 73.98 0.7190 56.78 65.64 0.3761 31.08 78.00 0.1804
13.28 54.96 0.7638 65.22 71.59 0.3926 43.78 13.54 0.2463
79.21 81.87 0.7390 11.40 76.11 0.4327 31.89 82.25 0.0871
85.89 30.82 0.2349 38.28 65.61 0.2674 35.68 73.84 0.1055
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