
Investigating mis-implementation of SSL

Libraries in Android Applications

A thesis submitted to the

Graduate School of Natural and Applied Sciences

by

Halil Avc�

in partial ful�llment for the

degree of Master of Science

in

Cybersecurity Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Istanbul Sehir University Repository

https://core.ac.uk/display/38327622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This is to certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and quality, as a thesis for the degree of Master of Science in Cybersecurity

Engineering.

APPROVED BY:

Necati Ersen �i³eci .

(Thesis Advisor)

Prof. Dr. Erkan Türe .

Asst. Prof. Davut �ncebacak .

This is to con�rm that this thesis complies with all the standards set by the Graduate

School of Natural and Applied Sciences of �stanbul �ehir University:

DATE OF APPROVAL: 10 March 2016

SEAL/SIGNATURE:

Declaration of Authorship

I, Halil Avc�, declare that this thesis titled, 'Investigating mis-implementation of SSL

Libraries in Android Applications' and the work presented in it are my own. I con�rm

that:

� This work was done wholly or mainly while in candidature for a research degree at

this University.

� Where any part of this thesis has previously been submitted for a degree or any

other quali�cation at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

�Companies spend millions of dollars on �rewalls, encryption and secure access devices,

and it's money wasted, because none of these measures address the weakest link in the

security chain.�

Kevin Mitnick

Investigating mis-implementation of SSL Libraries in Android

Applications

Halil Avc�

Abstract

This thesis presents our analysis of applications that are popular at the market against

SSL miss-implementation. 8.882 applications analyzed and as a result 2.354 applications

have at least one miss use of SSL libraries which are Custom TrustManager, Custom

HostnameVeri�ers and WebViewClient libraries. After analysis phase we have created a

proof of concept application as an Xposed framework plugin to identify vulnerabilities.

Our conclusion is that 27 percent of applications have a vulnerability from SSL connection

stand point. The main reasons for these vulnerabilities are developer errors and third

party generators or libraries. Using third party libraries can cause security bugs which

leads to informations leakage or exploitation.

Keywords: Android, SSL, Vulnerability, Custom TrustManager, Custom HostnameV-

eri�ers, WebViewClient

Android Uygulamalar�nda SSL Za�yetlerinin Ara³t�r�lmas�

Halil Avc�

Öz

Çal�³mam�z, Android markette yer alan popüler uygulamalar�n SSL za�yetlerinin ara³t�r�l-

mas� ve bunlar�n sunulmas�n� içermektedir. 8.882 uygulama analiz edilmi³ ve sonuç olarak

2.354 uygulaman�n en az bir SSL kütüphanesini yanl�³ kulland�§�n� ortaya koyduk. Analiz

a³amas�n� takiben uygulama üzerinde za�yetleri ortaya ç�karmak için Xposed altyap�s�n�

kullanarak örnek bir uygulama gerçekle³tirdik. SSL uygulama za�yeti aç�s�ndan in-

celedi§imiz uygulamalar�n yüzde 27'sinin sorun içerdi§i sonucuna vard�k. Bu za�yetlerin

ana sebepleri geli³tirici hatalar�, üçüncü parti kütüphane ve uygulamalar�n kullan�lmas�

olarak tespit ettik. Sorunlu üçüncü parti kütüphanelerin kullan�lmas� mahremiyet ihlali

ve za�yetlerin istismar edilmesi gibi hatalara yol açt�§�n� ortaya koyduk.

Anahtar Sözcükler: Android, SSL, Za�yet

I dedicate this study to my beloved family, wife Aynur and children
Ay³enur and �brahim.

vi

Acknowledgments

I would like to acknowledge my deepest appreciation to my advisor Necati Ersen �iseci

for his continuous support and guidance during my study process. I would like to thank

rovo89 the creator of Xposed; Anthony Desnos creator of Androguard; Chih-Wei Huang

and Yi Sun creator of Android-x86 and other contributors to these projects for their

great work. I like to express my sincere gratitude to my family devoted their precious

time for me to accomplish the work.

vii

Contents

Declaration of Authorship ii

Abstract iv

Öz v

Acknowledgments vii

List of Figures x

List of Tables xi

Abbreviations xii

1 Introduction 1

2 SSL & SSL Applications in Android 3

3 Application Testing Methodology 5
3.1 Challenges . 5
3.2 Static Analysis . 6
3.3 Inspection of results . 7
3.4 Dynamic Analysis . 9

3.4.1 CERT Transparent Proxy Capture Appliance (Tapioca) 10
3.4.2 Nogotofail . 10

3.5 Cross Reference Traversing . 11
3.6 Analysis and Results . 11

4 Proposed Solution 13
4.1 Xposed . 13
4.2 Trust But Verify . 14

5 Development Best Practices for Security & Privacy 15
5.1 Certi�cate Pinning . 15
5.2 Certi�cate pinning in Android . 19
5.3 Alternative Methods for Certi�cate Validation 20

6 Related Work 22

7 Conclusions 24

viii

Contents ix

A Cross Reference Traversing 26

Bibliography 28

List of Figures

3.1 Number of Applications by Normalized Risk Groups 10

5.1 Pinning Trust Manager . 17
5.2 Standard HTTPS Request . 18
5.3 Code For Certi�cate Veri�cation . 19
5.4 HTTP Response Header Field Examples 21

x

List of Tables

3.1 Number of Vulnerable Implementations by Implemention Type 7
3.2 Custom TrustManager Examples . 8
3.3 Number Of Vulnerable (Miss-implemented SSL) Applications by Category 9
3.4 Dynamic Analysis Break Down . 12

xi

Abbreviations

ADB Android Debug Bridge

APK Android Application Package

CA Certi�cate Authority

CERT Computer Emergency Response Teams

CERT-CC CERT Coordination Center

CMU Carnegie Mellon University

DEX Dalvik Executable File

DHCP Dynamic Host Con�guration Protocol

DNS Domain Name System

EFF Electronic Frontier Foundation

HSM Hardware Security Module

HTTPS Hyper Text Transfer Protocol Secure

JSSE Java Secure Socket Extension

MITM Man In The Middle

NAT Network Address Translation

SPKI Simple Public Key Infrastructure

SSL Secure Sockets Layer

TACK Trust Assertions for Certi�cate Keys

TLS Transport Layer Security

VPN Virtual Private Network

xii

Chapter 1

Introduction

With the rise of smart phones people tend to use applications to ease their daily routine

of their life's like reading news, gathering their emails, messaging through their social

accounts, taking photos and sending them to their backup cloud, paying bills, transaction

money using their bank apps and the list goes on. When we consider this small list many

personal data can eavesdropped by a second person if connection is not secure, or the

implementation of the secure channel is miss-implemented.

People have gain the awareness of Secure Sockets Layer (SSL) connection information

when they browse the internet via browsers. Maybe they don't know the underlying tech-

nology but they aware of a green lock icon indicating that the site they are connecting is

using SSL and they can "securely" connect and perform their operations. But in applica-

tions all the connection stu� is done by applications or operating system services out of

sight of the user. Everything done under the hood. An average user couldn't understand

if there is a connection and if there is any, couldn't understand that connection is secure

or unsecure. They thrust the application provider; but sometimes application developers

lack of understanding about security concepts. They generally tend to implement the

business logic in an easy and time e�cient manner.

Android has extension points for SSL certi�cate validation. This extension points can be

used to harden the security of the application like certi�cate pinning or can be used to

bypass security exceptions which is caused by forged certi�cates, expired certi�cates, the

ones created by adversaries etc. Also a common issue, codes which is deployed to ease

development process can be forgotten by developers at the production application. This

1

Chapter 1. Introduction 2

codes generally used to test with internal development server with bypassed certi�cate

checks.

In this thesis, 8882 applications at the market analyzed for their SSL implementations.

A risk table created according to di�erent factors and a proof of concept application

created to identify SSL miss-use at the operation system level. We are investigating

secure communication. While expressing SSL we also use the word as a synonym of

TLS.

There are some researches like "Why eve and mallory love android: An analysis of android

ssl (in) security"[1] and "Smv-hunter: Large scale, automated detection of ssl/tls man-

in-the-middle vulnerabilities in android apps"[2] on the subject; we plan to focus on

applications from a Turkish market user and target to extent researches one step further.

Our work is focused on SSL implementation errors which are caused by application

developers. SSL protocol implementation errors like heartbleed [3] bug or vulnerabilities

recently disclosed on OpenSSL [4] are di�erent and these are out of scope of our work.

Most of the vulnerable code just ignores SSL checks and returns always true. An example

code from a �nancial application is follows:

class MySSLSocketFactory$1 implements javax.net.ssl.X509TrustManager {

final synthetic com.z.zmobil.serviceclient.MySSLSocketFactory this$0;

public void checkClientTrusted(X509Certificate[] p1, String p2)

{

return;

}

public void checkServerTrusted(X509Certificate[] p1, String p2)

{

return;

}

public X509Certificate[] getAcceptedIssuers()

{

return 0;

}

}

Chapter 2

SSL & SSL Applications in Android

For encrypted communications The Secure Sockets Layer (SSL) is the de facto communi-

cation protocol between two points generally a server and a client. If the implementation

is incorrect it is possible that an attacker can intercept the communication and place a

man in the middle attack. SSL is based on Public-Key Infrastructure (PKI). Which

means there is a public key and a private key that are paired. A server holds both public

and private keys and publishes public key. Whenever a client wants to communicate

through secure channel, uses this public key and initiates a handshake procedure with

the server. Server proves it has the private key by signing its certi�cate with public-key

cryptography. And a secure channel is established between two.

At this point it crucial to know that certi�cate is genuine and the certi�cate holder is

the exact person that he told so. Because a valid forged certi�cate can be published

and without validation a secure channel is established not with the server but with

the attacker. To solve this issue server and clients host root certi�cates of Certi�cate

Authorities (CAs) which are well known. Certi�cate Authorities work as a notary for

certi�cates to approve that certi�cate is belong to the one that client is trying connect

to or disapproves that certi�cate is not belong to the claimer. This is the �rst extension

point of Android: Custom TrustManager. Custom TrustManager is the extension point

where a developer can change the validation logic of certi�cate and CAs. Developer

can introduce a new CA, can ignore well known CAs, deploys and validates self-signed

certi�cates. This can be used for hardening like certi�cate pinning or disabling security

like always success resulted certi�cate checks.

3

Chapter 2. SSL & SSL Applications in Android 4

Certi�cate might be from a trusted source but it might still issue for someone else you are

trying to connect to. So while certi�cate is being checked for validation, subject or subject

alternative name �elds compared to match the server you are trying to reach. This is

the second extension point of Android: Custom HostnameVeri�ers. This extension point

gives �exibility to developer to check hostname with its own algorithm. With virtual

hosting, when sharing a server for more than one hostname with HTTPS, this can be

handy.

Third extension point is WebViewClient. Which is used to extent the secure communi-

cation that occurred in a browser component used in the application.

Those are the extension points for speci�c needs. Without extending secure connection

in Android is as easy as:

URL url = new URL("https://wikipedia.org");

URLConnection urlConnection = url.openConnection();

InputStream in = urlConnection.getInputStream();

copyInputStreamToOutputStream(in, System.out);

Chapter 3

Application Testing Methodology

For our thesis we basically follow static and dynamic testing methodologies. If we break

down into phases:

1. Downloading applications from App Store

2. Performing static tests for each application

3. Analyzing results

4. Performing dynamic tests for a few selected applications

5. Creating a proof of concept application to identify SSL miss-implementations in

the applications.

3.1 Challenges

Downloading applications from App Store is the �rst step of testing and probably is

the di�cult one. After some research for gathering applications without using phone

by downloading one by one we stumble upon a project at github called google-play-

crawler[5] which is developed by Ali Demiröz. Google Play Crawler Java Api searches

android applications on Google Play, and downloads them. To start crawling Google

Play Crawler needs a list of applications or list of categories on the application mar-

ket. We got the application categories from Google Play and fed Google Play Crawler

with those information. When crawler started to download applications, Google Play

5

Chapter 3. Application Testing Methodology 6

banned the crawler from downloading because it detected as an attack to the system for

too many requests in a short period of time. Adjustments made by try and error like

delaying requests and Crawler started again to download applications. As a result 8882

applications downloaded which allocates almost 16 Gigabytes of space.

Static analysis took roughly 13.500 minutes to run. The total amount of time spent

to �nish static analysis took more because we need to include setup time, installing

applications, con�guring, writing required scripts to parse output, copying �les and etc.

We try to test nogotofail[6] setup from google for dynamic testing but we couldn't manage

to connect OpenVPN[7] server from the device which is necessary to investigate the

tra�c. OpenVPN needs tun.ko kernel module which is not available on Android X86

port. We performed our dynamic analysis with the CERT Tapioca[8] virtual machine.

3.2 Static Analysis

After gathering applications from App Store we setup a system for Static Analysis. This

setup uses Androguard and mallodroid[9].

Androguard[10] is a tool written in python to analyze, inspect and change Application

packages (APK) .apk �les, Android's binary xml, Android Resources and the most im-

portant one disassemble de-compilation of .dex (Dalvik virtual machine) �les which is

compiled code of the application.

Mallodroid is an Androguard extension, runs on top of Androguard and it �nds broken

SSL certi�cate validation in Android Apps. Mallodroid is developed by Sascha Fahl et

al to perform SSL miss-implementation inspect in applications. Details of the work is

explained at the Related Work at the following sections. We need to slightly change mal-

lodroid code to handle WebViewClient extension and we deploy some exception handling.

Also some performance enhancements was made.

Analyzing an application takes 2 to 5 minutes according to application size because there

are many steps:

• Unpacking APK �le

• Decompiling �les

Chapter 3. Application Testing Methodology 7

• Converting from DEX to java language

• Constructing function call hierarchy

• Test java code to �nd out if there is an extension for the methods that are related

to SSL communication

• And �nally test if they correctly implement SSL extension.

3.3 Inspection of results

Each static result of an application is written to a �le. After static analysis those �les

collected and parsed through a program which is written in Microsoft C#. Parsed

data than inserted to database to bene�t from SQL capabilities to create reports of the

result. Implementation types categorized, applications that uses pinned certi�cations

identi�ed, used Libraries classi�ed, Custom TrustManagers identi�ed and so on. 201

pinning implementations found out of 4590 applications that extent libraries.

From the Implementation stand point 69 percent of the implemented libraries are having

problem with Custom TrustManager.

Table 3.1: Number of Vulnerable Implementations by Implemention Type

Implemention Type Number of Vulnerable Implementations

WebViewClient 9

Custom TrustManager 2.964

Custom HostnameVeri�ers 1.343

Some of the Custom TrustManager package names are self-explanatory like TrustAllMan-

ager, TrustingX509TrustManager or SSLSocketFactoryTrustAll which are vulnerable to

MITM because they are not validating SSL certi�cates. And PinningTrustManager is not

vulnerable and its name states that it's validating certi�cate against a pining certi�cate.

Game categories have a huge Number of Vulnerable Applications compared to other

Categories.

73 percent of Library Implementations are generated by third party components used

by application developers. 40 percent of these implementations are ads and analytics

cumulatively. This is a good point because generally these libraries doesn't collect high

Chapter 3. Application Testing Methodology 8

Table 3.2: Custom TrustManager Examples

Custom TrustManager Is Vulnerable Number Of Apps

MySSLSocketFactory TRUE 588

DefaultTrustManager TRUE 247

NaiveTrustManager TRUE 214

HttpRequest TRUE 125

PinningTrustManager FALSE 116

SSLSocketFactoryEx TRUE 77

TrustManagerDecorator FALSE 67

SslUtils TRUE 63

TrustingX509TrustManager TRUE 56

SSLSocketFactoryTrustAll TRUE 54

TrustManagerDelegate FALSE 53

FileTransfer TRUE 68

TrustEveryoneTrustManager TRUE 48

SPSSLSocketFactory FALSE 42

EasyX509TrustManager FALSE 34

EasySSLSocketFactory TRUE 33

IgnoreCertTrustManager TRUE 28

SandboxSSLSocketFactory TRUE 26

FTPSTrustManager FALSE 20

HttpUtil TRUE 20

TrivialTrustManager TRUE 17

TrustAllManager TRUE 15

NonValidatingTrustManager TRUE 14

sensitive data but one must aware that these libraries generally collect Meta data like

person's usage habits.

A risk factor is calculated for each risky application. This risk factor is calculated with

di�erent indications like permission requests, number of downloads and category of the

application. Permission requests graded for their impacts to the use like application with

ACCESS_FINE_LOCATION permission top graded from the risk stand point while

FLASHLIGHT permission low graded. Number of downloads is graded according to the

number of user impacted from the risk like "5+" downloads impacts maximum 10 people

and has low severity but "1,000,000,000+" downloads impacts maximum "2000,000,000"

users and has top graded risk score. Category of the application is di�erentiate the factor

from the risk point like the application is important if it's in the �nance category but far

less important if it's in one of the game categories. All points calculated and applications

graded for their risk points and they are normalized with the equation 3.1 into ten risk

groups. And Impact Score is calculated as in equation 3.2

mean = 1 + (ImpactScore− min
ImpactScore

)) ∗ (10− 1)/(max
ImpactScore

− min
ImpactScore

) (3.1)

Chapter 3. Application Testing Methodology 9

Table 3.3: Number Of Vulnerable (Miss-implemented SSL) Applications by Category

Category Number Of Apps Cumulative Risk Percentage of A�ected Persons

Game Total 1.173 68.771 %42,03

Travel And Local 67 5495 %0,80

Social 66 5839 %1,74

Business 66 6633 %1,03

Personalization 64 5950 %0,03

Entertainment 63 4135 %6,92

Communication 61 8676 %21,85

Shopping 56 3780 %0,14

Transportation 56 4176 %0,45

Sports 55 3877 %0,38

Medical 55 3272 %0,10

App Wallpaper 53 4382 %12,16

News And Magazines 51 2888 %1,47

Finance 51 4222 %0,21

Productivity 50 4386 %0,72

Education 49 2508 %0,19

Media And Video 48 2896 %0,60

Weather 44 3446 %1,05

Music And Audio 41 2901 %4,42

Lifestyle 40 3042 %0,78

Tools 37 3398 %1,21

Health And Fitness 35 2636 %0,91

Comics 33 1888 %0,07

Books And Reference 17 789 %0,69

Photography 14 923 %0,06

Libraries And Demo 5 236 %0,00

App Widgets 4 368 %0,00

Total 2.354 161.513 %100,00

ImpactScore =
∑

RiskAccordingtoPermissionRequests

+RiskAccordingtoNumberofDownloads

+RiskAccordingtoCategoryofTheApplication

(3.2)

From the result we see that launcher applications request many important permissions

and when we add up category information and download number they have the �rst two

order within the highest ranked risk group. Then comes the messenger applications.

3.4 Dynamic Analysis

We used Android-x86 Project for our application test. Although testing in real devices

is the desired solution but it's not practical. And creating an isolated environment is

better to prevent interventions. We created a virtual machine as our Android device and

Chapter 3. Application Testing Methodology 10

Figure 3.1: Number of Applications by Normalized Risk Groups

make con�gurations like network setup etc. Then took a snapshot for our base to revert

after each test. We use adb to push our applications. And our virtual devices connection

�ow through our proxy environment to test for SSL vulnerabilities[11].

3.4.1 CERT Transparent Proxy Capture Appliance (Tapioca)

A similar test as in our scenario was held in CERT Coordination Center (CERT-CC)

at Carnegie Mellon University. They evaluated some application tools used as MITM

proxies but they decided to go with a transparent network layer. With a transparent

network layer proxy an application is not aware that it is being proxied. So they created

a precon�gured VM appliance to perform MITM analysis called CERT Tapioca[8].

The setup is simple; a VM that has two network adapters: one for the outer side and

one for the local side. On the local side, it provides NAT, DHCP, and DNS capabilities.

For the MITM proxy, mitmproxy software is being used. To con�gure things up startup

scripts prepared and it's ready to use listening and manipulating tra�c at port 443.

3.4.2 Nogotofail

Nogotofail is more complete tool to spot and �x weak TLS/SSL connections and sensitive

clear text tra�c which is maintained by Google. It includes testing for common SSL

certi�cate veri�cation issues, HTTPS and TLS/SSL library bugs, SSL and STARTTLS

stripping issues, clear text issues, and more. It's a Linux based tool that depends on

Chapter 3. Application Testing Methodology 11

Python and pyOpenSSL. It has also client tools to enrich log reports that includes extra

client information application information etc. Tra�c analyzer can be deployed as a

router, VPN server, or proxy. There are three kind of installations �rst can run on an

actual router, second a Linux box with two network interfaces. And the last one as

a VPN server. Google also provide last one almost precon�gured as Google Compute

Engine instance[6].

We tried to deploy nogotofail on a virtual machine and try to connect from real de-

vice and we couldn't succeeded. And OpenVPN client application couldn't be deployed

to Android-x86 device. We decided to try Google Compute Engine instance and we

succeeded. We preferred CERT Tapioca because it's simple and local.

3.5 Cross Reference Traversing

We can �nd out extension of SSL libraries by decompiling the APK �les. Then we can

investigate the class if it is vulnerable or not. But testing the application from the device

against the vulnerability is not simple. We need the exact user interface where the classes

executed. To ease the testing procedure we created a python script called XrefTree A

on top of androguard to expose Cross References and traverse each path form the SSL

extension class to UI interfaces. With this our test is much easier because we know how

to trigger the communication.

3.6 Analysis and Results

We choose 41 applications for dynamic analysis from top 400 applications ordered by

descending by their risk factor. The applications picked are mainly targets Turkish

users and some are speci�cally chosen for analysis like known to be not exploitable

but implemented pinning certi�cation. Applications tested with Android X86 port on

a virtual machine which's connection transparently go through from a second virtual

machine that has Cert Tapioca installed. Applications tested one by one with most

feasible, user like behavior. After the process we analyze tra�c pcaps with wireshark

providing with SSL private keys which are used for test purposes to decode SSL tra�c.

Chapter 3. Application Testing Methodology 12

The results di�erentiated from static analysis. Because all usage paths couldn't be

covered, applications require some special info like account info, user, password entry

etc. And some of them couldn't be tested that they require some components that we

couldn't provide like location info or our device known to be a tablet and application

doesn't provide and quits. Some of the applications has SSL connection libraries but

while dynamic test they only connect through HTTP.

Table 3.4: Dynamic Analysis Break Down

Analysis Result Number of Applications

SSL Vulnerable to MITM 4

HTTP Connection Only 6

Can not Establish Connection 27

Not Applicable 4

As a result four of the applications; that's a proportion of 9.76 percent in our test

observed that they are vulnerable to mitm attacks. The percent is not high as static

analysis. But two out of four vulnerable applications are belong to �nancial institutions

(banks) and all of the banking transactions can be sni�ed by an attacker.

Chapter 4

Proposed Solution

We developed a proof of concept application as an Xposed module to identify SSL miss-

implementations in the applications.

4.1 Xposed

Xposed is an application that's bind itself to the base process of Android and provide

application/method call hook points to its modules to perform various operations like

UI tweaks, new features, feature enhancements etc.

Android runtime has a base process called "Zygote". Every application is started as

a copy ("fork") of it. When the phone is booted /init.rc script started Zygote. The

process start is done with /system/bin/app_process, which loads the needed classes and

invokes the initialization methods. When a user install Xposed, an extended app_process

executable is copied to /system/bin. When the system boots it's now a part of Zygote.

Some initializations are done there and also the modules are loaded. Zygote gets called

in the very beginning of the process.

When modi�cations done by decompiling, reverse engineering an APK; one has to dive

into the code �nd the exact place to modify. After �ndings there are other steps patch,

recompile, sign and pack for the apk. Also the application must be distributed. And

when you decompile generally that means that you don't own the application and you

can't sign the apk on behalf of the owner. And this patch operation is valid just for that

13

Chapter 4. Proposed Solution 14

version, when there is an update, all the work needs to be done from scratch. Xposed

has another way of doing patches: By hooking to methods of the target applications

which are the smallest unit in Java. With Xposed you can inject your own code before

and after methods.

Xposed has a plugin system that are loaded with system reboot which are special appli-

cations consist of target application hook method signatures and the code that wanted

to be injected before or after the method call. When target application started, desired

methods found and hooked with re�ection and when the function call placed; code exe-

cuted which can access all the method's parameters and it can change the values of the

caller[12].

4.2 Trust But Verify

We developed an Xposed module named "Trust But Verify" for our proof of concept

application. There are three di�erent extension points for di�erent parts of the SSL

connection. And we hook up certain methods for each of the implementation type. After

the hook we forged a certi�cate and test method against the certi�cate. If the method

validates the certi�cate it fails. This means the application can be attacked by a man

in the middle. If the method fails to validate then it is secure for improper certi�cates.

The application is now just generating noti�cation logs. But it can be enhanced to block

for improper buggy implementations of SSL extensions.

For Custom HostnameVeri�ers we hook up javax.net.ssl. HttpsURLConnection method.

For WebViewClient implementation type we hook up android.webkit.WebViewClient

method. And for Custom TrustManager com.android.org.conscrypt. TrustManagerImpl,

checkServerTrusted and javax.net.ssl. TrustManagerFactory methods hooked up.

Chapter 5

Development Best Practices for

Security & Privacy

5.1 Certi�cate Pinning

SSL's strength is also weakness of it: Negotiating on a key for symmetric encryption

is done by asymmetric cryptography. The public key that is used for encryption is pre

shared with clients via operating systems or the software programs that is used like

browsers. These pre-shared pre-de�ned keys are called trust anchors are generated by

and belong to trusted third parties called certi�cate authorities (CA).

As a result of EFF's SSL Observatory[13] project which aims to investigate the publicly-

visible SSL certi�cates there were 650 Certi�cate Authorities on August 2010. And there

are 162 root certi�cates CA's already installed as trusted authority on a stock rom in-

stalled Android operating system. This number can increase with carrier like AT&T,

Verizon or device manufacturer like Samsung, HTC etc. customized installations[14].

Certi�cate authorities sign intermediate certi�cates that have ability to sign end user

certi�cates (End Entity) this certi�cate generation and signing process is general pur-

pose so any issuer can generate and sign certi�cates for any domain. When one of the

certi�cate of CA or intermediate certi�cates compromised, hacker can issue a genuine

certi�cate whichever domain he wants. And there are 162 certi�cate authorities for an-

droid and more than 650 certi�cate authorities for internet. Certi�cate compromisation

15

Chapter 5. Development Best Practices for Security & Privacy 16

happens rarely but with big negative impacts on security as seen on DigiNotar, Comodo

and TurkTrust cases.

DigiNotar was a Dutch certi�cate authority owned by VASCO Data Security Interna-

tional, whose security breached and incident declared on September 3, 2011. Fake Dig-

iNotar certi�cates were found and hackers created fake Gmail domain certi�cates and

used for man-in-the-middle attacks[15].

One of Comodo reseller user account compromised and created 9 certi�cates, across 7 dif-

ferent domains including www.google.com, login.yahoo.com, login.skype.com certi�cates

were revoked after discovery[16].

On December 24, 2012 Google discovered fake certi�cates issued for "*.google.com" via

its browser Chrome's certi�cate pinning for Google domains. TurkTrust certi�cation au-

thority (CA) has been reported that two intermediate CA certi�cates inadvertently issued

in August 2011. The certi�cates were issued in error and they were for "*.ego.gov.tr"

and "e-islem.kktcmerkezbankasi.org." "*.google.com" certi�cate issued automatically by

Check Point �rewall which was con�gured for inspection generates certi�cates for all SSL

connections. Google Chrome and other browsers blacklisted the inadvertent intermediate

CA certi�cates and published metadata update to block the mistaken CA certi�cates[17].

To mitigate the attack surface certi�cate pinning might be a solution for defense in

depth like layering tactic. Unlike browsers or the tools that doesn't know about the

connection destination of the client; application generally connects same and already

known server's addresses. So some of the certi�cate information can be added to double

check against the certi�cate that is going to be used while communicating. It's prevent

man-in-the-middle attack with generated certi�cate for that domain using compromised

issuer certi�cate except the one that's used for genuine certi�cate issuer. For the time

being with current number of trust anchors in Android it's provide protection at a rate

of %99.38

For certi�cate pinning hex-encoded hash of a X.509 certi�cate's SubjectPublicKeyInfo

used. Using certi�cate hashes mislead wrong directions. Because there are multiple cer-

ti�cates with the same public key, subject name. But certi�cates might have di�erent

extensions, di�erent expiry dates and there might be di�erent certi�cates signed with dif-

ferent cryptographic hash function like one with SHA-1 and other with SHA256. Devices

Chapter 5. Development Best Practices for Security & Privacy 17

might build certi�cates chains with an alternative version of a certi�cate than the one

that expected. Certi�cate validation is started from End Entity which is leaf certi�cate

contains a signature which must be a valid signature from its parent. So that the public

key of the parent is �xed by the leaf certi�cate. Which's public key info hash is safe to

use for pinning[18] [19]. A set of pins can be de�ned for certi�cate alternatives as well.

There's a working Android library[20] for certi�cate pinning by Moxie Marlinspike and

example project by Ivan KuÅ½t[21]. Required pin hash can be generated using the

provided script from Marlinspike's library providing certi�cate �le.

Pin generation:

$ git clone https://github.com/moxie0/AndroidPinning.git

$ cd AndroidPinning

$ python ./pin.py /path/to/cacert.pem

Figure 5.1: Using PinningTrustManager for certi�cate validation with pin information

There is also more rigid way for pinning: That's left behind all trust anchors, CA's

left behind and use freshly forged for the application. On the server side a new strong

certi�cate can be created to sign certi�cates for application. This can be done via a

hardware security module (HSM) which is a physical computing device that safeguards

and manages digital keys for strong authentication and provides crypto processing or with

using OpenSSL. It's a best practice to keep private keys o�ine for security purposes.

Certi�cates that are going to be used by application for secure communication than

distributed with applications package in a keystore �le which can easily be created using

Chapter 5. Development Best Practices for Security & Privacy 18

keytool. And de�nitely application had to provide this keystore to TrustManagerFactory

in order to use created certi�cate. This is a hardcoded way and downside of this method

is it is di�cult to manage certi�cate updates. But its provide immunity for all trust

anchors compromisation risk[22].

Create a keystore using keytool:

$ wget http://bouncycastle.org/download/bcprov-jdk16-146.jar

$ keytool -importcert -file your_signing_certificate.pem

-keystore yourapp.store

-provider org.bouncycastle.jce. provider.BouncyCastleProvider

-providerpath bcprov-jdk16-146.jar -storetype BKS

Figure 5.2: Standard HTTPS request with pre-forged self-certi�cate.

You also need to be aware that it's possible to bypass SSL Pinning (pdf). However, this

requires the app to be reverse engineered, re-constructed and re-run that's very unlikely

to ever be possible 'on the �y' (at least on unlocked devices) as a random user gets hit

by a MITM attack[23].

Chapter 5. Development Best Practices for Security & Privacy 19

5.2 Certi�cate pinning in Android

With the release of Android 4.2 Jelly Bean[24] Certi�cate Pinning introduced as a new

feature "Certi�cate Pinning - The libcore SSL implementation now supports certi�cate

pinning. Pinned domains will receive a certi�cate validation failure if the certi�cate does

not chain to a set of expected certi�cates. This protects against possible compromise of

Certi�cate Authorities"

Pin information is stored in a �le called "pins" can be located in the /data/misc/keychain

directory which has a format of:

hostname=enforcing[true|false]|SPKI SHA512 hash, SPKI SHA512 hash,...

Format can be translated as there are list of SPKI hashes (SHA512) separated by com-

mas with enforcing either true or false for a domain. There is no pre-con�gured built-in

pins. Pin informations are valid until it is removed from the �le. Pin check is in-

tegrated in libcore. If X509TrustManager implementation (TrustManagerImpl) used

for validating certi�cate chains, pin information used for validating otherwise the stan-

dard checkServerTrusted() method doesn't consult the pin list. This is because to pro-

vide backwards compatibility from the user perspective using latest doesn't necessar-

ily mean that your connection always validated against system-level certi�cate pins.

Third party applications can bene�t system-level certi�cate pin information via the new

X509TrustManagerExtensions[25] SDK class which has a single method: that returns a

validated chain on success or throws Certi�cateException if validation fails.

Figure 5.3: Veri�es the given certi�cate chain.

The chain parameter holds the peer certi�cate chain and authType parameter is for the

key exchange algorithm used. The �nal parameter, host, should be the hostname of the

server.

Returns

The properly ordered chain used for veri�cation as a list of X509Certi�cates.

Throws CertificateException

if the chain does not verify correctly.

Chapter 5. Development Best Practices for Security & Privacy 20

Client handshake (ClientHandshakeImpl) and SSL socket (OpenSSLSocketImpl) imple-

mentations at the default SSL engine (JSSE provider) use pin information to validate

for that host. If there is an entry for that host and couldn't validate certi�cate chain,

validation fails with CertificateException and connection won't be established.

For the time being pins �le doesn't exist in the stock roms, which means that there is

no certi�cate pin information. Functionality implemented but it doesn't used e�cient

enough. The pins �le is not written directly by the OS instead the pin list is updated

by sending a broadcast with signed update data which is triggered by a broadcast (an-

droid.intent.action.UPDATE_PINS) that contains the new pins. As mentioned it is

signed with SHA512 with RSA signature. The receiver of the broadcast (CertPinInstall-

Receiver) will then verify the signature and update pin information. Public key used for

validation is stored as a system secure setting under the "con�g_update_certi�cate" key

(usually in the secure table of the /data/data/com.android.providers.settings/databases

/settings.db)[26]

5.3 Alternative Methods for Certi�cate Validation

Public Key Pinning Extension for HTTP (PKPE) by Google and Trust Assertions for

Certi�cate Keys (TACK) by Moxie Marlinspike are two standards that have been pro-

posed for Certi�cate Validation. And there is also a method called "Certi�cate Memo-

rizing".

Google, proposes a new HTTP header (Public-Key-Pin, PKP) with PKPE that holds

pinning information including public key hashes, pin lifetime and whether to apply pin-

ning to subdomains of the current host. Header information is delivered to via TLS

encrypted connection. And keys are validated against pre cached pins or accepted as

valid for the �rst arrival to the expiration time. It also provides a mechanism for report-

ing fraudulent certi�cates used for MITM attacks via "report-uri" directive[27].

TACK, proposes an extension to SSL/TLS that carries pinning information signed with

a dedicated 'TACK key' for hostname with an expiration time independent from its

certi�cate. Short-lived tacks may be used to limit the e�ect of compromised TLS private

key. It's an extension to SSL/TLS so it's backwards compatible. Tack[28] pins cached

after a few visits.

Chapter 5. Development Best Practices for Security & Privacy 21

Figure 5.4: HTTP Response Header Field Examples

Certi�cate Memorizing method hands over the acceptance of the unknown certi�cate

or di�erent certi�cate previously seen before for a site visited to the user. There is a

proof of concept Android project called MemorizingTrustManager[29] which asks the

user whether to accept the certi�cate once, permanently or to abort the connection. The

problem is that technically unsophisticated users might get confused and application

usage can decrease drastically.

According to an academic paper[30] published by Adam Bates et al. from University

of Florida SSL certi�cate veri�cation can be done via dynamic linking for C/C++ SSL

implementations. When an SSL library entry function is called their implementation

took over SSL veri�cation to enforce the correct SSL certi�cation veri�cation proce-

dure. Without needing to change application code it can sit on top of implementations.

Dynamic linking can be implemented as byte code instrumentation for JVM based ap-

plications. For Android applications it can be implemented as a core module or as byte

code instrumentation between system and user modules.

Perspectives Project[31] at Carnegie Mellon University and Convergence project by

Moxie Marlinspike, aim to eliminate pre authenticated Certi�cate Authorities (CA).

Instead they propose agile, secure, and distributed notary based certi�cate validation.

By eliminating CAs users are immune to CA compromises. A user can choose to trust

several notaries; no single point of failure. And several notaries can vouch for a single

site. Convergence implemented as a Firefox browser add-on and a server-side notary

daemon.

Chapter 6

Related Work

On October 18, 2012, Sascha Fahl et al. from Leibniz University of Hannover and

Philipps University of Marburg published a paper titled as "Why Eve and Mallory Love

Android: An Analysis of Android SSL (In)Security"[1]. They downloaded 13.500 popular

free apps for the research from Google's Play Market and studied their properties with

respect to the usage of SSL. The results showed that 1.074 apps potentially vulnerable

to SSL MITM Vulnerability and they picked randomly 100 potentially vulnerable apps

for manual dynamic analysis yielding 41 vulnerable apps to MITM attack. For static

code analysis they have built MalloDroid, a tool to detect apps that potentially use

SSL/TLS inadequately or implement incorrectly and thus are potentially vulnerable to

MITM attacks. They also presented an online survey to explore whether or not the user

can assess the security of a connection in the Android browser. Our work is an update

for their reports with current applications for a Turkish market user and also completes

their work with an application to identify �aws at run time.

Sounthiraraj, Sahs, Greenwood, Lin and Khan from The University of Texas at Dallas

published a paper[2] about an application which combines static and dynamic analysis

techniques to perform automated, large-scale SSL MITM Vulnerabilities detection for

Android applications called SMV-HUNTER. Their application step forward from others

with the ability of identifying UI targets to trigger vulnerabilities found from static anal-

ysis phase. Output of the static analysis also prepares some relevant input variables for

performing automatic UI exploration while attempting MITM attacks. SMV-HUNTER

22

Chapter 6. Related Work 23

application itself didn't published to public. Our work has reports with statuses of cur-

rent applications for a Turkish market user and also we published an application which

identi�es �aws at run time. Our work can be enhanced with automated tests as in this

work.

Will Dormann, who is a member of CERT(computer emergency response team) at

Carnegie Mellon University (CMU) published a blog post titled as "Finding Android SSL

Vulnerabilities with CERT Tapioca"[32] about automated discovery of SSL vulnerabili-

ties in Android applications. At CERT they've created a Linux distribution for MITM

analysis called CERT Tapioca[33]. With the use of CERT Tapioca and some scripts they

managed to automate tests and they noti�ed application developers with vulnerability

details. Some of the applications and application generation frameworks like AppsGeyser

got �xed with in the following timeframe. They also published and maintained a list of

vulnerable applications as an Android application SSL spreadsheet[34] at Google docs.

Dormann also inserted vulnerable applications to CVE (Common Vulnerabilities and

Exposures) database. CVE is the de facto standard for tracking vulnerabilities in ap-

plications. Up to this date 1.000.462 applications tested and 23.667 of them have failed

dynamic testing. This work also presented at RSA Conference 2015[35] in San Francisco

by Dormann and Montelibano; presentation subject was "HowWe Discovered Thousands

of Vulnerable Android Apps in One Day". Our work is an update for their reports with

current applications for a Turkish market user and also completes their work with an

application to identify �aws at run time.

Fireeye researchers Adrian Mettler, Yulong Zhang, Vishwanath Raman published an ar-

ticle on 20th August 2014 titled as "SSL Vulnerabilities: Who listens when Android

applications talk?"[36] about SSL Vulnerabilities in Android applications. Researchers

reviewed the 1,000 most-downloaded free applications in the Google Play store as of July

17, 2014 with their commercial product "Mobile Threat Prevention" platform. Article

contains summary of their �ndings that 614 applications that use SSL/TLS to commu-

nicate with a remote server, 448 (∼73%) of them do not check certi�cates. Article also

includes some references for best practices. Our work is an update for their reports with

current applications for a Turkish market user and also completes their work with an

application to identify �aws at run time.

Chapter 7

Conclusions

In this thesis, we plan to analyze applications that are popular at the market against SSL

miss-implementations. This miss-implementations can cause leakage of private informa-

tion like �nancial data, health records or passwords of the users of that application.

Our study began with working on theoretical information like Android operation system

internals, SSL implementations while application development and etc. After theoretical

information it's time to analyses the applications. Second phase began with gathering

applications from application market which is Google Play Store. 8882 applications

gathered from 45 di�erent categories. Those applications go through a static analysis

and identi�ed as safe, potentially risky application. Risky applications analyzed for a

second time for their permission requests. Then a small number of selected application

go through a dynamic analysis.

A risk factor is calculated for each risky application. This risk factor is calculated with

di�erent indications like permission requests, number of downloads and category of the

application. All factors calculated and applications graded for their risk points and they

are normalized in to ten risk groups.

At the end of our analysis we investigate our �ndings. A risk factor is calculated from

that �ndings for each risky application. 2354 application has at least one miss use of

SSL libraries out of 8882.

Our �ndings from dynamic analysis was: Applications are less vulnerable compared to

static analysis results. The vulnerable libraries might not be used or they are used by

24

Chapter 7. Conclusions 25

a speci�c path application. But results con�rmed that the impact of vulnerabilities can

be enormous.

As a conclusion, we observed that almost 27 percent has a vulnerability from SSL con-

nection stand point. The main reasons for these vulnerabilities are developer errors and

third party generators or libraries. Using third party libraries can cause security bugs

which leads to informations leakage or exploitation. A developer must have deeply un-

derstanding of what he is developing especially about security concept. Users need to

be cautious and take necessary security precautions while using applications. Always

they need to consider about security. Android application market can enforce some

implementation procedures for SSL extension libraries.

Appendix A

Cross Reference Traversing

import sys,string

from androguard.core.bytecodes.dvm import DalvikVMFormat

from androguard.core.bytecodes.apk import APK

from androguard.core.analysis.analysis import uVMAnalysis

from androguard.core.analysis.ganalysis import GVMAnalysis

def XrefTraverse(methods, class_name, method_name, depth):

depth += 1

for m in methods:

if m.class_name == class_name and m.name == method_name:

if depth == 0:

print (m.class_name + " -> " + m.name)

for item in m.XREFfrom.items:

if item[0].class_name != class_name \\

or item[0].name != method_name:

for x in range(1, depth):

sys.stdout.write('--')

sys.stdout.write ('>' + item[0].class_name + "->" \\

+ item[0].name + "\n")

XrefTraverse(methods, \\

item[0].class_name, item[0].name, depth)

26

Appendix A. Cross Reference Traversing 27

if len(sys.argv) > 2:

filename = sys.argv[1]

class_name = sys.argv[2]

class_name = 'L' + class_name.replace(".", "/") + ";"

#print class_name

method_name = '<init>'

d = DalvikVMFormat(APK(filename, False).get_dex())

d.create_python_export()

dx = uVMAnalysis(d)

gx = GVMAnalysis(dx, None)

d.set_vmanalysis(dx)

d.set_gvmanalysis(gx)

d.create_xref()

XrefTraverse(d.get_methods(), class_name, method_name, 0)

else:

print "usage: XrefTree.py [filename] [class_name]"

print "usage: XrefTree.py filename.apk com.xyz.abc"

Bibliography

[1] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith. Why

eve and mallory love android: An analysis of android ssl (in) security. In Proceedings

of the 2012 ACM conference on Computer and communications security, pages 50�

61. ACM, 2012. URL http://android-ssl.org/files/p50-fahl.pdf.

[2] D. Greenwood, J. Sounthiraraj, G. Sahs, Z. Khan, and L. Lin. Smv-hunter: Large

scale, automated detection of ssl/tls man-in-the-middle vulnerabilities in android

apps. 2014. URL https://www.utdallas.edu/~zxl111930/file/NDSS14b.pdf.

[3] The heartbleed bug, April 2014. URL http://heartbleed.com/.

[4] Openssl vulnerabilities. URL https://www.openssl.org/news/vulnerabilities.

html.

[5] A. Demiröz. Google play crawler java api, February 2014. URL https://github.

com/Akdeniz/google-play-crawler.

[6] Google. nogotofail: An on-path blackbox network tra�c security testing tool,

November 2014. URL https://github.com/google/nogotofail.

[7] J. Yonan. Openvpn, May 2001. URL https://openvpn.net/.

[8] W. Dormann. Announcing cert tapioca for mitm analysis, Au-

gust 2014. URL https://insights.sei.cmu.edu/cert/2014/08/

-announcing-cert-tapioca-for-mitm-analysis.html.

[9] S. Fahl. Mallodroid, August 2013. URL https://github.com/sfahl/mallodroid.

[10] A. Desnos. Androguard, June 2012. URL https://github.com/androguard.

[11] C. Huang. Android-x86 - porting android to x86. URL http://www.android-x86.

org/.

28

http://android-ssl.org/files/p50-fahl.pdf
https://www.utdallas.edu/~zxl111930/file/NDSS14b.pdf
http://heartbleed.com/
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html
https://github.com/Akdeniz/google-play-crawler
https://github.com/Akdeniz/google-play-crawler
https://github.com/google/nogotofail
https://openvpn.net/
https://insights.sei.cmu.edu/cert/2014/08/-announcing-cert-tapioca-for-mitm-analysis.html
https://insights.sei.cmu.edu/cert/2014/08/-announcing-cert-tapioca-for-mitm-analysis.html
https://github.com/sfahl/mallodroid
https://github.com/androguard
http://www.android-x86.org/
http://www.android-x86.org/

Bibliography 29

[12] rovo89. Xposed bridge, July 2013. URL https://github.com/rovo89/

XposedBridge/wiki/Development-tutorial.

[13] The Electronic Frontier Foundation. The e� ssl observatory, July 2010. URL https:

//www.eff.org/observatory.

[14] Android Developer Team. Ca certs, . URL https://android.googlesource.com/

platform/libcore/+/master/luni/src/main/files/cacerts/.

[15] Wikipedia. Diginotar, September 2011. URL http://en.wikipedia.org/wiki/

DigiNotar.

[16] Comodo. Comodo fraud incident, March 2011. URL https://www.comodo.com/

Comodo-Fraud-Incident-2011-03-23.html.

[17] A. Langley. Enhancing digital certi�cate security, January 2013.

URL http://googleonlinesecurity.blogspot.com.tr/2013/01/

enhancing-digital-certificate-security.html.

[18] A. Langley. Public key pinning, May 2011. URL https://www.imperialviolet.

org/2011/05/04/pinning.html.

[19] Open Web Application Security Project. Certi�cate and public key pinning. URL

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning.

[20] M. Marlinspike. A standalone library project for certi�cate pinning on android.

[21] K. Ivan. Example of certi�cate pinning on android, May 2014. URL https://

github.com/ikust/hello-pinnedcerts.

[22] M. Marlinspike. Your app shouldn't su�er ssl's prob-

lems, December 2011. URL http://thoughtcrime.org/blog/

authenticity-is-broken-in-ssl-but-your-app-ha.

[23] D. Andzakovic. Bypassing ssl pinning on android via reverse engineer-

ing, May 2014. URL https://dl.packetstormsecurity.net/papers/general/

android-sslpinning.pdf.

[24] Android Developer Team. Jelly bean, . URL http://developer.android.com/

about/versions/jelly-bean.html.

https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
https://www.eff.org/observatory
https://www.eff.org/observatory
https://android.googlesource.com/platform/libcore/+/master/luni/src/main/files/cacerts/
https://android.googlesource.com/platform/libcore/+/master/luni/src/main/files/cacerts/
http://en.wikipedia.org/wiki/DigiNotar
http://en.wikipedia.org/wiki/DigiNotar
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://googleonlinesecurity.blogspot.com.tr/2013/01/enhancing-digital-certificate-security.html
http://googleonlinesecurity.blogspot.com.tr/2013/01/enhancing-digital-certificate-security.html
https://www.imperialviolet.org/2011/05/04/pinning.html
https://www.imperialviolet.org/2011/05/04/pinning.html
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://github.com/ikust/hello-pinnedcerts
https://github.com/ikust/hello-pinnedcerts
http://thoughtcrime.org/blog/authenticity-is-broken-in-ssl-but-your-app-ha
http://thoughtcrime.org/blog/authenticity-is-broken-in-ssl-but-your-app-ha
https://dl.packetstormsecurity.net/papers/general/android-sslpinning.pdf
https://dl.packetstormsecurity.net/papers/general/android-sslpinning.pdf
http://developer.android.com/about/versions/jelly-bean.html
http://developer.android.com/about/versions/jelly-bean.html

Bibliography 30

[25] Android Developer Team. X509trustmanagerextensions, . URL http://developer.

android.com/reference/android/net/http/X509TrustManagerExtensions.

html.

[26] N. Elenkov. Certi�cate pinning in android 4.2, December 2012. URL http:

//nelenkov.blogspot.com.tr/2012/12/certificate-pinning-in-android-42.

html.

[27] R. Sleevi, C. Evans, and C. Palmer. Public key pinning extension for http. 2015.

[28] M. Marlinspike. Trust assertions for certi�cate keys. 2013.

[29] G. Lukas. Memorizingtrustmanager - the android trustmanager, March 2014. URL

https://github.com/ge0rg/MemorizingTrustManager/wiki.

[30] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, D. Tian, K. Butler, and A. Alkhe-

lai�. Securing ssl certi�cate veri�cation through dynamic linking. In Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Communications Security,

pages 394�405. ACM, 2014.

[31] Perspectives project. URL http://perspectives-project.org/.

[32] W. Dormann. Finding android ssl vulnerabilities with cert tapioca,

September 2014. URL https://insights.sei.cmu.edu/cert/2014/09/

-finding-android-ssl-vulnerabilities-with-cert-tapioca.html.

[33] W. Dormann. Announcing cert tapioca for mitm analysis, Au-

gust 2014. URL https://insights.sei.cmu.edu/cert/2014/08/

-announcing-cert-tapioca-for-mitm-analysis.html.

[34] W. Dormann. Android apps that fail to validate ssl. URL https://docs.google.

com/spreadsheets/d/1t5GXwjw82SyunALVJb2w0zi3FoLRIkfGPc7AMjRF0r4/edit#

gid=123856677.

[35] J. Montelibano and W. Dormann. How we discovered thou-

sands of vulnerable android apps in one day, April 2015. URL

https://www.rsaconference.com/events/us15/agenda/sessions/1638/

how-we-discovered-thousands-of-vulnerable-android.

http://developer.android.com/reference/android/net/http/X509TrustManagerExtensions.html
http://developer.android.com/reference/android/net/http/X509TrustManagerExtensions.html
http://developer.android.com/reference/android/net/http/X509TrustManagerExtensions.html
http://nelenkov.blogspot.com.tr/2012/12/certificate-pinning-in-android-42.html
http://nelenkov.blogspot.com.tr/2012/12/certificate-pinning-in-android-42.html
http://nelenkov.blogspot.com.tr/2012/12/certificate-pinning-in-android-42.html
https://github.com/ge0rg/MemorizingTrustManager/wiki
http://perspectives-project.org/
https://insights.sei.cmu.edu/cert/2014/09/-finding-android-ssl-vulnerabilities-with-cert-tapioca.html
https://insights.sei.cmu.edu/cert/2014/09/-finding-android-ssl-vulnerabilities-with-cert-tapioca.html
https://insights.sei.cmu.edu/cert/2014/08/-announcing-cert-tapioca-for-mitm-analysis.html
https://insights.sei.cmu.edu/cert/2014/08/-announcing-cert-tapioca-for-mitm-analysis.html
https://docs.google.com/spreadsheets/d/1t5GXwjw82SyunALVJb2w0zi3FoLRIkfGPc7AMjRF0r4/edit#gid=123856677
https://docs.google.com/spreadsheets/d/1t5GXwjw82SyunALVJb2w0zi3FoLRIkfGPc7AMjRF0r4/edit#gid=123856677
https://docs.google.com/spreadsheets/d/1t5GXwjw82SyunALVJb2w0zi3FoLRIkfGPc7AMjRF0r4/edit#gid=123856677
https://www.rsaconference.com/events/us15/agenda/sessions/1638/how-we-discovered-thousands-of-vulnerable-android
https://www.rsaconference.com/events/us15/agenda/sessions/1638/how-we-discovered-thousands-of-vulnerable-android

Bibliography 31

[36] A. Mettler, Y. Zhang, and V. Raman. Ssl vulnerabili-

ties: Who listens when android applications talk?, August 2014.

URL https://www.fireeye.com/blog/threat-research/2014/08/

ssl-vulnerabilities-who-listens-when-android-applications-talk.html.

https://www.fireeye.com/blog/threat-research/2014/08/ssl-vulnerabilities-who-listens-when-android-applications-talk.html
https://www.fireeye.com/blog/threat-research/2014/08/ssl-vulnerabilities-who-listens-when-android-applications-talk.html

	Declaration of Authorship
	Abstract
	Öz
	Acknowledgments
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	2 SSL & SSL Applications in Android
	3 Application Testing Methodology
	3.1 Challenges
	3.2 Static Analysis
	3.3 Inspection of results
	3.4 Dynamic Analysis
	3.4.1 CERT Transparent Proxy Capture Appliance (Tapioca)
	3.4.2 Nogotofail

	3.5 Cross Reference Traversing
	3.6 Analysis and Results

	4 Proposed Solution
	4.1 Xposed
	4.2 Trust But Verify

	5 Development Best Practices for Security & Privacy
	5.1 Certificate Pinning
	5.2 Certificate pinning in Android
	5.3 Alternative Methods for Certificate Validation

	6 Related Work
	7 Conclusions
	A Cross Reference Traversing
	Bibliography

