
Scalable Data Analytics using Spark

A thesis submitted to the
Graduate School of Natural and Applied Sciences

by

Aslan Bakirov

in partial fulfillment for the
degree of Master of Science

in
Electronics and Computer Engineering

“The way to get started is to quit talking and begin doing. ”

Walt Disney

“It is hard to fail, but it is worse never to have tried to succeed. ”

Theodore Roosevelt

Scalable Data Analytics using Spark

Aslan Bakirov

Abstract

This thesis presents our experience in designing a scalable data analytics platform on

top of Apache Spark (major) and Apache Hadoop (minor). We worked on three repre-

sentative applications: (1) Sentiment Analysis, (2) Collaborative Filtering and (3) Topic

Modeling. We demonstrated how to scale these applications on a cluster of 8 workers.

Each worker contributes 4 cores, 8 GB RAM, and 100 GB of disk space to the com-

pute pool. Our conclusion is that Apache Spark has enough maturity to be deployed in

production comfortably.

Keywords: Apache Spark, Apache Hadoop, Scalability, Sentiment Analysis, Collabo-

rative Filtering, Topic Modeling

Spark Kullanarak Ölçeklenebilir Veri Analitiği

Aslan Bakirov

Öz

Bu tez calışmasında, Apache Spark ve Apache Hadoop platformları üzerinde ölçek-

lenebilir veri analitiği çalışılmıştır. Temel olarak üç tane temsili uygulama geliştirilmiştir:

(1) Duygu Analizi, (2) İşbirliğine Dayalı Filtreleme ve (3) Konu Modellemesi. Bu uygu-

lamaların 8 makinelik bir küme üzerinde ölçeklenebilirliği gösterilmiştir. Her makine

hesaplama havuzuna 4 çekirdek, 8 GB RAM ve 100 GB disk alanı kadar katkıda bu-

lunmuştur. Gözlemlerimize göre, Apache Spark üretim ortamlarında güvenli bir şekilde

kullanılabilir olgunluktadır.

Anahtar Sözcükler: Ölçeklenebilirlik, Duygu Analizi, İşbirliğine Dayalı Filtreleme,

Konu Modellemesi

Dedicated to my family...

iv

Acknowledgments

I would like to express my deepest appreciation to my advisor Prof. Ahmet Bulut.

His patience, knowledge and vision has great affect on this dissertation and on my life.

Without his guidance and persistent help, this dissertation would not have been possible.

I would also like to deeply thank my jury members, Prof. Ali Çakmak and Prof. İsmail

Arı for their time, insightful comments, and their support.

I would like to greatly acknowledge and thank the friendly staff of College of Engineering

and Natural Sciences and, in particular, Seçil Öcal for creating a friendly environment

to conduct research.

I would also like to thank my friends, especially Kevser Nur Çoğalmış, for all the great

study times we had together during my stay at this university.

This thesis is supported by Turkish National Science Foundation (Tübitak) under grant

numbers 113E243 and 113E622 and Turk Telekom Argela under Grant Number 6401-01.

v

Contents

Abstract ii

Öz iii

Acknowledgments v

List of Figures viii

List of Tables ix

1 Introduction 1

2 Sentiment Analytics on Spark 2
2.1 Related Work . 2
2.2 Methodology . 3

2.2.1 Preprocessing on the data . 3
2.2.2 Naive Bayes Classifier . 3

2.3 Experimental Setup . 5
2.3.1 Resilient Distributed Datasets(RDD) 5
2.3.2 Broadcast Variables . 6
2.3.3 The Movie Reviews Dataset . 6
2.3.4 Cluster Configuration . 7
2.3.5 Model Building . 8

2.4 Experimental Evaluation . 9
2.4.1 Apache Hadoop . 9
2.4.2 Apache Mahout . 9
2.4.3 Empirical Results . 10

2.4.3.1 Broadcasting vs. Not-broadcasting 10
2.4.3.2 Time required for training 10
2.4.3.3 Time required for testing 11

3 Collaborative Filtering on Spark 13
3.1 MLBase . 13
3.2 System Architecture . 14
3.3 Online Recommendation System . 14

4 Topic Modeling on Hadoop 17
4.1 Introduction . 17
4.2 Related Work . 17

vi

Contents vii

4.3 LDA in MapReduce . 18
4.4 Experimental Results . 19

4.4.1 The Dataset . 19
4.4.2 Cluster Configuration . 19
4.4.3 Test Results . 19

5 Conclusions 22

Bibliography 23

List of Figures

2.1 Şehir cluster. 8
2.2 Runtime chart of testing step with broadcast and without broadcast. . . . 11
2.3 Runtime chart of testing step on Spark vs. Hadoop hosted in the Şehir

cluster in minutes. 12

3.1 Şehir Cluster System Architecture for Recommendation Application. . . . 14
3.2 Şehir Cluster System Workflow for Recommendation Application. 16
3.3 MLBase Architecture. 16

viii

List of Tables

2.1 Reviews augmented with sentiment. 4
2.2 Reviews augmented with sentiment. 4
2.3 Words and their class frequency. 4
2.4 Description of the test data. 7
2.5 The running time of the testing step on Spark (in minutes) hosted in the

Amazon EC2 cluster. 10
2.6 Runtime of the training step on the Şehir cluster. 10
2.7 The running time of the testing step for Mahout’s Naive Bayes Classifier

(in seconds) hosted in the Şehir cluster. 11
2.8 Runtime comparison of the testing step on Hadoop and Spark hosted in

the Şehir cluster in minutes. 12

3.1 Online Recommendation Data. 15
3.2 Prediction matrix of ALS algorithm. 15

4.1 LDA runtime on unigrams of 51168 documents. 20
4.2 LDA runtime on bigrams of 51168 documents. 20
4.3 LDA runtime on Amazon Movie Reviews Data. 20
4.4 The analysis of LDA’s computation time with varying number of nodes

and with varying number of documents. 20

ix

Chapter 1

Introduction

With the advent of social networks, forums, and blogs, amount of data on the Web has

increased rapidly resulting in an information explosion. Internet users make purchases

online, listen to music, or watch a movie; later on, they make comments about their

purchases, indicate their musical preference, and write their opinions about movies they

recently watched. Raw user data does not provide much information unless information

is explicitly cultivated. Data mining refers to the process of extracting information from

raw data. Data mining is used for a variety of information discovery tasks such as

classification, clustering, and regression. Since actual task implementations analyze the

entire set of data in order to find a pattern, the run time of these algorithms depend on

the size of the dataset. Handling large amounts of data requires the use of MapReduce

(M/R) programming model on special purpose compute clouds. Hadoop was one of the

first platforms to provide an implementation of M/R on a compute cluster. A relatively

new implementation of M/R called Spark has been shown to provide performance benefits

of up to ten times compared to Hadoop on certain machine learning tasks [1].

In this thesis, three representative applications of distributed machine learning are stud-

ied. The first application is for extracting sentiment from movie reviews by using a Naive

Bayes Classifier. The second one is a recommendation system, which uses collaborative

filtering. The third and the last application is topic modeling with latent dirichlet allo-

cation (LDA). In the first two applications, Apache Spark was benchmarked in different

scenarios. The last application is about benchmarking LDA on Apache Hadoop.

1

Chapter 2

Sentiment Analytics on Spark

Naive Bayes Classifier is used to extract text sentiment. We trained our model by using

Spark, Hadoop and Apache Mahout and tested with different data sizes and cluster

configurations. We compared the performance of the Naive Bayes Text classifier on

Apache Spark, Apache Hadoop and Apach Mahout. We implemented the classifiers on

Apache Spark and Apache Hadoop ourselves [2].

2.1 Related Work

Pang et al. [3] used the IMDB movie dataset for sentiment analysis. They used naive

bayes, maximum entropy, and support vector machine (SVM) for classification. However,

their study was done on a single compute node, and does not address how to scale

computation as the data itself scales. The text features extracted included bag of words,

bigrams, and part of speech tags. Their study showed that SVM with unigram features

had the best performance. Elsayed et al. [4] proposed an M/R algorithm for finding

pairwise document similarity for large document collections. They used a cluster of 19

worker machines with dual core, 4 GB of memory, and 100 GB of disk space each. Their

algorithm was implemented as two M/R jobs: the first job was used to index documents

for finding out list of document IDs that contain a given term and associated term weight.

The second job was used to calculate pairwise similarity scores. The experiments showed

that the running time of their approach scaled linearly with the number of documents.

Khuc et al. [5] provided a method for analyzing sentiment on twitter data using Hadoop.

The authors created their own lexicon suitable for tweets, which included emoticons.

They used lexicon as the first classifier and logistic regression as the second classifier.

Their experiment was done on 5 nodes in Amazon EC2 cluster with 2 virtual cores and 1.7

GB of memory. An experiment to create the lexicon was carried out on 100K, 200K and

2

Chapter 2. Sentiment Analytics on Spark 3

300K tweets. For the 300K-scenario, it took 600 minutes to build a lexicon on 5 machines.

Their lexicon-and-learning-based classifier took 20 minutes to analyze the sentiment of

2.5 million tweets. Hunter et al. [6] migrated their millennium traffic project from a

single machine to multiple machines. They used Spark as it allows M/R and iterative

algorithms at the same time. A special purpose data structure called resilient distributed

data is used to share large data items between cluster machines for collaboration. The

migration to Spark improved the run time of their system by 2.8 times.

2.2 Methodology

2.2.1 Preprocessing on the data

For downstream tasks that expect meaningful and cleaned-up data, the dataset is pre-

processed as follows:

• All text is lowercased.

• Punctuation symbols are removed.

• Hyphened word groups are separated.

• Stop-words such as “a, an, the, they, so, much” are removed using the natural

language toolkit called NLTK [7].

• HTML tags are removed.

• In the original dataset, the score information is numeric and is in the range of [1.0,

5.0]. As a pre-processing step, a review is categorized as negative if its review score

is less than 3.0; otherwise (if its review score is greater than or equal to 3.0) it is

categorized as positive.

2.2.2 Naive Bayes Classifier

Naive Bayes is one of the simplest machine learning algorithms used in text classification.

The Bayesian formula is [8];

P (C = ck|X = x) = P (C = ck)×
P (X = x|C = ck)

P (x)
(2.1)

where C is a class, X is a feature, and P (C = ck|X = x) is a probability of the text that

has feature value of x for X being in a class ck. For each text, two probability values are

Chapter 2. Sentiment Analytics on Spark 4

computed, i.e., one per class. Each text consists of a set of words wi as shown in Table

2.1.

Table 2.1: Reviews augmented with sentiment.

Review words in that review score
R1 w1 w2 w27 w4509 w22 w509 2.0
R2 w17765 w112 w2000 w4509 5.0
...

...
...

R4M w15 w112 w3329 w422 w1 4.0

During the pre-processing, every review is assigned to a class. A review having a score less

than 3.0 is tagged as negative; otherwise it is assigned to the positive class. Therefore,

the reviews are converted into new structures as shown in Table 2.2.

Table 2.2: Reviews augmented with sentiment.

Review words in that review sentiment
R1 w1 w2 w27 w4509 w22 w509 negative
R2 w17765 w112 w2000 w4509 positive
...

...
...

R4M w15 w112 w3329 w422 w1 positive

The training set consists of 4 million texts. Out of this 4 million, there are 2.4 million

in the positive class and 1.6 million in the negative class. For each word, two counts

are computed and stored: the first count represents the number of positive reviews that

contain the word, and the second count represents the number of negative reviews that

contain the word as in Table 2.3.

Table 2.3: Words and their class frequency.

Word positive reviews negative reviews
w1 45600 120000
w2 72250 50000
w3 22500 69900
...

...
...

w43 90400 23220

Chapter 2. Sentiment Analytics on Spark 5

The formula in Equation 2.1 is applied to each sentence in the test dataset in order to
predict whether the sentence belongs to the positive or to the negative class. Suppose
that a review R in the test dataset corresponds to w1, w2, w43. For R, the probability of
being in either class is computed as follows:

p(C = +|R) = p(C = +)× p(w1|C = +)× p(w2|C = +)× p(w43|C = +)

=
2400000

4000000
× 45600

2400000
× 72250

2400000
× 90400

2400000
= 0, 00001288

(2.2)

Probability of being in “positive” class

p(C = −|R) = p(C = −)× p(w1|C = −)× p(w2|C = −)× p(w43|C = −)

=
1600000

4000000
× 120000

1600000
× 50000

1600000
× 23220

1600000
= 0.00002024

(2.3)

Probability of being in “negative” class

The text sentiment is classified as the class that has a greater probability value. In the above
example, the text sentiment for R is attributed to negative.

2.3 Experimental Setup

In Spark, jobs are submitted for processing a large dataset [1]. Each job first loads its working
data into memory for enabling rapid data access. The main component of Spark is the construct
of a resilient distributed dataset (RDD).

2.3.1 Resilient Distributed Datasets(RDD)

A resilient distributed dataset provides granular fault tolerance and distribution of work. An
input data is sliced into multiple chunks so that parallel jobs can be executed on each chunk.
Storing lineage information in the framework per RDD provides fault tolerance. Each compute
step in the compute flow can be re-executed linearly to enable recovery in case of failures. Paral-
lelized collections and Hadoop datasets are two ways to create an RDD. Parallelized collection is
a wrapper on Scala programming language’s collection, which also supports parallel operations.
It can be created by calling the parallelize method of Spark Context on an existing Scala collec-
tion. Parallelized collections and Hadoop datasets are two current forms of RDD. Parallelized
collection is a wrapper on Scala collection, which also supports parallel operations. This form of
RDD can be created by calling a parallelize method of Spark Context on existing Scala collection.

val data = Array(1, 2, 3, 4, 5) // data is typical Scala collection.
val distData = sc.parallelize(data) // distData is an RDD.

An input that resides in a Hadoop Distributed File System (HDFS) can be used to create

Chapter 2. Sentiment Analytics on Spark 6

an RDD by calling textFile method of Spark Context as follows:

val distFile = sc.textFile(“hdfs://.../data.txt”)

Two types of operations can be done on RDDs: transformations and actions. An RDD can
be transformed into another RDD by using a mapper. An action corresponds to an aggrega-
tion used during reduction. Spark currently provides three APIs, one for each of Scala, Java,
and Python programming languages. We used the Java API. We have a dictionary holding the
number of occurrence of each word in each of positive and negative classes. This “read-only”
data is used to compute the sentiment of a given review as explained in 2.2.2. Since Spark is
a distributed environment, each node must be able to make a lookup in this read-only dictio-
nary. Spark’s default behavior is to send the required data within the compute cluster before
each iteration. The default behavior results in a bottleneck in the master node and its available
bandwidth, and therefore limits scalability. Our solution to this problem is to use the broadcast
variables of Spark framework.

2.3.2 Broadcast Variables

Broadcast enables us to send a map to worker nodes only once at the beginning of the job
execution. We can share the maps that hold occurrence counts per category with the use of the
broadcast feature in Spark. In order to test this feature, we implemented two methods in order
to perform data lookups:

i When any worker needs data and if that data resides in another node in the cluster, the
data owner sends the requested data to the requestor. This operation consumes less random
access memory (RAM), but requires high IO and CPU operations.

ii We can store lookup tables in full in all workers. This approach requires more RAM for
data storage, but it needs less IO. This method can be accomplished by broadcasting lookup
dictionaries to all worker nodes as follows:

Broadcast<JavaPairRDD<String, Double>> posMapBroadcast
= sc.broadcast(positiveDataMapRDD);

Here, “positiveDataMapRDD” is the original data structure and “posMapBroadcast” is the new
data version that will be broadcasted to each node. By using broadcast variables, we optimized
our computation time by 1.15 times.

2.3.3 The Movie Reviews Dataset

In experiments, Amazon movie reviews [9] were used. There were 7,911,684 reviews, which were
extracted from 889,176 reviews for 253,059 products. Some reviews contain a single sentence,

Chapter 2. Sentiment Analytics on Spark 7

while some others contain more than ten sentences. The median number of words per review is
101. All reviews have information about product ID, user ID, time, score, summary, and text.
An example review is given below:

• product/productId: B00006HAXW

• review/userId: A1RSDE90N6RSZF

• review/profileName: Joseph M. Kotow

• review/helpfulness: 9/9

• review/score: 5.0

• review/time: 1042502400

• review/summary: Pittsburgh - Home of the OLDIES review/text: I have all of the doo
wop DVD’s and this one is as good or better than the 1st ones. Remember once these
performers are gone, we’ll never get to see them again. Rhino did an excellent job and if
you like or love doo wop and Rock n Roll you’ll LOVE this DVD !!

Only the score and summary information above were used in our system. After the pre-
processing, the sentiment label for each review was added to the end of each entry separated by
a comma. The entire dataset was separated into two parts as the training set and the test set.
The training set consisted of 4 million reviews, which had about 349,993,900 words. The rest
of the dataset was used as the test set. Five different test configurations were constructed with
100,000, 250,000, 500,000, 750,000, and 1 million reviews respectively. Table 2.4 gives detailed
information about the test data.

Table 2.4: Description of the test data.

of reviews # of words size(MB)
100,000 100,000 8,880,070 62 MB
250,000 250,000 22,106,912 155 MB
500,000 500,000 44,566,580 313 MB
750,000 750,000 66,811,887 470 MB
1 million 1,000,000 88,930,249 625 MB

2.3.4 Cluster Configuration

Two different clusters were used for performance comparison. The first cluster called Şehir
Cluster has one master and 8 workers with 4 cores CPU, 8 GB of RAM, and 100 GB of disk
space. The Şehir cluster is depicted in Figure 2.1. The second cluster called Amazon Cluster
hosted in Amazon EC2 has one master and 4 workers with 4 cores CPU and 15 GB of RAM.
The Java Development Kit version 1.7.0_03 was installed on each node for a Java Runtime
Environment in both clusters. Since the dataset is large, the Hadoop Distributed File System
(HDFS) was chosen to store this data. The HDFS version 1.0.4 was installed in the clusters. On
the top of the HDFS, we built Spark version 0.7.0. Figure 2.1 shows our cluster hierarchy.

Chapter 2. Sentiment Analytics on Spark 8

Figure 2.1: Şehir cluster.

2.3.5 Model Building

For training, two map jobs and two reduce jobs were created: one M/R job pair was created for
the positive class and the other M/R pair was created for the negative class. In the mapping
stage, each review was mapped to either the negative class or the positive class. For both classes,
a separate word counts dictionary was created. This action resulted in a positiveMap and a neg-
ativeMap. Each sentence of a review was split by whitespace into individual words. Every word
was mapped into a value of “1” keyed by the word itself. In the reduce step, all values were
summed up per key. After the job completed, the information as to how many positive and how
many negative reviews a given word occurred in were computed. In order to outline how our
M/R works, let us demonstrate how to compute the positive class probability for a given review
R, which consists of words w1, w2, . . . , wn. 1

Map (M):

i. Each word is mapped to (R, 1) as its value, i.e., (wi, (R, 1)) where i = 1, . . . , n.

ii. This (key, value) tuple is joined with positive lookup map, which has words as key and the
number occurrences of those words in positive reviews as the corresponding values. In the
positive lookup map, an entry looks like (wi, X), where X is a positive integer that holds
the total number of occurrences of wi in positive reviews.

iii. After the join, the interim results map has the following (key, value) pairs (wi, ((r, 1), Xi))

where i = 1, . . . , n.

1Note that the computation of the negative class probability is very similar.

Chapter 2. Sentiment Analytics on Spark 9

iv. We swap the places of R and wi in each of these tuples to finally get (R, ((wi, 1), Xi)) where
i = 1, . . . , n.

Reduce(R):

i. Each entry is then reduced by using reduceByKey function as follows:

(R,
X1

NumPos
× X2

NumPos
× . . .× Xi

NumPos
) = Y

ii. The tuple (R, Y × NumPos × NumTotalDocuments) represents the final result (K,V).
The key K is the review R itself, and the value V corresponds to the probability of R
belonging to the positive class.

2.4 Experimental Evaluation

We compared our solution with two alternatives. Both of the alternative approaches were based
on Hadoop: (i) a naive bayes classifier built using Hadoop M/R and (ii) another naive bayes
classifier built using Apache Mahout. We describe these two frameworks next before presenting
our empirical findings.

2.4.1 Apache Hadoop

Hadoop is an Apache foundation framework that can be used for processing large data sets on a
cluster of computers using M/R programming model [10]. The two main projects of Hadoop are
the Hadoop Distributed File System (HDFS) and Hadoop M/R. The HDFS is a fault tolerant,
scalable, and highly configurable distributed file system written in Java. An HDFS cluster has
a master name node that manages synchronization and coordination among data nodes, and
stores metadata for the cluster. Multiple data nodes store the actual user data. An HDFS client
contacts the name node for file operations such as select, insert, and delete. The HDFS also
has support for failing over to a secondary name node in order to avoid the single master being
the single point of failure. The Hadoop M/R enables programmers for writing applications in
order to process large datasets in parallel on a cluster of machines. An M/R job has two main
components: (1) map and (2) reduce. The framework splits input data into multiple chunks
so that multiple map tasks can process these individual data partitions in parallel. Outputs of
the map tasks are collected and processed by the subsequent reduce tasks. The inputs and the
outputs of each job are stored in the HDFS. Since the map and the reduce tasks operate on
< key, value > pairs, the input and output format will also be < key, value > pairs.

2.4.2 Apache Mahout

Mahout is an Apache foundation project developed for building scalable machine learning li-
braries [11]. Mahout has support for building classifiers, clustering items, genetic programming,

Chapter 2. Sentiment Analytics on Spark 10

constructing random forests, and recommending items. All these end-user products are imple-
mented on top of Hadoop. Since Mahout has naive Bayes classifier support, we included it in
our tests. During training, Mahout created a handful of feature vector output files and built a
final model from these interim output files. The whole process took almost three hours. During
testing, the model built was used on the same test dataset that was used in the other competing
approaches.

2.4.3 Empirical Results

2.4.3.1 Broadcasting vs. Not-broadcasting

In order to see the effect of broadcasting vs. relying on the framework to shuffle data when it is
needed, we conducted an experiment on five test scenarios. This test was done on the Amazon
cluster. As shown in the results in Table 2.5 and Figure 2.2, the broadcast method took less
time to go through the testing phase. On 1M reviews, the method with broadcasting completed
1.3 minutes faster than the method without broadcasting. The reason for this improvement
is that the application driver did not waste time trying to share the required data among the
compute nodes as the alternative approach did. The gap in running time widened between the
two methods as the size of the data increased. This is because the increased data size led to the
increased data delivery between the compute nodes.

Table 2.5: The running time of the testing step on Spark (in minutes) hosted in the
Amazon EC2 cluster.

100K 250K 500K 750K 1M
Spark without Broadcast 1.5 2 3.3 5.4 9.6
Spark with Broadcast 1.4 1.6 2.8 4.7 8.3

2.4.3.2 Time required for training

On the Şehir cluster, we conducted two tests: one using 4 workers and the other using 8 workers.
Table 2.6 shows how long it took to train on Spark vs. Hadoop with different number of workers.
The training time in case of Hadoop was in the order of minutes, while training using Spark was
in the order of seconds.

Table 2.6: Runtime of the training step on the Şehir cluster.

4 Workers 8 Workers
Hadoop 12 minutes 10 minutes
Spark 73 seconds 62 seconds

Chapter 2. Sentiment Analytics on Spark 11

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
u

n
 t

im
e
 i

n
 m

in
u

te
s

of lines in data

without Broadcast

with Broadcast

Figure 2.2: Runtime chart of testing step with broadcast and without broadcast.

2.4.3.3 Time required for testing

Table 2.8 and Figure 2.3 show the run time of the testing step on Hadoop and Spark on the Şehir
cluster. Compared to Hadoop on all test scenarios, Spark implementation was up to 10 times
faster in crunching data. For example, on 1 million reviews with 8 workers, Spark completed
the testing in 7.9 minutes while Hadoop implementation required 70 minutes to complete. The
benefits of using the broadcast variables were even more apparent in the Şehir cluster. Using
4 workers only, 750K reviews were digested in 8.6 minutes with broadcasting compared to 11
minutes without it. The results for Mahout are shown in Table 2.7.

Table 2.7: The running time of the testing step for Mahout’s Naive Bayes Classifier
(in seconds) hosted in the Şehir cluster.

of reviews 4 Workers 8 Workers
100K 63 66
250K 75 60
500K 101 77
750K 112 82
1M 150 112

For a small size dataset, e.g., 100K reviews, when the cluster was upsized from 4 workers to
8 workers, the computation time increased by three seconds due to the coordination overhead

Chapter 2. Sentiment Analytics on Spark 12

in the cluster. The advantage of a high number of compute nodes in a cluster did not justify
itself, because the dataset size was not large enough. For larger data sizes, the benefit of using
a higher number of workers was more apparent. For example, it took 112 seconds to digest 1
million reviews with 8 workers, while it took 150 seconds with 4 workers.

Table 2.8: Runtime comparison of the testing step on Hadoop and Spark hosted in the Şehir
cluster in minutes.

4 Workers 8 Workers
Spark Hadoop Spark Hadoop

w/oB1 wB2 Dist.3 w/oB wB Dist.
100K 1.8 1.6 13.1 1.9 1.6 15.4
250K 2.6 2.2 22.5 2.4 2.1 24.2
500K 4.6 3.5 33.3 3.3 2.6 36
750K 11.0 8.6 58.3 5.3 4.0 50
1M OoM4 OoM 78.5 8.9 7.9 70

1 without Broadcast
2 with Broadcast
3 Distributed Cache
4 Out of Memory Exception: This exception occurs when program runs

out of memory. When our task starts running, our working data is
loaded to the cache. Since the number of reviews up to 1M, data size
increases. Since join operation is costly because Cartesian product
with lookup Map, extra 250K reviews run our program out of memory.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
u

n
 t

im
e
 i

n
 m

in
u

te
s

of lines in data

Spark without Broadcast 4W
Spark with Broadcast 4W

Hadoop Distributed Cache 4W
Spark Without Broadcast 8W

Spark with Broadcast 8W
Hadoop Distributed Cache 8W

Figure 2.3: Runtime chart of testing step on Spark vs. Hadoop hosted in the Şehir
cluster in minutes.

Chapter 3

Collaborative Filtering on Spark

In this chapter, we give the details of our reference system that consumes the recommendations
computed using Apache Spark’s MLBase library [12]. The reference system stands for an entire
Web 2.0 service, which serves vital data from an in-memory cache layer. The cache layer is
bootstrapped with recommendations computed a-priori by the backend batch processing engine
powered by Apache Spark.

3.1 MLBase

MLBase is scalable machine learning framework that runs on Apache Spark Engine. MLbase
consists of three components – MLlib, MLI, and ML Optimizer.

1. ML (Machine Learning) Optimizer automates the task of ML pipeline construction.
It optimizes algorithm parameters and data sampling at runtime. Moreover, the optimizer
estimates execution time and algorithm performance based on statistical models built using
the statistics from previous jobs.

2. MLI (Machine Learning Interface) is an API for feature extraction and algorithm
development that introduces high-level ML programming abstractions.

3. MLlib (Machine Learning Library) is a distributed machine learning library that runs
on Spark.

Developing scalable machine learning algorithms using MLI is very simple. For instance, the
following code block builds a model for recommending movies.

var X = load("user_movie_pairs", 1 to 2)
var y = load("user_ratings", 1)
var (fn-model, summary) = doCollabFilter(X, y)

The rating given by particular user to a specific piece of movie can be predicted by fn-model.

13

Chapter 3. Collaborative Filtering on Spark 14

3.2 System Architecture

Training data is stored in HDFS. We used MLBase for building a prediction model on top of this
data. The model is stored in a distributed cache, which forms our Hazelcast layer [13]. Hazelcast
is an open source in-memory data grid written in Java. Data can be distributed evenly across
cluster. For avoiding data loss and handling fault, replicas of data is also distributed among
nodes. There are different use cases of Hazelcast. Three widely used scenarios are:

• distributed cache, often in front of a database,

• clustering web sessions, and

• Map Reduce API for in memory big data processing and analytics.

The topmost layer is our web layer, which serves users with movie recommendations. The full
architecture is shown in Figure 3.1.

Figure 3.1: Şehir Cluster System Architecture for Recommendation Application.

3.3 Online Recommendation System

For the online recommendation system, we used the movie review dataset, which was used in
Chapter 2. We used information of user id, product id and the score given by user id to product
id. Table 3.1 shows a data sample.

Chapter 3. Collaborative Filtering on Spark 15

Table 3.1: Online Recommendation Data.

User ID Product ID Score
26256 208865 3.0
484047 208865 3.0
118779 208865 5.0

We used ALS (alternative least squares) of MLI for training a recommender from training data
(which 500,000 user id, product id, and score entries). The algorithm predicts the empty cells
using the partial data as shown in Table 3.2. All predictions are written as a matrix in the
HDFS. When the web server is up, the Hazelcast cluster loads prediction matrix from HDFS to
main memory. We recommend top products to each user based on the prediction scores. After a
user is logged in, personal recommendations are shown in a matter of seconds. Filling the matrix
from 500,000 entries took 6 minutes.

Table 3.2: Prediction matrix of ALS algorithm.

(a) Training Matrix

Product ID

User ID
2 1

5
3

(b) Prediction Matrix after ML-
Base CF

Product ID

User ID
2 x 1
x x 5
x 3 x

At the beginning, we only have unstructured raw big data. Since MLI interface accepts input
data in a particular format to build a model, we have to parse the raw data to the desired format
and persist to HDFS. Then, we build a model using MLI and fill the prediction matrix by using
the model. When the web server is up, the Hazelcast cluster loads all recommendations to the
memory for web server to be able to serve recommendations online. The system workflow is
shown in Figure 3.2.

Building a model from scratch is resource and time consuming. The framework supports saving
the model on to the HDFS. This enables us to use the model later on and also make it usable
to other applications. The full architecture is shown in Figure 3.3.

Chapter 3. Collaborative Filtering on Spark 16

Figure 3.2: Şehir Cluster System Workflow for Recommendation Application.

Figure 3.3: MLBase Architecture.

Chapter 4

Topic Modeling on Hadoop

4.1 Introduction

With our fast adoption of technology, our lives have become more digital. We read daily news
online, track daily blogs to follow trends, and do a dozen Internet searches per day. The Internet
is ever growing with images, videos, articles, books, blogs, and wikis. With the increasing number
of resources on the Internet, now it gets more difficult to find what we are looking for on the
Internet. Although search engines help finding desired information by matching queries with
the information which seems related, humans do a fair share by filtering out the seeds from the
chaff. This is where topic modeling can help eliminate irrelevant results.

Identifying topics in a text collection helps us organise the collection around similarities between
documents and themes. In order to categorize documents, one can use clustering, LDA, or
probabilistic latent semantic analysis (pLSA) among many. In clustering, each document is
categorized under a single cluster, which is a limitation in scenarios where documents can contain
more than one theme. LDA on the other hand can classify a document under more than one
topic. LDA is an iterative algorithm based on coordinate ascent, and unfortunately it requires
ample time to converge to a final set of topics. In order to reduce time to convergence, we
developed LDA on Hadoop and tested its performance on sizeable text collections.

4.2 Related Work

In LDA, each document is represented as a probability distribution over topics. Each topic is
represented as a probability distribution over words in a chosen vocabulary. In order to re-create
a text collection from its topic model, a generative process can be devised as follows: for each
word of a document, choose a topic according to the topic distribution of that document, and
then choose a word from the word distribution of that topic. This process is repeated for all
documents.

17

Chapter 4. Topic Modeling on Hadoop 18

Misra et al. used LDA for segmenting text, i.e., dividing text into topically coherent parts [14].
Their assumption was that a change in concept can be due to a change in topic. Hong et al.
used LDA for finding topics in Twitter [15]. They combined text found in user profiles with the
actual tweets. Their findings were that document length affected the model accuracy and that
the model worked better on short documents specifically in tweet categorization.

Wang et al. used LDA in order to improve collaborative filtering for recommending scientific
articles to scholars [16]. Traditional recommendation systems for this purpose use collaborative
filtering, which are based on the ratings of users. However, this approach ends up recommending
old articles while ignoring new scientific articles or the ones which are published recently and
have not been rated yet. In order to alleviate this drawback, the text content were taken into
account in collaborative filtering with content bits provided by the LDA itself.

Tang et al. used topic modelling in order to formulate the relationship between authors, papers
and venues for making academic search results more relevant [17]. They named their model as
Author-Conference-Topic (ACT) model. Each article was represented by a vector of words, a
vector of authors and a vector of venues. Their LDA based ACT model outperformed other
legacy systems in use.

4.3 LDA in MapReduce

Probabilistic topic modeling is used to discover and annotate large archives of documents with
thematic information [18]. With an increasing number of news, scientific articles, books, blogs,
and web pages, it gets more difficult to categorize and search among the wealth of information.
The idea behind LDA is to model documents as being generated from multiple topics (e.g., K
topics) such that each of these topics is a probability distribution over a pre-defined vocabulary.
Each document in the corpus exhibits topics in different proportions. In order to learn word
distributions per topic and topic proportions per document, posterior probabilistic inference is
used. With the observed documents in the corpus as output, hidden topical structure can be
inferred by a deterministic variational method.

Variational methods posits a parameterised family of distributions such as Dirichlet over the
hidden structure and learn the parameters that maximise the log likelihood of the observations
under the model. In the variational inference procedure, a simpler distribution that contains free
variational parameters is used to approximate the true posterior distribution. There are three
sets of hidden variables each of which is governed by a different variational parameter: (1) a word
distribution per topic, (2) a topic distribution per document, and (3) word-to-topic assignment
per document [19]. All variables are assumed to be independent of each other. The variational
parameters that maximize the log likelihood of the observations under the model are computed
iteratively by continuous optimization using coordinate ascent.

In the setup method before starting mappers, we load the variables stored in the distributed
cache and normalise λs for each topic before the start of an iteration. The distributed cache

Chapter 4. Topic Modeling on Hadoop 19

is a distributed hashmap where multipleclients from different JVMs can put and fetch values
concurrently.

In the mapper phase, when MapReduce job starts, λ and γ are initialised randomly. The hyper-
parameter α is constant and is set to 0.5. In the subsequent iterations, each mapper task loads
the latest values of the free parameters from the distributed cache, updates λs and γs, and stores
them in the distributed cache. They are also transmitted from the mappers to the reducers via
the same cache.

In the reduce phase, we update λ and α and put them back in the cache for the next iteration
[20].

4.4 Experimental Results

4.4.1 The Dataset

Three different datasets were used in the experiments. The first dataset was used to examine
accuracy. This dataset contains search keywords of an advertisement campaign. In total, there
are 51168 keywords.

The second dataset used was Amazon movie reviews was used in Chapter 1 and Chapter 2.
The total number of words in the whole collection is 431, 236, 979. The attributes per review are
product ID, user ID, time, score, summary, and text. We only used text field in our experiments.

The third dataset belongs to David Blei’s research [21]. The original dataset has 2246 documents.
We created four data subsets from the original one in order to show how LDA scales with number
of nodes in the cluster and with document size.

4.4.2 Cluster Configuration

We used a cluster of one master and 8 workers each with 4 cores, 8 GB of RAM, and 100 GB of
disk space. The Java Development Kit version 1.7.0_03 was installed on each node as the Java
Runtime Environment. The HDFS version 2.5.0 was installed in the cluster.

The optimization was allowed to run for 40 iterations at maximum and the number of topics
varied from 5 to 20. In case the log likelihood criterion for the optimization is met before the
maximum number of iterations is reached, the process is stopped forcefully.

4.4.3 Test Results

In the set of experiments conducted on the first dataset, the number of iterations and the
computation time were measured for varying number of topics. In case of a vocabulary of
unigrams, Table 4.1 shows that the number of iterations and the computation time decreased

Chapter 4. Topic Modeling on Hadoop 20

while the number of topics increased from 5 to 20. However in case of a vocabulary of bigrams1,
the number of iterations and the runtime had no clear trend as shown in Table 4.2.

Table 4.1: LDA runtime on unigrams of 51168 documents.

of topics # of iterations Runtime in minutes
5 40 301
10 35 255
15 29 222
20 25 203

Table 4.2: LDA runtime on bigrams of 51168 documents.

of topics # of iterations Runtime in minutes
5 40 279
10 38 281
15 30 219
20 37 291

Table 4.3: LDA runtime on Amazon Movie Reviews Data.

of topics # of iterations Runtime in hours
5 30 15 days, 10 hours

In order to process our largest dataset that contains approximately 8 million movie reviews, we
used 8 workers for learning an LDA model. The result in Table 4.3 proves empirically that the
time complexity of our implementation is sublinear with the size of data.

Table 4.4: The analysis of LDA’s computation time with varying number of nodes
and with varying number of documents.

(a) Varying the number of workers

of nodes Runtime in minutes for 20 documents
8 18
4 28
2 59
1 72

(b) Varying the number of documents. The cluster contains 8 workers

of documents # of words Runtime in minutes
20 3939 18
40 8012 33
60 12024 44
80 16573 52

Table 4.4(a) shows that for a fixed number of documents, the computation time increases linearly
with the decrease in the number of nodes in the cluster.

1From ‘free python programming book’, three bigrams are extracted as ‘free python’, ‘python pro-
gramming’, and ‘programming book’.

Chapter 4. Topic Modeling on Hadoop 21

Table 4.4(b) shows how 8 nodes scale. For an increasing number of documents, the increase
in the number of nodes helps decrease the computation time, but that comes with the cost of
communication between workers. In short, it may be beneficial to add more nodes to the cluster
only for learning an LDA on a very large number of documents.

Chapter 5

Conclusions

In this thesis, three representative applications of distributed machine learning are studied:
sentiment analysis of movie reviews, a recommendation system using collaborative filtering, and
topic modeling using LDA.

We built an application that estimates text sentiment using Naive Bayes Classifier on Apache
Spark and Apache Hadoop. The results show that Spark runs almost 10 times faster than
Hadoop. We also used Apache Mahout, which supports the Naive Bayesian Classifier for es-
timating text sentiment. The main challenge was to build a model that could be used in the
testing phase. The training phase took almost 3 hours, where it took 73 seconds in Spark, and
12 minutes in Hadoop. However, the testing phase is almost the same as Spark, but almost 20
times faster than our custom implementation on Hadoop.

We built an online system that consumes recommendations produced by a backend batch system
developed on Apache Spark as a second application. We learned that by using ALS algorithm of
MLI API of Apache Spark, it is possible to create a distributed recommendation system. Filling
in a prediction matrix, which is a sparse matrix that includes 500,000 entries, took 6 minutes in
our cluster. This is competitive result for a sequential recommendation systems. Also, MLBase
allows us to save the created model for further usage.

Finally, we built an application that discovers topics in a given large text collection and assigns
each text into multiple topics by using LDA. Each document exhibits each topic in varying
proportions. We showed how to scale LDA using different datasets of varying size and with
different cluster configurations. We used the variational inference procedure for learning topics.
On our largest text collection of 8 million documents, it took 15 days for LDA to complete.
Furthermore, we measured and reported how the runtime of the algorithm varied with the
number of documents in the collection and the number of workers in the cluster.

As a conclusion, we observed that by using Apache Spark and Apache Hadoop, it is possible to
create scalable and fault tolerant applications.

22

Bibliography

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster
computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics
in cloud computing, pages 10–10, 2010.

[2] A. Bakırov, K. N. Çoğalmış, and A. Bulut. Scalable sentiment analytics. Turkish Journal
of Electrical Engineering & Computer Science, 2014.

[3] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification using machine
learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natu-
ral language processing-Volume 10, pages 79–86. Association for Computational Linguistics,
2002.

[4] T. Elsayed, J. Lin, and D. W. Oard. Pairwise document similarity in large collections with
mapreduce. In Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics on Human Language Technologies: Short Papers, pages 265–268. Association for
Computational Linguistics, 2008.

[5] V. N. Khuc, C. Shivade, R. Ramnath, and J. Ramanathan. Towards building large-scale
distributed systems for twitter sentiment analysis. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pages 459–464. ACM, 2012.

[6] T. Hunter, T. Moldovan, M. Zaharia, S. Merzgui, J. Ma, M. J. Franklin, P. Abbeel, and
A. M. Bayen. Scaling the mobile millennium system in the cloud. In Proceedings of the 2nd
ACM Symposium on Cloud Computing, page 28. ACM, 2011.

[7] S. Bird. NLTK: the natural language toolkit. In Proceedings of the COLING/ACL on
Interactive presentation sessions, pages 69–72. Association for Computational Linguistics,
2006.

[8] D. D. Lewis. Naive (bayes) at forty: The independence assumption in information retrieval.
In Machine learning: ECML-98, pages 4–15. Springer, 1998.

[9] J. J. McAuley and J. Leskovec. From amateurs to connoisseurs: modeling the evolution of
user expertise through online reviews. In Proceedings of the 22nd international conference
on World Wide Web, pages 897–908. International World Wide Web Conferences Steering
Committee, 2013.

[10] C. Lam. Hadoop in action. Manning Publications Co., 2010.

23

Bibliography 24

[11] Apache Mahout. Scalable machine learning and data mining. http://mahout.apache.org/.

[12] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and M. I. Jordan. Mlbase:
A distributed machine-learning system. In CIDR, 2013.

[13] Hazelcast. Hazelcast the leading in-memory data grid. http://hazelcast.com/.

[14] H. Misra, F. Yvon, J. M. Jose, and O. Cappe. Text segmentation via topic modeling: An
analytical study. In Proceedings of the 18th ACM conference on Information and Knowledge
Management (CIKM), pages 1553–1556. ACM, 2009.

[15] L. Hong and B. D. Davison. Empirical study of topic modeling in twitter. In Proceedings
of the First Workshop on Social Media Analytics (SOMA), pages 80–88. ACM, 2010.

[16] C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles.
In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 448–456. ACM, 2011.

[17] J. Tang, R. Jin, and J. Zhang. A topic modeling approach and its integration into the
random walk framework for academic search. In Eighth IEEE International Conference on
Data Mining (ICDM), pages 1055–1060. IEEE, 2008.

[18] D. M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.

[19] D. M. Blei and J. D. Lafferty. Topic models. In Text Mining: Classification, Clustering,
and Applications, pages 71–94. Chapman & Hall/CRC, 2009.

[20] K. Zhai, J. Boyd-Graber, N. Asadi, and M. L. Alkhouja. Mr. lda: A flexible large scale
topic modeling package using variational inference in mapreduce. In Proceedings of the 21st
International Conference on World Wide Web (WWW), pages 879–888. ACM, 2012.

[21] D. M. Blei. Latent dirichlet allocation. URL http://www.cs.princeton.edu/~blei/

lda-c/index.html.

http://www.cs.princeton.edu/~blei/lda-c/index.html
http://www.cs.princeton.edu/~blei/lda-c/index.html

	Abstract
	Öz
	Acknowledgments
	List of Figures
	List of Tables
	1 Introduction
	2 Sentiment Analytics on Spark
	2.1 Related Work
	2.2 Methodology
	2.2.1 Preprocessing on the data
	2.2.2 Naive Bayes Classifier

	2.3 Experimental Setup
	2.3.1 Resilient Distributed Datasets(RDD)
	2.3.2 Broadcast Variables
	2.3.3 The Movie Reviews Dataset
	2.3.4 Cluster Configuration
	2.3.5 Model Building

	2.4 Experimental Evaluation
	2.4.1 Apache Hadoop
	2.4.2 Apache Mahout
	2.4.3 Empirical Results
	2.4.3.1 Broadcasting vs. Not-broadcasting
	2.4.3.2 Time required for training
	2.4.3.3 Time required for testing

	3 Collaborative Filtering on Spark
	3.1 MLBase
	3.2 System Architecture
	3.3 Online Recommendation System

	4 Topic Modeling on Hadoop
	4.1 Introduction
	4.2 Related Work
	4.3 LDA in MapReduce
	4.4 Experimental Results
	4.4.1 The Dataset
	4.4.2 Cluster Configuration
	4.4.3 Test Results

	5 Conclusions
	Bibliography

