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An integrated genomics analysis of
epigenetic subtypes in human breast
tumors links DNA methylation patterns to
chromatin states in normal mammary cells
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Abstract

Background: Aberrant DNA methylation is frequently observed in breast cancer. However, the relationship
between methylation patterns and the heterogeneity of breast cancer has not been comprehensively characterized.

Methods: Whole-genome DNA methylation analysis using Illumina Infinium HumanMethylation450 BeadChip arrays
was performed on 188 human breast tumors. Unsupervised bootstrap consensus clustering was performed to identify
DNA methylation epigenetic subgroups (epitypes). The Cancer Genome Atlas data, including methylation profiles of 669
human breast tumors, was used for validation. The identified epitypes were characterized by integration with publicly
available genome-wide data, including gene expression levels, DNA copy numbers, whole-exome sequencing data, and
chromatin states.

Results: We identified seven breast cancer epitypes. One epitype was distinctly associated with basal-like tumors
and with BRCA1 mutations, one epitype contained a subset of ERBB2-amplified tumors characterized by multiple
additional amplifications and the most complex genomes, and one epitype displayed a methylation profile
similar to normal epithelial cells. Luminal tumors were stratified into the remaining four epitypes, with differences
in promoter hypermethylation, global hypomethylation, proliferative rates, and genomic instability. Specific
hyper- and hypomethylation across the basal-like epitype was rare. However, we observed that the candidate
genomic instability drivers BRCA1 and HORMAD1 displayed aberrant methylation linked to gene expression
levels in some basal-like tumors. Hypomethylation in luminal tumors was associated with DNA repeats and
subtelomeric regions. We observed two dominant patterns of aberrant methylation in breast cancer. One pattern,
constitutively methylated in both basal-like and luminal breast cancer, was linked to genes with promoters in
a Polycomb-repressed state in normal epithelial cells and displayed no correlation with gene expression levels.
The second pattern correlated with gene expression levels and was associated with methylation in luminal
tumors and genes with active promoters in normal epithelial cells.
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Conclusions: Our results suggest that hypermethylation patterns across basal-like breast cancer may have limited
influence on tumor progression and instead reflect the repressed chromatin state of the tissue of origin. On the
contrary, hypermethylation patterns specific to luminal breast cancer influence gene expression, may contribute
to tumor progression, and may present an actionable epigenetic alteration in a subset of luminal breast cancers.

Keywords: Breast cancer, DNA methylation, Histone modification, Gene expression, Copy number alteration,
Mutation, BRCA1, BRCA2, ENCODE, The Cancer Genome Atlas

Background
Breast cancer is the most common cancer and one of
the leading causes of cancer death among women. The
disease is heterogeneous, both clinically and molecularly.
A large number of molecular studies have characterized
breast cancer on the basis of data derived from one or
two genome-wide measurement platforms, typically
using gene expression or DNA copy number platforms
[1, 2]. Arguably the most influential finding to emerge
from these studies is the robust identification of five
gene expression–based molecular subtypes of breast
cancer: two estrogen receptor (ER)-positive subtypes
separated mainly by relatively low (luminal A) and high
(luminal B) expression of proliferation-related genes, a
subtype enriched for ERBB2-amplified tumors [human
epidermal growth factor receptor 2 (HER2)-enriched], a
subtype associated with triple-negative [lacking expression
of ER, progesterone receptor (PR), and HER2] tumors
(basal-like), and a subtype with an expression profile
similar to that of normal breast tissue (normal-like) [3].
Later studies using multiple different platforms, including
exome sequencing, DNA copy number arrays, DNA
methylation arrays, and gene expression arrays, have
highlighted the importance of integrating information
across platforms to identify key characteristics of the
molecular subtypes of breast cancer [4].
DNA methylation patterns and chromatin states are

epigenetic features often found to be altered in cancer
cells [5]. The breast cancer molecular subtypes have
been found to be associated with characteristic DNA
methylation patterns on the basis of limited panels of
CpG sites [6–8]. Typically, three major DNA methyla-
tion subtypes of breast tumors have been identified. One
group is characterized by the lowest levels of DNA
methylation and is associated with basal-like tumors. A
second group is characterized by hypermethylation of pro-
moter CpG sites and is associated with luminal B tumors.
A third group is associated with luminal A tumors,
whereas the HER2-enriched and normal-like gene expres-
sion–based subtypes have been found to have limited as-
sociation with DNA methylation subtypes. Later, these
observations were confirmed using genome-wide sets of
CpG sites located primarily in promoter regions [4] as well
as across the entire genome [9].

There are many links between chromatin states and
DNA methylation [5]. In cancer, widespread correlated
changes in DNA methylation patterns and chromatin
states have been observed [10]. As these features collect-
ively are associated with whether genes are transcrip-
tionally active or inactive, they may underlie phenotypic
changes observed in cancer cells. Furthermore, recent
sequencing efforts have identified mutations of genes
leading to altered epigenetic patterns for many tumor
types [10]. In breast cancer specifically, a number of
links between DNA methylation and chromatin state
have been observed. For example, promoters that are
hypermethylated are often in lineage-commitment genes
that in embryonic stem cells are in a transcription-ready
bivalent chromatin state characterized by both active
and repressive marks [11, 12]. Another example is the
observation of extensive chromatin state changes upon
loss of DNA methylation in breast cancer coupled with
maintaining these hypomethylated regions as transcrip-
tionally silent [13].
However, less is known about how DNA methylation

patterns and epigenetic states on a genome-wide scale
are coupled with breast cancer heterogeneity as reflected
in the breast cancer subtypes. The development of plat-
forms for genome-wide characterization of cells at many
levels, together with large public datasets of normal and
malignant breast samples, have provided opportunities
to address this question. In the present study, we investi-
gated breast cancer heterogeneity on the basis of
genome-wide DNA methylation profiles of human tu-
mors and integrated our findings with various types of
molecular data, including chromatin states in both em-
bryonic stem cells and human mammary epithelial cells
(HMECs) generated in the ENCODE project [14]. In a
discovery cohort with DNA methylation profiles from
188 samples, we identified seven epitypes of breast cancer
that were validated in 669 independent samples from The
Cancer Genome Atlas (TCGA) breast cancer project [4].
By integrating analyses across multiple platforms, we
show that the epitypes are associated with specific gene
expression subtypes, mutations, and DNA copy number
aberrations (CNAs). To characterize epitype-specific
hyper- and hypomethylation patterns, we identified sets
of CpG sites that display differential methylation status
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between normal breast tissue and tumors of an epitype.
These analyses revealed that DNA hypermethylation in
luminal and basal-like tumors occurs in different chro-
matin contexts with different underlying regulatory po-
tential in stem and mammary epithelial cells. Moreover,
hypomethylation in luminal tumors was associated with
DNA repeats and subtelomeric regions. Our results
highlight links between breast cancer subtypes and the
epigenome that could improve understanding of bio-
logical mechanisms underlying breast cancer hetero-
geneity and could eventually contribute to diagnostics
and therapeutic interventions.

Methods
Sample material for methylation analysis
Fresh frozen breast tumor tissues (n = 188) obtained
from the Southern Sweden Breast Cancer Group tissue
bank at the Department of Oncology and Pathology,
Skåne University Hospital (Lund, Sweden), and from the
Department of Pathology, Landspitali University Hospital
(Reykjavik, Iceland), were used as a discovery cohort. The
188 breast tumor tissues were from 181 unique female pa-
tients (183 primary tumor samples, 2 metastatic samples,
and 3 locoregional recurrences; for 3 patients a primary
and a recurrent sample were included, and for 4 patients 2
different primary tumors were included). The study was
approved by the regional ethics committee in Lund, which
waived the requirement for informed consent for the
study (numbers LU240-01 and 2009/658), as well as by
the Icelandic Data Protection Committee and the National
Bioethics Committee of Iceland. For Icelandic patients,
written informed consent was obtained according to
Icelandic national guidelines.
Breast invasive carcinomas from the TCGA project

with 450K methylation data available (based on TCGA
update 27 September 2013) were used as a validation co-
hort [4]. Replicated tumors were removed and female
patients selected, resulting in a validation cohort consist-
ing of 669 breast carcinomas from 666 unique female
patients (665 primary tumor samples and 4 metastatic
samples; for 3 patients a primary and a metastatic sam-
ple were included). For the normal cohort, 96 normal
specimens originating from normal breast tissue from 96
different female patients from the TCGA project were
used (90 of these patients also have a tumor sample in
the validation cohort).
DNA from human mammary fibroblasts, HMECs,

human mammary endothelial cells (ScienCell Research
Laboratories, Carlsbad, CA, USA), and peripheral blood
leukocytes (Promega, Madison, WI, USA) was used to
generate a cohort of normal cell types. DNA methylation
data from subpopulations of human blood cells gener-
ated by Reinius et al. [15] were downloaded from the
National Center for Biotechnology Information (NCBI)

Gene Expression Omnibus (GEO) [16] accession number
[GEO:GSE35069].

DNA methylation analysis
Genome-wide methylation data for the discovery cohort
and the cohort of normal cell types were generated at SCI-
BLU Genomics, Lund University, using the Illumina Infi-
nium HumanMethylation450 BeadChip Array (Illumina,
San Diego, CA, USA) according to the manufacturer’s in-
structions. For the discovery cohort, DNA was extracted
as previously described [6]. DNA was treated with bisulfite
using the EZ DNA Methylation Kit (Zymo Research,
Irvine, CA, USA) according to the manufacturer’s in-
structions. DNA methylation data for the discovery
cohort and the cohort of normal cell types are avail-
able in the NCBI GEO [16] under accession numbers
[GEO:GSE75067] and [GEO:GSE74877], respectively.
The 450K methylation data were processed similarly

for all cohorts. Methylated and unmethylated signal in-
tensities were obtained from GenomeStudio (Illumina)
for the discovery and normal cell type cohorts, and
from TCGA methylation level 2 data for the valid-
ation and normal breast tissue cohorts. Signal inten-
sities were converted into β values [β =methylated/
(methylated + unmethylated)] representing the methylation
levels. CpG sites with detection p values greater than 0.05
or the number of beads for a channel fewer than 3 were
considered missing measurements, and β values were set
to “NA” (with the exception that the number of beads was
not available for the TCGA cohorts). No sample had more
than 10,000 missing values (discovery cohort range 835–
9438, validation cohort range 214–4746, normal breast tis-
sue cohort range 258–2700, normal cell type cohort range
758–1278). For the blood subpopulation data, β values
were obtained as processed in the NCBI GEO.
Adjustment for bias between Infinium I and II assay

CpG probes was performed by using a peak normalization
algorithm. Briefly, for each sample, we performed a
peak-based correction of Illumina I and II chemical
assays inspired by Dedeurwaerder et al. [17] as previously
described [18]. For each chemical assay separately, we
smoothed the β values (Epanechnikov smoothing kernel)
to estimate unmethylated and methylated peaks. The
unmethylated peak was moved to 0 and the methylated
peak to 1 using linear scaling, with β values in between
stretched accordingly. β values less than 0 were set to 0
and values greater than 1 were set to 1.
A DNA hypermethylation score was calculated as de-

scribed elsewhere [19]. The hypermethylation score was
calculated for two sets of CpG sites: a global score in
which all CpG sites on the platform contributed, and a
promoter CpG island score in which CpG sites with
both Illumina annotation TSS1500 or TS200 and Illumina
CpG island annotation contributed.
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Identification and validation of breast cancer epitypes
Unsupervised bootstrap consensus clustering was per-
formed to identify DNA methylation subgroups of tu-
mors using 2000 bootstrap iterations as described
elsewhere [20]. The ward.D agglomerative method with
Pearson correlation–based distance in the R package
hclust was used for both the inner clustering (based on
methylation patterns) and the outer clustering (based on
bootstrap coclustering frequencies). DNA methylation
centroids for an epitype were constructed by taking the
average β value for each CpG site across the tumors in
the epitype in the discovery cohort. Pearson correlations
between tumors in the validation cohort and the centroids
were calculated. Each tumor in the validation cohort was
classified into an epitype on the basis of the centroid to
which the correlation was largest. Principal component
analysis was used to determine that no technical artifacts
influenced the methylation data or the epitypes and that
the epitypes were associated with the dominant variation
in genome-wide methylation data [21].

Gene expression data analysis
Gene expression data from oligonucleotide microarrays
were available for 158 of the tumors in the discovery co-
hort as part of accession number [GEO:GSE25307],
which encompasses 577 breast tumors [22]. The normal-
ized gene expression values (mean-centered across 577
tumors) in accession number [GEO:GSE25307] were
used. Probes were mapped to Entrez Gene IDs, and the
probe with the largest variation in expression across the
577 tumors was selected for each gene, resulting in
relative gene expression levels for 7499 genes in the
discovery cohort. TCGA RNAseq v2 level 3 data were
available for a total of 994 tumors and 106 normal
breast tissue samples, including 661 of the 669 tumors in
the validation cohort. The gene-normalized RSEM count
estimates were offset by a pseudocount of 1, log2-trans-
formed, and mean-centered across the 994 tumor samples
to generate relative gene expression levels for 20,531 genes
in the validation cohort. For some analyses, we were inter-
ested in comparing estimates of the expression levels of
different genes and therefore could not use relative ex-
pression levels across tumors. In these analyses, we took
the effective transcript length into account by using the
gene RSEM scaled estimates (tau) from the TCGA data
transformed into transcripts per million (TPM), and used
log2(TPM+ 1) as a measure of gene expression [23]. The
R package genefu was used to assign expression-based
molecular subtype to tumor samples on the basis of
PAM50 using relative expression levels in both the discov-
ery and validation cohorts [24]. Expression data for 35 and
50 of the 50 PAM50 genes were available in the discovery
and validation cohorts, respectively. The R package iC10
was used to assign IntClust groups to tumor samples in

both the discovery and validation cohorts [25]. For each
cohort, the iC10 package was run with the following
settings: expression data only, probe mapping based on
gene symbols, and normalizing each probe to a Z-score.
Expression data for 346 and 584 of the 612 iC10 genes
were available in the discovery and validation cohorts,
respectively. The activity of eight gene modules, repre-
senting transcriptional programs in breast cancer, was
calculated in each tumor in both the discovery and val-
idation cohorts as the average relative expression level
of the genes in a module [26]. Genes in modules were
mapped to genes in expression data based on Entrez
Gene ID.

Correlation between DNA methylation and gene expression
We calculated correlations between methylation and rela-
tive gene expression levels using the validation cohort be-
cause the number of genes was limited on the expression
platform used in the discovery cohort. Matching on gene
symbol, 324,991 CpG sites were associated with a unique
gene in the TCGA gene expression data and displayed
variation in methylation levels across the validation co-
hort. Pearson correlations of 0.2 and −0.2 between gene
expression and methylation levels were associated
with p values much less than 10−6. Hence, correcting for
multiple hypothesis testing, less than 1 CpG site having a
Pearson correlation greater than 0.2 or less than −0.2 is
expected by chance across the 661 tumors.

Functional classification of gene sets
Enrichment of functional classification of genes in
identified gene sets was analyzed using the DAVID
Functional Annotation Tool [27] with the default Homo
sapiens background and the false discovery rate (FDR) op-
tion to correct for multiple hypothesis testing. Gene set
enrichment analysis was used to investigate the overlap of
genes in identified gene sets with genes in 10,348 gene sets
collected in the Molecular Signatures Database (MSigDB)
[28]. In these analyses, CpG annotation data obtained
from Illumina were used to map CpG sites to genes,
and only CpG sites mapping to a unique gene were
included.

Processing of human genome data
Chromatin states in human embryonic stem cells
(H1hESCs) and HMECs, as well as peak calls for DNase I
hypersensitive sites and EZH2 binding sites in HMECs
from the uniform pipeline, all generated by the ENCODE
consortium, were obtained using the UCSC Genome
Browser [14, 29]. CpG sites were mapped to chromosome
regions with information from ENCODE using the R
package GenomicRanges [30]. CpG sites were mapped to
DNA repeat regions using the repeats_rmsk_hg19.txt table
in the UCSC Genome Browser.
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BRCA1 and HORMAD1 promoter methylation analysis
BRCA1 promoter methylation analysis was performed
using the 450K methylation data. To identify informative
CpG sites, we screened all 44 CpG sites on the platform
located within BRCA1 transcripts or 1 kb upstream for
negative correlation (Pearson correlation less than −0.2)
with BRCA1 gene expression levels using the validation
cohort. We identified 21 informative CpG sites. All in-
formative CpG sites were located within 1 kb centered
on the BRCA1 transcription start site. Tumors were
classified as BRCA1 promoter methylated if the average
β value for the informative CpG sites was greater than
0.2. The average β value for the informative CpG sites
ranged from 0.004 to 0.03 across the 96 normal tissue
samples in the normal cohort. To validate BRCA1 pro-
moter status, we used data available for 71 tumors from
a previous study in the discovery cohort and obtained
with a PSQ HS 96 pyrosequencing system (Biotage,
Uppsala, Sweden) as described [22]. HORMAD1 pro-
moter methylation analysis was performed in the same
way as it was for BRCA1. We identified seven HOR-
MAD1 informative CpG sites among nine CpG sites lo-
cated within HORMAD1 transcripts or 1 kb upstream.
All informative CpG sites were located within 1 kb cen-
tered on the HORMAD1 transcription start site. Tumors
were classified as HORMAD1 promoter unmethylated if
the average β value for the informative CpG sites was
less than 0.8. The average β value for the informative
CpG sites ranged from 0.91 to 0.99 across the 96 normal
tissue samples in the normal cohort.

Somatic mutation analysis
Somatic mutations from exome sequencing were available
from TCGA for 645 of the 669 tumors in the validation co-
hort [mutation annotation format (MAF) file, curated level
2 data, version 2.1.1.0]. For some tumors, the MAF file con-
tained mutations called from multiple exome sequencing
experiments with different reference samples or different
tumor aliquots. (For 34 of the tumors mutations were from
2 experiments, and for 1 tumor mutations were from 3 ex-
periments.) We called gene mutations when genes were
mutated in at least one experiment for the tumor, and the
total number of single-base substitutions for each tumor
was calculated as the average for the multiple experiments.

Copy number analysis
Copy number estimates and CNAs obtained from bacter-
ial artificial chromosome (BAC) arrays were available for
180 of 188 tumors in the discovery cohort from previous
studies [22, 31, 32]. Affymetrix Genome-Wide Human
SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA) level 3
data were available from TCGA for 660 of 669 tumors in
the validation cohort and were used to generate copy
number estimates and CNAs as described elsewhere [33].

The fraction of the genome altered (FGA) by copy number
alterations was estimated as the number of probes with
copy number gain or loss divided by the total number of
probes for the platform. Amplifications were identified
using a previously defined set of significant DNA CNAs in
breast cancer [31]. This set was identified using GISTIC
[34]. GISTIC regions with an average copy number esti-
mate of probes in the region greater than 0.8 were called
as amplifications in both the discovery and validation co-
horts. Complex arm-wise aberration index (CAAI) scores
were calculated for each tumor as described by Russnes et
al. [35]. A case was classified as CAAI-positive if one or
more chromosome arms were affected by complex alter-
ations with a CAAI score greater than 2 for samples in the
discovery cohort or greater than 4 in the TCGA cohort.
The reason for the difference in cutoff between the co-
horts is due to the different platforms from which the
copy number data were generated (Affymetrix Genome-
Wide Human SNP Array 6.0 for TCGA, BAC arrays for
the discovery cohort). The different platforms have differ-
ent responses (platform-related characteristics) to copy
number change (amplitude), and this amplitude is an im-
portant variable in the CAAI calculation.

Statistical analysis
Wilcoxon tests, Kruskal-Wallis tests, χ2 tests, t tests, and
Fisher’s exact tests were performed in R. Adjustment of p
values for multiple-testing correction of these statistical
tests was performed using p.adjust in R with the Benja-
mini-Hochberg method to control the FDR [36]. Sur-
vival analysis was performed in R using the survival
package. Survival functions for patients stratified by epi-
types were estimated using the Kaplan-Meier estimator
and compared using the log-rank test. In the survival ana-
lysis, 169 samples (first primary tumor with available sur-
vival data) were included for the discovery cohort and 654
samples (primary tumor with available survival data) were
included for the validation cohort.

Results
Identification of CpG sites with breast cancer–specific
methylation patterns
We compared the DNA methylation status of more than
480,000 CpG sites between 188 breast cancer samples
(Table 1, discovery cohort) and 96 normal breast tissue
specimens (normal cohort). To identify CpG sites with
different methylation levels in tumors as compared with
normal samples, we first identified 284,627 CpG sites as
being either methylated (β > 0.7) or unmethylated (β < 0.3)
across all 96 samples in the normal cohort (allowing for 2
missing values). Among these CpG sites, we identified
2108 CpG sites that changed methylation status in at
least 5 % (n = 10) of the breast tumors (Additional file 1:
Table S1). Of these, 1016 CpG sites were methylated in
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breast cancer (β < 0.3 in the normal samples and β > 0.7 in
the tumor samples) and 1092 CpG sites were unmethy-
lated in breast cancer (β > 0.7 in the normal samples and
β < 0.3 in the tumor samples). We observed that more than
95 % of these 2108 CpG sites also changed methylation
status in at least 5 % of the tumors in the TCGA validation
cohort. Because we identified CpG sites that display tumor-
specific methylation robustly across cohorts from different
populations, including the TCGA validation cohort with
matched tumor-normal pairs, we concluded that the influ-
ence of single-nucleotide polymorphisms and other germ-
line variants is limited on the identified CpG sites.

Unsupervised identification of seven epitypes in breast
cancer
We performed unsupervised bootstrap consensus clustering
analysis based on the 2108 CpG sites with tumor-specific
methylation levels, and we identified 7 clusters (hereafter

referred to as epitypes ET1–ET7) of breast cancer sam-
ples in the discovery cohort (Fig. 1a, Additional file 2:
Figure S1A). In addition to basing the 7 epitypes on 2000
bootstrap iterations of clustering, we tested the robustness
of the epitypes in several ways. First, we evaluated the
number of epitypes by performing bootstrap clustering
analysis looking for three to ten clusters. Typically, un-
stable clusters, clusters that clearly contained subclusters,
or clusters with fewer than five tumors were identified.
However, for three and seven clusters, robust solutions
were obtained. We decided upon the solution with the lar-
gest number of robust clusters (seven clusters), which pro-
vided a relatively consistent subdivision from the three-
cluster solution (Additional file 2: Figure S1B). Second, the
seven epitypes were robust across different CpG sets in un-
supervised bootstrap clustering analysis (Additional file 2:
Figure S1C, D). Furthermore, although the epitypes were
identified using tumor-specific CpG sites, they were associ-
ated with the dominant variation in the genome-wide
DNA methylation levels as measured by the entire plat-
form (Additional file 2: Figure S1E). Third, technical fac-
tors, such as bisulfite conversion plate or BeadChip array,
influenced neither the genome-wide methylation data nor
the epitypes (Additional file 2: Figure S1E–G). ET1 showed
a methylation pattern most similar to normal samples, ET4
a global hypomethylation pattern, ET5 a promoter CpG is-
land hypermethylation pattern, and ET7 a promoter CpG
island hypomethylation pattern (Fig. 1b). The proliferative
rates of the tumors, as measured by the fraction of cells in
S phase determined by flow cytometry, increased from
ET2 to ET7 (Fig. 1c).

Validation of breast cancer epitypes
We constructed a classifier for the 7 epitypes using the
discovery cohort and the 2108 tumor-specific CpG sites.
Next, we classified 669 independent breast tumors in the
TCGA validation cohort (Table 1). ET4 showed a global
hypomethylation pattern, ET5 a promoter CpG island
hypermethylation pattern, and ET7 a promoter CpG is-
land hypomethylation pattern also in the validation cohort
(Additional file 2: Figure S2A). The epitype classification
explained the dominant variation in the genome-wide
DNA methylation levels (Additional file 2: Figure S2B).
Notably, the epitypes contributed more to the total vari-
ation in DNA methylation than clinicopathological and
technical factors. Again, the epitypes were not associated
with technical factors such as TCGA batch and BeadChip
array (Additional file 2: Figure S2C-D). Moreover, we
performed unsupervised bootstrap clustering analysis
to independently derive epitypes in the validation cohort,
following the same approach as in the discovery cohort.
This analysis resulted in eight clusters of tumors that over-
lapped extensively with the classification into the seven epi-
types (Additional file 2: Figure S2E). The main difference

Table 1 Patient and tumor characteristics of included cohorts

Characteristic Discovery cohort (n) Validation cohort (n)

Total number of samples 188 669

Unique patients 181 666

Primary tumors 183 665

Recurrent tumors 5 4

Median age, years 48 58

Estrogen receptor status

Positive 97 474

Negative 77 142

Tumor size

T1 66 176

T2 81 371

T3 5 86

Node status

Positive 59 356

Negative 91 290

Histological type

Ductal 120 446

Lobular 8 134

Medullary 3 5

Mixed 9 24

Other 18 44

Molecular subtype

Luminal A 41 251

Luminal B 30 144

HER2-enriched 32 73

Basal-like 44 126

Normal-like 11 67

HER2 human epidermal growth factor receptor 2
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was that in the larger validation cohort there was support
to robustly split ET3 into two groups. Together, these re-
sults demonstrate that the breast cancer epitypes are repro-
ducible and can be robustly identified across independent
cohorts.

Epitypes are associated with gene expression phenotypes
The seven epitypes were associated with the molecular
subtypes of breast cancer in both the discovery and
validation cohorts (Fig. 2a). ET1, which showed a methyla-
tion pattern similar to that of normal cells, contained
tumors of all subtypes. Epitypes ET2–ET5 were associated
with luminal cancers and showed, from ET2 to ET5, a
gradual decrease in the fraction of luminal A tumors and
an increase in the fraction of luminal B tumors. In
addition, the luminal epitypes showed a gradual shift away
from the methylation pattern of normal cells (Fig. 1). ET6
showed an association with HER2-enriched tumors, and
ET7 contained the majority of basal-like tumors.
The separation of luminal tumors into luminal A

and B is based primarily on differential expression of
proliferation-related genes. However, the expression of
proliferation-related genes in luminal tumors is a con-
tinuum [37]. Hence, the separation into luminal A and B
depends on the cutpoint in a continuous distribution. This
cutpoint is typically highly dependent on the composition
of tumors in the analyzed dataset, making robust assign-
ment of individual tumors to luminal subtypes particularly
difficult [37–39]. Therefore, we investigated the activity
of eight breast cancer–specific gene expression modules
[26] in both the discovery and validation cohorts and
further substantiated the association between epitypes
and gene expression phenotypes (Fig. 2b, Additional file 2:
Figure S3). As expected, the steroid response module
showed high activity in epitypes ET2–ET5 and low activity
in ET7. The proliferation-related mitotic progression
module displayed increasing expression levels across the
luminal epitypes from ET2 (lowest levels) to ET5 (highest
levels), in agreement with proliferative rates as measured

by the fraction of cells in S phase determined by flow cy-
tometry (Fig. 1c). Moreover, the basal module, containing
basal cell keratins and known to display relatively high ex-
pression in normal breast tissue [1, 26], showed decreased
expression levels across the luminal epitypes from ET2
(highest levels) to ET5 (lowest levels). Together, these re-
sults suggest that luminal tumors display promoter
methylation patterns with a gradual shift away from nor-
mal cells associated with higher proliferative rate, lower
normal cell content, and the luminal B subtype. Moreover,
the results validate the strong association between DNA
methylation patterns and gene expression phenotypes [6].

Characteristics of CpG sites with breast cancer–specific
methylation patterns
Overall, DNA methylation patterns followed the expected
pattern along gene structure, with low methylation levels
near transcription start sites and high methylation levels
in gene bodies, 3′ untranslated regions, and intergenic re-
gions (Fig. 3a). Of the 324,991 CpG sites that mapped to a
unique gene (a total of 18,797 genes) in the validation
gene expression data, 35,329 CpG sites (7169 genes)
showed a positive correlation (Pearson correlation greater
than 0.2) and 48,593 CpG sites (10,724 genes) showed a
negative correlation (Pearson correlation less than −0.2)
between DNA methylation and gene expression levels in
the validation cohort. A total of 4829 genes were associ-
ated with CpG sites with positive correlation as well
as with CpG sites with negative correlation. CpG sites
with negative correlation were enriched near transcription
start sites, and CpG sites with positive correlation were
enriched in gene bodies (Fig. 3b).
Of the 1016 CpG sites methylated in breast cancer

compared with normal samples, 690 were annotated to a
single gene corresponding to a total of 515 unique genes.
Functional analysis of these hypermethylated genes using
DAVID [27] showed significant enrichment for categories
including homeobox genes (FDR = 2e-17), developmental
proteins (FDR = 1e-15), and cell fate commitment (FDR =

(See figure on previous page.)
Fig. 1 Identification of seven DNA methylation epitypes in breast cancer. a DNA methylation epitypes in the discovery cohort based on bootstrap
clustering of 2108 CpG sites with breast cancer–specific methylation levels. The heat map displays β values (rows) ranging from unmethylated (blue) to
methylated (yellow) for three sample groups (columns) comprising 188 breast tumors divided into 7 epitypes by bootstrap clustering, 96 normal breast
tissues from The Cancer Genome Atlas, and 4 normal cell types (HMEC human mammary epithelial cells, HMF human mammary fibroblasts, HMEndoC
human mammary endothelial cells, Blood blood leukocytes). Sample annotations at the bottom display estrogen receptor status, gene expression
subtypes, germline mutations in BRCA1 and BRCA2 (black = yes, white = no, gray= NA). CpG tracks on the left side: GEX correlation between DNA
methylation and gene expression levels across the validation cohort (red = positive correlation, green = negative correlation, gray= low correlation,
white = no associated gene); HMEC-Chrom and H1hESC-Chrom chromatin states in human mammary epithelial cells and H1 human embryonic stem
cells, respectively (red = active promoter, purple= poised promoter, gray = Polycomb-repressed, yellow= enhancer, green = transcribed, blue= insulator,
white = heterochromatin); HMEC-EZH2 EZH2 targets in human mammary epithelial cells; HMEC-DNASE accessible DNA in human mammary epithelial
cells (black = yes, white = no); CpG island track (black = island, gray= shore/shelf, white = open sea). CpG track on the right side: Group CpG sites with
epitype-specific methylation patterns (red =methylated in ET7, light blue=methylated in ET5, green= demethylated in ET4, blue= demethylated in
luminal epitypes, orange = demethylated in ET7). b Global hypermethylation scores for all CpG sites (left) and all CpG sites in promoters and CpG islands
(right) across the epitypes. c Proliferative rates of tumors across the epitypes. In (b) and (c), the number of tumors in each epitype is shown at the top.
ER estrogen receptor, HER2 human epidermal growth factor receptor 2
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8e-7). Of the 1092 CpG sites unmethylated in breast can-
cer, 645 were annotated to a single gene corresponding to
a total of 416 unique genes. These hypomethylated genes
showed significant enrichment for categories that included
glycoproteins (FDR = 6e-15), keratinization (FDR = 3e-4),
and epithelial cell differentiation (FDR = 0.008).
The CpG sites methylated in breast cancer compared

with normal breast samples were enriched in CpG islands
but also in shores, whereas the CpG sites unmethylated in
breast cancer were enriched in open sea (Fig. 3c). More-
over, the CpG sites methylated in breast cancer over-
lapped with DNase I hypersensitive sites associated with
open chromatin and active transcription as well as with

regions bound by EZH2 in HMECs (Fig. 1). To investigate
the genomic context of the CpG sites with tumor-specific
methylation levels in more detail, we used 15 chromatin
states based on genome-wide histone modification
patterns and CTCF binding patterns in both H1hESCs
and HMECs from the ENCODE Consortium [14, 29].
The chromatin states summarize coordinated chroma-
tin marks. For example, trimethylation of lysine 27 on
histone H3 (H3K27me3), H3K4me3, and dimethylation of
lysine 4 on histone H3 (H3K4me2) jointly mark a
bivalent, transcription-ready poised promoter state;
H3K4me3, H3K4me2, histone H3 acetylated on lysine
27 (H3K27ac), and H3K9ac jointly mark an active
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promoter state; H3K27me3 alone marks a Polycomb-
repressed state; and a heterochromatin/low signal
state lacks histone marks [29]. CpG sites unmethylated
in breast cancer compared with normal breast cells
were located in genomic regions in the heterochroma-
tin/low signal state in H1hESCs, and even more so in
HMECs (Fig. 3d). CpG sites specifically methylated in
breast cancer were located primarily in genomic re-
gions in the poised promoter state in H1hESCs. Inter-
estingly, in HMECs, the breast cancer methylated CpG
sites were predominantly enriched in genomic regions
in the poised promoter or in the Polycomb-repressed
state (Fig. 3d). These results confirm the widespread
observation that DNA methylation in cancer occurs in
genes with promoters marked by Polycomb-mediated
H3K27me3 in embryonic stem cells [40], but they also

suggest a potential to further characterize methylation
patterns in breast cancer by using histone modifica-
tion patterns from mammary cells [6].

Identification of CpG sites with epitype-specific
hypermethylation
We observed a gradual increase in methylation across
the luminal epitypes, ET2–ET5, of the CpG sites methyl-
ated in breast cancer, whereas only a subset of these
CpG sites appeared to be methylated in the basal-like
epitype ET7 (Fig. 1a). Consequently, we decided to in-
vestigate the characteristics of CpG sites methylated in
basal-like breast cancer and specifically in luminal breast
cancer, separately. We first identified 39 CpG sites
among the 1016 breast cancer methylated CpG sites that
were methylated in ET7 by selecting CpG sites having
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an average β value greater than 0.5 across the tumors in
ET7 using the discovery cohort. These CpG sites were
not specific to ET7 but were also methylated in ET5
(Additional file 2: Figure S4A). None of the breast can-
cer methylated CpG sites had an average β value greater
than 0.5 in ET7 and an average β value less than 0.1 in
ET5, indicating that methylation in the basal-like epitype
ET7 is not epitype-specific, but rather reflects constitu-
tive methylation present in both basal-like and some lu-
minal breast cancers. Second, we identified 90 CpG sites
that were specifically methylated in the luminal epitypes
by selecting CpG sites having an average β value greater
than 0.5 across the tumors in the hypermethylated
luminal epitype ET5 and an average β value less than
0.1 across the tumors in ET7 using the discovery co-
hort. The CpG sites methylated in ET5 displayed a
gradual increase in methylation across the luminal epi-
types ET2–ET5 (Additional file 2: Figure S4B). The
methylation patterns of the sets of CpG sites methylated
in ET7 and ET5 were both validated in the validation
cohort (Additional file 2: Figure S4).

Functional characteristics of CpG sites with epitype-
specific hypermethylation
Next, we investigated the characteristics of CpG sites
methylated in ET7 and ET5, separately. Of the 39 CpG
sites methylated in ET7, 20 were annotated to a single
gene, corresponding to a total of 17 unique genes. Of
the 90 CpG sites methylated in ET5, 74 were annotated
to a single gene, corresponding to a total of 67 unique
genes. Functional analysis of these two gene sets
using DAVID did not identify significant enrichment
(FDR < 0.01) for any categories except for zinc finger
domains in the genes methylated in ET7 (FDR = 0.003).
To gain further insight into the functions of genes in these
two gene sets, we used gene set enrichment analysis to
investigate their overlap with genes in 10,348 gene sets
collected in the MSigDB [28]. The genes methylated in
ET7 displayed significant overlap with gene sets contain-
ing Polycomb-repressed genes in human embryonic stem
cells (FDR = 0.009 for H3K27me3 targets, FDR = 0.04 for
SUZ12 targets, FDR = 0.04 for EED targets) [41]. The gene
sets with most significant overlaps with genes methylated
in ET5 fell into two categories. First, they were also
enriched in gene sets of Polycomb-repressed genes in
human embryonic stem cells (FDR = 2e-9 for H3K27me3
targets, FDR = 5e-8 for SUZ12 targets, FDR = 5e-8 for
EED targets) [41]. Second, they were enriched in gene sets
associated with different expression patterns between
luminal and basal-like cells: genes downregulated in
luminal-like cell lines compared with mesenchymal-like
ones (FDR = 1e-9) [42], genes upregulated in the basal
subtype (FDR = 3e-8), and genes downregulated in the
luminal B subtype of breast cancer (FDR = 8e-7) [43], as

well as genes upregulated in mammary stem cells
(FDR = 3e-6) and genes downregulated in mature mam-
mary luminal cells (FDR = 7e-6) in both mouse and human
species [44]. These findings support our previous observa-
tion, based on a limited set of CpG sites, that many genes
with subtype-specific expression may be regulated through
methylation in breast cancer [6].

Genomic characteristics of CpG sites with epitype-specific
hypermethylation
The CpG sites methylated in ET5 were located primarily
in islands (68 %) but also in shores (23 %), whereas the
CpG sites methylated in ET7 were located in islands (44 %)
and shores (49 %) in similar proportions. In H1hESCs, the
sets of CpG sites methylated in ET7 and ET5 were both
located primarily in genomic regions in promoter states, in
particular in the poised promoter state (Fig. 4a). However,
in HMECs, the CpG sites methylated in ET7 were not
enriched in genomic regions in the same chromatin states
as the CpG sites methylated in ET5 (Fig. 4b). In HMECs,
the CpG sites methylated in ET5 were enriched in regions
in weak promoter and poised promoter states, whereas the
majority of the CpG sites methylated in ET7 were located
in regions in the Polycomb-repressed state. We used valid-
ation cohort gene expression data to further substantiate
the differences between these two methylation patterns.
We matched 17 of the CpG sites methylated in ET7 to 16
unique genes and 72 of the CpG sites methylated in ET5
to 66 unique genes in the validation gene expression data.
The CpG sites methylated in ET7 displayed no correlation
between methylation and expression levels, and the genes
were expressed at very low levels both in normal breast tis-
sue and across breast cancers of all epitypes (Fig. 4c). On
the contrary, the CpG sites methylated in ET5 displayed
negative correlations between expression and methylation
levels, and the genes were expressed in normal breast tis-
sue and displayed decreasing expression levels across the
luminal epitypes ET2–ET5 in concordance with their
methylation levels (Fig. 4c, Additional file 2: Figure S4B).
Taking these data together, by integrating genomic data
from multiple levels, we show that DNA methylation in
luminal and basal-like breast tumors is associated with
different chromatin states and different gene expression
patterns.

Identification of CpG sites with epitype-specific
hypomethylation
Most CpG sites unmethylated in breast cancer compared
with normal samples were hypomethylated in the globally
hypomethylated luminal epitype ET4 (Fig. 1a). However,
hypomethylation in luminal tumors displayed two dom-
inant patterns: Some CpG sites displayed hypomethyla-
tion more restricted to ET4, whereas others were
hypomethylated in ET4 as well as in other luminal
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epitypes, in particular in ET5 (Fig. 1a). We also observed
that there appeared to be a set of CpG sites specifically
hypomethylated in the basal-like epitype ET7 (Fig. 1a).
Consequently, we decided to investigate epitype-specific
hypomethylation in breast cancer by identifying CpG sites
belonging to these three patterns: hypomethylation
specific to ET4, hypomethylation across luminal epitypes,
and hypomethylation specific to ET7.
First, we identified 110 CpG sites among the 1092

CpG sites unmethylated in breast cancer that were spe-
cifically unmethylated in the globally hypomethylated
epitype ET4 by selecting CpG sites having an average
β value less than 0.5 across the tumors in ET4 and
an average β value greater than 0.7 across the tumors
in both ET5 and ET7 using the discovery cohort
(Additional file 2: Figure S5A). Of these CpG sites, 48
were annotated to a single gene corresponding to 37

unique genes. Second, we identified 261 CpG sites that
were unmethylated in luminal breast cancer by selecting
CpG sites having an average β value less than 0.5 in ET5
and an average β value greater than 0.7 in ET7 using the
discovery cohort. These CpG sites displayed gradual de-
methylation across the luminal epitypes from ET2 to ET5
(Additional file 2: Figure S5A), and 176 of them were an-
notated to a single gene corresponding to 156 unique
genes. Third, we identified 15 CpG sites among the 1092
breast cancer unmethylated CpG sites that were specific-
ally unmethylated in ET7 by selecting CpG sites having
an average β value less than 0.5 across the tumors in ET7
and an average β value greater than 0.7 across the tumors
in ET4 using the discovery cohort (Additional file 2:
Figure S5A). Of the 15 CpG sites, 9 were annotated to a
single gene corresponding to a total of 8 unique genes.
The methylation patterns across epitypes of all three sets
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gene with gene expression data. The average gene expression levels across 661 breast tumors in the validation cohort stratified by epitype and 106
normal breast tissue samples from The Cancer Genome Atlas for the CpG sites methylated in ET7 (center) and methylated in ET5 (right) and matched
to a gene with gene expression data. GEX gene expression, CNV copy number variation
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of hypomethylated CpG sites were validated in the TCGA
validation cohort (Additional file 2: Figure S5A).

Characteristics of CpG sites with epitype-specific
hypomethylation
Both the set of CpG sites demethylated specifically in
ET4 and the set demethylated gradually across luminal
epitypes were located primarily in heterochromatin re-
gions in HMECs (Additional file 2: Figure S5B) and dis-
played positive correlation between methylation and
expression levels (Additional file 2: Figure S5C), but they
were associated with genes with very low expression in
breast cancer (Additional file 2: Figure S5D). These ob-
servations are consistent with findings of Hon et al. that
regions undergoing hypomethylation in breast cancer
typically are maintained in a transcriptionally silent state
[13]. The CpG sites hypomethylated in luminal cancer
were located primarily in open sea (77 %) and shores
(10 %) but not in islands (0.4 %), whereas the CpG
sites hypomethylated specifically in ET4 were located
in open sea (47 %), islands (24 %), and shores (18 %).
Hypomethylation of DNA in cancer has been shown to
occur at long interspersed nuclear element (LINE) and
long terminal repeat (LTR) repetitive elements, as well as
at chromosome ends [45–48]. We found that the CpG
sites demethylated in luminal cancer were significantly as-
sociated with LINE/LTR repetitive elements (p = 0.02 by
Fisher’s exact test; df = 1) (Additional file 2: Figure S5F),
whereas the CpG sites specifically demethylated in ET4
displayed enrichment within the first or last 5 Mb of chro-
mosomes (Additional file 2: Figure S6G) and displayed
shorter distances to the nearest chromosome end than the
other CpG sites on the platform (p = 4e-21 by t test).
It has been observed that DNA repeats can have a
confounding effect on methylation measurements [49].
Our selection criteria identify CpG sites with larger
methylation changes than the typical size of this erroneous
effect [50]. Nevertheless, it is clear that use of bisul-
fite sequencing will help to reveal more details of hypo-
methylation of repeats in luminal cancers. We conclude
that demethylation specific to ET4 and demethylation
more common to all epitypes of luminal cancer may have
different implications for genome function and progres-
sion of luminal tumors.
The CpG sites specifically unmethylated in ET7 were

very few, were slightly enriched in enhancer regions in
HMECs (Additional file 2: Figure S5B), and were primar-
ily in shores (47 %) and in open sea (47 %). These CpG
sites displayed limited correlation between expression
and methylation levels but were associated with genes
expressed in breast cancer using the validation cohort
gene expression data (Additional file 2: Figure S5C, D).
Because tumors of epitype ET7 displayed high expres-
sion levels of immune response genes (Additional file 2:

Figure S3), we investigated the methylation levels of
these CpG sites in a cohort of various subpopulations
of blood cells [15]. We found that these CpG sites
displayed, on average, decreased methylation levels in
blood cells (Additional file 2: Figure S5E), as well as
significant variation in methylation levels across sub-
populations of blood cells, compared with all CpG
sites on the arrays (p = 0.02 by t test). Hence, CpG sites
specifically hypomethylated across basal-like breast
cancer have limited influence on expression levels and
may reflect low methylation levels in infiltrating subpopu-
lations of normal cells, rather than de novo demethylation
in tumor cells.

Epitypes are associated with DNA copy number
aberrations
We investigated DNA copy number changes across the
epitypes in both the discovery and validation cohorts.
Across the luminal epitypes from ET2 to ET5, we found
that the FGA by copy number increased, that the alter-
ations appeared increasingly more complex in terms of
the CAAI [35], and that the number of amplifications
per sample increased (Fig. 5a, b). Tumors of ET6, associ-
ated with HER2-enriched tumors, displayed the most
complex copy number profiles, the largest numbers of
amplifications per sample, and higher FGA than the lu-
minal epitypes. Although tumors of the basal-like epi-
type ET7 displayed the largest FGA, the alterations were
typically not as complex, and these tumors harbored few
amplifications. Reassuringly, we note that the results
were very similar for both the discovery and validation
sets and conclude that the results were robust across
both different tumor cohorts and copy number technolo-
gies (BAC arrays and Affymetrix Genome-Wide Human
SNP Array 6.0 arrays).
With the exception of amplification of 17q12 (ERBB2),

we did not find any particular associations between
specific amplifications and epitypes (Additional file 2:
Figure S6A). ERBB2 was amplified in 83 % of ET6 tumors
in the discovery cohort and in 46 % of ET6 tumors in the
validation cohort. However, it should be noted that only a
relatively small fraction of ERBB2-amplified cases are in
ET6 [10 (21 %) of 48 in the discovery cohort and 13
(22 %) of 60 in the validation cohort]. Similar results
were obtained using the gene expression–based subtype
HER2-enriched (in the discovery cohort 7 (22 %) of 32 of
HER2-enriched tumors in ET6 and 17 (23 %) of 73 in the
validation cohort). A scheme to classify breast cancers into
ten clusters based on CNAs that influence gene expression
patterns (IntClust) has been proposed [51]. In agreement
with our findings for individual amplifications, we observed
only a moderate correspondence between IntClust groups
and epitypes (Additional file 2: Figure S6B). In more detail,
IntClust 10 is the dominant group in ET7, IntClust 5 is the
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dominant group in ET6, IntClust 3 is largest in ET2 and
ET3, and ET4 and ET5 are very mixed with respect to
IntClust groups. Taken together, our analyses of copy
number changes demonstrate a strong association be-
tween epitypes and global patterns of genomic instability.
Although specific aberrations in general were not associ-
ated with the epitypes, we identified a small subtype
enriched for ERBB2-amplified tumors characterized by
the most complex aberrations and a relatively large
number of amplifications in addition to ERBB2.

Epitypes are associated with mutations
We screened for associations between somatic mutations
and epitypes using TCGA exome sequencing data for
the validation set. There were 2205 genes with nonsilent
mutations in at least 5 tumors in the validation set. Of
these, only three genes, PIK3CA, TP53 and CDH1, were

significantly associated with the epitypes correcting for
multiple testing [χ2 test (df = 6), FDR = 1 %] (Fig. 5c).
Overall, the total number of mutations increased from
ET2 to ET7 (Fig. 5c). Germline mutation data were
available for only the discovery cohort. Patients with
germline mutations in BRCA2 were enriched in ET4 in
the discovery cohort [8 (53 %) of 15; p = 8e-5, Fisher’s
exact test (df = 1)]. In the discovery cohort, 22 (85 %) of 26
tumors from patients harboring BRCA1 germline muta-
tions were classified as ET7 [p = 1e-12, Fisher’s exact test
(df = 1)]. In the validation cohort, 7 (58 %) of 12 tumors
with somatic nonsilent BRCA1 mutations were classified
as ET7 [p = 6e-4, Fisher’s exact test (df = 1)].

BRCA1 and HORMAD1 promoter methylation
Tumors of the basal-like epitype ET7 displayed highly
altered genomes, but limited epitype-specific hyper- and
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Fig. 5 DNA copy number and somatic mutation characteristics of breast cancer epitypes. Amount of copy number alterations [fraction of the
genome altered (FGA)], percentage of breast tumors classified as complex arm-wise aberration index–positive (CAAI positive), and the number of
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hypomethylation, compared with normal samples. We
investigated the promoter methylation status of BRCA1
and HORMAD1 to explore if aberrant methylation of
these candidate drivers of genomic instability in basal-
like breast cancer [52, 53] was associated with subsets of
ET7 tumors. Using the 450K methylation data, we iden-
tified 11 (6 %) and 15 (2 %) BRCA1 promoter methyl-
ated tumors in the discovery and validation cohorts,
respectively. BRCA1 promoter methylation status ob-
tained using pyrosequencing was used to validate the
450K data. All 71 tumors in the discovery cohort ana-
lyzed using pyrosequencing displayed identical BRCA1
promoter methylation status with both techniques.
BRCA1 promoter methylated tumors were primarily of
the ET7 epitype [10 (91 %) of 11 in discovery cohort, 12
(80 %) of 15 in validation cohort]. The median correl-
ation of methylation of the 21 promoter CpG sites used
to assess BRCA1 methylation status and BRCA1 expres-
sion was −0.34 across the validation cohort. These CpG
sites were all in the chromatin state active promoter in
both H1hESCs and HMECs. Using the 450K methylation
data, we identified 24 (13 %) and 47 (7 %) HORMAD1
promoter unmethylated tumors in the discovery and
validation cohorts, respectively. HORMAD1 promoter
unmethylated tumors were primarily of the ET7 epitype
(23 (96 %) of 24 in discovery cohort, 40 (85 %) of 47 in
validation cohort). The median correlation of methyla-
tion of the seven promoter CpG sites used to assess
HORMAD1 methylation status and HORMAD1 expres-
sion was −0.63 across the validation cohort. These CpG
sites were all in the heterochromatin/low signal chroma-
tin state in both H1hESCs and HMECs. BRCA1 methy-
lation and HORMAD1 demethylation were not mutually
exclusive (6 of 11 BRCA1 methylated tumors were HOR-
MAD1 unmethylated in the discovery cohort and 3 of 15
in the validation cohort). These results demonstrate a
strong association of BRCA1 methylation and HOR-
MAD1 demethylation with the basal-like epitype ET7.
Moreover, these candidate drivers of genomic instability
in basal-like breast cancer may be regulated by aberrant
methylation in subsets of these tumors.

Methylation differences according to BRCA1 status within
the basal-like epitype
It is unclear if BRCA1 deficiency is associated with a dif-
ferent epigenetic entity within basal-like tumors. There-
fore, we screened for global methylation differences
within the ET7 epitype between BRCA1 promoter meth-
ylated tumors, BRCA1 germline mutated tumors, and
tumors with no known BRCA1 aberration [BRCA1 wild
type (WT)]. We identified only 18 CpG sites with differ-
ent methylation levels between the three tumor groups
in the discovery cohort, even at relatively nonstringent
statistical significance (Kruskal-Wallis test, FDR = 10 %),

and all of these CpG sites were located around the
BRCA1 transcription start site. Similar results were ob-
tained comparing BRCA1 methylated tumors with only
BRCA1 WT tumors. In the validation cohort, we identi-
fied 90 CpG sites with different methylation levels be-
tween BRCA1 WT, BRCA1 methylated, and BRCA1
somatically mutated tumors (Kruskal-Wallis test, FDR =
1 %). Of these, 29 CpG sites were located around the
BRCA1 transcription start site, while the other CpG sites
were scattered across the genome. One sample with both
a somatic missense mutation and promoter methylation
were assigned to the methylation group in these ana-
lyses. Comparing BRCA1 methylated tumors with only
BRCA1 WT tumors in the validation cohort, we identi-
fied 31 significant CpG sites (Wilcoxon test, FDR = 1 %);
all but one located around the BRCA1 transcription start
site. Taken together, separating ET7 tumors into BRCA1
promoter methylated, BRCA1 mutated, or BRCA1 WT
revealed that these three groups have strikingly small
differences in their genome-wide methylation patterns.

Epitypes are associated with clinicopathological features
We investigated associations between epitypes and clini-
copathological features for both the discovery and valid-
ation cohorts (Additional file 3: Tables S2 and S3,
respectively). ER and PR status were significantly associ-
ated with epitypes in both the discovery cohort (p = 1e-
17 and p = 7e-15, respectively; χ2 test) and the validation
cohort (p = 1e-66 and p = 1e-54, respectively), as ex-
pected from the association between epitypes and gene
expression phenotypes. Node status was more weakly as-
sociated with the epitypes with higher fractions of node
positive tumors in ET4 and ET6 and lower fractions in
ET7 (discovery cohort p = 0.02, validation cohort p = 0.03;
χ2 test). Tumor size (in millimeters) was significantly asso-
ciated with epitypes in the discovery cohort (p = 0.004;
Kruskal-Wallis test), with the largest median tumor size in
ET4–ET7 and the median tumor size increased across
luminal epitypes from ET2 to ET4. Tumor size in millime-
ters was not available for the validation cohort. We there-
fore compared T1 tumors (≤20 mm) with larger tumors
(T2 and T3) in this cohort and found that this dichoto-
mized tumor size was associated with epitypes (p = 0.006;
χ2 test). Our observations for the validation cohort were
similar to the results in the discovery cohort: The largest
fractions of large tumors (>20 mm) were in ET4–ET7,
and the fraction of large tumors increased across the lu-
minal epitypes from ET2 to ET5. In general, there were
no associations between histological subtypes and epi-
types. Lobular tumors were associated with the luminal
epitypes (discovery cohort p = 0.11 and validation cohort
p = 7e-7; χ2 test), but they were not associated with a par-
ticular luminal epitype. There was a significant association
between age at diagnosis and epitype (discovery cohort
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p = 0.005 and validation cohort p = 5e-5; Kruskal-Wallis
test). Convincingly, the oldest patients were in ET5 and
the youngest patients in ET7 for both the discovery co-
hort (median age, cohort 48 years, ET5 66 years, ET7
45 years) and the validation cohort (median age, cohort
58 years, ET5 64 years, ET7 53 years).
The epitypes were associated with patient outcome in

both the validation and discovery cohorts. The epitypes
were associated with overall survival using both 10-year
follow-up (discovery cohort p = 0.01, validation cohort
p = 0.02; log-rank test) and the full follow-up (discovery
cohort p = 0.01, validation cohort p = 0.04; log-rank test).
Patient outcome analysis in the validation cohort is ham-
pered by limited follow-up information. Reassuringly, the
epitypes had similar overall survival patterns in both co-
horts (Fig. 6). In particular, ET2 was associated with the
best overall survival, ET5 and ET6 had the largest frac-
tions of early events, and ET4 was characterized by a large
fraction of events occurring 5 years after diagnosis.

Discussion
DNA methylation of CpG sites in the genome is a nor-
mal developmental process that is of interest in cancer
because many sites become aberrantly methylated or
demethylated in the disease state. Moreover, it is often
claimed that DNA methylation processes are of import-
ance for tumor initiation and progression. We con-
ducted a comprehensive analysis of genome-wide DNA
methylation profiles of 188 breast tumor samples. Our
overarching goal was to gain insights into how DNA
methylation patterns on a genome-wide scale are associ-
ated with breast cancer heterogeneity. The findings were
extensively validated in an independent cohort from
TCGA encompassing 669 breast tumor samples. Previ-
ously, TCGA identified five epitypes—essentially corre-
sponding to two luminal A epitypes, two luminal B

epitypes, and a basal-like epitype—in an analysis of a
large tumor set (n = 466) restricted to CpG sites in pro-
moters [4]. The epitypes identified by TCGA provide a
direct extension from the three epitypes typically identi-
fied in smaller studies [6–9]. In the present study, we
identified seven epitypes of breast cancer using unsuper-
vised analysis of genome-wide DNA methylation levels
not restricted to CpG sites in promoters. Our epitypes
give independent support to the five epitypes identified
by TCGA and add a normal like epitype ET1 (normal-
like tumors were very few in the original TCGA analysis)
and an epitype ET6 enriched for HER2-enriched tumors.
We performed an integrative analysis of genomic data at
multiple levels to characterize the breast cancer epitypes.
To a large extent, the four luminal epitypes we identi-

fied (ET2–ET5) were characterized by a gradual increase
of many variables from ET2 to ET5. For example, prolif-
erative rate, fraction of luminal B tumors, promoter
CpG island methylation levels, overall mutation rate,
TP53 mutation frequency, number and complexity of
CNAs, number of amplifications, and tumor size all in-
creased from ET2 to ET5. These findings are consistent
with observations based on gene expression–based ana-
lyses suggesting that the separation of tumors into lu-
minal A and luminal B is not well-defined, but rather
reflects an arbitrary cutpoint in a continuous distribu-
tion of expression levels of proliferation-related genes
[37–39]. Importantly, the luminal epitypes also displayed
specific epigenetic characteristics in particular for the
two more luminal B-like epitypes, ET4 and ET5. ET4
displayed a global hypomethylation phenotype and hypo-
methylation of subtelomeric regions, and was enriched
for tumors with BRCA2 germline mutations. However,
the association between BRCA2 germline mutations and
ET4 remains to be validated in an independent dataset.
ET5 displayed a global hypermethylation phenotype and
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was associated with older patients. The different global
methylation patterns of ET4 and ET5 provide an ex-
ample of the opportunities of going beyond analyses re-
stricted to promoter CpG islands. On the contrary, the
more luminal A-like epitypes ET2 and ET3 seemed to
reflect more of a continuum, and the separation of these
tumors into groups is likely cohort size–dependent. In-
deed, in an unsupervised analysis of the large validation
cohort (n = 669), there was support to separate ET3 into
two groups (Additional file 2: Figure S2D).
HER2-enriched tumors are typically found to display

heterogeneous DNA methylation patterns not associated
with a specific epigenetic subtype [4, 6, 9]. In a previous
study based on CpG sites in promoter regions, re-
searchers identified a subtype associated with HER2-
enriched tumors with a methylation pattern of infiltrat-
ing lymphocytes [54]. Such a subtype shows similarities
to our epitype ET1 that contains relatively many HER2-
enriched tumors and is characterized by high expression
of immune response genes (Additional file 2: Figure S3).
In the present study, we identified, for the first time to
our knowledge, a breast cancer epitype associated with
HER2-enriched tumors not displaying a methylation pat-
tern similar to normal cells (ET6). ET6 contains only a
fraction of the HER2-enriched or ERBB2-amplified tu-
mors (around 20 %), and it is likely that our use of tumor
sets containing many HER2-enriched tumors (Table 1)
was essential to identifying this HER2-associated epitype.
ET6 tumors were characterized by multiple amplifications
beyond HER2 (the epitype with most amplifications per
sample), the most complex genomes,TP53 mutations, and
poor overall survival.
We identified only a few associations between somatic

mutations and epitypes in a screen taking multiple test-
ing into account. As expected, PIK3CA and CDH1 were
frequently mutated in the luminal epitypes and TP53
was frequently mutated in the basal-like and HER2-
enriched epitypes. Many genes were mutated in rela-
tively few samples, and it may be worthwhile to investi-
gate whether mutations in sets of functionally related
genes underlie specific epitypes. BRCA1 mutations were
significantly associated with the basal-like epitype (ET7).
However, we did not identify any methylation differences
within the basal-like epitype when stratified according to
BRCA1 status (either germline or somatic), with the
exception that BRCA1 alone displays promoter methyla-
tion in a subset of tumors with the basal-like epitype.
These observations are consistent with findings reported
by Prat et al., who observed very minor molecular differ-
ences at multiple levels (gene, protein, miRNA, and DNA
methylation) according to BRCA1 status in basal-like
breast cancer [55].
Analyses of whole tumor tissues have revealed that DNA

methylation patterns are heavily influenced by surrounding

or infiltrating stromal cells [18, 54]. We identified an epi-
type with a methylation pattern similar to that of normal
cells (ET1). By collecting tumors with normal-like methyla-
tion patterns into a separate epitype, the characteristics of
the other epitypes are likely to become clearer. The repro-
ducibility of identified subtypes is often assessed by show-
ing that the proportion of cases assigned to each subtype is
similar across different cohorts [51]. However, it is import-
ant to keep in mind that some methods have a bias toward
keeping the proportions of subtypes similar [56]. In the
present study, we analyzed retrospective tumor cohorts es-
sentially generated by collecting as many tumors as pos-
sible, which may have resulted in cohorts with different
characteristics. We found the proportions of samples
assigned to the epitypes somewhat different for the discov-
ery and validation cohorts. ET1 (23 % vs. 14 %), ET6 (6 %
vs. 4 %), and ET7 (24 % vs. 15 %) contained larger frac-
tions of samples in the discovery cohort, whereas ET3
(30 % vs. 15 %) and ET5 (12 % vs. 4 %) contained
larger fractions of samples in the validation cohort.
Reassuringly, these differences reflect differences in the
composition of the cohorts. On one hand, the discovery
cohort is enriched for HER2-enriched tumors [many of
which likely are infiltrated by immune cells (Fig. 1a,
Additional file 2: Figure S3)] and tumors from patients
with BRCA1 germline mutations. On the other hand, the
validation cohort contains a larger fraction of ER-positive
luminal tumors and more tumors from older patients
(Table 1). These interpretable connections between cohort
composition and epitype proportions add support to the
reproducibility and generalizability of our epitypes.
Traditionally, epigenetic reprogramming has been

thought to contribute to tumor progression by silencing
tumor suppressor genes. This model has been challenged
by the finding that most cancer-associated methylation oc-
curs in genes that are already repressed in the normal tis-
sue from which the cancer derives [57, 58]. We identified
two different patterns of cancer-associated DNA methyla-
tion in breast tumors. One set of CpG sites was methyl-
ated in both luminal and basal-like breast tumors and was
thereby considered constitutive, whereas a second set was
specifically methylated in luminal breast cancer. We found
that the set of CpG sites with constitutive methylation
matched the paradigm of being repressed in normal breast
epithelial cells and displaying no correlation between
expression and methylation levels. On the contrary, the
set of CpG sites methylated specifically in luminal breast
cancer were associated with genes expressed in normal
breast epithelial cells and displayed negative correlation
between expression and methylation levels. Similar obser-
vations have been made in pediatric acute lymphoblastic
leukemia for CpG sites with constitutive and subtype-
specific methylation patterns, respectively [59]. Moreover,
differentially methylated regions associated with bladder
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cancer subtypes have been found to separate into patterns
with substantial differences with respect to expression–
methylation correlations [48]. As proposed by Sproul et al.,
the aberrant constitutive methylation in breast tumors may
be a marker of their epithelial cell lineage rather than of
tumor progression [60]. However, the CpG sites specifically
methylated in luminal breast cancer do influence gene ex-
pression levels and may contribute to tumor progression.
Methylation of these CpG sites was associated with
epitypes enriched for luminal B tumors. This finding
is consistent with our previously proposed model in
which luminal differentiation is partially blocked by
aberrant methylation in luminal B tumors [6].
Constitutive methylation in breast cancer and methy-

lation specific to luminal cancer occurred in regions in
different chromatin contexts in normal mammary epi-
thelial cells. Constitutive methylation occurred primarily
in regions in a Polycomb-repressed state, consistent with
this methylation not being the original cause of repres-
sion of gene expression. Luminal-specific methylation
was enriched in regions in active promoter states in nor-
mal cells, adding support to the picture in which aber-
rant methylation contributes to a block to keep some
luminal cancers more undifferentiated. Because breast
cancer–specific methylation to a large extent is associated
with chromatin states and thus with aberrant methylation
of very many genes, often already repressed in precancer-
ous tissue, it is not straightforward to identify potential
epigenetic driver genes. It may be that epigenetically
deregulated driver genes are rare and that most methyla-
tion in cancer is a passenger event of general epigenetic
deregulation in cancer. Perhaps the methylated genes are
prone to methylation merely because they are repressed in
a tissue-specific fashion [58]. Moreover, we observed that
genes unmethylated in breast cancer were associated with
subtelomeric regions and DNA repeats and showed
limited influence on gene expression levels. Hence,
identification of candidate tumor suppressor genes or
oncogenes based solely on methylation data will likely
result in numerous false-positive findings.
We focused our analyses on genome-wide screens for

CpG sites that display changes in methylation state be-
tween macrodissected tumor tissue and normal breast
tissue. There are limitations with use of this approach,
although its utility in identifying and characterizing
robust epitypes is clear. Directions for future improved
characterization of breast cancer epigenetic heterogeneity
include using different normal cell subpopulations
separately instead of normal breast tissue, and investi-
gating CpG sites that display varying or intermediate
methylation in normal cell populations. Another limita-
tion of the present study is that we restricted our analyses
to epitype-specific methylation patterns. These analyses
revealed very low numbers of CpG sites with specific

hyper- and hypomethylation across the basal-like epitype.
However, directed analyses showed that BRCA1 and
HORMAD1 are clear candidates for driver genes directly
regulated by aberrant methylation in some basal-like
breast cancers. Taken together, our results suggest that the
dominant patterns of breast cancer–specific hyper- and
hypomethylation are associated with their genomic con-
texts, but also that there may be epigenetically deregulated
driver genes for subsets of samples.
The gene expression–based molecular subtypes of

breast cancer have been included in international guide-
lines for breast cancer treatment [61]. The epitypes of
breast cancer described in this report reflect, to a large
extent, the gene expression–based subtypes, and perhaps
may not add independent prognostic value. Neverthe-
less, it could still be that DNA methylation measurement
provides a technically simpler and more robust clinical
subtyping tool. Systemic treatment decisions for luminal
breast cancer are partly dependent on differences in
proliferative rates used to separate these tumors into lu-
minal A and B. Our characterization of luminal epitypes
opens up new opportunities to evaluate connections
between chemotherapy response and molecular character-
istics of luminal tumors. For example, the identification of
a luminal group of patients with very few relapses who
could be spared chemotherapy may potentially be im-
proved by integrating methylation data with other
molecular information. Because aberrant methylation
in breast cancer affects large numbers of CpG sites,
there are likely very many individual CpG sites that correl-
ate with prognostic information. It has been found that
most genes methylated in breast cancer cell lines cannot
be derepressed by using the demethylating agent 5-aza-2′-
deocycytidine [60]. However, genes already repressed in
normal epithelial cells dominated the evaluated genes.
Hence, it may still be worthwhile to evaluate if demethy-
lating agents have an effect on the subset of genes in
luminal tumors with expression levels clearly associated
with promoter methylation. Potentially, demethylating
agents could result in further differentiation of luminal
tumors with extensive promoter methylation and could
benefit patient outcomes.

Conclusions
We performed a comprehensive analysis of DNA methyla-
tion patterns in human breast tumors. The methylation
epitypes we describe exemplify how integrating different
types of molecular genome-wide data can improve the
characterization of breast cancer heterogeneity. We iden-
tified differences in the methylation patterns across breast
cancer subtypes. Although we showed that candidate
driver genes such as BRCA1 and HORMAD1 display aber-
rant methylation in subsets of basal-like tumors, the re-
sults of our study imply that the dominant methylation
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patterns across basal-like breast cancer are passenger
events reflecting the tissue of origin and infiltrating cells.
However, methylation patterns specific to luminal breast
cancer drive gene expression and may contribute to tumor
progression in this subtype.
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