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 Abstract 
  Background:  The cholinergic hypothesis is well established and has led to the development 
of pharmacological treatments for Alzheimer’s disease (AD). However, there has previously 
been no physiological means of monitoring cholinergic activity in vivo.  Methods:  An electro-
encephalography (EEG)-based acetylcholine (Ach) index reflecting the cholinergic activity in 
the brain was developed using data from a scopolamine challenge study. The applicability of 
the Ach index was examined in an elderly population of healthy controls and patients suffer-
ing from various causes of cognitive decline.  Results:  The Ach index showed a strong reduc-
tion in the severe stages of AD dementia. A high correlation was demonstrated between the 
Ach index and cognitive function. The index was reduced in patients with mild cognitive im-
pairment and prodromal AD, indicating a decreased cholinergic activity. When considering 
the distribution of the Ach index in a population of healthy elderly subjects, an age-related 
threshold was revealed, beyond which there is a general decline in cholinergic activity.  Con-
clusions:  The EEG-based Ach index provides, for the first time, a physiological means of mon-
itoring the cholinergic activity in the human brain in vivo. This has great potential for aiding 
diagnosis and patient stratification as well as for monitoring disease progression and treat-
ment response.  © 2014 S. Karger AG, Basel 
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 Introduction 

 Alzheimer’s disease (AD) is a progressive degenerative disorder affecting the brain and 
is the most common cause of cognitive impairment in older individuals  [1] . Despite great 
progress in the understanding of the cognitive profile and neural basis of AD, the underlying 
cause remains unknown  [2] . The focus is now shifting to earlier intervention, thus driving the 
need for suitable tools for patient stratification and the assessment and prediction of treat-
ment response in the preclinical stages of the disease  [3] .

  The cholinergic hypothesis, introduced in the 1970s, was the first theory to explain AD 
symptomatology, asserting a transmitter-based pathophysiology of the disease  [4] . Early 
findings examining the brains of AD patients, particularly the cerebral cortex, revealed 
decreased cholinergic enzymes and a reduction of cholinergic neurons in the majority of 
cases  [5, 6] . Experimental studies on humans as well as primates indicated the role of acetyl-
choline (Ach) in learning and memory using cholinergic blockers such as scopolamine to 
induce memory impairments and cholinergic agonists such as physostigmine to reverse the 
effects  [7–9] . Furthermore, a positive correlation was found between the extent of cholinergic 
deficits and the severity of dementia in AD  [10, 11] . 

  Based on the previous success of considering Parkinson’s disease as a dopaminergic defi-
ciency disease, AD became also regarded as a cholinergic deficiency disease. This subse-
quently resulted in the development of cholinergic treatments with acetylcholinesterase 
inhibitors (AChEIs). Today, there are 3 approved AChEIs (donepezil, rivastigmine and galan-
tamine) for the treatment of mild-to-moderate AD, and all have been reported to have similar 
effects by inhibiting the breakdown of Ach  [12, 13] . Overall, clinical trials have demonstrated 
that these drugs have positive effects on cognition and global functioning  [14, 15] , but some 
patients respond much better than others and the reasons for the difference between clinical 
responders and non-responders remain unclear  [16–18] .

  Conflicting findings on the clinical applicability of AChEIs and difficulties in the confir-
mation of a decreased cholinergic activity and loss of cholinergic neurons in the earliest 
stage of the disease, i.e. mild cognitive impairment [MCI; includes both patients who remain 
stable and those with so-called prodromal AD (pAD), who will progress to the full disease], 
have challenged the validity of the cholinergic hypothesis  [19–21] . Today, most experts 
believe that the etiology of AD, as of many other degenerative disorders, is based on multiple 
causal factors rather than a single etiopathological mechanism  [22] . According to this view, 
cognitive deterioration in AD is the result of a complicated and not fully understood 
dysfunction of the complex interplay between different neurotransmitter systems rather 
than isolated deficits within a single system  [13, 23] . Furthermore, the cholinergic system 
is found to be disrupted in other types of dementia as well as in various affective disorders, 
such as schizophrenia, depression, delirium and traumatic brain injury  [24–29] . The 
primary aim of the present work was to develop a means of monitoring the cholinergic 
activity in the brain in vivo   using electroencephalography (EEG). Previous studies have 
demonstrated the relevance of EEG as an indirect measure of cholinergic activity but have 
fallen short of developing a single outcome measure with clinical utility  [30–33] . We 
developed a quantitative EEG measure, the Ach index, aimed to reflect the level of cholin-
ergic activity in the brain. The Ach index is derived by comparing the EEG before and after 
administration of scopolamine, a muscarinic cholinergic antagonist, and thereby statisti-
cally determining the multivariate EEG factors that are altered by the pharmacological 
modulation of the cholinergic system  [34] . In practice, this is accomplished by the appli-
cation of statistical pattern recognition (SPR) methods combined with a genetic algorithm 
 [35] , resulting in a discriminatory function that forms the Ach index. In order to demon-
strate the applicability of the Ach index, the behaviour of the index was comprehensively 
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examined using EEG recordings from both elderly healthy controls and elderly patients 
suffering from different stages and types of dementia as well as from a range of expected 
cholinergic deficits  [35] .

  Materials and Methods 

 Data 
 Data from a large clinical database of EEG recordings in a range of elderly subjects and patients were 

used for this study. Clinical cases were recruited in the Memory Clinic of the Geriatric Department, National 
University Hospital, Reykjavík, Iceland. All clinical cases were investigated using a standard protocol including 
health information from the patients and their relatives, CT or MRI of the brain, and in milder cases neuro-
psychological evaluation. In some cases, SPECT of the brain and CSF analysis for β-amyloid and tau were 
performed, and in some cases of suspected Lewy body dementia, a DAT scan was performed. All records were 
evaluated independently by 2 trained geriatricians, and in cases of discrepancy, a consensus by 3 geriatri-
cians was made, one of them not otherwise participating in the study. For the clinical diagnoses, the following 
criteria were used: the NINDS-ADRDA criteria for the diagnosis of Alzheimer’s dementia  [36] , the NINDS-
AIREN criteria for vascular dementia  [37]  and the revised consensus criteria of McKeith et al.  [38]  for Lewy 
body dementia. The participants in the control group were recruited by advertising in TV and in service 
centres for senior citizens; however, some of them were relatives of a patient. Each individual in the control 
group gave information, if relevant, on the history of head injury with loss of consciousness, neurological 
diseases such as Parkinson’s disease and multiple sclerosis, addiction to alcohol or drugs and any major 
medical condition. Baseline EEG recordings were made in all subjects upon entry to the database. A baseline 
Mini-Mental State Examination (MMSE) and Digit Symbol Substitution Test (DSST) were administered to all 
clinical cases and healthy controls. After registration, the subjects were followed up to enable their allocation 
to the following categories: (1) normal (NRM) = individuals with no cognitive impairment; (2) stable MCI 
(sMCI) = individuals diagnosed with MCI who have been stable for more than 2 years; (3) pAD = individuals 
who progressed from MCI to AD; (4) AD = individuals who have a clinical diagnosis of AD; (5) Lewy body and 
Parkinson’s dementia (L-P) = individuals in our database with either of these diagnoses; these are included 
as more severe cholinergic deficits are expected in this group than in the AD group  [39] ; and (6) vascular 
dementia (VaD), depression (DPR) and frontal lobe dementia (FLD) patients.

  Participants 
 EEG registrations from a total of 19 individuals (9 healthy elderly individuals and 10 sMCI patients) 

from the database were analysed for developing the Ach index. All participants had taken part in a previous 
scopolamine challenge study, in which EEG recordings were made before and after the administration of 
scopolamine. The mean (±SD) age of the healthy elderly individuals was 72.2 ± 5.3 and the mean MMSE score 
was 29.1 ± 0.9. For the sMCI group, the mean age was 74.3 ± 3.2 and the mean MMSE score was 27.7 ± 2.2. 
More detailed information on the two groups and the scopolamine challenge study can be found in our 
previous work  [34] . 

  In order to provide evidence for the clinical and physiological utility of the Ach index, its properties were 
investigated using EEG registrations from a total of 948 individuals from the database. The individuals 
belonged to the following groups in the database: NRM, sMCI, pAD, AD and L-P. For the investigation of the 
correlation of the Ach index with cognitive performance, individuals from the VaD, DPR and FLD group (with 
a total of 1,054 EEG registrations) were included in the analyses. The number of subjects in each group along 
with their age and their MMSE and DSST scores can be found in  table 1 . No patient was excluded from the 
study if an EEG registration had been successfully performed.

  This study was performed according to good clinical practice requirements and approved by the 
Icelandic National Bioethics Committee (references No. 04-130, 2004010004). All participants signed a 
written informed consent form prior to participation, and for those diagnosed with dementia, a written 
informed consent was obtained from their next of kin.

  Analytical and Statistical Procedures 
 For the development of the Ach index, the first task was to determine which features are modulated as 

the cholinergic tone varies in the central nervous system (CNS). This was achieved by analyzing EEG 
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recordings from a previous scopolamine challenge study, in which EEG recordings were made before and 
after the subcutaneous administration of 5 mg of scopolamine  [34] . First, a classical analysis was undertaken 
to derive a full set of EEG features (absolute and relative powers at each electrode and a range of coherences 
between electrode pairs). SPR methods in combination with genetic algorithms were then applied, comparing 
the subjects with and without the influence of scopolamine to select the relevant features and the combina-
tions that correlated with the scopolamine effects. A more detailed description of the EEG features, SPR 
methods and genetic algorithm can be found in our previous work  [35] . The outcome of this analysis was a 
series of indices, each using 20 distinct EEG features. All indices had similar statistical properties due to the 
strong level of correlation between many of the features and had arbitrary scaling. The candidate with the 
strongest discriminant power based on SPR methods and a genetic algorithm was chosen as the Ach index 
and is described in  figure 1 , along with the relevant EEG features that contribute to it. The chosen Ach index 
had a span of 0–200 without applying any additional scaling factors.

  In order to provide evidence for the clinical and physiological utility of the Ach index, its properties were 
investigated within different groups in the clinical database. Variables are expressed as means ± SD. Differ-
ences between group means were tested for statistical significance using one-way ANOVA. Values of p < 0.05 
were considered significant. The Bonferroni correction was used to correct for multiple comparisons. The 
Pearson product-moment correlation coefficient was calculated between selected variables when relevant 
(e.g. Ach index and cognition). Subsequent analysis was done in the Matlab environment from MathWorks ® .

  Results 

 Correlation with Pharmacologically Induced Cholinergic Deficits 
 The application of the Ach index to EEG recordings in 9 healthy elderly subjects and 10 

sMCI patients from our previously described scopolamine challenge study revealed the 
expected significant difference before and after the injection of scopolamine. The index 
decreased in all subjects by a mean of –31.1 ± 21.0 after the injection of scopolamine. In 
subjects with a high score at baseline, the index decreased more than in subjects with a low 
score (r = –0.82, p < 0.001). Before the injection of scopolamine, the group mean score was 
113.7 ± 21.5 on the Ach index, as opposed to 82.6 ± 12.6 after the injection of scopolamine.

  Correlation with Disease-Induced Cholinergic Deficits 
 A one-way between-group ANOVA was conducted, followed by a Bonferroni correction 

post hoc analysis to explore the distributions of the Ach index for different groups from the 
database. There was a statistically significant difference at the p < 0.05 level in the Ach index 

Groups Age, years MMSE score DSST score1

NRM (n = 423) 64.9 ± 9.2 28.8 ± 1.5 40.8 ± 12.4
sMCI (n = 78) 73.3 ± 9.8 27.7 ± 2.5 28.2 ± 13.9
pAD (n = 62) 76.5 ± 7.0 26.3 ± 2.3 25.1 ± 9.4
AD (n = 337) 77.4 ± 7.6 20.9 ± 5.3 12.1 ± 9.6
L-P (n = 48) 75.2 ± 7.6 23.9 ± 4.5 13.6 ± 9.1
VaD (n = 61) 77.4 ± 7.6 23.2 ± 4.3 14.6 ± 11.0
DPR (n = 30) 72.6 ± 9.2 26.1 ± 5.5 29.6 ± 10.2
FLD (n = 15) 71.8 ± 9.6 25.6 ± 4.8 19.5 ± 13.7

 Values are presented as means ± SD.
1 Average DSST scores were calculated for all subjects completing 

the test: 342/423 in NRM, 44/78 in sMCI, 32/62 in pAD, 230/337 in AD, 
10/48 in L-P, 25/61 in VaD, 18/30 in DPR and 8/15 in FLD.

 Table 1.  Composition of groups 
used for the investigation of the 
Ach index properties
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between all pairs of groups [F(4, 729) = 117, p = 0.001] ( fig. 2 ). The means ± SD of the Ach 
index for each group are given in  table 2 .

  Correlation with Cognitive Performance 
  Figure 3  shows the relationship between the Ach index and MMSE or DSST scores for all 

subjects in the database who completed the tests (n = 1,054 for MMSE and n = 755 for DSST) 
regardless of the clinical group. A strong positive correlation could be observed between the 
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  Fig. 1.  The EEG features used in 
the chosen Ach index. Arrows 
represent coherences and stars 
represent EEG powers. Red indi-
cates low frequencies (δ, θ and α 1  
bands), while blue indicates high-
er frequencies (α 2 , β 1 , β 2  and γ 
bands). Fp2 – θ, Fp2 – β 2 , O2 – γ, 
F8 – θ, T5 – γ, T5 – β 1 , Pz – γ, F4/
O2 – β 2 , C3/C4 – β 1 , C3/C4 – β 2 , 
Fp1/F7 – β 2 , Fp2/F8 – β 2 , Fp1/
F3 – θ, Fp2/F4 – δ, T6/O2 – δ, T6/
O2 – θ, C3/T5 – β 1 , P3/C3 – α 1 , P4/
C4 – α 1 , P4/T6 – γ. Colors refer to 
the online version only. 
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  Fig. 2.  Box plots of the Ach index 
for various groups from the da-
tabase. A significant difference 
[F(4, 729) = 117, p = 0.001] was 
found between all pairs of groups 
using ANOVA with the Bonferroni 
correction post hoc test. 
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Ach index and both the MMSE (r = 0.52, p < 0.001) and the DSST scores (r = 0.57, p < 0.001), 
whit a higher Ach index score indicating better cognitive function ( fig. 3 ).

  Correlation with Age in Healthy Subjects 
 Finally, the correlation between the Ach index and age in healthy subjects was investi-

gated.  Figure 4  shows the Ach index against the age of the 423 healthy control subjects (MMSE 

Groups Ach index

NRM 118 ± 24.6
sMCI 99 ± 30.6
pAD 83 ± 28.1
AD 73 ± 30.1
L-P 54 ± 22.6

 Table 2. Mean Ach index (±SD) 
for various groups in the 
database
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  Fig. 3.  Relationship between the 
Ach index and MMSE (n = 1,054) 
and DSST (n = 755) scores for all 
subjects in the database who com-
pleted the test regardless of the 
clinical group. 
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score >27) in the database. From the age of 48–67 years, there is no correlation evident 
between the Ach index and age. Between the age of 68 and 93 years, there is a marked dete-
rioration, resulting in a significant negative correlation (r = –0.24, p < 0.003).

  Discussion 

 In the past years, the interest in the cholinergic hypothesis as one of the most important 
pathophysiological factors of AD has returned. Recent findings in humans as well as animals 
have supported this claim, and to date, AChEIs remain the only treatment option for mild AD 
 [40] . There is, however, a need for a specific marker of the cholinergic activity in the human 
brain, especially as the focus shifts to earlier intervention. An effective cholinergic marker 
would not only assist in the differential diagnosis of dementia but would also enable prediction 
and assessment of treatment response even in early disease stages. It would be a useful 
outcome marker in drug development. 

  In our previous work, we demonstrated the sensitivity of EEG in diagnosing dementia 
and discriminating between different types by means of a binary classification approach  [35] . 
This paper extends our work by presenting the Ach index as a marker of cholinergic function 
and by testing its applicability from a clinical as well as a physiological perspective.

  The Ach index was generated using training data based on a pharmacological challenge 
(scopolamine) to modulate the cholinergic tone, which was confirmed by a subsequent 
re-application of the index to additional data sets. This is important as it ensures that the 
combination of EEG features chosen is related to the cholinergic system and that the index is 
not a general marker of, for example, cognitive dysfunction.

  Overall, a negative correlation was found between the Ach index and AD disease severity. 
Significant differences were found between all pairs of groups. The L-P group had a signifi-
cantly lower Ach index than the AD group, which is in agreement with the expected greater 
cholinergic impairment  [39] .

  The validity of the cholinergic hypothesis has previously been challenged due to findings 
failing to confirm decreased cholinergic enzymes and loss of cholinergic neurons in MCI and 
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  Fig. 4.  Relationship between the 
Ach index and age in healthy sub-
jects (n = 423) with MMSE scores 
>27 and no objective or subjec-
tive evidence of cognitive/memo-
ry impairment. 
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mild AD in the human brain  [19–21] . However, contrary to these findings, the Ach index 
results reported in this study show a significant deficit in these groups compared to controls 
( fig. 2 ). This is in line with recent findings from animal studies and stresses the importance 
of an in vivo marker of the cholinergic activity in living humans. Most of the previous studies 
on cholinergic activity in MCI and mild AD have been conducted on postmortem brains 
focusing mainly on the reduction of 2 enzymes: the choline acetyltransferase and acetylcho-
linesterase enzymes  [12] . Other cholinergic abnormalities such as altered choline transport, 
release of Ach and nicotinic/muscarinic receptor expression have been suggested to occur in 
cholinergic neurons at an earlier stage of dysfunction than the reduction of these 2 enzymes. 
These abnormalities are better reflected in the living brain than in the postmortem brain and 
may account for previous failures to confirm a decreased cholinergic activity in MCI and mild 
AD  [12, 13] . Our findings using the Ach index support this claim. 

  The cholinergic system has primarily been linked to attention, learning and memory  [41] . 
Two cognitive measures from the database were correlated to the Ach index. These cognitive 
measures were the MMSE, which assesses general cognition including memory, and the DSST, 
which assesses executive function and is primarily related to attention. Both measures 
correlate significantly with the Ach index ( fig. 3 ), which is hence in accordance with the previ-
ously established link  [41] . Nevertheless, the MMSE and DSST are relatively general measures 
of cognitive function, and therefore, further research is needed to determine whether the Ach 
index correlates with more focused and domain-specific measures of cognitive function, such 
as memory, attention and executive function. In addition, the exploration of the association 
between cholinergic function and neuropsychiatric and behavioural abnormalities which 
might have a cholinergic basis (e.g. visual hallucinations) might serve as an interesting field 
of research  [12] .

  Aging is the strongest risk factor for dementia, and the general decline in cognitive 
function with age, even in the healthy population, is a confounding factor in dementia research, 
particularly as most indirect markers of cholinergic activity such as postmortem autopsied 
tissue analysis do not take these age-related differences into account  [22] . Therefore, it is 
important to understand how the cholinergic system is affected in healthy aging, as reflected 
by the EEG recordings and the Ach index. Using healthy elderly individuals from the database, 
the correlation of the Ach index with age was analysed. No correlation was found between the 
Ach index and age for the subcohort of individuals under the age of 67 years. After the age of 
67 years, the deterioration in cholinergic activity was however significant ( fig. 4 ).

  These findings indicate an age-related threshold of the activity of the cholinergic system 
after which it deteriorates, which could explain the increased vulnerability of the elderly to 
succumb to cognitive decline and dementia. This hypothesis is in line with results from 
animal studies in which aged brain neurons in the basal forebrain have been shown to 
function normally until stressed  [42] . According to this view, insults to the cholinergic 
neurons affect their ability to produce sufficient levels of transmitter release to maintain 
normal functioning  [12] . In the human brain, such insults to the cholinergic system can be 
caused by multiple factors over the life span  [40] . The correlation between the Ach index and 
age suggests that, up to a certain point, the cholinergic system can compensate for these 
insults and keep the overall function of the system within normal levels. However, as the 
cholinergic neurons get older, previous or new insults or stress factors such as stroke, anaes-
thesia, circadian disruption or amyloid plaques may induce cholinergic deficits severe 
enough to result in clinical symptoms such as memory problems. Our work in a population 
of healthy elderly individuals suggests that this regime shift takes place, on average, at 
around 67 years of age, which fits approximately to the average onset of clinical symptoms 
in dementia, although of course this varies between the different types of dementia and is 
dependent on the underlying pathology. The greatly increased susceptibility in the oldest 
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group in the elderly population might even account for cases of dementia in which no under-
lying pathology is evident  [43] .

  Interestingly, there is a rather large variability of the Ach index within the healthy elderly 
subjects as well as in the clinical groups, suggesting that an overlap exists and that age is not 
the only factor affecting the index ( fig. 2 ,  4 ;  table 2 ). This is most likely due to factors such as 
the general state of the individuals during recording (sleepiness and stress), anticholinergic 
drugs or previous traumas to the brain known to affect the cholinergic system  [12] .

  Finally, we need to remember that different neurotransmitter systems are affected in 
different dementias. As all neurotransmitter systems are interconnected, a decrease of 
function in one system affects the function of the others, reflecting an up- and downstream 
causal chain  [13, 23] . Hence, as the interconnectivity of different neurotransmitter systems 
is not fully understood, an index reflecting only one such system cannot provide the complete 
picture. However, the approach described herein can be applied more generally, and future 
research might result in the development of EEG-based indexes for other neurotransmitter 
systems.

  Conclusions 

 This study introduces a novel approach to monitor the cholinergic activity in the human 
brain and presents initial evidence for its clinical and physiological utility. In particular, the 
results in MCI and mild AD patients agree with previous findings from animal studies that 
have previously been difficult to repeat in humans. This highlights the importance of a func-
tional in vivo   marker of the cholinergic activity in the living human brain for the study of 
dementia and other diseases involving cholinergic derangement.

  As a functional marker of cholinergic activity, the Ach index has the capacity to improve 
the differential diagnosis of dementia and the monitoring of disease progression. In addition, 
it has great potential for predicting and monitoring treatment response, including discrimi-
nating AChEI treatment responders from non-responders, and as an outcome marker in drug 
development.
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