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A standard assumption in the modelling of epidemic dynamics is that the

population of interest is well mixed, and that no clusters of metapopulations

exist. The well-known and oft-used SIR model, arguably the most impor-

tant compartmental model in theoretical epidemiology, assumes that the

disease being modelled is strongly immunizing, directly transmitted and has

a well-defined period of infection, in addition to these population mixing

assumptions. Childhood infections, such as measles, are prime examples of dis-

eases that fit the SIR-like mechanism. These infections have been well studied

for many systems with large, well-mixed populations with endemic infection.

Here, we consider a setting where populations are small and isolated. The

dynamics of infection are driven by stochastic extinction–recolonization

events, producing large, sudden and short-lived epidemics before rapidly

dying out from a lack of susceptible hosts. Using a TSIR model, we fit prevac-

cination measles incidence and demographic data in Bornholm, the Faroe

Islands and four districts of Iceland, between 1901 and 1965. The datasets for

each of these countries suffer from different levels of data heterogeneity and

sparsity. We explore the potential for prediction of this model: given historical

incidence data and up-to-date demographic information, and knowing that a

new epidemic has just begun, can we predict how large it will be? We show

that, despite a lack of significant seasonality in the incidence of measles

cases, and potentially severe heterogeneity at the population level, we are

able to estimate the size of upcoming epidemics, conditioned on the first

time step, to within reasonable confidence. Our results have potential impli-

cations for possible control measures for the early stages of new epidemics in

small populations.
1. Introduction
Measles is a highly contagious and strongly immunizing infection of the respir-

atory system [1]. Owing to its high transmissibility and the lifelong immunity

procured by infection, its epidemiology is conditional on the birth of susceptible

individuals. As such, the temporal dynamics of measles are typically strongly

oscillatory, driven seasonally by the increased contact rate among young children

during school periods [2–4], assuming the population is large enough to sustain

the infection. The critical community size, defined as the size of a population

required to sustain the disease at an endemic level, is estimated to be between

250 000 and 500 000 [5–7]. In large populations, measles has been extensively

studied, typically demonstrating biennial dynamics in developed countries

prior to the introduction of vaccines [8,9]. These modelling efforts are typically
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based on a class of continuous-time systems of differential

equations, such as the SIR and SEIR compartmental models.

Mechanistically, these models provide a good description of

the driving mechanisms behind infections such as measles,

which have a well-defined infectious period, are directly trans-

mitted and yield lifelong immunity to those who recover from

the infection [1]. SIR-like models also assume, however, a cer-

tain level of homogeneous mixing between individuals in the

population. In many large population studies, such as in [10],

these assumptions hold reasonably well: the populations are

large and spatially compact enough to guarantee sufficient

mixing within the population and to ensure that the disease

remains endemic.

In small populations, however, the dynamics of measles

cases are different. Susceptible individuals accumulate when

measles is absent; then, driven by stochastic recolonization,

an epidemic may sweep through a large fraction of the suscep-

tible population very quickly, only to go extinct abruptly as

susceptible counts fall below the threshold required for ende-

micity. This results in very sharp, spiky epidemics, whose

timing may be impossible to predict; they are described as

Type III by Bartlett [5]. Methods typically used in the analysis

of time-series or in dynamical systems theory are not adapted

to the study of temporal changes of measles incidence in such

small populations. Nonetheless, scaling analysis in small

populations has revealed that some level of predictability can

be found within the statistics of epidemic size and duration dis-

tributions, despite the small number of epidemics observed in

the recorded data [11,12].

A discrete-time adaptation of SIR-like models was devel-

oped by Finkenstädt & Grenfell [13]. The TSIR model is a

simple and computationally inexpensive system of difference

equations, which can be parametrized against observed inci-

dence time-series and birth data, and is able to estimate non-

analytical, time-varying contact and transmission rates. It has

been successfully used in the analysis of seasonal variation of

measles in several systems with large populations [14,15]. In

addition, the model has been applied to small populations

that demonstrate persistent, periodic dynamics due to

strong coupling with nearby large populations [10,16].

However, little has been done on applying the TSIR

model to subendemic populations with recurring and episo-

dic outbreaks. Datasets on the incidence of diseases such

as influenza and measles have been created from medical

and parish records in small and isolated populations, where

the disease dynamics are dominated by the stochastic

importation of infected individuals. These datasets have

been studied from the perspective of historical geography,

where the occurrence and spatio-temporal spread of epide-

mics are explained by features of the landscape and of local

populations [17,18]. Despite the availability of these datasets,

however, no inference methods have yet been applied to the

problem of characterizing the dynamics of disease spread in

these unique systems.

In this paper, we address the question of predictability of

measles epidemics in subendemic, isolated populations. First,

we present data on the demographics and disease incidence

in prevaccination-era Bornholm, the Faroe Islands and four

districts in Iceland. Then, we summarize the TSIR model

and fit the parameters of the model to the data. After generat-

ing predictions for the evolution of each epidemic, we compare

the mean predictions with the original time-series, and the pre-

dicted size of each observed epidemic. Finally, we discuss
factors which may influence the accuracy of predictions, and

possible improvements to the data and methods used for

improved results.
2. Material and methods
2.1. Data
Measles incidence data were obtained for Iceland, from 1901 to

1965, from [17]. This dataset consists of monthly figures for

measles cases reported in 47 medical districts (læknishérað), orig-

inally sourced from Heilbrigðisskýrslur (Public Health in Iceland).

Medical districts, the basic reporting unit for disease data in Ice-

land, are composed of hreppar (communes) that are roughly

equivalent to English parishes or American townships. Major

revisions to the boundaries of medical districts took place twice

during the study period: in 1907 and 1932. Monthly incidence

data for the Faroe Islands, from 1912 to 1965, were obtained

from [18]; these data were originally sourced from [19]. For Born-

holm, monthly measles incidence data from 1925 to 1965 were

acquired from [20].

Demographic data for Iceland were obtained from Iceland,

Statistics Iceland. www.statice.is. Annual data on population and

number of live births for the entire country were taken from Ice-

land, Statistics Iceland: Births by months 1853–2012 www.statice.

is/Statistics/Population/Births-and-deaths. Decennial population

data from 1901 to 1965, for 262 municipalities, were obtained

from Iceland, Statistics Iceland: Population by municipalities

1901–1990 www.statice.is/Statistics/Population/Municipalities.

Municipal borders changed from three to five times during the

study period, depending on the municipality. In addition, many

municipalities had missing data. Medical districts and municipali-

ties were matched based on names. Several matched districts were

discarded either due to missing population data, or lack of confi-

dence in the matching of the geographical boundaries. With the

data available, we were able to match four district–municipality

pairs: Akureyri, Reykjavı́k, Hafnarfjörður and Vestmannaeyjar.

It is worth noting that matched medical district–municipality

pairs may not encompass the exact same area, but one may be a

(potentially partial) subset of the other.

Data on the demographics of the Faroe Islands were taken

from the Statistical Yearbooks of Denmark published by Statistics

Denmark (Denmark, Danmarks Statistik www.statistikbanken.

dk) and from Statistics Faroe Islands (Hagstova Føroya www.

hagstova.fo). Annual data on population and births from 1901

to 1965 were found in aggregated form for all of the islands in

the Faroe archipelago.

Demographic data for Bornholm were collected from sev-

eral publications in Denmark, Danmarks Statistik www.statistik

banken.dk. Annual population data for Bornholm were obtai-

ned from Denmark, Danmarks Statistik: Population 1 January

by islands www.statbank.dk/statbank5a/SelectVarVal/Define.

asp?MainTable=BEF4&PLanguage=1, which contains detailed

statistical information collected by Statistics Denmark. Pre-1930

annual birth data were obtained from the Ægteskaber, Fødte og
Døde (Marriages, Births and Death) available from Denmark,

Danmarks Statistik: Ægteskaber, Fødte og Døde www.dst.dk/

pukora/epub/upload/20304/aefodo1921-1925.pdf www.dst.

dk/pukora/epub/upload/20305/aefodo1926-1930.pdf). Post-

1930 annual birth data were obtained from Befolkningsudvikling
og sundhedsforhold 1901–60 (Population, Development and

Health 1901–1960), from Denmark, Danmarks Statistik: Befol-

kningsudvikling og sundhedsforhold www.dst.dk/pukora/

epub/upload/19335/befsund.pdf.

Table 1 presents the mean populations and birth rates over the

study period. The reported incidence and births for Bornholm,

the Faroe Islands and four districts of Iceland, can be found in the

electronic supplementary material. The data and code used in this
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Table 1. Mean population sizes, birth rates and sensitivity thresholds t for
each locality. Population sizes and annual birth rates per thousand are
given as the mean over the study period. Thresholds were fit by
maximizing the correlation between the mean simulated epidemic time-
series and the reported incidence data.

locality population birth rate t

Bornholm 47 100 19.4 15

Faroe Islands 28 200 29.4 15

Reykjavı́k 47 100 24.1 18

Hafnarfjörður 6000 22.4 8

Akureyri 7000 22.7 19

Vestmannaeyjar 3600 23.5 7
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paper can be found online (Complete dataset and code, Github

repository http://github.com/QCaudron/SmallPopTSIR).
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2.2. The TSIR model
The time-series SIR model [13] is a discrete-time, stochastic

model of disease progression written in terms of a set of differ-

ence equations. Assuming that the infection is fully

immunizing and that the infectious period is well-defined, then

the evolution of the number of infected cases, It, can be written

as follows:

E[Itþ1] ¼ rt St Iat , (2:1)

where St is the number of susceptible individuals at time t, sea-

sonal contact rates are represented by the parameter rt,

where rt ¼ rt þ P is periodic with period P time steps per year,

0 , a , 1 is a mixing parameter allowing for nonlinearities due

to the model’s discrete-time approximation and inhomogeneous

population mixing, and where E[ � ] denotes the expectation oper-

ator. The time step is set as the generation time of the infection.

Then, the number of susceptible individuals is defined by

Stþ1 ¼ St þ Bt�d � It þ ut: (2:2)

Here, Bt2d is the number of births that occurred d generations

prior to t, where the delay d represents a period of protection

from infection due to maternal immunity, set at four months

[1]; and ut is additive noise with E[ut] ¼ 0. If the number of sus-

ceptible individuals St fluctuates around a mean �S such that

St ¼ �Sþ Zt, then, from equation (2.2), the dynamics of the

susceptible individuals around their mean �S are given by

Ztþ1 ¼ Zt þ Bt�d � rt Ct þ ut: (2:3)

The observed number of cases, Ct, is related to the inferred

number of actual cases by It ¼ rtCt. In ideal populations, the

observation scaling factor rt represents the reciprocal of the

reporting rate, such that rt . 1 signifies an underreporting of

cases by the factor 1/rt. When birth information comes from a

different geographical region than that of the time-series of dis-

ease incidence, then rt is influenced by this confounding factor:

rt then becomes both a reporting rate and a correcting factor

for this geographical discrepancy.

As the TSIR model assumes that all individuals will even-

tually become infected, the incidence must therefore track the

number of births. Successive iteration of equation (2.3) yields

Ztþ1 ¼
Xt

i¼1

Bi�d �
Xt

i¼1

ri Ci þ
Xt

i¼1

ui þ Z0: (2:4)

Assuming ut is small, rt can be estimated using local regres-

sion methods between the cumulative births and cumulative
observed cases. Then, Zt can be found as the residuals of

this regression.

2.3. Fitting
The time step in the difference equations (2.1) and (2.2) is fixed at

the generation time of the infection. For measles, the period of

time from infection to recovery is approximately two weeks [1].

Owing to the very spiky nature of the reported incidence data

(whose derivatives are non-smooth due to low sampling rates),

interpolation must be done such that peaks in the data are not

missed or reduced. As such, a linear interpolant with an integer

multiple of the number of points per year was used. This yielded

24 time points per year, thus maintaining the maximum values

of the peaks in the data, and fixing the generation time at just

over 15 days.

Populations and live births, assumed to be smooth, were

interpolated cubically. There are large intervals between some of

the reported demographics data; however, Finkenstädt & Grenfell

[13] report that the regression for reconstructing susceptibles is

robust to pronounced changes in birth rates.

The observation factor rt was estimated using Gaussian pro-

cess regression, given the births and reported cases. Gaussian

processes yield the best linear unbiased predictions of values in

between observations, providing smooth regression curves that

fit the data well. Finkenstädt & Grenfell [13] employed local

regression methods and suggest that splines would also provide

good results; our analysis shows that, for such stepwise data

(due to the very discrete nature of sudden epidemics), Gaussian

processes resulted in more robust fits. Once found, rt is the deriva-

tive of the Gaussian process regression for the cumulative number

of births, with respect to the cumulative number of cases, and Zt

are the residuals of the regression.

The mean number of susceptibles �S was estimated margin-

ally by profiling the likelihood of the logarithmic form of

equation (2.1),

ln (E[Itþ1]) ¼ ln (rt)þ ln (�Sþ Zt)þ a ln (It), (2:5)

after which the seasonal contact rates rt were estimated con-

ditionally on �S. The mixing parameter was fixed at a ¼ 0.97, as

in [15], implying a small, nonlinear inhomogeneity, yet not sig-

nificantly impacting transmission dynamics between large and

small epidemics.

In summary, the TSIR model is fit entirely from a time-

series of births, Bt and of observed disease incidence, Ct.

The cumulative births, Yt ¼
Pt

i¼0 Bi, are regressed against the

cumulative observed incidence, Xt ¼
Pt

i¼0 Ci, to yield rt as

the gradient of the regression curve, with the residuals of this

regression giving the dynamics of the susceptible population

Zt about their currently unknown mean, �S. This regression

takes the form Yt ¼ rt Xt þ Zt. The mean number of susceptible

individuals, �S ¼ St � Zt is estimated by profiling the likelihood

of a log-form of equation (2.1) with respect to �S. Then, fixing �S
to maximize the likelihood, the coefficients of rt are fit by least

squares.

2.4. Predictions
Using the TSIR model as defined by the system of equations

(2.1) and (2.2), predictions for epidemic dynamics were made

by sampling the incidence It þ 1 from a negative binomial

distribution

Itþ1 � NB(rtþ1 St Iat , It), (2:6)

with mean E[Itþ1] ¼ rtþ1 St Iat and shape parameter k ¼ It.

Owing to the abundance of zeroes in the incidence time-

series, initial conditions cannot simply be taken as the point

(I0, S0). Instead, each epidemic must be simulated independently,

with initial conditions given by the data at the time that the
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Figure 1. Reported and predicted biweekly incidence for Bornholm, the Faroe Islands and four localities in Iceland. The observed data are in blue. For the predicted
time-series, the mean value of incidence simulations is plotted as a dark red line, with 95% CIs given in light red. Bornholm: R2 ¼ 0.78; Faroe Islands: R2 ¼ 0.55;
Reykjavı́k: R2 ¼ 0.73; Hafnarfjörður: R2 ¼ 0.86; Akureyri: R2 ¼ 0.80; Vestmannaeyjar: R2 ¼ 0.77.
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epidemic begins. For each epidemic, we fix the initial number of

infected cases and susceptible individuals as per the observed

data and the reconstructed susceptible time-series, respectively,

and allow the simulation to continue until the next epidemic

begins. Thus, we always simulate the same number of epidemics

as given by the incidence data, where each epidemic is simulated

given only the data available at the onset of that epidemic.

In order to clearly establish the time of onset of an epide-

mic, a sensitivity threshold must be set. Let t [ Zþ define the

number of reported infected cases necessary for any particular

biweek period to be considered part of an epidemic. In order

for epidemic detection to be robust, we convolve the incidence

time-series with a nine-point Hanning window and round to

the nearest integer; then, any biweeks where the smoothed

series is greater than t are to be counted as part of an epidemic.

This ensures that points slightly under t are not penalized,

should the next few points be greater than t. This also reduces

the risk of detecting sporadic recolonizations that fail to

become full epidemics.

A choice of t ¼ 1 ensures that all available non-zero data are

used. However, many potential epidemics go extinct before propa-

gating through the population, especially in highly heterogeneous

populations. As such, using t ¼ 1 would cause a number of

strongly overestimated epidemics. We therefore treat t as a sensi-

tivity parameter, and fit it by selecting the sensitivity threshold

which yields the highest correlation between the mean predicted

epidemic traces and the incidence data, as defined by the coeffi-

cient of determination, R2. Then, the first point in a sequence of

time steps defined by this method as belonging to an epidemic

is considered the onset of that epidemic.
3. Results
3.1. Dynamics
After fitting parameters as described above, predicted epidemic

time-series were generated for each of the six localities, using

the sensitivity thresholds reported in table 1. The simulated

time-series, computed from the difference equations (2.2),

(2.4) and (2.5), are effectively n-step-ahead predictions, with n
representing the duration of an epidemic.

Figure 1 shows the time-series of the number of reported

and predicted cases in all six localities. Predictions are plotted

as the mean incidences across 10 000 simulations, with their

respective 95% CIs. High temporal synchronicity can be

seen in the Icelandic localities. In general, epidemics in Ice-

land are of shorter duration, while those in Bornholm and

the Faroe Islands are not quite as spiky. In all localities, epi-

demics seem to occur more frequently in the latter half of

the time-series, perhaps due to an increase in birth rates

after the baby boom.

The reported coefficient of determination R2 has been

corrected by removing points where both the observed and pre-

dicted time-series are simultaneously zero, to reduce inflation

of the coefficient due to the large number of zeroes in the

time-series. Overall, good agreement is generally found with

the observed data, with the highest correlation being in

Hafnarfjörður, a small district about 10 km from Reykjavı́k.

The worst fit is found in the Faroe Islands, by a significant

http://rsif.royalsocietypublishing.org/
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margin; predictions here are characterized by a number of

failed extinctions, general overestimation of epidemic sizes

and durations, except for the single, large observed epidemic,

which is significantly underestimated. It has been suggested

that these very large epidemics may have fundamentally

different dynamics [12], which would cause difficulties in

parameter inference.

A number of predicted epidemics have a right shoulder,

where the model predicts that epidemics take longer to go

extinct than those observed. Depending on locality, many

of these shoulders are small (Akureyri, Hafnarfjörður and

Vestmannaeyjar). For other localities, predicted epidemics

may fail to go extinct entirely, demonstrating cyclical behav-

iour until the beginning of the next epidemic (Bornholm,

the Faroe Islands and Reykjavı́k). This may indicate that

populations are strongly heterogeneous, and that the inhom-

ogeneity parameter, fixed at a ¼ 0.97 for these simulations, is

an overestimate.

Inferred observation scaling factors and seasonal trans-

mission rates are shown in figure 2. The inferred seasonalities

have wide distributions, demonstrated by their large confi-

dence intervals. This can be explained by the highly

stochastic nature of measles recolonizations into their respect-

ive localities, which is the primary driver for when epidemics

occur. This is in contrast to the seasonality inferred in studies

of large populations, such as that of England and Wales in

[13], where significant seasonal trends were found, and

matched well with school-based contact times. When the trans-

mission rates were fixed to a constant, such that rt ¼ r 8 t,
neither the inferred parameters nor the predicted dynamics

changed significantly.
3.2. Predictability in epidemic sizes
Rather than considering a point-wise comparison between the

predicted and observed epidemic time-series, a potentially

more robust measure of predictability is the total number of

infected cases that a particular epidemic will generate. We

define the size of an epidemic as the sum of reported cases Ct

for observed data, or It/rt for predicted data, from the first

time point in an epidemic to the time point before the next epi-

demic begins. Figure 3 shows the mean predicted epidemic size

for each observed epidemic for the six localities. Several of

these localities show a strong linear relationship, with near-

zero intercepts and gradients around one. Again, the highest

correlation between predicted and observed epidemic sizes is

found in Hafnarfjörður, with a coefficient of determination of

R2 ¼ 0.88.
4. Discussion
Predictions of epidemic sizes can be made with a significant

level of certainty, despite sparse demographic data for all

localities, mismatching incidence and demography infor-

mation in Iceland, and strong spatial barriers to population

mixing in the Faroe Islands. Hafnarfjörður shows the best cor-

relation between predicted and observed epidemic sizes,

potentially due to its geography—it is a community just

outside the capital city of Reykjavı́k, small enough that dis-

trict and municipality borders may match well. Perhaps for

similar reasons of matching data streams and no major

geographical restrictions to population mixing, Bornholm

and Vestmannaeyjar also show good correlations between

http://rsif.royalsocietypublishing.org/
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Figure 3. Predictability of epidemic sizes. The mean predicted size of each epidemic as a function of its observed size, from 10 000 simulations. Red lines are the
regression lines with the follow coefficients of determination and slopes—Bornholm: R2 ¼ 0.76, gradient ¼ 1.07; Faroe Islands: R2 ¼ 0.77, gradient ¼ 0.60;
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expected and observed epidemic sizes. Epidemic sizes in both

Akureyri and the Faroe Islands, however, are underestimated

with respect to the observed epidemic sizes. For Akureyri,

this could be due to an underestimation in the actual

number of births in the area, caused by having a smaller

municipality than the related medical district. This would

generate a smaller reconstructed susceptible pool, reducing

the sizes of predicted epidemics. For the Faroe Islands, the

regression seems to be skewed to a smaller gradient by a

single outlier whose size is grossly underestimated. Depend-

ing on the quality of the data, therefore, predictions about the

size of a future epidemic can be made with some confidence.

Data streams that do not represent exactly the same phys-

ical space, measurement or system, are common problems in

epidemiology and, indeed, in many fields where observation

and data collection are non-trivial tasks, or where the system

cannot be observed directly. Our results show the effects of

data streams that do not quite match: whether due to data

aggregation in the Faroe Islands, or mismatching (and chan-

ging) borders for incidence and demographics data in

Iceland, model fitting can be made more difficult. As an

extreme case where data are abundant, and where demo-

graphic information is representative of the same regions as

those of the measles incidence time-series, the TSIR model fit-

ting performed by Finkenstädt & Grenfell [13] on 60 cities in

England and Wales was highly successful.
Many improvements could be made to the dataset used in

this paper to improve predictability of epidemic sizes. An

understanding of where both the medical and municipal bor-

ders lie would allow a much larger number of districts to be

fit confidently; in addition, an underlying spatial model

could be used to counter the border changes and to analyse

the data for spatial correlations. Disaggregated incidence

and birth information for the large islands in the Faroe archi-

pelago could be used to consider the separate island

populations, each of which would have higher internal

mixing, with a lower inter-island homogeneity. Noting that,

in the second half of the Icelandic time-series, epidemics

were perhaps becoming more regular, it may also be valuable

to model the interepidemic intervals for longer time-series.

With the current data, possible improvements include the

use of statistical models such as trajectory matching or

hidden Markov models to infer a biweekly incidence rate

rather than using a linear interpolant, or the addition of an

Exposed state variable to allow for exposed but not infectious

individuals in a ‘TSEIR’ model.

Nonetheless, we have demonstrated that a strong signal of

SIR-like epidemic dynamics can be found even in systems

dominated by noisy importations. These well-known time-

series [17,18] are a paradigm for epidemics in small popu-

lations. Their sporadic nature is caused by long periods of

time between stochastic importations, followed by extinctions.

http://rsif.royalsocietypublishing.org/
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As such, their dynamics are reminiscent of pandemics, where a

significant proportion of the population is susceptible to infec-

tion at the onset of the epidemic. This interesting analogy

extendsto the lack of an observed seasonal signature. Our analy-

sis reveals that, even from a highly stochastic incidence time-

series and limited demographic data, reasonable predictions

for the final size of an epidemic can be made, conditioned on

the state of the system at epidemic onset. These results may

have implications for the control of future epidemics, potentially

informing response strategies based on the predicted size of an

epidemic that was just initiated from a recolonization event.

Significant spatial restrictions to population mixing, such

as the fragmented island geography of the Faroe archipelago,

may impact the level of predictability that can be found

in these results. On the whole, however, we find that a

homogeneous mass-action assumption is fairly successful

overall—with a � 1, the model fits the data well for most

localities. Indeed, Earn et al. [21] report that heterogeneous
transmission is not required to obtain realistic dynamics in

measles models. This is in contrast to the scaling analyses

of Rhodes & Anderson [11,22], whose work suggests that

heterogeneous dynamics are necessary to explain the distri-

butions of final epidemic sizes and durations. Given the

crudeness of the data, however, these results are tentative,

and comparisons of our approaches to theirs are a fruitful

area for future work.
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