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Abstract

The neonatal receptor, FcRn, mediates both serum half–life extension as well as active transport of maternal IgG to the fetus
during pregnancy. Therefore, transport efficiency and half-life go hand-in-hand. However, while the half-life of the human
IgG2 subclass is comparable to IgG1, the placental transport of IgG2 is not, with the neonatal IgG1 levels generally
exceeding maternal levels at birth, but not for IgG2. We hypothesized that the unique short-hinged structure of IgG2, which
enables its k-, but not l-isotype to form at least three different structural isoforms, might be a contributing factor to these
differences. To investigate whether there was any preference for either light chain, we measured placental transport of IgG
subclasses as well as k/l-light chain isotypes of IgG1 and IgG2 in 27 matched mother-child pairs. We also studied the half-
life of IgG1 and IgG2 light chain isotypes in mice, as well as that of synthesized IgG2 structural isotypes kA and kB. In order
to investigate serum clearance of IgG1 and IgG2 light-chain isotypes in humans, we quantified the relative proportions of
IgG1 and IgG2 light chains in hypogammaglobulinemia patients four weeks after IVIg infusion and compared to the original
IVIg isotype composition. None of our results indicate any light chain preference in either of the FcRn mediated
mechanisms; half-life extension or maternal transport.
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Introduction

Immunoglobulin G (IgG) forms the backbone of our circulating,

adaptive immune system. The fully assembled IgG molecule

consists of two identical 50 kDa heavy chains (c1, c2, c3 or c4

subclasses), and two identical 23 kDa light chains forming a

heterodimer (one heavy chain and one light chain) that further

assemble into dimers. The assembled molecule is Y shaped, with

the light chains and the N-terminal parts of the heavy chains (CH1

and VH domains) in tight association, forming the two Fab arms

(Fragment antigen binding), and the C-terminal CH2 and CH3

domains forming the Fc-tail. The CH1 and CH2 domains are

connected by a flexible hinge, allowing the F(ab9)2 considerable

freedom of movement from the Fc portion. Length and flexibility

of the hinge region varies extensively amongst the IgG subclasses

influencing the relative orientation and movement of the Fab arms

and Fc tail of the IgG antibody [1].

The hinge region of IgG1 encompasses 15 amino acids and is

very flexible. IgG2 has a 12 amino acid hinge region and contains

a rigid poly-proline double helix, stabilized by four inter-heavy

chain disulfide bridges. IgG3 has the longest hinge region, about 4

times as long as IgG1, and thus the greatest flexibility, while the

IgG4 hinge contains 12 amino acids yielding an intermediate

flexibility compared to IgG1 and IgG2 [2].

Light chains come in two classes, either k or l, with four highly

homologous l light chain allotypes. In humans the k:l ratio in

serum is around 2:1 in healthy individuals, but this varies between

species, isotype, biological location and age [3]. No functional

differences between l and k antibodies have been described so far.

Recently, IgG2k was described to occur in three distinct isoforms,

A, A/B and B, which differ from each other solely in their

disulphide bridges in the hinge, with four disulphide bonds

connecting the Fc chains for A, but two in the B form, and an

hybrid A/B form with three inter-Fc bonds [4]. This affects its

tertiary structure and thus the position and mobility of F(ab9)2,

which in turn may affect other interactions [5]. In contrast, IgG2l
is found predominantly as the A and A/B molecular form, but

devoid of the B form [4,6].

FcRn, the neonatal FccR, is a heterodimer of a unique MHC

class I-like alpha chain and b2m. It is thought to, amongst other

functions, be responsible for both the long half-life of IgG in vivo
and to mediate IgG transcytosis, for instance to the mucosa (e.g.
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gut, genital and respiratory tract) and through the placenta [7–10].

FcRn functions by binding IgG in acidifying early pino- or

endosomes after these have fused with FcRn bearing vesicles [11].

Once bound, IgG-FcRn complexes are routed away from the

lysosomal pathway, either back towards the loading surface of the

cell (recycling) or to the opposite cell surface (transcytosis). After

fusion with the cell membrane the pH returns to its physiological

value and the IgG-FcRn complexes dissociate, allowing the IgG to

disperse outside of the cell [12]. In humans, FcRn thereby

prolongs the half-life of all subclasses equally, except for IgG3. We

recently demonstrated that this short half-life of IgG3 was caused

by alteration in a key FcRn-contact residue in IgG3 compared to

the other subclasses (where IgG3 has an Arginine at position 435

instead of Histidine). This causes IgG3, in most individuals, to

have less pH sensitive binding to FcRn and therefore to lose in

competition with other subclasses, except for those expressing a

naturally occurring IgG3 variant (G3m15 and G3m16) with

Histidine at 435 (H435) [13].

IgG1, IgG2 and IgG4 share all currently described contact

residues with FcRn, including H435, with similar affinity to FcRn

when measured using immobilized human FcRn on a biosensor

and a comparable half-life in circulation [14–16]. For transport of

IgG across the placenta however, the concentration of all the

H435-containing IgG’s in cord blood except IgG2 (i.e. IgG1, IgG4

and H435-containing allotypes of IgG3) typically exceeds maternal

levels. Thus the transport of IgG2 is much less efficient and is in

fact comparable to that of R435-containing IgG3 [17,18]. Since

FcRn is thought to play a very similar key role in both of these

processes, the reason for this discrepancy remains unclear.

Interestingly, although all amino acids so far found to influence

FcRn binding are reported to be located on the Fc portion of IgG,

Montaño and Morrison reported a difference in half-life between

human-mouse chimeras of IgG2l and IgG2k, with IgG2l being

cleared faster in mice [15,19]. This light-chain difference was not

observed for IgG1, IgG3 or IgG4. All human IgG subclasses have

been reported to display pH-dependent binding activities to mouse

FcRn, albeit slightly altered compared to binding to human FcRn

[16]. The interaction still allows for half-life extension of human

IgG by mouse FcRn, with comparable relative half-lives reported

as in humans (IgG1$IgG2&IgG3), except for IgG4, which has

been reported to have unusually short half-life in mice [15,19–22].

Although no difference in IgG2 half-life has been described in

humans, the IgG2 light chain isotype has been found to influence

binding affinity to mouse FcRn [23]. Due to the shortness of the

IgG2 hinge, which causes the F(ab)2 to be relatively close to the Fc

as well as the distinct structural isoforms of IgG2, we hypothesized

that the low placental transport of IgG2 may be attributable to a

single structural isoform, unique to IgG2k, interacting differently

with FcRn, possibly affecting its half-life as well.

For this reason we studied the trans-placental transport of

IgG2l and IgG2k in humans and their half-life in mice and

humans, both of which are FcRn-ascribed functions, and tested

whether the unique structural isoforms of IgG2k could explain the

low efficiency of IgG2 transport.

Materials and Methods

Recombinant IgG
VH-matched recombinant IgG1 (l and k) and IgG2 (l and k)

described before [24,25], were produced in 293 Freestyle cells

(Invitrogen, Carlsbad CA) according to the manufacturer’s

instructions with p20, p27 and SV40 Large-T antigen as

described, and purified by protein G HiTrap columns using the

Acta Prime Plus system (GE Healthcare, Buckinghamshire, UK)

[26].

Paired Mother – Cord samples
IgG subclass levels and for both IgG1 and IgG2 the kappa and

lambda levels, were measured in plasma samples from paired

mothers and cord, all at term, taken just before or just after birth.

Median gestation period was 268 (range 281 and 252 days), except

otherwise indicated. The data was plotted for each mother/child

combination individually and also assessed collectively. All women

had an uncomplicated pregnancy and neonatal outcomes for all

children were optimal. Signed informed consent was obtained

from all women, and the collection of blood samples and clinical

data received approval by the Ethics Committee of the Leiden

University Medical Center (P02-200).

IgG quantification
Light chain and IgG1 and IgG2 subclass specific antibody

quantification on the paired mother-cord samples was done by

sandwich ELISA using Nunc MaxiSorp plates (Sigma-Aldrich, St.

Louis, MO). For IgG total ELISA, mouse anti-human IgG

(M1268, Sanquin) was used for coating (1/500), and HRP-mouse

anti-human Fc (JDC10 Southern Biotech) was used as a secondary

antibody (1/1000). For IgG light chain ELISA’s mouse-anti-

human IgG1 (MH1325, Sanquin, 1/100) was used to coat, using

either HRP-labelled mouse-anti-human l (JDC12, Southern

Biotech, 1/1600) or k (HP6062, Southern Biotech, 1/1300).

Similarly, mouse anti-human IgG2 (HP6002, Southern Biotech,

1/100 for lambda assay, 1/50 for kappa assay) was used for

coating, and HRP-labelled mouse anti-human l JDC12 (Southern

Biotech, 1/1600) or k (HP6062, 1/1300) for detection.

Conversion of 3,39,5,59-Tetramethylbenzidine (TMB) was used

to quantitate HRP activity per well and absorptions were read

using a Genios Pro plate reader (Tecan, Männedorf, Switzerland)

using standard sets of filters of 450 nm.

IgG subclass concentrations in sera were determined by

nephelometry (Behringer nephelometer II, Behringer diagnostics).

In vivo serum persistence experiments
BALB/c mice were obtained from the NKI institute in

Amsterdam. C57Bl/6 and C57Bl/6-FcRn-KO mice were ob-

tained from the Charles River and Jackson laboratories, respec-

tively. All in vivo experiments were performed using female 8–9

week old mice weighing between 16.8 and 26.3 grams each. Each

mouse received 200 mg purified recombinant human IgG of the

appropriate heavy and light chain subclass and isoform by IV

administration. Blood samples of 100 ml were drawn from the tail

at day 0 and then approximately every 5 days for a period of two

weeks, and human IgG concentration was determined with a

mouse anti-human IgG ELISA. All animal experiments were

carried out after approval from the ethical committee of Sanquin/

Dutch Cancer Institute (Dierexperimentencommissie NKI), who

also monitored the progress, aimed at minimizing suffering

(number 10.033).

In humans IgG light chain subclass serum persistence was

calculated as (%) = [IgGS]W4/[IgGT]W4/([IgGS]IVIg/[IgGT]IVIg)

6100% in sera from three agammaglobulinemic patients

IgG2k redox treatment
Enrichment of IgG2 k isoforms by redox treatment was

performed as described in Dillon et al 2008 (Structural and

Functional Characterization of Disulfide Isoforms of the Human

Placental Transport and Half-Life of IgG2
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IgG2 Subclass) [5]. Shortly, for the synthesis of the B isoform,

IgG2k was incubated at 3 mg/ml in 200 mM Tris buffer at pH 8

with 6 and 1 mM of cysteine and cystamine, respectively. For

IgG2k A enrichment, 0.9M guanidine hydrochloride (GuHCl) was

also added. The samples were protected from light and placed at

2–8uC for 48–72 h. Afterwards the antibody was run through a

Zeba spin desalting column (Pierce) for buffer exchange into PBS,

and stored at 220uC.

SDS gel electropheresis
5 mg of protein was loaded on a Thermo Scientific Tris Hepes

SDS precast polyacrylamide mini gel 12%. Reduced samples were

diluted with NuPAGE LDS Sample Buffer (46) with 0.1% Beta

MercaptoEthanol and incubated at 95Cu for 5 minutes. Non-

reduced samples were diluted with NuPAGE LDS Sample Buffer

(46) with 60 mM Iodoacetamide and incubated at 70uC for

5 minutes The running buffer was TRIS HEPES SDS buffer for

both types of samples, for the non-reduced samples 4 mM

Iodoacetamide was added. Run time was ca 1.5 hour at

130 mA/gel, 120 V. Afterwards, gels were stained with Coomassie

blue.

Surface plasmon resonance
Surface plasmon resonance was conducted using a Biacore 3000

instrument (GE Healthcare) with CM5 sensor chips. The coupling

was performed by injecting 5 mg/ml of the each protein into

10 mM sodium acetate pH 4.5 using the amine coupling kit (GE

Healthcare). Titrated amounts (8,000.0-62.50 nM) of monomeric

human FcRn were injected over immobilized IgG variants (500

RU) using phosphate buffer (67 mM phosphate buffer, 0.15 M

Figure 1. Placental transport of IgG subclasses is more efficient for IgG1 and IgG4 than for IgG2 and IgG3. Blood was collected from
mothers just before or after birth and from neonates birth. A) Transport rates for all IgG subclasses expressed as cord/maternal ratios found at birth.
The transport rates differed significantly from each other (P,0.0001), except for IgG2 and IgG3 (not significant), as tested by one-way Anova and
Tukey’s multiple comparison test. (B–E)IgG subclass 1–4 serum levels were quantified by nephelometry and each pair was plotted on a X axis
displaying days of each pregnancy against IgG concentration. Average neonate concentration was significantly higher than in the mother for IgG1
and IgG4 as tested by a paired-T test as shown (child/mother ratio = 1.55 and 1.38, respectively) while averge concentrations for IgG2 and IgG3 were
not significantly different in mothers and their children (child/mother ratios not significantly different from 1). One pre-term baby was identified
displaying low transport of all IgG (square symbol). (F) Child/mother transport ratio of subclasses IgG2-4 for each pair was plotted relative to the IgG1
transport ratios.
doi:10.1371/journal.pone.0108319.g001

Placental Transport and Half-Life of IgG2
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NaCl, 0.005% Tween 20) at pH 6.0 as running buffer whereas

HBS-P buffer at pH 7.4 was used for regeneration of the flow

cells. Experiments were conducted at 25uC with a flow rate of

40 ml/min. All sensorgrams were zero adjusted and reference cell

values subtracted before analyzed using the BIAevaluation 4.1

software.

CEX-HPLC Analysis of IgG2k A and B isoforms
CEX-HPLC analysis was carried out as described previously

[4]. Shortly, an ÄKTA Avant system from GE healthcare with a

Dionex ProPac WCX-10 (4.0_250 mm) column was used for

analysis of recombinant IgG preparations. Mobile phase A was

20 mM sodium acetate, pH 5.0, and mobile phase B was the same

with 0.5 M NaCl added. Protein was eluted during a linear

gradient from 20% to 80% B at a flow rate of 0.5 ml/min.

Results

IgG2 and IgG3 are not efficiently transported across the
placenta

We quantified all four IgG subclasses in 27 paired mother cord

plasma samples taken at birth (Fig. 1A–D). As expected, IgG1 and

IgG4 levels in cord blood were generally found to be higher than

in maternal blood. Specifically, cord exceeded maternal levels in

24 out of 27 samples with the average cord/mother ratio being 1.5

for IgG1, 1.3 for IgG4 while for IgG3 the average cord/mother

ratio was 1.00. IgG2 levels in cord and maternal plasma were also

about equal (with average cord/mother ratio being 0.99).

Interestingly, the pairs show a highly varied transport, with some

individuals transporting all subclasses at higher efficiency than

others. However, the overall transport was relatively uniform for

all the subclasses: if relatively high transport was observed for

IgG1, the same held true for IgG2 (R2 = 0.875, p,0.0001), IgG3

(R2 = 0.836, p,0.0001) and IgG4 (R2 = 0.303, p = 0.0052)

(Fig. 1E). One case with extremely strong IgG4 transport, with

maternal levels being very low (0.03 g/L) but rising to 0.11 g/L in

the fetal circulation (Fig. 1E). Due to the uncertainty of

measurements at this range, this value was excluded from further

analysis.

In general, the relative transport of all subclasses was in direct

relationship to the maternal level: the higher the maternal IgG, the

lower the transport observed for all IgG subclasses (Fig. 2). The

placental transport rates were IgG1.IgG4.IgG2 = IgG3, at all

levels for maternal IgG. The slopes of the respective trend

lines were IgG1: 23.66461.023; IgG2: 25.33261.861; IgG3:

24.43461.721; IgG4: 23.96361.420.

IgG2k and IgG2l are transported equally well over the
placenta

Montano and Morrison described that FcRn-mediated half-life

of human-mouse chimeric IgG2l was shorter than IgG2k in

Balb/c mice, while the FcRn-mediated half-life of light chain

isotype of the other subclasses was unaffected [15]. Later the same

group described increased affinity of mouse FcRn to human

IgG2l compared to IgG2k [23]. We therefore investigated if this

was also true for human FcRn by measuring the affinity of soluble

monomeric human FcRn to immobilized IgG variants at pH 6.0

using surface plasmon resonance. We found FcRn to bind IgG2l
slightly stronger than IgG2k (KD = 1.1 mM and 1.7 mM, respec-

tively) (Fig. 3). However, no difference in binding affinity was

detected for the IgG1-light chain isotypes (KD = 1.3 mM).

Although somewhat counterintuitive, these findings raised the

possibility that placental transport of IgG2k and l may also differ

as both half-life and placental transport is mediated by FcRn. To

test this, we first set up light chain-specific IgG1 and IgG2 ELISA’s

for quantification of IgG1k, IgG1l, IgG2k and IgG2l using

recombinant IgG molecules as standards. The light-chain subclass

ELISA were validated against the nephelometry data, which

correlated well with the sum obtained from the ELISA as

determined by regression analysis (Figure 4). Thus, nephelometry

data fitted very well for IgG2 quantitatively (slope 1.10), but for

IgG1 the nephelometry data seemed to be somewhat underesti-

mated (slope 0.45), or overestimated by the ELISA (or both). In

support of this, the average k/l ratios were 1.460.4 (range 0.7–

2.3) and 2.461.0 (range 0.8–4.5) for IgG1 and IgG2, respectively,

suggesting IgG1l values to be overestimated by the ELISA as total

IgG k/l ratios have been estimated to be around 2.0, which has

never been determined for the IgG subclasses to our knowledge

[27]. Importantly, the sum of the light chain ELISA values for

either IgG1 or IgG2 k and l correlated equally well with

nephelometry data (Figure 4, R2 = 0.73 and 0.75 for IgG1 and

IgG2 respectively, p,0.0001). Thus, we concluded that the

inconsistency seen between the estimated levels for IgG1 by

nephelometry and IgG1k+IgG1l was constant over the whole

concentration range, suggesting the possible skewing to be relative,

and not affecting the relative IgG1k and IgG1l ratios measured at

either high or low IgG1 levels.

Using this method, we estimated that the transport of both

IgG1k and IgG1l was comparable with a cord/mother ratio of

1.6 (Fig. 4A–B). Placental transport of IgG2 was also equally

efficient for both light chain variants (average IgG2 cord/mother

ratio = 0.99 and 0.93 for k and l, respectively) (Fig. 5C–D). Again,

the relative transport for the light chain isotypes (Fig. 5E) was

comparable as it was for their respective IgG subclasses (Fig. 1A).

There was a strong correlation between IgG1k and IgG1l
transport (R2 = 0.860. p,0.0001), and a weaker one between

IgG1k and the IgG2 two isotypes (R2 = 0.549, p,0.0001 and

R2 = 0.698, p,0.0001 for k and l, respectively) (Fig. 5E). Again,

the relative transport for the light chain isotypes (Fig. 5E) was

similar as observed for the IgG subclasses (Fig. 1A). The more

IgG1k transported, the more IgG1l was transported as well,

which was also similarly increased, but to a lower level, for both

IgG2 light chain isotypes as IgG1k transport correlated signifi-

cantly with that of and IgG1l (R2 = 0.860, p,0.0001), IgG2k
(R2 = 0.549, p,0.0001), and IgG2l (R2 = 0.698, p,0.0001)

Figure 2. Placental transport efficiency is relatively higher at
lower maternal levels. In general, IgG1 is transported better than
IgG4, both of which are transported better than IgG2 and IgG3, which
have similar transport rates. Two-tailed Pearson correlation revealed a
significant correlation for all subclasses, IgG1 R2 = 0.379, P = 0.0018; IgG2
R2 = 0.2910, P = 0.0096; IgG3 R2 = 0.2415, P = 0.0202; IgG4 R2 = 0.2881,
P = 0.0121. Thus, for all subclasses, relatively more IgG was transported
at lower maternal IgG.
doi:10.1371/journal.pone.0108319.g002

Placental Transport and Half-Life of IgG2
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(Fig. 5E). No difference was found between the slopes for IgG2k
and IgG2l. Although the slope for IgG1l differed significantly

form IgG1k (P = 0.030), the difference was minimal, with slightly

lower IgG1l transport at high IgG1k and vice versa (Fig. 5E).

However, paired comparison between either IgG1 k and l or

IgG2 k and l subclass yielded no significant difference. Also, the

relative transport of IgG1k and IgG1l, as well as that for IgG2k
and IgG2lwere not significantly different.

The half-life of IgG2 light chain isoforms does not differ
in mice

As a previous study reported a different half-life for IgG2k and

IgG2l, our next step was to measure the serum half-life of IgG2k
and IgG2l in Balb/C mice injected with 200 mg of recombinant

fully human IgG2k or IgG2l [15]. Concentration of human IgG

in their serum was quantified at every 5 days over a two week

period post injection. No difference was found between the

clearance rates of IgG2k and IgG2l (Fig. 6A). We then tested if

the clearance rate of IgG2k might be affected by the A/B isoforms

recently described [4,6,28]. The different isoforms were deliber-

ately generated as described previously (Fig. 6B) [5]. The

clearance of neither IgG2k isoform differed from IgG2l, nor

did the clearance of IgG2kA differ from IgG2kB in Balb/C mice

(Fig. 6C). In addition, IgG2kA and IgG2kB were also cleared at

equal rates in C57Bl/6 mice (Fig. 6D). C57Bl/6 FcRn KO mice

cleared human IgG much faster than both WT expressing mice

and displayed no difference between the two IgG2k isoforms

(Fig. 6D). Antibody half-life was determined to be around 10 days

in C57Bl/6 mice and around 4 days in Balb/C mice. In the FcRn

KO mice, the levels had dropped below the detection limit of the

assay at day 10. In conclusion, neither the half-life nor the

transplacental transport is affected by the light chain isotype of

IgG2 and thus not on structural isomerization of IgG2.

IgG2 half-life is identical between the light chain isotypes
in humans

As these results are at odds what we expected based on

previously published work on a different, but mechanistically

similar FcRn-mediated function, describing differences in half-life

of IgG2k and IgG2l in Balb/C mice, we tested if the half-life of

our IgG2 antibodies differed in humans [15]. We analyzed sera

from IVIg-treated X-linked agammaglobulinemic patients as we

described before, comparing the relative amounts found in the

IVIg preparation itself to amounts found in patient serum four

weeks later [20]. The relative amount remaining after IVIg-

treatment was identical for IgG1k and IgG1l, but also for IgG2k
and IgG2l, indicating that serum half-life does not differ between

the light-chain isotypes in humans (Fig. 7B). Curiously, the relative

amount remaining after 4 weeks was significantly increased for

IgG2 in the IVIg-treated agammaglobulinemic patients (Fig. 7B),

while it was significantly decreased for placental transport of IgG2

(Fig. 7A), indicating a fundamental difference between these two

processes.

Figure 3. Determination of the FcRn binding properties of IgG1 and IgG2 light chain variants. Binding of titrated amounts of soluble
human FcRn (62.5–8000 nM) at pH 6.0 to human IgG variants immobilized onto CM5 sensor flow cells. The relative affinity constants derived (KD) are
indicated.
doi:10.1371/journal.pone.0108319.g003

Placental Transport and Half-Life of IgG2
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Discussion

FcRn mediates IgG- transcytosis and recycling, both of which

are compromised for IgG3, with reduced serum persistence and

placental transport. We recently reported that these effects are

attributable to a single amino acid difference between IgG3 and

the other subclasses. While IgG1, IgG2 and IgG4 have a histidine

at position 435, a key amino acid responsible for the pH-

dependent binding to FcRn, most IgG3 allotypes have an arginine

at this position, causing them to lose competition for recycling and

transcytosis [18,20]. IgG3 allotypes which express a histidine at

this position have equal half-life to that of IgG1, and are

transported equally well across the placenta [18,20].

For IgG2, however, these FcRn-mediated transcytosis and

recycling functions seem to diverge [18,29]. Although IgG1, IgG2

and IgG4 share all known contact residues with FcRn, and FcRn

is known to mediate both IgG transcytosis and extend IgG serum

persistence in a very similar manner, IgG2 crosses the human

placenta with a markedly lower efficiency, with trans-placental

transport more closely matching that of IgG3.

Interestingly, Montano and Morrison reported accelerated

clearance for IgG2l, compared to IgG2k in wild-type mice,

indicating that the light chain may affect the interaction of IgG2

with FcRn [15]. This possibility became more plausible after the

discovery that IgG2k uniquely exists in three structurally distinct

isoforms, allowing for the possibility that a single isoform of IgG2k

Figure 4. Validation of IgG1- and IgG2- light chain specific
ELISA. Results from IgG1 total (A) and IgG2 total (B) were plotted
against the sum of IgG1k and IgG1l, or IgG2k and IgG2l, respectively.
The results of regression analysis are indicated in each panel, along with
Pearson’s correlation.
doi:10.1371/journal.pone.0108319.g004

Figure 5. Equal placental transport of k and l of IgG1 and IgG2
subclasses. IgG1k (A), IgG1l(B) and IgG2k (C) IgG2l (D) light chain
isotype from sera in Fig. 1 were quantified by subclass- and light chain
specific ELISA and each mother-child pair was plotted on the x- and

Placental Transport and Half-Life of IgG2
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may be influencing the overall interaction of IgG2 with FcRn

[4,5].

We first investigated whether the difference between IgG2k and

IgG2l could be found in paired mother cord samples. Although

the mother/cord ratio was significantly lower for IgG2 than for

IgG1 or IgG4, there was no evidence that this was affected by the

light chain isotype.

While the original finding that the half-life of IgG2k and IgG2l
diverge, was observed for mouse-human chimeric antibodies in

BALB/c mice, we investigated whether the same applied to fully

human recombinant IgG2 antibodies, derived from an human

IgG2l hybridoma but expressed with either k or l light chains,

and tested them in both C57Bl/6 and BALB-c mice [30,31]. No

differences were found neither in BALB/c or C57Bl/6 mice.

Curiously, we found differences in half-lives between experiments.

In Balb/C mice we first found on average a half-life of

approximately 6.5 days (Fig. 6A), while in another set of

experiment it was down to 4.5 days (Fig. 6C). Furthermore,

clearance seemed to be accelerated at later time points, as in

Fig. 6A. In C57Bl/6 mice, the calculated half-life was again about

6.5 days. One possible reason is that FcRn expression (and

consequently, IgG half-life) differs between different mouse strains,

but perhaps an even more attractive explanation is that FcRn

expression has been reported to be sensitive to NF-kB signalling,

suggesting FcRn-levels may also be under the control of the

animal’s microbial status [32,33]. This might also explain

y-axis, respectively. A paired t-test revealed no significant difference
between the light chains isotypes within each antibody subclass.
Average neonate concentration was significantly higher than in the
mother for IgG1k (A) and IgG1l (B) as indicated in each graph by P
values (child/mother ratio = 1.60 and 1.56, respectively) while average
concentrations for IgG2 k and IgG2 l (C and D) were not significantly
different in mothers and their children. (E) Child/mother transport ratio
of IgG1l, IgG2k and IgG2l for each pair was plotted relative to IgG1k
transport ratios. While both IgG2 isotypes perform worse than IgG1
when concentration increases, no difference is visible between the
IgG2-light chain isotypes.
doi:10.1371/journal.pone.0108319.g005

Figure 6. No difference in half-life of IgG2 light chain isotypes k and l in mice. (A) Recombinant human IgG2k and l in Balb/C mice was
injected and measured by total IgG ELISA for a two week period following injection of 200 mg IgG. Calculated half-lives were 7.261.48 and 6.460.84
days for IgG2k and IgG2l. (B) Enrichment of IgG2 k isoforms was performed as described in Dillon et al 2008. HPLC elution profiles of IgG2 kA and kB
structural isomeres on a Dionex ProPac WCX-10 (4.0_250 mm) column are depicted. IgG2kB isoform was generated by incubation of 3 mg/ml IgG2k
in 200 mM Tris buffer at pH 8 with 6 and 1 mM of cysteine and cystamine, respectively. For IgG2kA synthesis 0.9M guanidine hydrochloride (GuHCl)
was also added. The samples were kept in the dark and placed at 4uC for 48–72 h. Following incubation the antibody was run on a Zeba spin
desalting column (Pierce) for buffer exchange into PBS. (C) The clearance of IgG2l, IgG2kA, and IgG2kB in Balb/C mice. Calculated half-lives were
4.060.58, 5.3960.85, and 3.761.04 days for IgG2kA, IgG2kB and IgG2l, respectively. (D) Clearance of IgG2kA and IgG2kB in WT and FccR 2/2 C57Bl/
6 mice. Calculated half-lives were 6.262.62, 6.4361.69, and 7.561.89 days for IgG2kA, IgG2kB and IgG2l, respectively, in WT mice but 1.0860.28,
1.1960.23, and 0.760.92 days for IgG2kA, IgG2kB and IgG2l, respectively, in FcRn 2/2 mice. Graphs in (A, C–D) depict mean and standard
deviations of results obtained for 4 mice per group. Half-lives were calculated assuming exponential decay and reported in days 6 standard error of
means. No significant difference in half-life was detected between the two isotypes.
doi:10.1371/journal.pone.0108319.g006
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discrepancy in half-lives of human IgG in mice reported by others

[15,22]. In the absence of FcRn, IgG2 k and l also disappeared

from circulation at an equal rate.

Since no differences in half-life between recombinant IgG2k
and IgG2l were observed, we investigated whether a further

subdivision of IgG2k, either the A, the A/B or the B isoform,

might be responsible for the observed differences between our

results and those previously describing a light chain-dependant

half-life extension for IgG2 [15]. As both results were obtained

using monoclonal antibodies, the possibility exists that a single

isoform constituted the majority of IgG2k tested, which might

skew the results. The serum persistence experiment was executed

in both C57Bl/6 (wild-type and FcRn-KO) as well as BALB/c, the

mouse strain used by Montano and Morrison [15]. However, no

difference between isoforms was observed. Although we did not

verify the nature of the chemically A/B isomerization other than

by CEX-HPLC, validated previously in [4], we did test the half-

life-extension of the light chain isotypes of polyclonal IgG2

obtained from IVIg in agammaglobulinemic patients, and found

no indication of preferential rescue of either IgG2k or IgGl. As

IVIg is an IgG pool from thousands of individuals, and is likely to

contain natural ratios of these A/B isomers, this further proofs that

IgG2 recycling discriminates between neither the light chain

isotypes nor IgG2-isomers. Together with the results showing also

no preference for either IgG2k or IgG2l during placental

transport, this strongly suggests that human FcRn does not

discriminate between the two light chain isoforms during

intracellular transport.

This leaves the dilemma of explaining the lack of IgG2 transport

across the placenta, observed in the paired mother cord samples,

compared to equal serum persistence. It has been postulated and

subsequently disproved that FccRIIb found on endothelial cells is

involved in IgG transport across the murine yolk sac [34–38].

However, Mohanty and co-workers did not fully exclude the

possibility that FccRIIb may play a role in transplacental transport

in humans [34–37]. If FccRIIb is indeed involved, it may provide

an explanation to the low transport of IgG2, as this is the only

subclass with almost no measurable binding affinity to FccRIIb

[39,40]. However, the group of Ravetch has reported that

sialylation of the N-linked glycan at position 297 in the IgG Fc

affects binding to mouse FccR, including mouse FccRIIb,

resulting in 106 lowered binding affinity for both mouse IgG1

and IgG2a [41]. If FccRIIb is indeed involved in placental

transport, this would suggest a skewed transport of sialylated IgG

across the placenta. However, we have found no such difference

for any of the human subclasses, as all glycoforms of all subclasses

were transported equally well across the placenta, suggesting

FcRn, which does not require the Fc-glycans for binding, is

sufficient for transplacental-IgG transport [42,43].

While it is conceivable that the requirements for FcRn-binding

differ for IgG2 compared to the other subclasses due to the short

hinge of IgG2 and the closer proximity of the Fab fragments to the

Fc, there is no clear reason why this should affect FcRn-mediated

recycling and transcytosis differently. The possibility exists that this

extracellular binding also affects FcRn-mediated signaling, as

transcytosis and recycling are regulated by different proteins, with

actin motor myosin Vb and the GTPase Rab25 initiating

transcytosis from the recycling endosome, while Rab11a regulates

recycling to the basolateral membrane [44,45]. The role for the

tryptophan-based basolateral-targeting signal identified in the

FcRn cytoplasmic tail is also unknown [46]. In support of this

view, we did observe that while IgG2 transport through the

placenta is indeed low, its recycling and half-life extension in the

human circulation is even better than for IgG1, If, and then how,

these intracellular mechanisms are differently affected by the

stoichiometry of the IgG2 molecules still needs to be elucidated.

In conclusion, we report and confirm that human IgG2 is not

efficiently transported across the human placenta, despite a

normal half-life. Although a previous report hinted at differential

recycling of IgG2 depending on the light chain isotype, we found

no preference for either recycling or placental transport of either

IgG2k or IgG2l. In addition, the half-life extension in mice was

not affected by the different IgG2k structural isoforms. This is

suggestive of alternative mechanisms, either involving an alterna-

tive receptor or mechanism differentiating between IgG transcy-

tosis and recycling.
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Figure 7. Equal placental transport and serum clearance of
IgG1 and 2 light chain isotypes k and l. (A) The average IgG1 and
IgG2 placental transport (maternal/child) ratios were compared
according to their light chain isotype. (B) Clearence of IgG1 and IgG2
k and l was investigated in humans by collecting blood from
hypogammaglobulinemia patients four weeks after an IVIg transfusion.
IgG1 and IgG2 light chain isotypes k and l were quantified in serum by
subclass- and light chain specific ELISA and subclass composition was
compared to that found in the IVIg used. No preferential clearance of
one light chain isotype was detectable in either IgG subclass.
doi:10.1371/journal.pone.0108319.g007
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