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Substantial statistical research has recently been devoted to the
analysis of large-scale microarray experiments which provide a mea-
sure of the simultaneous expression of thousands of genes in a partic-
ular condition. A typical goal is the comparison of gene expression be-
tween two conditions (eg. diseased vs. non-diseased) to detect genes
which show differential expression. Classical hypothesis testing pro-
cedures have been applied to this problem and more recent work has
employed sophisticated models that allow for the sharing of informa-
tion across genes. However, many recent gene expression studies have

an experimental design with several conditions that requires an even
more involved hypothesis testing approach. In this paper, we use a
hierarchical Bayesian model to address the situation where there are
many hypotheses that must be simultaneously tested for each gene. In
addition to having many hypotheses within each gene, our analysis
also addresses the more typical multiple comparison issue of testing
many genes simultaneously. We illustrate our approach with an appli-
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2 JENSEN ET.AL.

cation to a study of genes involved in obstructive sleep apnea in hu-
mans.

1. Introduction and Motivation. The advent of microarray experiments for the measure of genome-
wide gene expression have had a fundamental impact on the study of biological mechanisms and
phenomena. The simultaneous measurements of gene expression across an entire genome have
allowed biologists to infer regulatory networks within genomes (eg. Segal et al. (2003)) and inves-
tigate the genetic mechanisms underlying disease (eg. Alizadeh et al. (2000)). The development of
models and methodology for the analysis of gene expression data has also become increasingly
prominent within the field of statistics. Sophisticated procedures have been implemented for the
processing and visualization of expression data (e.g. Dudoit et al. (2003), Irizarry et al. (2006)) as
well as clustering of expression data (e.g. Medvedovic and Sivaganesan (2002), Ma et al. (2006)).
Hypothesis testing of expression data has also been an area of active research, with considerable
focus given to proper techniques for inference in the context of large numbers of simultaneous
tests across many genes (eg. Storey and Tibshirani (2003), Newton et al. (2004)).

In this paper, we consider a special case of simultaneous testing not just across many genes but
also across many hypotheses within each gene. Our consideration of this case is motivated by our
analysis of a large study of treatment for obstructive sleep apnea (OSA) where we are comparing
many genes across several states. Obstructive sleep apnea is a common sleep disorder involving
frequent and disruptive pauses in breathing during sleep (Pack, 2006). A large study of sleep
apnea involving 13 individuals was undertaken in 2005 by Landspitali University Hospital in
Iceland. The primary goal of this study was the elucidation of genes whose expression pattern was
mediated by an obstructive sleep apnea treatment: continuous positive airway pressure (CPAP).
The experimental design of their study consists of the 13 individuals with blood samples taken at
the following four time points:

1. Pre-treatment, Before Sleep
2. Pre-treatment, After Sleep (10 hours following time point 1)
3. Post-treatment, Before Sleep (12 weeks following time point 2)
4. Post-treatment, After Sleep (10 hours following time point 3)

In this paper, we will use the terms state and time point interchangeably. From the blood samples
taken at each time point, cellular mRNA expression was measured using Affymetrix microarray
technology for approximately 22000 genes. These expression levels are used as a measure of the ac-
tivity of each gene: genes that show high expression levels in a state are considered to be activated,
genes that show low expression levels in a state are considered to be repressed. The overall goal of
our analysis will be the identification of any genes that show differential expression within some
subset of these four time points. We have specific interest in differential expression between par-
ticular subsets of the time points, such as genes that show differences between the before and after
states of sleep, or genes that show differences between the before and after states of the treatment.
Genes which can be found to have mRNA expression that is mediated by the CPAP treatment are
valuable candidates for followup studies into refined treatments for sleep apnea.

We will take a hypothesis testing approach to the determination of differential expression between
these states. Linear models have been used extensively for establishing differential gene expres-
sion, such as the limma package for R (Smyth, 2004). We prefer the use of a Bayesian hierarchical
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BAYESIAN HYPOTHESIS TESTING 3

model to allow for gene-specific differences in expression while sharing information across genes
for the estimation of several global noise parameters. Bayesian models have been recently used
for hypothesis testing between two states (Newton et al., 2004) and we will use a similar mod-
eling approach in our current work. However, our present application has several complications
that require new methodological development. The application in Newton et al. (2004) consisted
of only two states, which greatly simplifies the testing situation since there are only three distinct
hypotheses (µ1 = µ2, µ1 > µ2, µ1 < µ2) that could describe the expression of any particular gene.
However, our application consists of four states, which greatly expands the number of alternative
hypotheses that might underly the observed expression values for each gene. Kendziorski et al.
(2003) extend the approach of Newton et al. (2004) to greater than two states, but under the restric-
tion that only two-sided alternatives are considered (eg. µ1 = µ2 = µ3 vs. µ1 = µ2 6= µ3) . This is
a restrictive assumption in our context since we desire the separate identification of activated and
repressed genes between subsets of states. We prefer to take a fully flexible approach that allows
for all possible one-sided alternatives which leads to a substantially larger space of many possible
hypotheses for each gene, and we present our Bayesian hierarchical model for the testing of many
hypotheses in Section 2. Yuan and Kendziorski (2006) extends the approach of Newton et al. (2004)
to also allow clustering of genes in addition to establishing differential expression. However, Yuan
and Kendziorski (2006) take an empirical Bayes approach to model estimation instead of model-
ing the entire posterior distribution of all unknown parameters. Thus, these previous approaches
have favored inference based on a posterior mode found via the EM algorithm (Dempster et al.,
1977), whereas we prefer a full exploration of the posterior space using Markov Chain Monte
Carlo techniques such as Gibbs Sampling (Geman and Geman, 1984).

However, we also must confront a more traditional multiple comparison issue: we are not only
testing many hypotheses per gene, but also testing across many genes in our full evaluation of the
effects between pre- and post-treatment sleep apnea. In Section 2.2, we outline our approach to the
controlling the false positive rate across genes by using the posterior probabilities across hypothe-
ses estimated within each gene. Combined together, these procedures are a principled approach
to the increasingly common hypothesis testing context where there are many hypotheses × many
genes. In Section 3, our model is applied to the gene expression data from our motivating study of
sleep apnea, and in Section 4, we perform an extensive study of the sensitivity of our inference to
several model choices and compare our results to two alternative models available as R packages:
limma and EBarrays. We examine several individuals in detail as potential outlying values and
evaluate their influence on our gene-specific inferences, as well as examining the possibility of the
correlation between individuals in the study. We conclude with a brief discussion in Section 5.

2. Model and Implementation.

2.1. Gamma-Inv-Gamma Hierarchical Model. Our observed data is Xgij = expression level of gene
g (g = 1, . . . , G) in state i (i = 1, . . . , 4) for individual j (j = 1, . . . , N ). For our Iceland study, we
have G = 22283 genes measured across N = 13 individuals. We model these gene expression
values as Gamma observations from an underlying gene- and state-specific mean:

Xgij ∼ Gamma

(

αi,
αi

µgi

)

i.e. ,E(Xgij) = µgi(1)
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4 JENSEN ET.AL.

As mentioned by Newton et al. (2004) and Yuan and Kendziorski (2006), the Gamma distribution
is an attractive model for expression data since many popular processing and normalization pro-
cedures lead to expression data with approximately constant coefficient of variation. The Gamma
model has constant coefficient of variation for the genes in each state, but the coefficient of varia-
tion is allowed to vary across states. Newton et al. (2001) also discuss the Gamma distribution as a
model for gene expression data, though that discussion focussed on two-channel cDNA microar-
rays instead of the Affymetrix microarray technology employed in our study.

The second level of our model treats the latent means µµµg = (µg1, . . . , µg4) for a particular gene g in
each of the four states as random variables that each follow an inverse-Gamma distribution,

µgi ∼ Inv − Gamma (α0, α0 · µ0)(2)

but with additional constraints on the vector µµµg = (µg1, . . . , µg4) dictated by a latent variable Zg.
Each constraint Zg represents a different hypotheses (eg. µg1 = µg2 = µg3 < µg4) on the underlying
means for gene g. We have adopted several elements of the model and notation of Newton et al.
(2004), but our model is more complex in the sense we are modeling four states simultaneously,
which substantially increases the number of possible hypotheses for our underlying means. For
four states, there are 75 possible orderings of our µµµ vector when including all possible subsets of
equalities :

Zg = 0 =⇒ µg1 = µg2 = µg3 = µg4

Zg = 1 =⇒ µg1 = µg2 = µg3 < µg4

Zg = 2 =⇒ µg1 = µg2 = µg3 > µg4

...

A full list of the 75 different hypotheses are given in our supplementary materials. We use addi-
tional notation to keep track of the different orderings Zg in order to address the extra complexity
of our problem and allow for easier generalization to applications with more than four states. Let
M(Zg) be the number of equality groups in the ordering, and let C(Zg,m) be the set of time-points
or states contained in the m-th equality group of that ordering. We then rank the equality groups
in increasing order, so that CCC(Zg) = [C(Zg, 1), . . . , C(Zg,M(Zg))] where the members of C(Zg, 1)
have lower means than members of C(Zg, 2) which have lower means than members of C(Zg, 3),
etc. Consider a few examples:

Zg = 0 : µ1 = µ2 = µ3 = µ4 =⇒ M(Zg) = 1 CCC(Zg) = [(1, 2, 3, 4)]

Zg = 1 : µ1 = µ2 = µ3 < µ4 =⇒ M(Zg) = 2 CCC(Zg) = [(1, 2, 3), (4)]

Zg = 2 : µ1 = µ2 = µ3 > µ4 =⇒ M(Zg) = 2 CCC(Zg) = [(4), (1, 2, 3)]

...

Finally, we have additional parameters that specify the probabilities for each mixture component:
P (Zg = k) = φk for k = 0, . . . , 74. The complete-data likelihood of our model combines our
unknown parameters ΘΘΘ = (ααα, µ0,φφφ) and observed data XXX with our latent variables µµµ and ZZZ as
follows:

p(XXX,µµµ,ZZZ|ΘΘΘ) =
G
∏

g=1

[

4
∏

i=1

p(XXXgi|µµµgi,ΘΘΘ)

]

· p(µµµg|Zg,ΘΘΘ) · p(Zg|ΘΘΘ)(3)

We use non-informative prior distributions for each unknown parameter in ΘΘΘ = (ααα, µ0,φφφ):
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1. φφφ ∼ Dirichlet(ωωω) where each ωk is small (ωk = 0.001 for this study)
2. αi ∼ Uniform(0, C) where C is large (C = 10000 for this study)
3. µ0 ∼ Uniform(0, C) where C is large ( C = 10000 for this study)

Our posterior inference was not sensitive to other choices of C and ωk. We can reduce the com-
plexity of our model estimation by integrating over the latent gene- and state-specific means µµµ:

p(XXX,ZZZ|ΘΘΘ) =

∫

p(XXX,µµµ,ZZZ|ΘΘΘ)dµµµ =
G
∏

g=1

p(Zg|ΘΘΘ)

∫

[

4
∏

i=1

p(XXXgi|µµµgi,ΘΘΘ)

]

· p(µµµg|Zg,ΘΘΘ)dµµµg

which results in the following collapsed likelihood distribution:

p(XXX,ZZZ|ΘΘΘ) =
G
∏

g=1

φZg · D(Zg) ·
(α0µ0)

α0·M(Zg)

[Γ(α0)]M(Zg)

4
∏

i=1

αNαi

i

[Γ(αi)]N

N
∏

j=1

Xαi−1
gij

M(Zg)
∏

m=1

Γ(A(g,m))

(B(g,m))A(g,m)
(4)

where A(g,m) = α0 + N ·
∑

c αc and B(g,m) = α0µ0 +
∑

c αc

∑

j Xgcj with c ∈ C(Zg,m). The
factor D(Zg) is a constant related to the posterior probability of the ordering itself, which is rather
complicated and discussed in detail in the supplementary materials. Finally, we combine this col-
lapsed likelihood together with our prior distributions to give us the full posterior distribution,
p(ΘΘΘ,ZZZ|XXX) ∝ p(XXX,ZZZ|ΘΘΘ) · p(ΘΘΘ), of our unknown parameters ΘΘΘ and latent variables ZZZ .

An alternative modeling approach for the multiple group problem is provided by Gottardo et al.
(2006). Their model is based on the t-distribution for the observed expression measures with mix-
tures of normal prior distributions for the unobserved means. However, their approach lacks the
conjugacy of our model, and thus the unknown means µµµ cannot be integrated out of their model.
Subsequently, the Gottardo et al. (2006) implementation is more complicated since they must es-
timate all the unknown means µµµ whereas we can focus our estimation on a much smaller set
of parameters ΘΘΘ. We implement our collapsed model using a relatively simple Gibbs Sampling
(Geman and Geman, 1984) algorithm that approximates the full posterior distribution of our un-
known parameters (ΘΘΘ,ZZZ) by sampling iteratively from the conditional distribution of each set
of parameters given the current values of the other parameters. Details of our Gibbs sampling
algorithm are given in the supplementary materials.

2.2. Inference for Gene-Specific Hypotheses Zg and Multiple Comparison Issues. The primary goal of
our investigation is to infer the correct hypothesis Zg for each gene, with extra focus on genes that
are inferred to be non-null (Zg 6= 0). Our Gibbs sampling algorithm provides an estimate of the
posterior distribution for each latent variable Zg, but we still need to make a decision about which
hypothesis we infer to be correct for each gene. There are several different inferential decisions we
can make based on the posterior distribution of each Zg . The first alternative is to assign each gene
to their modal hypothesis,

h̃g = arg max
h=0,...,74

P(Zg = h|XXX)(5)

As discussed in Bickel and Doksum (2007), page 165, using the hypothesis with the largest pos-
terior probability is an optimal strategy under a 0-1 loss function. However, using the modal hy-
pothesis for each gene ignores potentially important information about the confidence of our in-
ference in each gene-specific decision. Given two genes (A and B) with modal hypothesis h′, we
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6 JENSEN ET.AL.

might wish to draw a distinction between gene A with P(ZA = h′|XXX) = 0.9 and gene B with
P(ZB = h′|XXX) = 0.4. One popular inferential technique is to only declare genes to have a partic-
ular hypothesis h′ if their posterior probability P(Zg = h′|XXX) exceeds a pre-defined threshold k.
In biological applications where tests are being performed across many genes simultaneously, this
threshold k is chosen so that the false discovery rate (FDR) is controlled at a desired level (say,
0.05). Our Bayesian framework allows us to use our gene-specific posterior probabilities P(Zg|XXX)
to directly estimate the false discovery rate for any threshold k. Newton et al. (2004) suggest the
following formula for the estimated false discovery rate for a threshold of k:

FDR(k) =

∑

g
P(Zg = 0|XXX) × I[P(Zg 6= 0|XXX) ≥ k]

∑

g
I[P(Zg 6= 0|XXX) ≥ k]

(6)

The term P(Zg = 0) is the probability of an error when declaring gene g to have a non-null hy-
pothesis (P(Zg 6= 0|XXX) ≥ k). Equation (6) was valid for the Newton et al. (2004) study since they
were only concerned with FDR control for ordered comparisons between two states. However,
in our current methodology, we not only have to control our inference across many genes, but
also across many different ordered hypotheses within each gene. In this more complicated situation,
equation (6) actually underestimates the error rate, since it only measures null vs. non-null errors
without accounting for an additional potential error: a gene correctly declared to be non-null, but
the incorrect non-null hypothesis is inferred. In our many hypotheses × many genes situation, we
suggest the following estimated false discovery rate for a threshold of k:

FDR(k) =

∑

g
P(Zg 6= hg|XXX) × I[P(Zg = hg|XXX) ≥ k]

∑

g
I[P(Zg = hg|XXX) ≥ k]

(7)

where hg = 1, . . . , 74 is the non-null hypotheses that is chosen for gene g. A non-null hypothesis
hg is only chosen for gene g if it is the modal hypothesis and P(Zg = hg|XXX) ≥ k. In these cases,
P(Zg 6= hg|XXX) is the probability of an error when declaring gene g to have a specific non-null
hypothesis hg. Given a complete set of estimated posterior probabilities P(Zg|XXX), equation (7) can
be calculated along a fine grid of potential thresholds k ∈ (0, 1), and then a particular k⋆ is chosen
to control the false discovery rate at the desired level (eg. 0.05).

3. Results. The raw Affymetrix data was processed using the GC-RMA procedure presented
in Wu et al. (2004). This preliminary analysis gives us a dataset consisting of expression levels
for 22283 genes across the 4 states in 13 individuals. We implemented our model on this dataset
using the Gibbs sampler outlined in our supplementary materials. Multiple chains of the Gibbs
sampler were run for 20000 iterations. A thorough examination of the parameter values from
these chains suggested that the chains had converged to the true posterior distribution after the
first 5000 iterations. These initial 5000 iterations were discarded as burn-in, and our inference is
based on the remaining iterations. We first examine our model parameters ΘΘΘ in Section 3.1 and
then focus on our primary goal: gene-specific inference for our ZZZ indicators in Section 3.2.

3.1. Inference for Model Parameters ΘΘΘ. We examine our model parameters ΘΘΘ by first considering
the global parameters ΘΘΘ which are shared across all genes. In Figure 1, we present the posterior
distributions of the global parameters (α1, α2, α3, α4) from our observed data level (1) as well as
the global parameters (α0, µ0) from our latent variable level (2). We see in Figure 1 that there
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FIG 1. The first set of boxplots are the posterior distributions for the global parameters (α1, α2, α3, α4) from our observed data
level. The second set of boxplots are the posterior distributions of the global parameters (α0, µ0) from our latent variable level.

is variability in each parameter which is only captured by our estimation of the full posterior
distribution, compared to previous approaches (Newton et al., 2004; Yuan and Kendziorski, 2006)
that focussed on point estimates of each parameter. Another interesting result from Figure 1 is
that the distributions of the shape parameters (α1, α2, α3, α4) are each centered at different values,
suggesting that there are global differences in the gene expression measures between the four
states of the experiment.

The other global parameters φφφ = (φ0, φ1, . . . , φ74) represent the marginal probabilities of each hy-
pothesis across the 22283 genes in our dataset. In Figure 2, we present the posterior means of the
marginal probability φk for each hypothesis k, as estimated from our Gibbs sampling output. All
75 hypotheses are represented in the top barplot in Figure 2, but only the 74 non-null hypotheses
are present in the bottom barplot. The most striking feature of Figure 2 is the sparsity of the prob-
abilities over the set of possible hypotheses. The null hypotheses (µ1 = µ2 = µ3 = µ4) dominates
with a posterior mean φ0 = 0.735. This is an expected result, since the majority of genes are in-
volved in cellular processes that are not circadian or affected by sleep vs. wakeful state. In order to
illuminate other popular hypotheses, we removed the null hypotheses from the comparison in the
bottom plot of Figure 2. The other prominent hypotheses are hypothesis 10 (µ1 = µ3 < µ2 = µ4)
with φ10 = 0.118 and hypothesis 13 (µ1 = µ3 > µ2 = µ4) with φ13 = 0.078. These two hypotheses
represent genes that show change between morning and evening but do not seem to show change
between time point 2 and time point 3. These genes can be either circadian, affected by sleep or
by other changes that occur between the evening and morning measurements. We will refer to
these genes as circadian in our subsequent analysis. The remaining hypotheses represent genes
that could be affected by treatment (ie. either µ1 6= µ3 or µ2 6= µ4). As seen in Figure 2, these other
hypotheses have quite low marginal posterior probabilities, with the highest probability among
them being hypothesis 32 (µ1 = µ3 < µ4 < µ2) with φ32 = 0.001. However, it is important to
emphasize that although the marginal posterior probabilities of these hypotheses are quite small,
there are still many genes from our pool of 22283 genes that can be inferred into these hypotheses,
as we see in Section 3.2 below.
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FIG 2. Plot (a) is a barplot of the posterior mean of φk for the ten hypotheses with the largest values of φk. Plot (b) is a barplot of
the posterior mean of φk for the ten hypotheses (excluding the null hypothesis) with the largest values of φk.

3.2. Inferred Hypotheses for Each Gene. The primary goal of our analysis is to infer the correct hy-
pothesis for each of gene in our dataset, which is represented in our model by the latent indicator
variable Zg for g = 1, . . . , 22283. Naturally, we are especially interested in inferring the correct
hypothesis for genes that do not seem to be in the null category Zg = 0. Our Gibbs sampling
implementation gives us an estimate of the P (Zg = h|XXX) for each of the 75 possible hypotheses
for gene g. As described in Section 2.2, we infer a particular non-null hypotheses h′ to be correct
for gene g if P (Zg = h′|XXX) > k where the threshold k is chosen to control the false discovery rate
given in (7). Genes with P (Zg = h′|XXX) that do not achieve this threshold for any non-null hypoth-
esis are inferred to be in the null category. It is worth noting again that this procedure is designed
to control the false discovery rate for not only the multiple comparisons across many genes but also
the multiple comparisons across many hypotheses within each gene. For our dataset of 22283 genes,
the threshold k = 0.645 controls the FDR below a level of 0.05. Using this threshold gives us 4083
genes (18%) that are inferred to have non-null hypotheses. The number of genes that were inferred
to have each non-null hypotheses Zg = h (h = 1, . . . , 74) are given in Table 1.

From Table 1, we see that many non-null hypotheses are inferred for at least one gene in our
dataset, despite the relatively low marginal probability of most of these hypotheses (Section 3.1).
Hypotheses 10 and 13, which are circadian genes, are by far the most popular non-null hypotheses
(98% of non-null genes). However, there are several groups of genes that do not have a circadian
pattern, with the most prominent being hypothesis 25 (µ4 < µ2 < µ1 = µ3) and 32 (µ2 > µ4 >

µ1 = µ3). Genes with these two inferred hypotheses show identical pre-sleep expression levels
both before and after treatment (µ1 = µ3), but different post-sleep expression patterns between
the before and after treatment time points (µ2 6= µ4). The next two most popular hypotheses, 3
(µ3 < µ1 = µ2 = µ4) and 33 (µ3 > µ1 > µ2 = µ4), show the opposite trend with the same
expression levels post-sleep before and after treatment (µ2 = µ4), but different activity in the pre-
sleep points before and after treatment (µ3 6= µ1). In both situations, it is possible that the applied
treatment is affecting some cellular process involving these genes. These genes are candidates
for followup analyses into the genetic basis of sleep behavior, as well as more refined potential
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TABLE 1
Number of inferred genes and marginal probabilities φg for each inferred hypothesis

Zg Hypothesis φg Number of Zg Hypothesis φg Number of
Inferred Genes Inferred Genes

10 µ1 = µ3 < µ2 = µ4 0.11791 2433 43 µ2 < µ1 = µ4 < µ3 0.00095 2
13 µ2 = µ4 < µ1 = µ3 0.07822 1580 48 µ4 < µ1 = µ2 < µ3 0.00095 2
25 µ4 < µ2 < µ1 = µ3 0.00099 9 61 µ2 < µ4 < µ1 < µ3 0.00095 2
32 µ2 > µ4 > µ1 = µ3 0.00111 7 64 µ3 < µ1 < µ4 < µ2 0.00095 2
3 µ3 < µ1 = µ2 = µ4 0.00095 5 71 µ4 < µ2 < µ1 < µ3 0.00095 2
33 µ3 > µ1 > µ2 = µ4 0.00095 5 7 µ3 > µ1 = µ4 = µ2 0.00094 1
4 µ4 < µ1 = µ2 = µ3 0.00095 4 8 µ4 > µ1 = µ2 = µ3 0.00094 1
21 µ3 < µ1 < µ2 = µ4 0.00096 4 14 µ3 = µ4 < µ2 = µ1 0.00094 1
6 µ2 > µ1 = µ3 = µ4 0.00099 3 16 µ1 < µ3 < µ2 = µ4 0.00094 1
28 µ1 > µ3 > µ2 = µ4 0.00099 3 22 µ3 < µ2 < µ1 = µ4 0.00094 1
2 µ2 < µ1 = µ4 = µ3 0.00095 2 39 µ1 < µ2 = µ3 < µ4 0.00094 1
5 µ1 > µ2 = µ3 = µ4 0.00095 2 42 µ2 < µ1 = µ3 < µ4 0.00094 1
9 µ1 = µ2 < µ3 = µ4 0.00095 2 44 µ2 < µ3 = µ4 < µ1 0.00094 1
20 µ2 < µ4 < µ1 = µ3 0.00095 2 51 µ1 < µ2 < µ3 < µ4 0.00094 1
37 µ4 > µ2 > µ1 = µ3 0.00095 2 72 µ4 < µ2 < µ3 < µ1 0.00094 1

TABLE 2
Description of collapsed hypotheses groupings and results from our model compared to the EBarrays software discussed in

Section 4.1.

Our Model EBarrays
Label Description Marginal # of Inferred Marginal # of Inferred

(Contained Hypotheses) Probs φ Genes Probs φ Genes

C0 Null: µ1 = µ2 = µ3 = µ4 0.735 18013 0.752 17374
(0)

C1 Circadian: µ1 = µ3 6= µ2 = µ4 0.196 4102 0.228 4636
(10,13)

C2 Treatment-affected A: µ1 6= µ2 but µ3 = µ4 0.009 18 0.001 18
(1,2,5,6,15,18,27,30,41,44)

C3 Treatment-affected B: µ1 = µ2 but µ3 6= µ4 0.009 29 0.002 13
(3,4,7,8,23,26,35,38,45,48)

treatments of sleep apnea.

3.3. Collapsing Hypotheses Groups. We can further refine our search for treatment-mediated genes
by collapsing our 74 possible non-null hypotheses into a smaller set of hypothesis groups of par-
ticular biological interest. As an example, we can combine hypothesis 10 and hypothesis 13 into
a single hypothesis group C1 of genes that are circadian (µ1 = µ3 6= µ2 = µ4) . Similarly, we can
combine the ten different hypotheses for which µ1 6= µ2 but µ3 = µ4 into a single hypothesis
group C2 of genes that may be affected by the treatment. Also of interest is the opposite group C3
of genes that may be affected by the treatment (µ1 = µ2 but µ3 6= µ4). These hypothesis groupings
are listed in Table 2. For now, we focus on the results from our model which are given in the third
and fourth column of Table 2.

For any particular gene, the posterior probability of belonging to a particular hypothesis group
(eg. C1) can be calculated directly by summing the estimated probabilities P (Zg = h|XXX) over
all hypotheses contained in that group. Our procedure for choosing an FDR-calibrated threshold
(Section 2.2) can then be performed on this collapsed set of hypothesis groups instead of the full
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set of hypotheses. For this collapsed set of hypothesis groups, a threshold k′ = 0.595 controls the
FDR below a level of 0.05, which is a slightly more liberal threshold than k = 0.645 used in our
un-collapsed analysis in Section 3.2. Using this threshold, we infer 4270 genes to have non-null
hypotheses, compared to the 4083 genes inferred to be non-null in Section 3.2. The number of
genes inferred into each collapsed hypotheses grouping is also given in Table 2. We see that the
inferred non-null genes are still dominated by circadian genes, but there are quite a few genes in
the C2 and C3 groups (18 and 29 respectively) that seem to be affected by treatment.

4. Model Comparison and Sensitivity. We have presented a sophisticated hierarchical model to
address the many hypotheses × many genes situation presented by the current sleep apnea study. In
this section, we compare our analysis to results from a related method by Yuan and Kendziorski
(2006), and discuss differences and limitations. In addition, the complexity of our approach re-
quires us to verify the validity of several model assumptions in detail. We explore the possibility
that one or two suspicious patients have a substantial effect on our inference in Section 4.3. In Sec-
tion 4.4, we explore the potential consequences of one simplifying assumption of our model, that
our gene expression measurements within each timepoint are treated as independent replications.
Finally, in Section 4.5 we evaluate the sensitivity of our model by examining the empirical effect
sizes for the inferred genes for several different hypotheses.

4.1. Comparison with the limma and EBarrays Procedures. As discussed in our introduction, there
have also been several recent applications of Bayesian hypothesis testing to gene expression data
(Kendziorski et al., 2003; Newton et al., 2004; Yuan and Kendziorski, 2006). The EBarraysR pack-
age implements a version of these general approaches that allows for testing of multiple hypothe-
ses in a similar fashion to our proposed methodology. However, the EBarrays procedure differs
from our model in several important ways. First, parameter estimation in EBarrays is performed
using an EM algorithm (Dempster et al., 1977) which focusses on point estimation instead of our
favored approach of estimating the full posterior distribution of each parameter. Second, a sin-
gle shape parameter α is used for all states in the observed data level, which in our notation is
equivalent to assuming α1 = α2 = α3 = α4 = α. The estimated value of their single parame-
ter is α̂ = 21.3, which is within the range of our αi values. However, as we see in Figure 1, our
analysis finds substantial differences in the posterior distributions of our separate αi parameters
that is not modeled in EBarrays. On a more technical note, although EBarrays is capable of
handling ordered alternative hypotheses, the full set of 75 hypotheses ordered hypotheses used
by our analyses could not be fit by EBarrays (errors were produced within the EBarrays opti-
mization routine). Instead, we used EBarrays to fit the full set of twelve unordered hypotheses.
We focus our attention on the EBarrays results for the unordered hypotheses that correspond to
our collapsed hypotheses groupings examined in Section 3.3.

Similar to our method, EBarrays produces parameter point estimates as well as posterior proba-
bilities for each gene× hypothesis combination. We use the same FDR control procedure described
in Section 2.2 to infer genes into each hypothesis. In Table 2, we compareEBarrays to our analysis
in terms of the marginal probabilities φφφ and number of inferred genes for each hypothesis group-
ing. Assuringly, there are some strong similarities between our analysis and the results produced
by EBarrays, such as the correspondence between the analyses on the marginal probability of
the null hypotheses φ0. The most striking difference between the results is that many more genes
are inferred into the circadian category (C1) by EBarrays whereas we see slightly more genes
inferred into the treatment category C3 with our method. This small difference could be due to
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FIG 3. (a) Rank of genes by coefficient of variation against rank of genes by mean. (b) Rank of genes by coefficient of variation
against rank of genes by standard deviation.

a decreased resolution towards rare hypotheses caused by the EBarrays assumption of a single
shape parameter α shared across all four states. We also compared our results to a much simpler
analysis based on a linear model as implemented by the limma R package. In the standard limma
approach, significant genes are identified by examining the p-values associated with differences in
gene-specific coefficients between different states (after a Bonferroni-Holm correction for multiple
testing). We tested for both significant circadian genes (C1 category) as well as genes that showed
significant differences between states but not a circadian pattern, such as the C2 and C3 treatment
categories outlined in Section 3.3. When using limma to examine the entire set of genes for any
significant differences from the null hypothesis, we found 79.9% of genes were categorized in the
null category, which is larger than the null proportion found by either our method or EBarrays.
We also found that among the non-null genes found by limma, only a very small number (twelve
genes) were categorized as something other than circadian, which is a much smaller than the num-
ber of non-null and non-circadian genes found by our method (given in Table 1). It appears that
the simple analysis by limma does not have the resolution necessary to detect genes that show
non-circadian differential expression.

4.2. Evaluation of Model Characteristics. A central assumption of our approach is the use of a
Gamma distribution to model our gene expression observations in each state. Newton et al. (2004)
discuss diagnostics to appraise the reasonableness of this Gamma assumption by examining the
data for constant coefficient of variation. If the assumption of constant coefficient of variation is
tenable, then genes ranked by their coefficient of variation should not share any relationship with
genes ranked by either their mean or standard deviation. In Figure 3, we plot genes ranked by coef-
ficient of variation against genes ranked by means as well as genes ranked by standard deviations.
We see from Figure 3 that there is no substantial relationship between the coefficient of variation
and the mean or standard deviation, though there is some non-uniformity in the extremes. How-
ever, it is worth noting that only a subset of the 22283 genes in our dataset is depicted in Figure 3.
There is a substantial set of remaining genes that have very low expression values, and corre-
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TABLE 3
Parameter estimates for synthetic data generated under two conditions: N = 100 genes vs. N = 200 genes. For each global

parameter, we give the mean across simulated datasets as well as the coverage of the 95% posterior intervals. We also give the
mean ± standard deviation (across datasets) for the proportion of inferred non-null genes.

Global True N = 100 Genes N = 200 Genes
Parameter Value Mean 95 % Coverage Mean 95 %Coverage

α0 5 6.68 82 5.25 86
µ0 9 9.04 96 9.01 98
α1 25 25.01 97 25.03 98
α2 25 24.93 96 25.14 97
α3 25 25.20 100 24.98 98
α4 25 24.99 95 25.07 97

Proportion of
Non-null Genes 0.25 0.231 ± 0.041 0.233 ± 0.033

spondingly low variance of those expression values. The low variance of these additional genes
would skew the appearance of the diagnostic plots presented in Figure 3 if they were included.
However, these additional genes are not of primary interest since their low expression values put
them into the null hypotheses category. The main worry is that the presence of these low expres-
sion genes will affect the ability of our model to detect non-null hypotheses. To investigate this
possibility, we designed a small simulation study where realistic synthetic data was generated
that contained both null and non-null genes as well as many null genes that have low-variance
low-expression values. In these simulated experiments, our approach was still able to detect the
true non-null genes despite the presence of a substantial number of low-variance, low-expression
null genes.

In addition to using simulated data to investigate our gamma assumption, we also designed an
extensive simulation study to evaluate the general performance of our approach in carefully con-
trolled situations. Specifically, we set global parameter values of α0 = 5, µ = 9 and α1 = α2 =
α3 = α4 = 25 which approximate the characteristics of our sleep apnea dataset (as seen in Fig-
ure 1). With these realistic global parameter values, we then consider two data situations: datasets
containing 100 genes each versus datasets containing 200 genes each. Each of these datasets con-
tained a mixture of approximately 75% null genes and 25% non-null genes. Note that these simu-
lated datasets are much smaller than our sleep apnea study, which gives us the chance to examine
the operating characteristics of our model in limited data situations. We implemented our model
on one hundred datasets generated from each of these two data situations, and the results are
shown in Table 3

We see from the results in Table 3 that our model achieves accurate estimates for the global param-
eters (α1, α2, α3, α4) even in these limited data situations. More problematic is the global param-
eter α0, which only has 82% coverage in the smaller (N = 100) datasets. The coverage improves
for α0 in the larger (N = 200) datasets, though even larger datasets seem to be needed to achieve
proper coverage for this parameter. Also, even in these small datasets, our model classifies close
to the correct number of non-null genes, and the small amount of error is in the conservative
direction of a decreased number of non-null classifications. Overall, these simulation results are
encouraging in terms of our model’s ability to achieve reasonable inference even in limited data
situations, which bodes well for our sleep apnea application where the available data is much
more extensive.
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FIG 4. Posterior Mean of φk for the five hypotheses with the largest values of φk from all four analyses (A-D)

4.3. Effect of Outlier Patients. Two of the thirteen patients in our study were flagged by researchers
at the University of Iceland as having phenotypic differences from the other eleven patients. These
two patients (labeled here as Patient X and Patient Y) are potential outliers that could have a
dramatic effect on our model inference. To address this possibility, we also fit our hierarchical
Bayesian model on datasets that had either (or both) of these patients removed. These alternative
analyses are listed in Table 4 along with our original model fit from Section 3 labeled as “Analysis
A”.

Similar to our analysis of the original dataset from Section 3, we first examine the estimated
marginal posterior probabilities φφφ from each analysis. The estimated posterior means of the marginal
probability φk for each hypothesis k for all four analyses (A-D) are given in Figure 4. We can see
that the four analyses share the same characteristics: the estimated φφφ are sparsely distributed, with
the vast majority of mass concentrated at hypotheses 0 (null), 10 and 13. However, as seen in Sec-
tion 3.2, there is additional signal at the level of the inferred hypotheses for individual genes,
and so we also compared our four analyses in terms of differences in the inferred gene-specific
hypotheses.

For each alternative analysis (B, C, and D), we calculated the number of discrepancies with analysis
A, which we define as any genes that have a different inferred hypothesis compared to the original
analysis. The number of discrepancies for each alternative analysis are given in Table 4, along with
the number of genes with non-null inferred hypotheses for each analysis. The first observation is
the relatively small number of discrepancies between the methods, compared to the total num-
ber of genes in our dataset. In fact, 20658 out of 22283 genes (93%) showed no discrepancy across
any of the three alternative analyses. Looking at pairwise differences, removing patient X reduces
the number of genes with inferred non-null hypotheses (from 4083 down to 3437) relative to our
original analysis, whereas removing patient Y increases the number of genes with inferred non-
null hypotheses (from 4083 up to 4521). The removal of both patients seems to balance these two
effects, which leads to the least number of discrepancies (596) when compared to our original anal-
ysis. These results seem to suggest that our original analysis with all patients included achieves a
compromise between the more extreme results from the alternative analyses with either patient X
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TABLE 4
Discrepancies between Different Analyses

Analysis Analysis Discrepancies Number of
Label Description with Analysis A Non-null Genes

A Original dataset with all 13 patients 0 4083
B Patient X excluded from dataset 774 3437
C Patient Y excluded from dataset 887 4521
D Both patient X and patient Y 596 3642

FIG 5. Clustering Tree of Patients based on Gene Expression Correlation
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4.4. Applying Model to Clusters of Individuals. In our sleep apnea study, expression levels are mea-
sured for the same 13 individuals in each state, and it is likely that there will be correlation between
individuals that could influence our inference. We will examine the consequences of this possibil-
ity by first grouping individuals that have correlated gene expression patterns across states. We
calculated the correlation of gene expression patterns between each pair of individuals and used
these correlations as a distance metric for clustering (distance = 1-correlation). We then constructed
a hierarchical clustering tree based on this distance metric, shown in Figure 5, to group our indi-
viduals into two clusters. From Figure 5, it is clear that the most reasonable partitioning of our in-
dividuals into two groups involves the three patients 3, 6, and 10 in one cluster, and the remaining
10 patients in the other cluster. We then fit our full Bayesian hypothesis testing model separately
within each cluster, while allowing for different fitted model parameters and inferred hypotheses
for each gene within each cluster. Finally, we examined the inferred hypotheses in each cluster for
discrepancies between clusters as well as discrepances with our original analysis. Interestingly, we
found no discrepancies between the two clusters of individuals: every gene had the same inferred
hypothesis in the cluster 1 and cluster 2 datasets. However, we did find discrepancies between
the clustered analysis and our original unclustered analysis: 2365 out of 22285 genes (11%) had a
different inferred hypothesis. Almost all of these discrepancies (2363 out of 2365) are genes that
were inferred to be non-null in our original unclustered analysis but now are inferred to be in the
null group in our clustered analysis. In fact, the only non-null hypotheses that contained genes in
our clustered analysis were hypothesis 10 and 13 (circadian genes not affected by the sleep apnea
treatment). One explanation for these results is that splitting the dataset into two clusters leads
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to a reduced sample size within each cluster and thus makes non-null hypotheses more difficult
to infer from the data. A possible extension of our approach would be to allow the clustering of
individuals to vary instead of only examining the particular clusters we used above. However, we
believe that we are taking a conservative approach since the clusters used in our analysis were
chosen in order to create the most dramatic difference between clusters.

4.5. Empirical Evaluation of Effect Sizes. One concern when implementing a model with a large
space of hypotheses on data with a relatively small number of individuals (n = 13) is that infer-
ence will not be sensitive enough to detect genes with small effect sizes. We explore this issue by
examining the observed effect sizes for genes that were inferred to have significant differences
between (non-null hypotheses) by our analysis. Specifically, we examine particular hypotheses of
two different types:

1. Hypothesis 10 (µ1 = µ3 < µ2 = µ4) which is one of the popular circadian hypotheses.
Hypothesis 10 was inferred for 2433 genes by our analysis.

2. Hypothesis 3 (µ3 < µ1 = µ2 = µ4) which is a hypothesis for significant difference in a single
state. Hypothesis 3 was inferred for only 5 genes by our analysis.

Hypothesis 10 was chosen as the representative of the popular non-null hypotheses in our anal-
ysis, whereas hypothesis 3 was chosen as the representative of hypotheses with very small (but
non-zero) numbers of inferred genes. For each of these two hypotheses, we examined the distri-
bution of “estimated effect sizes” for the set of genes inferred to have that hypothesis. The key
question is: how small of an effect size can be detected by our analysis?

We can get an upper bound on the effect size needed for hypothesis 10 by looking at the minimum
estimated effect size among the genes g inferred into the hypothesis 10 group. For each gene g

inferred to have hypothesis 10, the estimated effect size is

Yg =
X

24
g − X

13
g

sg

where X
24
g is the mean of the expression levels Xgij over all individuals j within states 2 and 4,

whereas X
13
g is the mean of the expression levels Xgij over all individuals j within states 1 and 3.

The effect sizes are scaled by sg, the pooled standard deviation of the expression levels for gene
g over the two groups (states 2 and 4 vs. states 1 and 3) and all individuals (Flury and Riedwyl,
1986). The minimum estimated effect size Yg found for genes inferred to have hypothesis 10 was

0.11, which means that our analysis can detect circadian effect sizes X
24
g − X

13
g that are as small as

only 0.11 of the standard deviation sg. Part of the reason for this high sensitivity is the somewhat
large marginal probability φ10 = 0.12 that is estimated by our analysis for hypothesis 10.

We also get an upper bound on the effect size needed for the less popular hypothesis 3 by looking
at the estimated effect size

Yg =
X

124
g − X

3
g

sg

for genes g inferred to have hypothesis 3. X
124
g is the mean of the expression levels Xgij over all

individuals j within states 1, 2 and 4, whereas X
3
g is the mean of the expression levels Xgij over

imsart-aoas ver. 2007/12/10 file: icelandpaper.draft11.aoasrevision.tex date: January 2, 2009



16 JENSEN ET.AL.

all individuals j within just state 3, and again the effect sizes are scaled by sg, the pooled standard
deviation of the expression levels for gene g over the two groups (states 1, 2 and 4 vs. state 3) and
all individuals. Among the five genes inferred to have hypothesis 3, the minimum estimated effect
size Yg was 0.32, which suggests that our analysis requires larger effect sizes (0.32 of the standard
deviation sg) to detect a significant non-circadian effect. Again, part of the reason for this reduced
sensitivity is the much smaller marginal probability φ3 = 0.001 of hypothesis 3 that is estimated
from our model fit. However, despite this reduced sensitivity, we still observe genes inferred into
these non-null and non-circadian categories within our analysis, which suggests that the effect
sizes needed for detection of non-null effects are not unrealistic for the current study. Indeed, we
observe even larger minimum estimated effect sizes among other non-null hypotheses that still
contained inferred genes. The most extreme case is hypothesis 6, which has three inferred genes
despite having a large minimum estimated effect size (0.67 of the standard deviation sg) and a
small marginal probability φ6 = 0.001.

5. Summary and Discussion. Motivated by a large study of sleep apnea treatment, we have pre-
sented methodology for a relatively under-explored hypothesis testing context: testing not only
many units but also many hypotheses within each unit. This situation is prevalent in many biologi-
cal investigations, where the units are usually genes and where the experimental design dictates
that expression data for an entire genome is to be measured across several states. Our proposed
Bayesian hierarchical model is a natural framework for testing for differences across states while
controlling for that large number of comparisons that need to be made within the experimental
design. In addition to comparison with previous methods, we have also provided an extensive
exploration and validation of our modeling assumptions. As shown in Section 3.3, our procedure
also easily accommodates the collapsing of certain hypotheses into larger groupings that may also
be of interest. Genes inferred into the treatment categories of hypotheses are candidates for future
studies into more refined treatments of sleep apnea, as well as general studies into the genetic
basis of sleep behavior.

Many analyses of expression data across several conditions or states focus on the grouping of
genes into clusters of similar expression patterns (e.g. Medvedovic and Sivaganesan (2002), Ma
et al. (2006)). The focus of our procedure differs substantially from a clustering-based analysis,
since our interest lies in using the experimental design to identify genes that fulfill specific hy-
potheses. Interpretation of the results from a clustering analysis is more difficult since one must
assign biological hypotheses to each gene cluster post hoc. However, although our model and im-
plementation can be easily generalized to an increasing number of conditions, the interpretation
of our own rapidly-increasing space of possible hypotheses becomes more difficult. Thus, as the
number of states grows to be quite large, clustering-based approaches become a more attractive al-
ternative. Our methodology is most appropriate for the frequent intermediary situation where one
wants to simultaneously test many genes × many hypotheses within each gene across a modest
number of states.

Acknowledgments. The authors thank Thorarinn Gislason, Allan Pack and Miroslaw Mack-
iewicz for many helpful discussions, and John Tobias for pre-processing of the Affymetrix mi-
croarray data.

References.

imsart-aoas ver. 2007/12/10 file: icelandpaper.draft11.aoasrevision.tex date: January 2, 2009



BAYESIAN HYPOTHESIS TESTING 17

Alizadeh, A., Eisen, M., Davis, R., Ma, C., Lossos, I., Rosenwald, A., Boldrick, J., Sabet, H., Tran, T., Yu, X., Powell,
J., Yang, L., Marti, G., Moore, T., Hudson, J., Lu, L., Lewis, D., Tibshirani, R., Sherlock, G., Chan, W., Greiner, T.,
Weisenburger, D., Armitage, J., Warnke, R., Levy, R., Wilson, W., Grever, M., Byrd, J., Botstein, D., Brown, P., and
Staudt, L. (2000). Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403,
503–511.

Bickel, P. and Doksum, K. (2007). Mathematical Statistics: Basic Ideas and Selected Topics, Volume 1. Pearson Prentice Hall,
Upper Saddle River, NJ, 2nd edn.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal
of the Royal Statistical Society, B 39, 1–38.

Dudoit, S., Gentleman, R. C., and Quackenbush, J. (2003). Open source software for the analysis of microarray data.
BioTechniques 34, S45–S51.

Flury, B. K. and Riedwyl, H. (1986). Standard distance in univariate and multivariate analysis. The American Statistician
40, 249–251.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.
IEEE Transaction on Pattern Analysis and Machine Intelligence 6, 721–741.

Gottardo, R., Raftery, A. E., Yeung, K. Y., and Bumgarner, R. E. (2006). Bayesian robust inference for differential gene
expression in microarrays with multiple samples. Biometrics 62, 10–18.

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., and Speed, T. P. (2006). Exploration,
normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264.

Kendziorski, C. M., Newton, M. A., Lan, H., and Gould, M. N. (2003). On parametric empirical bayes methods for
comparing multiple groups using replicated gene expression pr. Statistics in Medicine 22, 3899–3914.

Ma, P., Castillo-Davis, C., Zhong, W., and Liu, J. S. (2006). A data-driven clustering method for time course gene
expression data. Nucleic Acids Research 34, 1261–1269.

Medvedovic, M. and Sivaganesan, S. (2002). Bayesian infinite mixture models based clustering of gene expression
profiles. Bioinformatics 18, 1194–1206.

Newton, M., Kendziorski, C. M., Richmond, C. S., Blattner, F. R., and Tsui, K. W. (2001). On differential variability of
expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of
Computational Biology 8, 37–52.

Newton, M., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semipara-
metric hierarchical mixture method. Biostatistics 5, 155–176.

Pack, A. I. (2006). Advances in sleep-disordered breathing. Am J Respir Crit Care Med 173, 7–15.
Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., and Friedman, N. (2003). Module networks: iden-

tifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34,
166–176.

Smyth, G. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray ex-
periments. Statistical Applications in Genetics and Molecular Biology 3, 3.

Storey, J. D. and Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy
of Sciences 100, 9440–9445.

Wu, Z., Irizarry, R. A., Gentleman, R., Murillo, F. M., and Spencer, F. (2004). A model based background adjustment for
oligonucleotide expression arrays. Tech. Rep. Paper 1, Johns Hopkins University, Department of Biostatistics.

Yuan, M. and Kendziorski, C. (2006). A unified approach for simultaneous gene clustering and differential expression
identification. Biometrics 62, 1089–1098.

imsart-aoas ver. 2007/12/10 file: icelandpaper.draft11.aoasrevision.tex date: January 2, 2009


