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ABSTRACT 

The macrolide antibiotic azithromycin improves lung function and prognosis 

among patients with cystic fibrosis or diffuse panbronchiolitis, independent of 

bacterial eradication. Anti-inflammatory effects have been implicated, but data from 

in vivo studies are scarce and the link between abnormal electrolyte content in airway 

surface liquid and bronchial infections remains uncertain.  

In the present study we treated human airway epithelia on filter supports with 

azithromycin and monitored transepithelial electrical resistance. We found that 

azithromycin increased transepithelial electrical resistance of airway epithelia in a 

dose dependent manner. Immunocytochemistry and western blot analysis showed that 

addition of azithromycin changed protein location in cell cultures and induced 

processing of tight juction proteins; claudin-1 and –4, occludin and junctional 

adhesion molecule-A.  These effects were reversible and no effect was seen when 

cells were treated with penicillin or erythromycin. The data indicate that azithromycin 

increases transepithelial electrical resistance of human airway epithelia by changing 

the processing of tight junction proteins. The results are novel and may help explain 

the beneficial effects of azithromycin in patients with cystic fibrosis, diffuse 

panbronchiolitis and community acquired pneumonia. 
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INTRODUCTION 

Respiratory infections remain an important cause of morbidity and mortality 

despite the development of novel antimicrobial agents. New infectious agents emerge 

and multi-resistant bacteria are a growing problem leading to increased interest in host 

defense research that could provide tools in the fight against pulmonary infections. 

Epidemiological studies have generated interesting results regarding lung defense 

mechanisms. An example is the effect of macrolides, a class of commonly prescribed 

antibiotics, on patients with respiratory infections. Treatment with macrolide 

antibiotics improved 5- and 10 year survival among patients with diffuse 

panbronchiolitis (10, 20). This observation set the stage for large studies evaluating 

the effect of macrolide antibiotics on patients with cystic fibrosis (CF). Three recent 

randomized, placebo-controlled trials indicate that azithromycin significantly 

improves lung function by increasing forced expiratory volume in one second (5, 18, 

28). Interestingly, improvement in lung function did not correlate with reduction of 

Pseudomonas aeruginosa or Staphylococcus aureus in sputum, suggesting that the 

favorable effect of azithromycin did not require bacterial eradication (5, 18, 28). Other 

studies found that the combination of a macrolide and a cephalosporin antibiotic 

improved the prognosis of patients with pneumococcal pneumonia compared to 

single-antibiotic treatment (12, 26). Cephalosporins are active against Streptococcus 

pneumoniae but the beneficial effect of additional macrolide therapy on patients with 

this common type of pneumonia is largely unexplained. Speculations regarding the 

mechanism by which azithromycin improves clinical outcome in diffuse 

panbronchiolitis, CF and pneumonia include an antiinflammatory effect, effect on 

sputum rheology, biofilm formation, bacterial adherence and flagellin expression (16, 

17, 24) Several studies have demonstrated the importance of the bronchial epithelium 
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in lung defense (13, 23). In addition to being a mechanical barrier it regulates 

electrolyte content of the airway surface liquid (ASL) (25). In cystic fibrosis, loss of 

cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel 

activity produces abnormal ASL electrolyte and water content. Data also indicate that 

this may decrease lung defense against infections (23). If the electrolyte and water 

content of the ASL does affect lung defense, regulation of ion transport through 

paracellular pathways could be important in preventing lung infections. Tight 

junctions (TJs) located in the apicolateral membrane of epithelia, form a barrier 

between adjacent cells and regulate the movement of ions and solutes across the 

paracellular space. TJs vary among different epithelia in barrier properties, meeting 

different functional requirements for each tissue type. The TJ complex consists of 

three types of transmembrane proteins; claudins, occludin and junctional adhesion 

molecules (JAMs) as well as zonula occludens (ZO) proteins that serve as adaptors to 

the actin cytoskeleton at the cytoplasmic face of TJs (14). Claudins and occludin are 

tetraspan transmembrane proteins with two extracellular loops and cytoplasmic C- 

and N-termini. There are at least 24 members of the claudin family predicted to range 

in size from 20 to 27 kDa and they show distinct tissue expression patterns. Occludin 

is considerably larger at ~65 kDa and is widely expressed at TJs. JAM-A is a single 

pass transmembrane protein of ~40 kDa and a member of the immunoglobulin 

superfamily. 

The importance of claudins as regulators of paracellular ion transport is 

evident in several human diseases. Simon et al. showed that mutations in the gene 

encoding claudin-16 is the cause of recessive renal hypomagnesemia. Their data 

further suggested that claudins could form a selective paracellular ion channel (22). 

Other studies indicate that claudins-3 and -4 are receptors for Clostridium perfringens 
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enterotoxin (9), a common cause of food poisoning. Mutations in claudin-14 are 

associated with a recessive form of deafness where the ionic environment in the 

cochlear duct is altered (27).  To our knowledge no data are available regarding a role 

for occludin or JAM-A in electrolyte transport. 

In this study we show that azithromycin increases transepithelial electrical 

resistance (TER) in human airway epithelia in vitro and affects both localization and 

processing of the tight junction proteins claudin-1, -4, occludin and JAM-A. These 

effects of azithromycin on TJ proteins were specific and reversible but no effects were 

found on the adherens junction protein E-cadherin or after treatment with other 

antibiotics such as penicillin. The results show novel biological effects of a commonly 

used antibiotic on key proteins that maintain respiratory epithelial integrity and could 

be the initial step explaining the clinical benefit from azithromycin treatment in CF, 

diffuse panbronchiolitis and community acquired pneumonia. 

 

MATERIALS AND METHODS 

Cell culture 

Primary bronchial epithelial cells (a gift from prof. Michael J. Welsh, University of 

Iowa, Iowa City, IA) were cultured on plastic flasks coated with Vitrogen 100 

(Cohesion, Palo Alto, CA) in serum- and antibiotic-free bronchial epithelial growth 

medium with supplements (CC3170, Cambrex, East Rutherford, NJ). We  

established an immortalized cell line, VA-10. Transduction of normal human 

bronchial epithelial cells was performed with sterile filtered supernatant from the 

PA317 LXSN packaging cell lines, containing retroviral construct with human 

papilloma virus 16 E6 and E7 (CRL-2203, American Type Culture Collection, 

Rockville, MD), and the neomycin resistance gene. Transduction was done in the 
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presence of 8 µg/ml polybrene (Sigma-Aldrich). Transfected cells were selected by 

cultivation in the presence of 500 µg/ml neomycin (Life Technologies, Gaithersburg, 

MD).  For immunocytochemistry, cells were grown on Chamber Slides (Nalge Nunc, 

Naperville, IL). For TER experiments, cells were grown on Transwell permeable 

support filters (3460, Corning Costar Corporation, Acton MA) and cultured for the 

first day in 50:50 DMEM-Ham´s F-12 medium (Gibco, Burlington, Canada) in 5% 

fetal bovine serum (Gibco). On the day after seeding, the cells were cultured and 

maintained in 50:50 DMEM-Ham´s F-12 medium supplemented with 2% Ultroser G 

(Biosepra, Cergy-Saint-Christophe, France). 

 

Antibiotics 

Azithromycin (Zitromax; Pfizer ApS, Ballerup, Denmark), erythromycin lactobionate 

(Abboticin; Abbot, Solna, Sweden) and penicillin G (Penicillin Leo; Leo, Ballerup, 

Denmark) were dissolved as instructed by the manufacturer and then further diluted to 

the desired concentrations.  

 

Measurement of transepithelial electrical resistance (TER) 

A Millicell-ERS voltohmmeter (Millipore, Billerica, MA) was used to measure the 

TER value of confluent filters. All measurements were done in triplicate and TER 

values were normalized for the area of the filter and were obtained after background 

subtraction.  

 

Growth curve 

Analysis of cell growth was performed using a standard protocol. Cells were plated 

onto 24 well plates and cultured at 37°C in a humidified 5% CO2 atmosphere with or 
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without 40 µg/ml azithromycin. After 24 h, three wells of both cultures were 

trypsinized and counted by using a hemocytometer. This was repeated daily for seven 

days and the results plotted as a growth curve. 

 

Immunocytochemistry 

Immunofluorescent stainings were performed on methanol fixed cells. Primary 

antibodies were as follows: Rabbit anti-JAM-A and -claudin-1, mouse anti-claudin-4, 

-occludin and -E-cadherin antibodies were purchased from Zymed Laboratories (San 

Francisco, CA). We used iso-type specific Alexa Fluor secondary antibody 

conjugates from Molecular Probes (Eugene, OR). Images were captured by Zeiss 

LSM 5 Pascal Confocal Microscope (Carl Zeiss AG, Munich, Germany). 

 

Western blot 

Equal amounts of proteins, as determined by Bradford method (2), were loaded and 

run on a NuPAGE 10% Bis-Tris gel (Invitrogen, Carlsbad, CA) and transferred to a 

polyvinylidene difluoride membrane (Invitrogen). The blots were blocked in 5% non-

fat milk and subsequently incubated with the primary antibody overnight followed by 

an incubation with secondary antibodies, horseradish peroxidase-conjugated anti-

mouse or rabbit for 1 h (Amersham Biosciences UK Ltd., Little Chalfont, England). 

Protein bands were visualized using enhanced chemiluminesecence system and 

Hyperfilm (Amersham Biosciences).  

 

Statistical analysis 

Statistical analaysis was performed using Student´s T-test. Data are mean ± SEM. P 

values <0.05 were considered statistically significant. 
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RESULTS AND DISCUSSION 

Azithromycin increases transepithelial electrical resistance in human airway 

epithelia in vitro. 

We measured TER across airway epithelia after treatment with azithromycin. We 

used 0.4, 4 and 40 µg/ml of azithromycin based on clinical studies showing that in 

patients receiving 250 mg azithromycin daily for four weeks, the median sputum 

concentration of azithromycin was 9,5 µg/ml (range 0.6 – 79.3 µg/ml) (1). We found 

that addition of 40 µg/ml azithromycin to the basolateral side of the epithelium 

increased TER from 1234±29 (control) to 2920±195 Ω cm
2 

± SEM (P<0.05, n=24) 

(Fig. 1A). Addition of azithromycin to the apical side had no effect on TER (data not 

shown).  Fig. 1B shows that a single dose of 40 µg/ml azithromycin daily over 4 days 

increased TER by approximately 80%. Erythromycin (30 µg/ml) or penicillin (20 

µg/ml) had no effect on TER (data not shown). To explore the possibility that 

azithromycin produced multiple layers of epithelial cells, we generated a growth 

curve and found that azithromycin treatment resulted in fewer cells (Fig. 1C) 

suggesting that proliferation of epithelial cells does not explain the observed increase 

in TER. Azithromycin did not affect viability and no effect on apoptosis was observed 

as measured by immunostaining and western blot for cleaved caspase-3 (data not 

shown). 

 

Azithromycin changes the processing of claudin-1 and -4. 

Tight junction proteins are required for epithelial integrity, a key component 

of structural and functional lung defense (15). We used specific antibodies to 

determine the cellular location of claudin-1 and -4. Epithelia were cultured on glass 
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slides and treated with azithromycin continuously from seeding, or after reaching 

confluence.  Under both conditions, immunocytochemistry suggested that 

azithromycin shifted claudin-1 and -4 to an intracellular location (Fig. 2A). To further 

characterize this effect we used western blot analysis. Lysates from cells produced a 

band consistent with the molecular weight of claudins (~23 kDa). Interestingly, a 

rapidly migrating band (~10 kDa) in addition to the expected 23 kDa band (Fig. 2B) 

was produced after treatment with azithromycin (20 and 40 µg/ml). The smaller sized 

band was detected both with claudins-1 and -4. These data indicate that azithromycin 

affects the processing of claudin-1 and -4. Azithromycin produced the same 

processing pattern for claudin-1 in two other cell lines, the alveolar epithelial A549 

and the breast luminal epithelial D382 (data not shown) suggesting that this effect is 

general in epithelial cells. The processing of TJ proteins could affect lung defense 

mechanisms such as the mechanical barrier function or the regulation of airway 

surface liquid electrolytes. Interestingly, earlier studies suggest that azithromycin 

improves outcome in patients with CF, diffuse panbronchiolitis and pneumonia, 

independent of antibacterial effects. The data presented here might help explain some 

of the beneficial clinical effects of azithromycin. Unlike azithomycin, penicillin or 

erythromycin did not affect the processing of claudin-1 (Fig. 2C).   

One potential mechanism by which azithomycin might alter the processing of 

tight junction proteins is activation of proteolytic enzymes. The size of the rapidly 

migrating band in the claudin experiments could be consistent with a cleavage site in 

the cytoplasmic loop. This could affect the structure or location of the extracellular 

loops of claudins that have been shown to determine charge selectivity and TER (3, 

4). However, several other possibilities exist and the origin of the rapidly migrating 

band requires further analysis by immunoprecipitation and amino acid sequencing. 
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Azithromycin changes the processing of occludin and JAM-A. 

To test the possibility that azithromycin affected the processing of occludin, 

JAM-A or E-cadherin, we used immunocytochemistry and western blot analysis. 

Figure 3A indicates that azithromycin induces intracellular location of occludin and 

JAM-A but does not affect the location of E-cadherin. Analysis of occludin protein 

expression revealed a ~65 kDa band consistent with the molecular weight of full 

length occludin (Fig. 3B). Interestingly, a shift towards a smaller sized band ~40 kDa 

was observed in lysates from cells treated with azithromycin. Azithromycin also 

affected the expression of JAM-A, producing two rapidly migrating bands in addition 

to the expected 36-41 kDa band. In contrast, the western blot of E-cadherin was 

unaffected by azithromycin (Fig. 3B). 

The intracellular accumulation of occludin, claudins and JAM-A after 

treatment with azithromycin is a puzzling phenomenon. Protein retention in 

endoplasmic reticulum or in Golgi apparatus, allowing cleavage, is a potential 

explanation for the effect of azithromycin on the processing of TJ proteins (Fig. 2A 

and 3A). Recent studies by Howe et al. demonstrate that cells treated with TGFβ 

resulted in perinuclear accumulation of the CFTR chloride channel in epithelial cells. 

This was shown to be dependent on reorganization of the actin cytoskeleton. Exposure 

to TGFβ caused reorganization of F-actin into elongated stress fibers, in marked 

contrast to the more diffuse F-actin in control epithelial cells (8). Since the TJ 

complex is linked to the actin cytoskeleton through ZO proteins, future studies should 

address this issue. 

The expression of nonjunctional cell adhesion molecules may be affected by 

azithromycin. Semaan et al. found no significant effect of azithromycin on plasma 
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levels of sICAM in patients with coronary artery disease (21). In contrast, Hillis et al. 

showed that a 5-day azithromycin course in patients recovering from an acute 

coronary syndrome reduced serum levels of sICAM-1 (7). By studying the effect of 

azithromycin on nonjunctional cell adhesion molecules we could have made our 

observations more specific. However, our data showing that azithromycin does not 

affect the processing of E-cadherin suggest that its effect on claudin-1, -4, occludin 

and JAM-A is specific. In addition, our model focuses on transepithelial electrolyte 

transport and tight junction proteins. 

Interestingly, erythromycin neither affected TER nor the processing of TJ 

proteins. This suggests that unlike the antiinflammatory effects of macrolides, the 

effects on TER and the processing of TJ proteins found in our study are specific to 

azithromycin. Azithromycin is derived from erythromycin, the chemical difference is 

a methyl-substituted nitrogen atom incorporated into the lactone ring. Wheather this is 

required in the macrolide chemical structure to affect the processing of TJ proteins 

should be further investigated. The successful management of DPB with erythromycin 

has been explained by its antibacterial and antiinflammatory effects. The etiology of 

DPB remains unknown. Unlike CF, DPB has not been shown to be caused by defects 

in transepithelial electrolyte transport. Therefore, the clinical effect of azithromycin in 

CF patients could be caused by its common macrolide effects in addition to its 

specific effects on transepithelial electrolyte transport.  

 

The effect of azithromycin on the processing of claudin-1 and occludin is 

reversible. 

To test if the effect of azithromycin on the processing of claudin-1 and 

occludin was reversible we applied azithromycin to epithelia daily for four days and 
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maintained the culture without azithromycin. Protein was extracted before treatment 

and then daily. The data show that the effect of azithromycin on claudin-1 and 

occludin is evident 24 h after first exposure to azithromycin. The effect is reversed at 

day 5, 24 h after removal of azithromycin (Fig. 4).  

 

Conclusion 

 The study shows that azithromycin increases TER and affects the processing 

of tight junction proteins in human airway epithelia in vitro. The data do not define an 

association between altered protein processing and TER modification. However, such 

association is suggested by various earlier studies;  the extracellular loops of claudins 

contain charged amino acids (19), the expression of different claudins increases or 

decreases TER (6) and, claudins create charge-selective channels in certain epithelial 

paracellular pathways (4).  

The effects of azithromycin reported here are novel and may have implications 

for lung defense. Lee et al. (11) found that confluent low-TER airway epithelia bound 

25 times more P. aeruginosa than confluent high-TER airway epithelia and the 

bacterium bound frequently at cell borders, indicating that tight junctions might be 

involved. Claudins or other tight junction proteins are potential therapeutic targets in 

CF and other diseases of abnormal transepithelial ion transport. Future studies might 

attempt to better define the effect of azithromycin and other antibiotics on the function 

of tight junction proteins. Such work could be important in light of recent 

international pneumonia epidemics and increasing bacterial resistance to multiple 

antibiotics.  
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FIGURE LEGENDS 

Figure 1. 

A. Effect of azithromycin on TER of human airway epithelia in vitro. Human 

airway epithelial cells were cultured on Transwell filters. After reaching confluence 

azithromycin (0.4, 4.0 and 40 µg/ml) was added to the basolateral side of epithelia 

every 48 h for 8 days. TER was measured using a Millicell-Electrical Resistance 

System. Data are mean ± SEM, n=3. Azithromycin increased TER in a dose-

dependent manner.  

B. Azithromycin increases TER in human airway epithelia.  

Measurements were made at day 0 (open bars), before any treatment, and at day 4 

(solid bars), after four doses of 40 µg/ml azithromycin. Data are  mean ± SEM, n=6.  

Azithromycin 40 µg/ml daily increased TER significantly (P<0.0001). 

C. Growth curve.  

Human airway epithelial cells were cultured on 24-well plates and treated 

continuously with 40 µg/ml azithromycin. Data are mean ± SEM, n=3. Azithromycin 

40 µg/ml decreases cell proliferation. 

 

Figure 2.  

A. Immunocytochemical analysis of the effect of azithromycin on the expression 

of claudin-1, and –4. Human airway epithelial cells were cultured on chamber slides. 

Green indicates expression of claudin-1 or -4. Left row; control. Right row; after 

treatment with 40 µg/ml azithromycin. 

B. Western blot analysis of the effect of azithromycin on the expression of 

claudin-1, and –4. Equal amounts of protein from cells treated with different 
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concentrations of azithromycin were subjected to western blot analysis. Blotting for 

claudin-1 and –4 revealed a rapidly migrating band in lysates from cells treated with 

40 µg/ml azihromycin. 

C. Effect of penicillin and erythromycin on the expression of claudin-1. Equal 

amounts of protein from human airway epithelial cells treated with penicillin or 

erythromycin were subjected to western blot analysis. Unlike azithromycin, a rapidly 

migrating band was not observed. 

 

Figure 3.  

Effect of azithromycin on the expression of occludin, JAM-A and E-cadherin. 

A. Immunocytochemistry. Human airway epithelial cells were cultured on chamber 

slides. Green indicates expression of junctional molecules. Left row; control. Right 

row; after treatment with 40 µg/ml azithromycin. 

B. Equal amounts of protein from cells treated with different concentrations of 

azithromycin were subjected to western blot analysis. Blotting for occludin and JAM-

A revealed a rapidly migrating band in lysates from cells treated with 40 µg/ml 

azithromycin. 

 

Figure 4. 

Reversible effect of azithromycin on claudin-1 and occludin. 

Confluent cells were treated with 40 µg/ml azithromycin daily for 4 days. After day 4 

cells were cultured with medium alone. Equal amounts of protein were subjected to 

western blot analysis. Protein was extracted before addition of azithromycin and then 

daily for seven days and again on day 9. 


