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ABSTRACT 

Since the triple-helical collagen model peptides with a free N-terminus have three cationic 

groups at one end, it may have strong interactions with polyelectrolytes.  In this study, complex 

formation behavior was investigated for sodium carboxymethyl amylose (NaCMA) + H-(Pro-

Pro-Gly)10-OH (PPG10), a collagen model peptide, in aqueous NaCl with ionic strength of 10 

mM and 100 mM by means of small-angle X-ray scattering (SAXS) and circular dichroism at 

different temperatures.  The previously reported [Macromolecules 2012, 45, 392-400] sodium 

polyacrylate (NaPAA) and H-(Gly-Pro-4-(R)-Hyp)9-OH (GPO9) system was also investigated 

to elucidate complex formation nearby the transition temperature region between triple helix 

and single coil of the peptide.  The complex formed near the melting temperature of the triple 

helices, confirmed that the triple helical structure is directly related to the complex formation.   
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1. Introduction 

Intermolecular interaction between peptide and polyelectrolyte molecules is an important 

topic since ionic exchange is one of the most useful methods to purify or to analyze peptide 

molecules [1, 2].  Indeed, complex formation behaviors of proteins and polyelectrolytes are 

investigated by static scattering methods [3-5].  On the one hand, some collagen model peptides 

[6] (CMP or triple helical peptide, THP [7]) show fully thermo-reversible triple-helix – single 

chain conformational change in aqueous solution, and thus their detailed structure and 

thermodynamic properties are extensively studied to clarify the structure and the functionality 

of collagen in vivo [8-11].  Interestingly, three CMP molecules align in parallel and three N-

termini locate nearby each other [10-12] even in aqueous solution [13, 14].  We recently found 

that the triple helical structure of CMP is stabilized in the presence of polyelectrolyte [15], and 

the complex consisting of H-(Gly-Pro-4-(R)-Hyp)9-OH (GPO9) and sodium polyacrylic acid 

(NaPAA) of which chemical structures are shown in Fig. 1 are found in saline at low 

temperature [16].  The obtained particle scattering function data are well explained by the 

comb-like wormlike-chain model [17] as schematically shown in the graphical abstract and 

therefore we concluded that positively charged N-termini strongly interact attractively with 

anionic groups of NaPAA.  This phenomenon is just observed for the one system and it is 

preferable to study other systems to confirm that this is due to the electrostatic interactions.  

Furthermore, it is still unclear if triple helix formation is directly related to complex formation 

since the complex formation-deformation behavior was just investigated at much higher (75 

C) and much lower (15 C) temperatures than the conformational transition temperature (~45 

C) of GPO9. 

We therefore made small-angle X-ray scattering and circular dichroism measurements for 

the sodium carboxymethyl amylose (NaCMA, Fig. 1) and H-(Pro-Pro-Gly)10-OH (PPG10, Fig. 
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1) system in 100 mM and 10 mM aqueous NaCl at various temperatures.  To investigate 

association-dissociation phenomena for the former system, SAXS measurements were also 

made for NaPAA and GPO9 solution at different temperatures including the transition region 

between triple helices and random coils. 

 

  

Fig. 1. Chemical structures of investigated samples. 1. H-(Pro-Pro-Gly)10-OH (PPG10), 2. 

Sodium carboxymethyl amylose (NaCMA), 3. H-(Gly-Pro-4-(R)-Hyp)9-OH (GPO9), 4. 

Sodium polyacrylic acid (NaPAA). 

 

2. Experimental section 

2.1. Samples and solvents 

A previously investigated [16] sodium carboxymethyl amylose sample NaCMA26K 

prepared from enzymatically synthesized linear amylose [18, 19] and a sodium polyacrylate 

NaPAA267 were chosen as polyelectrolytes for this study.  The weight-average molar mass 

Mw and the degree of substitution of NaCMA26K were determined to be 2.67  104 g mol−1 

and 0.64, respectively, and Mw for the latter was reported as 2.51  104 g mol−1.  The previously 

investigated GPO9 sample and a PPG10 sample purchased from Peptide Institute Inc. were 

used for this study.  
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2.2. Measurements 

Synchrotron-radiation small-angle X-ray scattering (SAXS) measurements for mixed 

solutions of NaCMA26K and PPG10 in 10 mM and 100 mM aqueous NaCl and those of 

NaPAA267 and GPO9 in 20 mM aqueous NaCl were performed at the BL-10C beamline in 

KEK-PF (Ibaraki, Japan) or at the BL40B2 beamline in SPring-8 (Hyogo, Japan) in the 

temperature range from 10 C to 75 C.  The wavelength, camera length, and accumulation 

time were chosen to be 0.15 nm, 2000 mm, and 300 s in KEK-PF and 0.1 nm, 3000 mm, and 

180 sec in SPring-8, respectively.  The scattered light was detected by using R-AXIS VII 

imaging plate detectors (Rigaku, Japan).  The beam center and the actual camera length were 

determined from the powder diffraction pattern of silver behenate and/or lead stearate.  The 

circularly average method was utilized to obtain the scattering intensity I(q) at each magnitude 

of the scattering vector q.  Molar ratio of carboxylic unit of polyelectrolytes to the collagen 

model peptide  was chosen to be 3, 6, and 10 for NaCMA26K and PPG10 in 10 mM,  = 6, 

10, and 30 for NaCMA26K and PPG10 in 100 mM, and  = 10 for NaPAA267 and GPO9 in 

20 mM aqueous NaCl.  For each system, the solvent and four solutions with different total mass 

concentration c of polyelectrolyte and peptide were filled in a quartz capillary cell with the 

diameter of 2.0 mm.  The total concentration c range of the two solutes was set to be 1  10−3 

– 1   10−2 g cm−3 for all systems.  The optical constant K was determined from the excess 

scattering intensity I(q) of NaCMA26K in saline solution or NaPAA267 + GPO9 at 15 C 

assuming full complexation which was determined in our previous study [16] (see Results and 

Discussion).  

If three components, that is, CMP, polyelectrolyte (NaCMA or NaPAA), and their complex 

exist in solution, the total excess scattering intensity I(q)c=0 at infinite dilution can be 

expressed as 
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2 2 2
1 1 1 1 2 2 2 2 3 3 3 3

0
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c

I q
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Kc 

         
 (1) 

Here, wi, zi, Mi, and Pi(q) are the weight fraction in the total solute, the excess electron density, 

molar mass, and the particle scattering function of the component i, respectively.  Now we 

assume components 1, 2, and 3 to be isolated (single coil or triple helical) PPG10 (or GPO9), 

molecularly dispersed NaCMA (or NaPAA), and their complex.  The excess electron density 

zi is related to the partial specific volume vp [20].  The vp value for NaCMA was determined 

to be 0.572 cm3g−1 and 0.586 cm3g−1 at 25 C and 55 C, respectively, for the solution dialyzed 

by 100 mM aqueous NaCl at 25 C.  In 10 mM aqueous NaCl, this value was found to be 0.591 

cm3g-1 and 0.612 cm3g-1 at 25 C and 55 C, respectively.  The vp value for PPG10 was 

determined to be 0.711 cm3g-1 and 0.746 cm3g-1 in pure water at 15 C and 75 C, respectively.  

These values are used to calculate z2 in saline at each temperature since PPG10 have up to 

two ionized groups in one peptide molecule, and therefore preferable adsorption effects may 

be negligible.   

Circular dichroism measurements were performed for NaCMA26K and PPG10 in 10 mM 

NaCl, and NaPAA267 and GPO9 in 20 mM aqueous NaCl both at  = 10 with substantially 

the same concentration as the SAXS measurements by using JASCO J720WO 

spectropolarimeter with a Peltier thermostated cell holder and a rectangular cell with 1 mm 

path length.  Temperature scans were recorded at a fixed wavelength and 6 C h-1 to determine 

molar ellipticity [].  Since the resultant [] obeyed straight lines both at high and low 

temperature ranges, those for triple helices ([]helix) and single coil ([]coil) were determined 

from the lines and then the helix content F(T) at transition region was estimated from the 

equation as a function of temperature. 
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      helix coil
( ) ( ) ( ) 1 ( ) ( )T F T T F T T      (2) 

 

3. Results and discussion 

3.1. Scattering Intensity and Complex Formation at Low Temperature 

Conventional Berry plots [21] for NaCMA26K + PPG10 in 10 mM aqueous NaCl are 

illustrated in Fig. 2(a) at three typical temperatures below and above the conformational 

transition temperature, that is, ~35 C for PPG10, where subscript c = 0 means the value at 

infinite dilution.  It should be noted that [Kc/I(q)]1/2 data were irrespective of the total 

concentration c in the range of investigated c except for low-q region, indicating that complex 

behavior does not significantly depend on c, and hence the extrapolated values to infinite 

dilution reflect the molar mass of the complex in the concentration range investigated.  While 

the Berry plots in 100 mM aqueous NaCl were substantially independent of temperature 

between 10 and 60 C (not shown here), the I(q) data in 10 mM aqueous NaCl significantly 

increase with lower temperatures, indicating complex formation at lower temperatures.  It 

should be noted that the scattering intensity from dispersed peptide molecules is much smaller 

than that from NaCMA26K and its complex.  Dashed lines indicate the initial slope to 

determine I(0).  The z-average radius of gyration <S2>z was determined from the intercept 

and the slope of the lines.  A similar temperature dependence was also found for NaPAA267 + 

GPO9 system as illustrated in Fig. 2(b).   
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Fig. 2.  Plots for [Kc/I(q)]c=0
1/2 vs q2 for (a) NaCMA26K + PPG10 ( = 3) in 10 mM aqueous 

NaCl at 15 C (unfilled circles), 40 C (filled circles), 55 C (triangles) and for (b) NaPAA267 

+ GPO9 in 20 mM aqueous NaCl ( = 10) at 15 C (unfilled circles), 60 C (filled circles), 65 

C (triangles). 

 

According to our previous paper [16], if some PPG10 chains form complex with NaCMA 

but higher order complexes do not exist in solution, the extrapolated value of Kc/I(0) to c = 0 

and q = 0 can be expressed as  

2
2 2c2 2

2 1 c 1 c
0

(0) 1
Δ

c

MM MI
n z z M f m z M f

n Kc n 

                     
 (3) 
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where M2, Mc, n, and f denote the molar mass of NaCMA (or NaPAA), the molar mass of CMP, 

the number of carboxylic group of an NaCMA (or NaPAA) chain, and the degree of 

complexation of each NaCMA (or NaPAA) chain (≤ −1).  The f value becomes −1 when all 

peptide molecules adsorb to NaCMA chains.  The parameter m is unity for random coil CMP 

chain and 3 for triple helices.  For no complexation (f = 0) and full complexation (f = -1) limit, 

eq 3 reduces to 

 
2 22 2

c 1 c2 2 2

0

(0)
, 0, no complexation

 

            c

M m z MM z MI
f

n Kc n
 (4) 

2
c c2 2

2 1
0

(0) 1
, , full complexation

  

                     c

M MM MI
n z z f

n Kc n
    (5) 

Since the second term of the right hand side of eq 4 is much smaller than the first term for the 

present experimental condition, plots of   2 c 0
(0)

c
M n M I Kc    against 1/ 

becomes linear as illustrated in Fig. 3.  In this figure, dot-dashed and dashed lines indicate 

calculated values from eq 4 with m = 1 and 3, respectively.  Theoretical values from eq 5 for 

full complexation is shown as solid lines.  Experimental data for NaCMA + PPG10 in 10 mM 

aqueous NaCl at 55 C obey a straight line for no complexation (eq 4) at which all PPG10 

chains behaves as random coil.  Meanwhile, data points at 15 C are much higher than that at 

55 C and the weight fraction f of PPG10 forming complex with NaCMA was estimated to 

be 0.82, 0.80, and 0.72 for  = 10, 6, and 3, indicating that most of PPG10 chains form complex 

with NaCMA at high  but the degree of complexation f decreases with decreasing .  Similar 

results were also obtained for the NaPAA + GPO9 system [16] both in 20 mM and 100 mM 

aqueous NaCl. 
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Fig. 3.  Plots of [(M2/n + Mc/) (I(0)/Kc)c=0]1/2 vs 1/ for NaCMA + PPG10 in 10 mM (a) 

and 100 mM (b) aqueous NaCl at indicated temperatures.  Solid, dashed, and dot-dashed lines 

indicate the calculated values by using eq 5 (full complexation), eq 4 (no complexation) with 

m = 3, and eq 4 with m = 1, respectively. 

 

On the contrary, the experimental I(0) for NaCMA + PPG10 in 100 mM at two 

temperatures below and above the conformational transition temperature of PPG10 locate 

nearby the lines from eq 4, indicating that intermolecular interactions between NaCMA and 

PPG10 significantly depend on ionic strength of the solvent since electrostatic attractive forces 

between PPG10 and NaCMA are screened by the added salt.  This significant ionic strength 

dependence supports our previous conclusion that the complex formation is due to the 

electrostatic attraction force which was determined by using an uncharged peptide [16].  On 

the other hand, the complex formation behavior for the NaCMA + PPG10 system in 100 mM 

aqueous NaCl is significantly different than that for the NaPAA + GPO9 in the same solvent, 
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which shows full complex formation when  is not less than 10.  This might be due to the 

difference of the linear charge density dc of polyelectrolytes: dc for NaCMA and NaPAA can 

be estimated to be 1.9 nm−1 and 3.8 nm−1, respectively, from the chemical structure.  It should 

be noted however that the complex formation behavior may also be caused by the chemical 

structure of peptide and polyelectrolytes. 

 

3.2. Scattering function of the complex at low temperature 

Fig. 4 indicates the Holtzer plots [22] for NaCMA with or without PPG10 in 10 mM NaCl 

at 15 C.  The particle scattering function Pthin(q) for the thin linear wormlike chain is expressed 

as 

     1
thin 2 0

2
;

L
P q L t I q t dt

L
        (6) 

where L and −1 denote the contour length and the Kuhn segment length (the stiffness parameter, 

twice of the persistence length), respectively.  The former parameter L is related to the molar 

mass per unit contour length ML by L = Mw /ML.  The characteristic function I(-1q; t) of the 

wormlike chain was calculated in terms of the approximate expression by Nakamura and 

Norisuye [17, 23].  The particle scattering function P(q) for the touched-bead wormlike chain 

is expressed as [24, 25] 

     

 

2
0b thin

3

0b
2

3 sin cos
2 2 2

P q F qd P q

qd qd qd
F qd

qd

   

       
  

    (7) 
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with d being the diameter of the bead.  The data for NaCMA can be explained by this model 

with the appropriate parameters, that is ML of 580 nm-1g mol-1, -1 of 5 nm, and d of 0.3 nm. 

 

 

Fig. 4.  Holtzer plots for NaCMA + PPG10 in 10 mM aqueous NaCl at 15 C.  Solid curves, 

calculated from eq 7 for NaCMA and from eq 11 for the mixtures.  Dashed curves, calculated 

from eq 10 (not considering isolated PPG10 chains).  The ordinate values are shifted by A. 

 

If the obtained complex has a comb-like shape having NS side chains consisting of triple 

helical (rodlike) PPG10 and their N-termini link to NaCMA by universal joints, the particle 

scattering function P3,thin(q) for the complex without considering the chain thickness can be 

calculated as [16] 

 
     

 

2 2 2
m L,m 1 s L,s 2 s m L,s L,m 3 s L,s 4

3,thin 2
m m s s s

2 z M J z M J z z M M J z M J
P q

z M N z M

         
  

(8)  
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with 

   
   

   
   

m

s
m

s s

1
1 m0

s s s s
2 2

s 1
3 00

1

2 1
s 1

4 0 0
1 1

;

Si cos 1

Si
;

Si
;

L

N
L

i
i

N N

j i
i j i

J L t I q t dt

N qL qL qL
J

q

qL
J I q s s ds

q

qL
J I q s s

q

 

 

 










  

 

   

 

        





 

    (9) 

where subscripts m and s mean main and side chains and Si(x) being the sine integral.  The 

original form of the equation is evaluated by Nakamura and Norisuye [17] for regular comb 

chains and by Huber and Burchard [26] for star polymers.  From the obtained  and f, Ns is 

estimated to be 2.2, 3.6, and 6.4 for  = 10, 6, and 3, respectively.  Since eq 8 is only applicable 

for integer Ns, P3,thin(q) for the current Ns is estimated from interpolation method.  Thus, P3(q) 

considering chain thickness by the touched bead model may be calculated from eq 7 when 

P3,thin(q) is used instead of Pthin(q) as 

     2
3 0b 3,thinP q F qd P q        (10) 

If we choose ML,s = 880 nm−1g mol−1 from the length of the triple helical PPG10 (8.6 nm) [14], 

 −1 of 6 nm, 7 nm, and 9 nm for  = 10, 6, and 3, and d = 0.3 nm, which is the same as that for 

NaCMA.  The obtained  −1 increases linearly with Ns and obeys a linear function of  −1 / nm 

= 4.8 + 0.63 Ns.  The calculated P3(q) drawn as dashed curves in Fig. 4 fairly reproduce the 

experimental data, but slightly underestimate the data at high q region.  This is most likely due 

to the isolated triple helical peptide molecules.  From eqs 1 and 3, the particle scattering 

function Pmix(q) for the mixture of the complex and collagen model peptide can be written as 
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 
   

   

21 2 2 1
2 2 1 c 3 1 c 1

mix 21 2 2 1
2 2 1 c 1 c

( ) Δ ( )

Δ

n z M n z M f P q m z M f P q
P q

n z M n z M f m z M f





 

 

    


    
 (11) 

where m = 3 and P1(q) can be calculated with the Bessel function J1(x) as 

     
 

  2

1
1 2

2 Si 2cos 2 2 / 2

/ 2

   
  

 

qL qL qL J qd
P q

qdqL
 (12) 

when all CMP molecules form triple helices.  Assuming that the triple helical PPG10 has a 

length of 8.6 nm and a diameter of 1.5 nm, the calculated theoretical values drawn as solid 

curves nicely reproduce the experimental data, indicating that the wormlike comb model is 

suitable to describe complex formation of the NaCMA and PPG10 system as is the case with 

that for NaPAA + GPO9 [16].  The larger -1 for the main chain of this complex than that for 

NaCMA is likely due to the repulsive interaction between the main chain and PPG10.  Indeed, 

the average radius of gyration from the scattering function at 15 C was obtained to be 6.8 nm, 

7.2 nm, and 8.2 nm for  = 10, 6, and 3, respectively; these values are larger than 5.5 nm for 

NaCMA26K under the same conditions.  It should be noted that these values can be explained 

by the same wormlike comb model (see eq 10 in ref [16]).  Similar main chain elongation was 

also found for NaPAA + GPO9 system [16]. 

 

3.3. Temperature dependent complex formation 

To elucidate the relationship between triple helix formation and complex formation, the 

scattering intensity for NaCMA + PPG10 in 10 mM aqueous NaCl ( = 10) is plotted against 

temperature in Fig. 5.  The data points at low temperatures are close to the solid lines for full 
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complexation (f = −1) and the values decrease with raising temperature and approaches 

gradually to the value for molecularly disperse (dot-dashed line).  Similar behavior was also 

found for the other  solutions in the same solvent and those for NaPAA + GPO9 in 20 mM 

aqueous NaCl.  The f values were calculated for all data in terms of eq 3 to compare the resultant 

f data with the helix content of CMPs (PPG10 or GPO9) obtained from circular dichroism 

measurements as shown in Fig. 6.  The triple helical peptide chains dissociate with raising 

temperature nearby the melting temperature Tm of the triple helical peptides but it seems to be 

slightly higher than Tm both for all NaCMA + PPG10 systems ( = 10, 6, and 3) and the NaPAA 

+ GPO9 system.  These results suggest that single coil peptide chain may form a complex with 

polyelectrolytes only nearby Tm.  According to our previous paper [13], the collagen model 

peptide having shorter chain length has a negative second virial coefficient at low temperature 

at which longer collagen model peptides including GPO9 form triple helix. 

 

 

Fig. 5.  Temperature dependence of [(M2/n + Mc/) (I(0)/Kc)c=0]1/2 for NaCMA + PPG10 in 

10 mM aqueous NaCl.  Solid, dashed, and dot-dashed lines indicate the calculated values by 

using eq 5 (full complexation), eq 4 (no complexation) with m = 3, and eq 4 with m = 1, 

respectively. 
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Fig. 6.  Temperature dependence of f (symbols) from SAXS measurements or helix contents 

from CD measurements (solid curves) for (a) NaCMA + PPG10 in 10 mM aqueous NaCl and 

for (b) NaPAA + GPO9 in 20 mM aqueous NaCl.  Circles, triangles, and inverse triangles 

indicate  = 10,  = 6, and  = 3, respectively. 

 

One example of the temperature dependent scattering function for NaCMA + PPG10 ( = 

6) is shown in Fig. 7.  Theoretical values can be calculated from eq 11 as is the case with the 

data in Fig. 4.  It should be noted that we used m = 3 and rigid cylinder model for P1(q) at 15 

C and 25 C as is the case for Fig. 4, but we chose m = 1 and the wormlike chain model with 

-1 = 2 nm and ML = 260 nm-1g mol-1 for the calculation of P1(q).  These values are estimated 

from the random coil CMP chains [13].  If we estimate −1 from the above mentioned 

relationship ( −1 / nm = 4.8 + 0.63 Ns) at each temperature, the theoretical values drawn as 

solid lines adequately explain the experimental data. 
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Fig. 7.  Holtzer plots for NaCMA + PPG10 ( = 6) in 10 mM aqueous NaCl at indicated 

temperatures.  Solid curves, calculated from eq 11 (see text).  Dashed curves, calculated from 

eq 10 (not considering isolated PPG10 chains).  The ordinate values are shifted by A. 

 

   The radius of gyration <S2>mix for the mixture of the complex and collagen model peptide 

may be expressed by using the radius of gyration of the complex <S2>3 and isolated peptide 

<S2>1 as 
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   

21 2 2 2 1 2
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2 2 1 c 1 c

Δ
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



 

 

    


    
 (13) 
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where <S2>3 is related to the wormlike chain parameters by eq 10 in ref [16].  Considering the 

Kuhn length of NaPAA + GPO9 obeys a linear function of Ns [16] ( −1 / nm = 2.8 + 0.54 Ns) 

as is the case with NaCMA + PPG10 system, <S2>mix can be calculated with no fitting 

parameter.  It should be noted that the contribution from the second term of eq 13 is negligibly 

small except for the data at the highest temperature.  The obtained <S2>mix values are 

substantially close to the experimental <S2>z as shown in Fig. 8, indicating the current <S2>z 

data can be explained by the above mentioned wormlike comb model.  

 

 

Fig. 8.  Comparison between the experimental radius of gyration <S2>z
1/2 and the calculated 

values <S2>mix from eq 13.   Filled circles indicate the data for the NaPAA + GPO9 in 20 mM 

aqueous NaCl.  Unfilled circles, triangles, and inverse triangles indicate  = 10,  = 6, and  

= 3, respectively, for NaCMA + PPG10 in 10 mM aqueous NaCl. 
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4. Conclusion 

NaCMA forms a complex with the triple helical peptide PPG10 in 10 mM aqueous NaCl at 

low temperature and the obtained complex has a comb like structure of which the main chain 

is NaCMA and side chain is triple helical PPG10.  However, NaCMA chains molecularly 

disperse in 100 mM solution even at low temperatures while NaPAA chains forms stable 

complex even in 100 mM aqueous NaCl.  The complex dissociates with raising temperature 

near the melting point of triple helical peptide, indicating that the triple helical structure is 

definitely important to form the complex consisting of polyelectrolyte and CMP. 
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