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Abstract 

Extracting scientific facts from unstructured text is difficult due to challenges specific to the 

ambiguity of the language, the complexity of the scientific named entities and relations to be 

extracted. This problem is well illustrated through the extraction of polymer names and their 

properties. Even in the cases where the property is a temperature, identifying the polymer name 

associated with the temperature may require expertise due to the use of acronyms, synonyms, 

complicated naming conventions and by the fact that new polymer names are being 

“introduced” to the vernacular as polymer science advances. While there exist domain-specific 

machine learning toolkits that address these challenges, perhaps the greatest challenge is the 

lack of—time-consuming, error-prone and costly—labeled data to train these machine learning 

models. Our work repurposes Snorkel, a data programming tool, in a novel approach as a way 

to identify sentences that contain the relation of interest in order to generate training data, and 

as a first step towards extracting the entities themselves. By achieving 94% recall and an F1 

score of 0.92, compared to human experts who achieve 77% recall and an F1 score of 0.87, we 

show that our system captures sentences missed by both a state-of-the-art domain-aware 

natural language processing toolkit and human expert labelers. We also demonstrate the 

importance of identifying the complex sentences prior to extraction by comparing our application 

to the natural language processing toolkit.  

1 Introduction 

Extracting scientific facts from esoteric articles remains an important natural language 

processing (NLP) research topic due to the particularity of the entities and relations to be 

extracted. The challenges involved include the fact that entities can be described by multiple 

referents (synonymy) and conversely, the same word referring to different concepts depending 

on context (polysemy). Other nuances in the naming conventions render the extraction of these 

referents a non-trivial exercise even for curators as it requires specialized expertise. For 

example, in polymer science, there are distinctions between general and specific references to 

members of polymer families, or recognizing references to blends of two polymers, etc. 

Moreover, scientific relations are also complex as they may be one-to-many as opposed to 

single entity-to-entity relations, and require extra metadata to discern the exact relationship. 

Using the same polymer science example, a single scientific journal article may report on a 

polymer and several of its newly measured properties, and determining how these properties 

relate to the polymer can be complex. Similar issues arise in many fields as evidenced by NLP 

tools that rely on domain-specific grammar and ontologies. 

 

Perhaps the most significant challenge in scientific NER is the lack of readily available labeled 

training data to enlist machines to the rescue. Indeed one of the major bottlenecks in developing 

machine learning-based information extraction is collecting large sets of hand-labeled training 

data. The process of creating well-balanced, manually-labeled datasets of scientific facts is 

more difficult due in part to the aforementioned challenges, but also due to the scarcity of 

entities and relations in scientific articles. For instance, it is not uncommon for scientists to write 



an article about a newly discovered drug or newly synthesized material. To annotate sentences 

in such publications is not only tedious, error-prone and time-consuming, but also costly as it 

cannot easily be crowdsourced and requires time from subject matter experts. 

 

Our ultimate goal is to alleviate the burden of expert annotators and facilitate complete and 

accurate extraction of scientific facts. Towards achieving this goal, we repurpose a data 

programming software [1] to identify sentences that contain scientific entities and relations 

automatically. Data programming is a paradigm for training models using higher-level, less 

precise supervision to avoid the bottleneck of collecting training data. Typically, this tool relies 

on existing entity taggers in order to identify and label relations. The key novelty of our approach 

is to identify sentences containing the target entities and relations without strictly identifying the 

entities through the use of dictionaries nor through complicated hard-coded rules. On a high-

level, we identify sentences containing polymers and their associated glass transition 

temperatures without extracting the polymer entities. Instead, we use data programming to 

describe and combine approximate descriptions of the relations and the entities involved to 

recognize sentences of interest. We show that a computerized application built on combining 

weak, programmed rules, which target identifying specific entities can successfully identify 

sentences which contain such scientific entities, and scientific relationships regarding the 

targeted entities. Not only are sentences of interest overall accurately identified (94% recall), but 

the combination of weak, programmed rules are able to identify more sentences that are missed 

by human experts and state-of-the-art domain-specific computer software.  

 

The rest of this paper is organized as follows. In Section 2, we describe background information 

on NER and material sciences which describe the unique challenges presented with polymer 

entity identification and extraction. Then we review research which attempts to solve problems 

related to ours, and highlight gaps in the current literature which we attempt to fill in our work. 

Section 3 presents the architecture of our application, which includes a discussion of the 

Snorkel Labeling Functions we developed, how they function when applied to the data, and a 

method of labeling data points of interest. Section 4 presents the results or our approach 

compared to state-of-the-art tools for scientific entity extraction and discusses significant 

findings and future work, followed by a conclusion in Section 5. 

2 Background  

Within NLP, there is a focus on identifying entities from unstructured data (text documents) that 

involves a number of tasks including: entity discovery, which detects names within text; named 

entity recognition (NER), which aims to identify the concept of an entity within text; relations 

extraction, which identifies the relation between named entities; and slot filling which identifies 

attributes of an entity [2]. It is hard to find tools that perform all tasks well and there is a lot of 

research done in each. There are two main kinds of extraction methods, one is based on 

knowledge engineering, and the other is based on machine learning. The former methods need 

domain experts to define and construct rules that utilize keyword matching, regular expressions, 

dictionaries, and ontologies. These rules are more or less complex and generally hard to 

maintain. The latter, currently more common are machine learning methods that require - often 



manually - annotated corpora. While there are ways to leverage databases, semi-structured text 

from the Web or crowdsourcing for some applications, there is a critical need for especially 

designed alternatives for scientific information extraction. Some areas of medicine and biology 

benefit from an abundance of data through multiple databases1; other areas of bioinformatics 

and certain fields such as materials informatics still lack training data to fully leverage the 

advances in machine learning [3]. While this is a recognized challenge, there are few 

straightforward solutions to generating annotated scientific data as this process is tedious, error-

prone and requires the costly focus and attention of experts in the field. Indeed, crowdsourcing 

is not viable in many cases due to the polysemy, synonymy and other esoteric nuances. In 

some cases, for example, authors are presenting new entities - not available in any dictionary - 

to their peers; in others they are describing in great details how entities and relationships are 

being measured (e.g. authors create new polymers and measure their properties). 

2.1 Background on Material Sciences 

In this section, we discuss the specificity of the polymer-glass transition extraction problem. 

Polymers are large molecules (macromolecules) composed of many repeating units, referred to 

as monomers. Due in part to their large molecular masses, polymers have a variety of useful 

properties [4]. Some of the useful properties of various engineering polymers are high strength 

or modulus to weight ratios (light weight but comparatively stiff and strong), toughness, 

resilience, resistance to corrosion and more. In fact, due to such properties, polymers are 

ubiquitous. 

 

One specific property of polymers that has a profound impact on their application, is the glass 

transition temperature or Tg, which is the temperature at which a polymer transitions from a 

solid, amorphous, glassy state to a rubbery state as the temperature is increased. As the 

properties between the two states are drastically different, it is crucial to identify polymers with 

the appropriate Tg for different applications. For example, plexiglass (poly(methyl 

methacrylate)), used as a lightweight substitute for glass, has a high Tg of roughly 110 °C, while 

neoprene (polychloroprene), used for laptop sleeves, has a low Tg of roughly -50 °C [5]. Exact, 

as opposed to rough, values of Tg require additional contextual information such as the 

molecular mass. This is an example of metadata that could later be extracted after target 

sentences are identified.  

2.2 Related Work 

The medical community has long been invested in applying information extraction methods to 

medical publications [6-9]. These tools are designed to extract clinical information from text 

documents and to translate entities and terms to controlled ontologies and vocabularies. Other 

communities have followed, for example MedLEE [7,8] led to the development of more 

specialized tools such as GENIES [10] and BioMedLEE [11]. However, developing specialized 

ontologies, grammar and rules is error-prone, time consuming and hard to maintain. Moreover, 

it requires both a knowledge of the domain and in NLP. 

 
1 https://www.ncbi.nlm.nih.gov/ 



 

Recent scientific information extraction (IE) models remedy the above mentioned challenges by 

learning from data. While machine learning NLP techniques do not require the implementation 

of rich domain ontologies and grammars, they heavily rely on the availability of labeled training 

data. Statistical models such as Conditional Random Field (CRF) are graph-based models used 

in NLP to capture context by learning from sequences of words. Long short-term memory 

(LSTM) networks are recurrent neural networks that also capture context by learning 

relationships between a word and its preceding word. Bidirectional LSTM (Bi-LSTM) networks 

exploit information about the words that come before and after a given word. These models 

have shown great promise when applied to scientific IE [11-15]. For example, the 

ChemDataExtractor (CDE)--to which we compare our work and refer to as the state-of-the-art 

tool--implements an extensible end-to-end text-mining pipeline that can process common 

publication formats and produces machine-readable structured output data [12]. CDE 

automatically extracts chemical named entities and their associated properties, measurements, 

and relationships from scientific documents. It uses a combination of machine learning (linear-

chain conditional random field) models, dictionary-based approaches, and regular expressions 

for entity recognition. Entity properties are extracted using a rule-based approach customized 

for specific properties. For such models to achieve high accuracy with regards to information 

and entity extraction, they require labeled data. This is especially limiting in material science. In 

fact, due to the lack of annotated data with high coverage of chemical data, the training data for 

CDE was supplemented using biomedical training corpora among other alternatives [12]. 

Finally, while tagging entities and identifying relations between them may be crowdsourced to 

the general public for general IE, labeling esoteric scientific articles requires domain knowledge, 

and therefore is more costly.  

 

Distant supervision circumvents the need for expensive annotation by leveraging available 

databases or semi-structured text. For example deep learning tools such as PaleoDeepDive 

uses advanced statistical inference approaches to extract paleontological data from text, tables, 

and figures in scientific publications [16, 17]. For good performance, however, it first maps 

entities and their relations from a large database (PaleoDB at http://paleodb.org) to text. 

Unfortunately, many fields do not have access to such large databases of entities and relations, 

especially if new data is constantly being added to such databases.  

 

Snorkel, for example, uses weak, programmed rules called labeling functions, to learn and 

model accuracies and conflicts between labeling functions to approximately create labels on 

unlabeled data, fast [1, 18]. Under certain conditions, applying data programming, such as using 

Snorkel labeling functions, achieves results on par with those of supervised learning methods. 

While Snorkel labeling functions can be used to approximately label large datasets, it is often 

used as a preprocessing step to label sentences that will be fed into an LSTM for example or 

assumes access to state-of-the-art entity taggers for relations extraction.  

However, as previously mentioned, scientific entities and relations are complex and difficult to 

extract automatically; while many relations extraction work focuses on relations between two 

entities, scientific relations may consist of more entities and multiple relations or include 



additional metadata [19,20]. Recent work introduced novel ideas of multiple relations 

extractions, however it refers to widely known general entities and relations [21]. 

 

In another example, computers cannot automatically extract entities that are not actually named 

in a publication (in which a new polymer is being synthesized). As a result, scientific IE often 

leverages a combination of crowdsourcing, machine learning, dictionaries and rules to extract 

relations from text [19,20]. In the Tg extraction pipeline, authors use a combination of automated 

methods to extract easily accessible Tg and crowdsourcing to extract more complex mentions as 

well as to review automatically extracted information [22]. Wallace et al. [23] use a hybrid 

machine learning and crowdsourcing approach to identify published randomized controlled trials 

(RCTs). They use machine learning classifiers to recognize citations that are deemed highly 

unlikely to describe RCTs, and defer to crowdsourcing otherwise [23]. In the GeneWays system, 

experts remove controversial collected data during the automatic literature extraction [24]. 

 

Our work uses Snorkel in a novel manner to address these crucial scientific IE challenges: 1) 

many NLP tools assume access to costly carefully labeled, balanced datasets, while in fact 

scientific entities are scarce in publications; 2) our entities are not always known a priori and are 

continuously being created or discovered; 3) relations identification is not dependent on first 

identifying the entities, and 4) our relations are complex and may contain more than one entity 

with multiple relations. In other words, all entities and relations might not be successfully 

extracted in an automatic fashion, but instead some relations will require further expert scrutiny 

in order to be extracted. 

4 Architecture 

4.1 Dataset 

The input dataset contained 9,518 unique sentences from 31 journal articles containing “Tg” 

from a keyword search from the journal, Macromolecules, a prominent journal in polymer  

 

Image 1. Example of Input database.2 

 
2 Extracted from: Mohanty, Angela D., Chang Y. Ryu, Yu Seung Kim, and Chulsung Bae. "Stable Elastomeric Anion 

Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-B-Poly (Ethylene-Co-Butylene)-B-
Polystyrene Triblock Copolymers." Macromolecules 48, no. 19 (2015): 7085-95. 



 
 

science, during the years 2006-2016 [22]. The full text version of each article was downloaded 

in HTML format, and split into sentences (Image 1) so that each data point was a unique 

sentence tied to a document (journal article) identifier [22]. The journal article sentences were 

not preprocessed nor altered in any way such as removing special characters nor converting 

text from uppercase to lowercase. 

3.2 A Priori Polymer Knowledge is Not an Option 

As is often the case with entity extraction, external data sources such as databases or maps 

with known information about the entities of interest are used to help with identifying or tagging 

entities from text. As mentioned previously, a unique challenge with polymer data is that 

polymers are constantly being developed and their (often complicated) names are not known a 

priori to reading the text. Given this and the fact that databases containing information about 

polymers and their properties are not readily available, there exists a need to be able to extract 

polymers and their properties without relying on an external database to supply known 

information. In other words, a tool is needed which can not only extract polymer names from text 

without knowing them a priori, but also be able to extract information on the polymer’s 

properties. We have, therefore, built, a tool with the knowledge (i.e. collection of simple labeling 

functions) to identify 1) polymers and/or their abbreviations, 2) a Tg mention, and 3) a 

temperature related to the respective polymer and Tg mention. 

3.3 The Snorkel System and Its Built-In Functionalities 

Snorkel is a system developed at Stanford University whose objective is to “...programmatically 

[build] and [manage] training datasets without manual labeling” [18]. In other words, it applies 

user-defined programmed rules as weak learners, to label data points in a dataset and avoids 

having to manually assign each data point. The weak learners, or rules programmed in a 

computer language such as Python, are known in Snorkel as Labeling Functions (LFs), which 

are considered one of the most important constructs of the Snorkel System. Multiple LFs can be 

created, and their logic can often be in opposition to each other, however, after applying LFs to 

the data, Snorkel can factor the patterns of how LFs interact with one another or the data point 

itself, and determine if a data point should be labeled or not. 

 



The motivation behind using Snorkel for this project was to find a way to identify and extract 

polymer entities (polymer names/abbreviations and their properties, like Tg temperatures) in a 

fast and accurate manner compared to state-of-the-art tools and human experts in polymer 

science. Moreover, describing rules that identify and link entities related to one another is a 

more intuitive, adaptable and general way than writing sophisticated regular expressions to 

extract entity relations. 

3.3.1 Snorkel Preprocessors and the Uniqueness of Polymer Data 

The Snorkel Preprocessor is a particularly useful function which allows for each data point, or 

sentence, to be preprocessed in a user-defined manner. This is important because polymer 

names and entities do not always follow the same textual rules as do everyday English texts. 

For example, abbreviations of polymer names, which are largely uppercase alpha character 

strings, are ubiquitous throughout polymer texts. Applying a preprocessing function to make all 

text lowercase before applying the Snorkel LFs would therefore result in not being able to 

identify an abbreviation. However, there are times when the same sentence containing an 

abbreviation needs to be made lowercase in order to find a different entity in the sentence, such 

as the mention of a glass transition temperature. For example, “glass transition” can be denoted 

as “TG” or “Tg” or “tg” within and/or across texts as there is no accepted rule across the 

community as to how “glass transition” is abbreviated. Take the following sentence into 

consideration: 

 

Bacterial polyhydroxy alkanoates such as poly(3-hydroxybutyrate) (P3HB), poly(3-hydroxyvalerate) (P3HV), or higher 

hydroxy acids and their copolymers display decreasing melting points from about 180 °C (Tg = 1−4 °C) for P3HB to 

112 °C (Tg = −12 °C) for P3HV. 3 

 

As mentioned, to find a glass transition mention by searching for “tg” (in order to catch any 

transformation of “TG” or “Tg” or “tg”), the sentence could simply be made lowercase, and a 

character string search for “tg” could be performed. But if the act of making all text lowercase 

was permanent, then finding polymer abbreviations within that same preprocessed sentence 

would be impossible if the rules to find a polymer abbreviation state that they are uppercase, 

mostly-alpha character strings, such as “P3HB” and “P3HV.” 

 

Finding the different entities, polymer abbreviations and glass transition mentions therefore 

require completely different impermanent, preprocessing rules on the same data points, which 

are easily accommodated by the Snorkel Preprocessor function. When a LF is executed, it can 

call one or many Snorkel Preprocessors. For example, when LFs looking for a glass transition 

are executed, the Snorkel Preprocessor to make text lowercase is called only for that LF, and 

after processing, the sentence resumes its original, unaltered state. This allows a second LF 

looking for a polymer abbreviation to be executed on the unaltered sentence as found in the 

original publication. 

 

 
3 Sentence extracted from: Petrovic, Zoran S, Jelena Milic, Yijin Xu, and Ivana Cvetkovic. "A Chemical Route to High 

Molecular Weight Vegetable Oil-Based Polyhydroxyalkanoate." Macromolecules 43, no. 9 (2010): 4120-25. 



Three preprocessors are built for this work: makeTextLower(), makeCharUniform() and 

removeSpacesInParentheses(). The makeTextLower() is self-explanatory in that it converts the 

data point being processed into lowercase. The makeCharUniform() was created because 

special characters such as dashes and apostrophes can appear and be formatted as different 

characters when read in from various journal articles. For example, a dash can be represented 

by the following characters: 

 

1) - 

2) − 

3) – 

4) — 

 

There are definitive differences between the actual lengths of 1) and 4), whereas the differences 

between 2) and 3) are more difficult to discern. When placing the characters side-by-side and 

making them bold the appear as follows: 

- − – —  

This comparison illustrates that the pixels of 2) and 3) sit at different heights in a row and 

therefore are really two different characters. The reason this is important is because one of the 

entities of interest in this work is temperature values which can sometimes be <0°, and some of 

the LFs account for negative signs. If a negative sign appears as the character “-” in one paper 

and “—” in another, it is more difficult to write rules which look for every variation of a negative 

sign. Instead, a Snorkel Preprocessor was written to take all variations of a dash and convert it 

to a uniform dash. 

 

The final preprocessor, removeSpacesInParentheses(), is also unique for polymer text because 

polymer names can often contain multiple character tokens within parentheses such as the 

polymer name: poly(tetrafluoroethylene). Although this is the common spelling for this polymer, 

it is possible that a spelling or format mistake occurs in which the polymer is referred to as: 

poly(tetrafluoro ethylene). If this were the case, it would be important that a computer program 

knows that both poly(tetrafluoroethylene) and poly(tetrafluoro ethylene) are the same polymer. 

Therefore, instead of removing all spaces from a sentence, a preprocessor was built to remove 

spaces only within parentheses to account for this specific example. 

3.3.2 Labeling Functions (TRUE, JUNK, ABSTAIN) 

When Snorkel LFs are applied to data points, they return values of 1, 0 and -1 indicating that a 

LF returns a TRUE label, a FALSE (JUNK) label or ABSTAINS, respectively. There is a certain 

degree of attention that must be paid to this step given that it can greatly impact the overall 

rating of labeling a sentence as TRUE or FALSE. For example, if three LFs are assigned to 

label as sentence, and the output of those three LFs on the one data point render the results of 

[1, 0, 1], it is clear that 2 of the 3 LFs have deemed the sentence to be TRUE (1), if using a 

majority voting system. When the LF’s output are [1, 0, 0], the sentence would be deemed 

FALSE (0) since the majority of outputs deemed the sentence to not be TRUE. However, if the 



LF’s output are [1, 0, -1], this is equivalent to saying that only two LFs produced a label and one 

is not counted, or abstains. There is then a 50% chance the data point is TRUE or FALSE. 

Therefore, this latter scenario could either be prone to missing TRUE data points or assigning 

FALSE data points. 

 

Later, we will review how this was considered when extracting the entities of interest. This also 

points out that care must be taken not only when generating LFs, but also the values that are 

returned from the LFs after processing a data point. Snorkel provides a number of tools which 

assist the user in researching LF outcomes, and should be utilized when generating and 

applying LFs. 

3.3.3 LFs to Identify Different Entities 

To be labeled as TRUE, a sentence must contain 3 different and unique entities: a polymer 

name or its abbreviation, a glass transition mention, and the glass transition temperature of the 

respective polymer. Snorkel uses LFs to process and label an entire datapoint which results in 

outputting a label of TRUE, FALSE or ABSTAIN for the respective data point. This work 

leverages this functionality, but instead of all LFs being used to determine if the data point 

should be labeled as TRUE or not, we group the LFs into buckets so that each bucket 

represents the presence of (or lack thereof) one of the three entities. As a result, each LF looks 

for only one entity, and groups of LFs collectively aim to identify only one of the three entities 

based. If a group of LFs identify the presence of its respective entity, and each of the three 

entities are found in a sentence, only then is the sentence labeled as TRUE. If only one or two 

entities are present, the sentence is not labeled as TRUE. 

 

An ensemble labeler was developed in response to determining whether all entities are present. 

It reads in the Snorkel LF output arrays, decides if all three entities are present, and if so, labels 

the sentence as TRUE. This ensemble labeler will be discussed later on in this section. The 

following three sections describe the LFs which search for each of the three desirable entities. 

3.3.4 Labeling Polymer Entities 

Finding the presence of a polymer and/or its abbreviation without a priori knowledge of its name 

sounds like a daunting task, however, we are able to identify sentences with polymer entities 

with only four LFs. In other words, we show that entities can be found without the use of 

external reference dictionaries feeding knowledge to the LFs or writing rules which use 

extensive REGEX functions. It should also be emphasized that even though the below four LFs 

indicate that a polymer name is identified in a sentence, the sentence will only be returned as 

TRUE if a glass transition mention and a temperature are also identified in the same sentence. 

Below is the listing of the LFs which identify the existence of a polymer entity and descriptions of 

their logic. 

 

Table 1. List of Polymer-Identifying LFs 



LF Name Description 

abbreviation_in_sentence() This LF looks for a token within a sentence that consists only of uppercase 
alpha characters, numbers and special characters. Only 40% or less of the 
token can consist of special and numeric characters. For example, P3HB is 
considered an abbreviation, whereas 270°C is not since 100% of characters in 
the latter token are numbers and special characters. If the criteria is met, the 
LF returns 1, otherwise it returns a -1. Note that it would not be appropriate to 
return a 0 if the logic is not met because there are some polymers that do not 
have abbreviations, and we do not want to penalize the sentence for not 
containing an abbreviation; we therefore simply abstain. 

keyword_poly() This LF looks for the character string, “poly” in a sentence. If it exists, a 1 is 
returned, otherwise a -1 is returned. 

keyword_polyParen() Similar to keyword_poly(), if a sentence contains, “poly(“, then a 1 is returned, 
otherwise a -1 is returned. 

keyword_copolymer() There are naming conventions applied to certain types of polymers known as 
copolymers. This LF accounts for those rules in that if any of these character 
strings are found in a sentence, a 1 is returned, else a -1 is returned. 
Examples of character strings found in copolymers are: "-co-", "-stat-", "-per-", 
"-ran-", "-grafted-", "-trans-", and "-alt-". 

   

Essentially, the LFs above are looking for abbreviations, keywords of “poly” or “poly(“ and 

character strings indicating a copolymer. We have found that these four LFs are sufficient at 

identifying polymer names and/or abbreviations. 

3.3.5 Labeling Tg Temperature Entities 

It is simple to identify numbers in a sentence, but it is more difficult to discern what those 

numbers represent. The challenge in finding sentences that contain temperature entities has a 

silver lining in that temperatures are most often followed by degree (°) symbols. This idea is 

relied upon in a number of our LFs to identify temperature entities, but there are other rules that 

need to account for numbers followed by a degree (°) symbol that do not represent a 

temperature, for example the size of an angle. 

 

Again, for a sentence to be returned as TRUE, the LFs need to have indicated that all three 

entities of interest are identified in a sentence. A simple way to immediately negate a sentence 

is to check if any numbers exist in a sentence; if no numbers are found, then a temperature will 

not be present in a sentence. If a number is found, this rule should only return a -1 (ABSTAIN) 

and not a 1 because returning a 1 would indicate that a suspected temperature is present. 

Numbers in a sentence indicate a temperature presence is possible, and the sentence should 

not be considered JUNK; it is the role of other LFs to determine if the numbers in question 

actually represent a temperature. 

 

Table 2. List of Temperature-Identifying LFs 

LF Name Description 



tempUnits() This LF simply looks for a degree (°) symbol. If found, it returns 1, 
otherwise it returns -1. 

tempUnitsAfterNumber() If a degree (°) symbol is not present after a temperature, a unit of 
temperature must be present, such as C (Celsius), F (Farenheit) or K 
(Kelvin) to indicate the numbers represent a temperature. If the 
numbers are immediately followed by a C, F or K, then a 1 is returned, 
otherwise a -1 is returned. 

tempUnitsAfterDegree() A combination of the prior two LFs, if a degree (°) symbol is followed 
by a C, F, or K, then this is a strong predictor that a temperature exists 
in the sentence and a 1 is returned, otherwise a -1 is returned. 

equalSignBeforeNumber() If an equal (=) sign exists before numbers (with or without special 
characters like - or ~, as are sometimes associated with temperatures), 
then a 1 is returned, otherwise a -1 is returned. 

circaSignBeforeNumberDegree() Similar to the above LF, if the tokens “circa” or “ca” or “about” precede 
a number (with or without special characters like - or ~, as are 
sometimes associated with temperatures), then a 1 is returned, 
otherwise a -1 is returned. 

tempRange() Glass transition temperatures associated with a polymer can be 
reported as a temperature range. Therefore, this LF returns a 1 if more 
than 40% of a token’s characters consists of numbers, such as in the 
case of “-2 - -1” which could read, “negative 2 to negative 1.” 
Otherwise a -1 is returned. 

JUNKtempUnitsAfterNumber() If a number exists and is not followed by a degree (°) symbol, C, F, or 
K, then the number is assumed to not be a temperature and a 0 is 
returned, otherwise a -1 is returned. 

JUNKtempUnitsAfterDegree() If a degree (°) symbol exists in a sentence and is not followed by a C, 
F, or K, then it is assumed the sentence does not contain a 
temperature and a 0 is returned, otherwise a -1 is returned. 

JUNKnoNumbers() If there are no numbers in a sentence, then a 0 is returned, otherwise a 
-1 is returned. A 1 is not returned because a 1 represents an 
assumption that a temperature exists. Since not all numbers represent 
temperatures, it can only be assumed that a sentence containing 
numbers is at, best, not a JUNK sentence. 

3.3.6 Labeling Tg Mentions 

There are a discrete number of ways that a glass transition mention can be expressed through 

text, which is either by spelling out “glass transition” (with varying forms of capitalization), 

shortening it to “glass trans” or “glass-trans”, or abbreviating it to simply “tg.” Ultimately, this 

search can be streamlined to searching for: “glass t” or “glass-t” or “tg.” 

 

However, in polymer texts there is a technique called thermogravimetric analysis, which is 

sometimes abbreviated as, “TGA.” Therefore, additional LFs needed to be created to distinguish 

sentences that contain “TGA” vs just “TG” to avoid labeling sentences that only refer to TGA as 

containing a glass transition mention entity. 

 



Table 3. List of Glass Transition Mention-Identifying LFs 

LF Name Description 

keyword_tg() If the character strings “glass t” or “glass-t” or “tg” are found in a sentence a 1 is returned, 
otherwise a -1 is returned. 

JUNK_tga() If the character string “TGA” is found in a sentence a 0 is returned, otherwise a -1 is 
returned. 

JUNK_tgAndTGA() This is considered a “tie-breaker” LF for sentences containing “TGA.” If this LF didn’t exist, 
then sentences with “TGA” would return output arrays as [1, 0] and would need to be 
resolved with a tie-breaker (i.e. randomly assigning the glass transition mention entity as 1 
or 0). Therefore, if “TG” is found in a sentence with no other alpha characters following it, a 
1 is returned; if the character string “TGA” is found, then a 0 is returned; otherwise a -1 is 
returned. 

3.4 Majority Ensemble Labeler and ELSIE 

As mentioned above, the labeling functions of the Snorkel system ultimately consider all outputs 

of the LFs for a respective data point to determine if that data point will be labeled as TRUE or 

not, noting that the all LFs are considered in combination to label the respective data point. The 

difference between our work is that before determining if a data point (sentence in this work) is 

labeled TRUE, the output values of the LF first determine if its respective entity is present in the 

sentence, and if all entities are present, then the sentence is labeled as TRUE. 

 

In total, there are 16 LFs used in this work where an output value of 1 = TRUE, 0 = JUNK, and -

1 = ABSTAIN. The first four LFs, highlighted below in yellow, aim to identify polymer names and 

abbreviations, the next nine LFs, highlighted in green, aim to identify temperatures and the last 

three, in blue, aim to identify glass transition mentions. Visually this can be represented as 

values in the output array in conjunction with the following sentences where the color-coding of 

the LFs below corresponds to the entities identified in the sentence. 

 

LFs to Identify Polymer Names and Abbreviations 

abbreviation_in_sentence, keyword_poly, keyword_polyParen, keyword_copolymer,  

 

LFs to Identify Temperatures 

TempUnits, tempUnitsAfterNumber, tempUnitsAfterDegree, equalSignBeforeNumber, 

circaSignBeforeNumberDegree, tempRange, JUNKtempUnitsAfterNumber, 

JUNKtempUnitsAfterDegree, JUNKnoNumbers,  

 

LFs to Identify Glass Transition Mentions 

keyword_tg, JUNK_tga, JUNK_tgAndTGA 

 

Sentence 1 

Bacterial polyhydroxy alkanoates such as poly(3-hydroxybutyrate) (P3HB), poly(3-hydroxyvalerate) (P3HV), or higher 

hydroxy acids and their copolymers display decreasing melting points from about 180 °C (Tg = 1−4 °C) for P3HB to 



112 °C (Tg = −12 °C) for P3HV.4 

 

Output labeling matrix: [1,  1,  1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1] → [3/3, 4/4, 2/2] 

 

For Sentence 1, of the LFs that did not abstain (where the output was either a 1 or 0, but not a -

1), all three entities of interest were identified in the sentence; 3 of 3 LFs that did not abstain 

found a polymer name or abbreviation (yellow), 4 of 4 LFs that did not abstain found a 

temperature (green), and 2 of 2 LFs that did not abstain found a glass transition mention (blue). 

 

Sentence 2 
Although the corresponding copolymers were afforded with perfectly alternating nature and excellent regiochemistry 

control, only glass-transition temperatures of around 8.5 °C were observed in the differential scanning calorimetry 

(DSC) curve, demonstrating that the polymers are completely amorphous (see Supporting Information Figure S3).5 

 

Output labeling matrix: [1,  1,  -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1] → [2/2, 3/3, 1/1] 

 

Similar to sentence 1, LFs applied to Sentence 2 also indicate that all three entities of interest 

are found in the sentence. To note, more LFs ended up abstaining with this sentence than in 

Sentence 1, but the end result is that both sentences contained all three entities. 

 

Sentence 3 (shown 3 times to illustrate how Snorkel is able to correctly label tricky 

sentences) 
1) The TGA scans indicated that APNSi has 5% decomposition in air of 340 °C and in argon of 450 °C (Figure 1). 

2) The TGA scans indicated that APNSi has 5% decomposition in air of 340 °C and in argon of 450 °C (Figure 1). 

3) The TGA scans indicated that APNSi has 5% decomposition in air of 340 °C and in argon of 450 °C (Figure 1).6 

 

Output labeling matrix: [ 1, -1, -1, -1,  1, -1,  1, -1,  1, -1,  0, -1, -1,  1,  0,  0] → [1/1, 3/4, 1/3] 

 

In Sentence 3, Snorkel LFs identified an abbreviation of “TGA.” Because there are no sources 

for distance learning, Snorkel LFs cannot determine if the abbreviation represents a polymer or 

not, so the output LFs are only able to demonstrate that an abbreviation is identified. A 

temperature entity is obviously identified with the appearance of numbers followed by “°C”. 

Finally, the LFs found the string, “TG” in the sentence and will need to discern if that represents 

a glass transition mention or not. The LFs are able to determine that a Tg mention is not present 

in the sentence (refer to 3.3.6 Labeling Tg Mentions for further clarification). Ultimately, only a 

polymer name or abbreviation and temperature entities were confirmed to be found in Sentence 

 
4 Extracted from: Petrovic, Zoran S, Jelena Milic, Yijin Xu, and Ivana Cvetkovic. "A Chemical Route to High Molecular 

Weight Vegetable Oil-Based Polyhydroxyalkanoate." Macromolecules 43, no. 9 (2010): 4120-25. 
5 Sentence extracted from: Yue, Tian-Jun, Wei-Min Ren, Ye Liu, Zhao-Qian Wan, and Xiao-Bing Lu. "Crystalline 

Polythiocarbonate from Stereoregular Copolymerization of Carbonyl Sulfide and Epichlorohydrin." Macromolecules 
49, no. 8 (2016): 2971-76. 
6 Sentence extracted from: Finkelshtein, E Sh, KL Makovetskii, ML Gringolts, Yu V Rogan, TG Golenko, LE 

Starannikova, Yu P Yampolskii, VP Shantarovich, and T Suzuki. "Addition-Type Polynorbornenes with Si (Ch3) 3 
Side Groups: Synthesis, Gas Permeability, and Free Volume." Macromolecules 39, no. 20 (2006): 7022-29. 



3, and the LFs could not confirm that a glass transition mention was identified. Therefore, the 

sentence was not labeled as TRUE. This final example demonstrates the power of Snorkel 

Labeling Functions and how the combination of weak learners allow the system to carve out the 

entities of interest while ignoring entities not of interest from the sentence by picking up on 

nuances of rules to discern which sentences to label, even tricky ones. 
 

Once the output arrays of the LFs are generated and it is determined if each of the entities are 

present or not, the ensemble labeler determines which sentences should be labeled as TRUE or 

not. The ensemble labeler uses a simple majority of LF outputs per entity, and combines these 

results to determine if a sentence should be labeled as TRUE or not. Again, if and only if all 

entities are present in a sentence will the ensemble labeler label the sentence as TRUE. As a 

result, we are calling this process of considering the output of all LFs per entity then determining 

if all entities are present, ensemble labeling toward scientific information extraction, or ELSIE. 

4 Results and Analysis 

We first discuss how the initial gold standard dataset--labeled by human experts, and the 

dataset from the state-of-the-art tool--which normally aims to extract data, were generated so 

they could be compared to sentences labeled by ELSIE. Next we discuss how the initial gold 

standard dataset is updated after being compared to the ELSIE’s output which revealed TRUE 

sentences that were missed by human experts. Finally, the state-of-the-art tool’s and ELSIE’s 

outputs are both compared to the updated gold standard (hereafter referred to as the “gold 

standard”) dataset. It should be noted that the state-of-the-art tool’s performance in identifying 

sentences of interest against the gold standard is discussed as a matter of comparison to 

ELSIE’s performance and labeling abilities. 

4.1 Training Dataset and its Labels 

To test how well ELSIE identified sentences of interest--those containing a polymer name or 

abbreviation, a temperature and a glass transition mention, we compared the output results to 

the same document corpora that was labeled by human experts (the initial gold standard) [21]. 

The state-of-the-art tool’s ability to label sentences of interest was also compared to the ELSIE’s 

performance in labeling sentences. 

 

An important note about our initial gold standard dataset and the state-of-the-art tool’s dataset is 

that the intention of both was to extract polymer entities and their glass transition temperatures, 

which differs from the current intention of ELSIE’s which aims to label sentences containing 

three entities: a polymer name or abbreviation, a temperature and a glass transition mention. 

The motivation behind our approach is that scientific entities and relations in target sentences 

can be too complex to exclusively be automatically extracted and may require additional human 

attention as illustrated in this section. To align the initial gold standard and the state-of-the-art 

tool-labeled data with ELSIE-labeled data, metadata about sentences and polymer-Tg pairs 

extracted by experts and CDE was used to automatically label sentences in the documents they 

were extracted from. Data correctly extracted by the state-of-the-art tool was previously 



validated by experts as well [21]. If the state-of-the-art tool extracted a polymer-Tg pair correctly, 

the sentence(s) from which the information was obtained by the state-of-the-art tool were 

labeled as 1; if the state-of-the-art tool extracted an incorrect polymer-Tg pair (i.e. an incorrect 

polymer was paired with a Tg temperature), sentences containing the correct polymer name or 

abbreviation and the Tg mention were both labeled as 0 [21]. Sentences identified by the human 

experts which contained polymer-Tg pairs were labeled as 1. If a polymer-Tg mention existed in 

the corpora, and the human experts and/or the state-of-the-art tool did not extract the pair, 

sentences were labeled as 0. 

4.2 Updated Gold Standard Labels 

After running ELSIE on our unlabeled dataset, we discovered that there were sentences not 

labeled as TRUE in the initial gold standard dataset that should have been labeled as TRUE 

(i.e. they contained a polymer name or abbreviation, a temperature and a glass transition 

mention but were not labeled as TRUE). We considered these to be false “false positives” from 

the initial gold standard dataset in that they were TRUE sentences that were missed by human 

experts. Further details of these sentences is provided later in section 4.3, but as a result of 

these findings, the dataset was updated to reflect the corrected label of TRUE to these 

previously “missed” sentences, and it is this updated dataset--the gold standard--to which the 

state-of-the-art tool and ELSIE are compared. 

4.3 Results 

The final document corpora contained 9,518 sentences (data points), representing 31 unique 

scientific journal articles. Overall, the state-of-the-art tool labeled 15 sentences as positive 

cases, ELSIE labeled 67 sentences as positive cases, and the human expert identified 49 

sentences as positive cases. The gold standard dataset contained 64 positive cases. 

 

Positive cases represent less than 1% of the data, illustrating the highly unbalanced nature of 

the dataset, and therefore the accuracy of comparing the performance of the state-of-the-art tool 

and ELSIE to the gold standard does not convey the entire story of each application's 

performance. Precision and recall results, along with accuracy and F1-scores, are presented in 

Table 4. 

 

Table 4. Performance Compared to the Gold Standard 

 Gold Standard Human Experts 
State-of-the-Art 

Tool 
ELSIE 

Total Cases 9,518 

Total Positive Cases 64 49 15 67 

Accuracy  99.84% 99.49% 99.88% 

Precision  100% 100% 90% 



Recall  77% 23% 94% 

F1 score  0.87 0.38 0.92 

 
The analyses were run on a personal laptop computer using Python 3.6 in Jupyter Notebook. 
The total processing time to process all 9,518 sentences through ELSIE, including Snorkel 
preprocessors, was 0:01:03, compared to the state-of-the-art tool’s processing time which took 
0:26:00 to process 31 documents. 
 

Table 5. Confusion Matrices  

Gold Standard versus State-of-the-Art Tool Gold Standard versus ELSIE 

  Actual    Actual  

  Positive Negative    Positive Negative  

Predict 

Positive 15 0 15 

Predict 

Positive 60 7 67 

Negative 49 9454 9503 Negative 4 9447 9451 

  64 9454    64 9454  

4.4 Analysis 

Comparing the F1 scores of the state-of-the-art’s performance to the gold standard (0.38) 

versus ELSIE’s performance to the gold standard (0.92) shows that ELSIE is better at labeling 

sentences correctly in terms of identify all three entities of interest: a polymer name or 

abbreviation, a temperature and a glass transition mention. There are a number of reasons for 

ELSIE’s superior performance to the state-of-the-art tool which requires a closer look at both 

methods’ precision and recall. 

 

Precision for the state-of-the-art tool was higher than ELSIE’s because ELSIE labeled 

sentences as TRUE when they should not have been labeled as such (i.e. false positives). This 

was because ELSIE was looking for entities within a sentence (even if the entities were not all 

related to one another), whereas the state-of-the-art tool was looking specifically for related 

entities. Overall, the number of sentences labeled by the state-of-the-art tool was much smaller 

(n=15) than ELSIE (n=67), with no sentences considered as false positives with the state-of-the-

art tool, whereas 7 of the 67 labeled sentences by ELSIE were false positives. An example of a 

false positive sentence labeled by ELSIE is shown in Exhibit 1, where polymer name and glass 

transition mention entities were identified in the sentence, but the temperature entity identified in 

the sentence was regarding the polymer’s melting temperature and not the glass transition 

temperature. Though it is a false positive, reporting this sentence may be beneficial in some 



regards because it could contain important metadata either about the three polymer entities of 

interest, or other characteristics of the polymer. 

 

Exhibit 1. False Positive Sentence (Labeled TRUE by ELSIE) 

Sentence 
Gold 

Standard 
Human 
Experts 

State-of-the-
Art Tool 

ELSIE 

Two or three thermal transitions are expected for SEBS: (1) 

a low glass transition temperature (Tg1) corresponding to 

the ethylene-co-butylene block, (2) a high glass transition 

temperature (Tg2) corresponding to the styrene block, and 

(3) a broad endothermic transition at the melting 

temperature (Tm) near 20 °C, depending on the degree of 

crystallinity of the ethylene-co-butylene block. 7 

0 0 0 1 

 

As mentioned above, ELSIE correctly identified TRUE cases that the human experts and the 

state-of-the-art tool had missed (see Exhibit 2). As a result, the gold standard dataset was 

updated to reflect the TRUE cases, and recall for the human experts (77%) was lower than that 

of ELSIE (94%). This illustrates that a high level of attention is required by humans (even 

human experts regarding this subject matter) when reading texts otherwise there is a chance 

that important information can get missed. This finding also highlights ELSIE’s robustness in 

and reliability in labeling scientific [polymer] sentences for training data over human experts and 

state-of-the-art tools aiming to perform the same function. 

 

 

 

 

Exhibit 2. Sentences Missed by Human Experts, Labeled by ELSIE 

Sentence 
Gold 

Standard 
Human 
Experts 

State-of-the-
Art Tool 

ELSIE 

Upon 10 wt % clay loading, the glass transition of the 

PTMO:MDI−BDO PU nanocomposites shifts slightly from 

−44.7 to −46.6 °C.8 

1 0 0 1 

 
7 Extracted from: Mohanty, Angela D., Chang Y. Ryu, Yu Seung Kim, and Chulsung Bae. "Stable Elastomeric Anion 

Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-B-Poly (Ethylene-Co-Butylene)-B-
Polystyrene Triblock Copolymers." Macromolecules 48, no. 19 (2015): 7085-95. 
8 Extracted from: James Korley, LaShanda T, Shawna M Liff, Nitin Kumar, Gareth H McKinley, and Paula T 

Hammond. "Preferential Association of Segment Blocks in Polyurethane Nanocomposites." Macromolecules 39, no. 
20 (2006): 7030-36. 



The functionalized polycarbonate exhibited a lower Tg of 89 

°C compared to its parent (108 °C).9 

1 0 0 1 

 

Because it is more important for this work to capture all true labels and return false positives 

than it is to miss true labels, it is acceptable for precision to be compromised for the sake of 

obtaining high recall. ELSIE’s ability to label sentences missed by state-of-the-art tools and 

human experts demonstrates the power weak learners play in capturing [polymer] entities in 

text. They are able to identify nuances in the data because they are a collection of weak 

learners; nuances are the exception to the rule, and collections of weak learners cater to 

nuances. 

 

The state-of-the-art tool’s recall (23%) is much lower than ELSIE’s recall (94%) because the 

state-of-the-art tool missed labeling more positive cases (n=49) than ELSIE (n=4). Again, given 

that the state-of-the-art tool’s objective was to extract entities and not label sentences, when the 

state-of-the-art tool extracted an incorrect polymer-Tg pair, it was penalized and the sentence 

was not labeled. It is important to note that the state-of-the-art tool would have achieved higher 

recall (88%) had we focused only on rule-based extraction of Tg. However due to the nuances 

in complex sentences and complicated polymer naming, it often linked the Tg to incorrect 

polymer names [21]. 

 

In this work, ELSIE missed labeling sentences where all three entities of interest were not 

contained within a single sentence. This demonstrates how and why the problem of finding 

polymers and their respective glass transition temperatures is hard for computers and easier for 

humans. Exhibit 3 shows an example where the first sentence only contains a polymer entity 

(which should be noted that ELSIE was also able to identify), yet it did not contain a temperature 

nor glass transition entities; the human identified this sentence and received credit. To note, the 

state-of-the-art tool extracted the Tg mention, but paired it to the wrong polymer, and therefore 

did not receive credit. The other two entities are found in the next sentence where the human 

experts also received credit (again, human experts mapped the polymer name to the correct Tg-

mention). Since all three entities were spread among multiple sentences and not contained 

within one sentence, ELSIE was not able to label the sentences as TRUE. 
 

Exhibit 3. True Positive Sentences Missed by LFs 

Sentence 
Gold 

Standard 
Human 
Experts 

State-of-the-
Art Tool 

ELSIE 

The azo-polymer material, poly[4‘-[[2-

(acryloyloxy)ethyl]ethylamino]-4-nitroazobenzene], often 

1 1 0 0 

 
9 Extracted from: Darensbourg, Donald J, Wan-Chun Chung, Andrew D Yeung, and Mireya Luna. "Dramatic 

Behavioral Differences of the Copolymerization Reactions of 1, 4-Cyclohexadiene and 1, 3-Cyclohexadiene Oxides 
with Carbon Dioxide." Macromolecules 48, no. 6 (2015): 1679-87. 



referred to as poly(disperse red 1 acrylate) (hereafter pdr1a), 

was synthesized as previously reported.10 

The prepared material was determined to have a molecular 

weight of 3700 g/mol, and a corresponding Tg in the range 

95−97 °C.11 

1 1 0 0 

4.5 Discussion and Future Work 

An application using Snorkel system functionalities, like its preprocessors and labeling 

functions, was developed to process polymer-related scientific journal articles and identify 

sentences containing polymer entities and their glass transition temperatures. This application, 

ELSIE, specifically looks for three separate and unique entities: polymers, temperatures and 

glass transition mentions. Though this work focuses specifically on polymer-related text and 

entities, the foundations of this work and the concepts of identifying multiple entities (some 

which may have never been seen or tagged in texts) with ELSIE can be used in domains 

reaching far beyond Material Science. 

 

Work concerning polymer sciences is lacking training data in terms of volume and completeness 

compared to other fields where efforts to collect training data have been occurring longer and 

have had greater contributions by experts in the field. Polymer science illustrates an additional 

scientific challenge in that new polymers (or words) are continuously being created (or 

introduced into the vocabulary), and therefore it is almost impossible to completely rely on an 

external source or database to reference all polymers that exist or approximately label data. As 

polymers are created, the information is most often contained in published journal articles which 

can be time-consuming for humans to read and a challenge for computers to keep track of and 

process. As a result, databases containing polymer information are often out-of-date, expensive 

to maintain, and incomplete. Though state-of-the-art computer technologies used to extract 

polymer-related information from text exist, these systems often rely on coding extensive rules 

to extract polymer information from text and have been shown to be inaccurate at times. 

Therefore, a more reliable and efficient computer-assisted application that is able to identify 

polymer information from texts without needing a priori knowledge has been created to fill this 

gap. 

 

This work focuses on identifying entities which are not known a priori to text processing instead 

of looking for a relationship-type word which relates two or more known entities together (i.e. 

oxidized, married, friend). A sentence will only receive a label of TRUE if it contains all three 

entities of interest. The purpose for this restriction is to imply a relationship (in that the distance 

of the words are proximal given that each entity is found in the same sentence) without having 

 
10 Extracted from: Yager, Kevin G, and Christopher J Barrett. "Photomechanical Surface Patterning in Azo-Polymer 

Materials." Macromolecules 39, no. 26 (2006): 9320-26. 
11 Extracted from: Yager, Kevin G, and Christopher J Barrett. "Photomechanical Surface Patterning in Azo-Polymer 

Materials." Macromolecules 39, no. 26 (2006): 9320-26. 



to look for a word or words defining a relationship between the three entities. To determine a 

glass transition temperature of a polymer, the polymer, a temperature and something implying 

the temperature is a glass transition all need to be present within a single sentence. To 

concretely relate all three entities together is more complicated since there are many ways to 

imply a relation among the three entities, and beyond the scope of this paper. Future work will 

need to iterate over and process the data multiple times to 1) identify and isolate sentences of 

interest and their surrounding sentences, and 2) extract polymer entities and their properties 

from the isolated sentence population. This work has already begun, and we are currently able 

to show that polymer entity extraction from these isolated sentences is possible. This is 

supported by the fact that Snorkel LFs used in this work are grouped together to target and 

identify mutually exclusive entities. The identification of these entities by Snorkel LFs therefore 

begets entity extraction. 

 

With regards to 1) of future work, not only are the sentences of interest isolated, but 

consideration should be taken to process sentences prior to and preceding the sentence of 

interest. It is known that sentences of interest do not always contain all three entities, but 

instead one sentence could contain a polymer entity and the following sentence(s) might contain 

the polymer’s glass transition temperature. As seen earlier, ELSIE struggled with identifying 

these sentences because the majority ensemble labeler restricted the criteria which stated a 

sentence will only get labeled TRUE if it contains all three entities. Therefore, when working on 

polymer entity extraction, additional sentences, aside from those containing the three entities of 

interest, will need to be considered. 

 

Along with entity extraction, isolating all sentences of interest plus their surrounding sentences 

allows for more robust information extraction such as pointing out information of interest so that 

a human does not have to read the entire article or highlighting sentences that might otherwise 

be missed within the text. It is also possible that these sentences contain valuable metadata the  

human needs. For instance, extracted as opposed to approximate Tg values require additional 

contextual information such as the molecular mass. Also, understanding the rules for entity 

identification can potentially assist or guide authors in writing text in a way that is easier or more 

obvious for a computer to parse out the entities of interest.  

 

This work has also shown that state-of-the-art systems and human experts are still susceptible 

to missing sentences containing polymer information. Using Snorkel LFs in ELSIE allows for 

nuances and multiple types of complexities to exist in a sentence and is still able to accurately 

identify sentences of interest. One reason nuanced and complex sentences are missed by 

humans and computers is because they can contain multiple polymers, or the polymer and/or 

their properties are referenced as something other than their name or abbreviation (i.e. Tg1, 

Tg2). Also, human experts are still human, and there is always a real possibility that they can 

miss information. If a computer application can reliably process polymer texts and not suffer 

from fatigue or attention-loss, and do so at faster speeds, then it is well worth the effort and 

investment in these systems. 



5 Conclusion 

An application using Snorkel system functionalities, including its preprocessors and labeling 

functions, was developed to process polymer-related scientific journal articles and identify 

sentences containing polymer entities and their glass transition temperatures. The Snorkel LFs 

and majority ensemble labeler to create ELSIE used in this work represent a collection of simple 

and easy to understand programmed rules that are able to handle nuances in the data to 

distinguish entities of interest between tokens not representing an entity of interest. 

 

The application’s Snorkel LFs are able to identify entities without a priori knowledge of the 

entities, which is particularly useful when dealing with polymers given that external data sources 

are often incomplete and out-of-date. Additional functionality was built to only label sentences 

which met the criteria of containing all three entities of interest. 

 

Our application had a recall of 94% when compared to the gold standard, though struggled to 

find sentences where three presumably-related entities existed in multiple sentences. However, 

our application found sentences missed by computers and human experts whether due to 

sentences being complicated, such as a sentence that contains multiple polymer-Tg pairs, or 

fatigue/lack of attention paid by human experts. Ultimately, we show that this work is able to 

build robust labeled training datasets, begets the ability to perform entity extraction for polymer 

data, and can ultimately be used to further study extracted entity relationships. 
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