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ABSTRACT

Bidirectional Encoder Representations from Transformers (BERT) [Devlin et al., 2018] has

been shown to be effective at modeling a multitude of datasets across a wide variety

of Natural Language Processing (NLP) tasks; however, little research has been done re-

garding BERT’s effectiveness at modeling domain-specific datasets. Specifically, scientific

and medical datasets present a particularly difficult challenge in NLP, as these types of

corpora are often rife with technical jargon that is largely absent from the canonical cor-

pora that BERT and other transfer learning models were originally trained on. This thesis

is a Systematic Literature Review (SLR) of twenty-seven studies that were selected to

address the various methods of implementation when applying BERT to scientific and

medical datasets. These studies show that despite the datasets’ esoteric subject matter,

BERT can be effective at a wide range of tasks when applied to domain-specific datasets.

Furthermore, these studies show that the addition of domain-specific pretraining, ei-

ther through additional pretraining or the utilization of domain-specific BERT derivatives

such as BioBERT [Lee et al., 2019], can further augment BERT’s performance on scientific

and medical texts.
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CHAPTER 1

INTRODUCTION

With the advent of contextual word embeddings, transfer learning has be-

come the status quo for modeling many NLP tasks. Like Computer Vi-

sion’s ImageNet [Deng et al., 2009], models such as ELMo (Embeddings from Lan-

guage Models) [Peters et al., 2018], ULMFiT (Universal Language Model Fine-Tuning)

[Howard and Ruder, 2018], GPT-3 (Generative Pre-trained Transformer) [Brown et al., 2020],

and BERT allow users to leverage pretrained networks and fine-tune them toward a

downstream task. BERT, specifically, achieved state-of-the-art (SOTA) results on eleven

NLP tasks when it was first released in October 2018 [Devlin et al., 2018]. Although

largely considered to be robust to variations in subject matter across datasets, fine-tuning

BERT on documents whose terms are largely under-represented (or absent) from BERT’s

training corpora (Wikipedia (en.wikipedia.org) and BookCorpus [Zhu et al., 2015]) of-

ten yields results that leave considerable room for improvement [Peng et al., 2019]

[Alsentzer et al., 2019]. As such, additional measures must often be taken to adapt BERT

to domain-specific datasets.

For the purposes of this thesis, the term “domain-specific” refers to datasets whose

subject matter is homogeneous. A corpus of medical diagnoses, for example, would be

domain-specific, whereas a corpus of tweets would not typically be considered domain-

specific due to the potentially variegated subject matter. The focus of this thesis is to an-

alyze and evaluate current approaches to modeling domain-specific datasets with BERT

in the realms of science and medicine and to compare the efficacies of the various ap-

proaches. Twenty-seven relevant studies were gathered via SLR. The results of each study

were evaluated based on task, model type (i.e., the specific method of BERT implementa-

tion), and dataset language.
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This review is meant to inform readers of the most effective methodologies of applying

BERT to scientific and medical texts across a variety of tasks and languages. The methods

herein are worth considering for any researcher aiming to model a dataset whose terms

are largely absent in the vocabularies of more general language models. Furthermore, a

strong language model (such as BERT) can go a long way in improving performance on

esoteric datasets relative to other deep learning approaches. By experimenting with BERT

and the methods described in this thesis, one has a reasonable expectation of augmenting

his or her performance on tasks conducted on scientific and medical data.

1.1 Background

BERT is a novel architecture that performs a wide variety of NLP tasks. Due to the

newness of the model, its current body of research is limited. This study seeks to an-

swer questions pertaining to BERT and its performance that have so far been largely

absent from the current body of BERT-related works. Most of the current research as-

sesses BERT’s efficacy at modeling datasets whose subject matter is in the general do-

main, and little research has been done with regard to how effective BERT is when ap-

plied to domain-specific data. Domain-specific texts in the fields of law (court reports),

finance (earnings statements), and science (conference proceedings) are examples of texts

currently outside the purview of most BERT-related research. To help remedy this, this

review aims to ascertain whether or not BERT can be as effective on domain-specific data

as it is on data in the general domain.

The reason that a domain-specific review is needed, as opposed to a review of

all BERT-related research, is that the current body of BERT-related research is mostly

limited to datasets whose vocabularies are similar to that of BERT. Most of the ma-

jor benchmarks that BERT is measured against are comprised of datasets whose
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instances were generated from the same (or similar) corpora that BERT was ini-

tially trained on. Examples of these benchmarks include SQuAD (Stanford Ques-

tion Answering Dataset) [Rajpurkar et al., 2016], GLUE (General Language Under-

standing Evaluation) [Wang et al., 2018], MultiNLI (Multi-Genre Natural Language

Inference) [Williams et al., 2018], and SNLI (Stanford Natural Language Inference)

[Bowman et al., 2015]. While researchers agree that BERT has been an impactful architec-

ture, no one has yet undertaken a survey with the goal of determining BERT’s robustness

to datasets whose vocabularies differ significantly from that of its own training corpora.

Therefore, it is the goal of this review to determine whether or not BERT is as effective at

modeling esoteric texts as it is at modeling canonical ones.

In the limited body of domain-specific BERT research, some domain-specific BERT-

derivatives have emerged in the realms of science and medicine. While these models

have been shown to be effective when applied to datasets within their respective studies,

no research has evaluated the efficacies of these domain-specific models relative to “stan-

dard” BERT (i.e., a base BERT model that has not undergone domain-specific pretrain-

ing) across a wide range of tasks and datasets. This review seeks to obtain an “apples-

to-apples” comparison of standard BERT’s performance relative to that of some of its

domain-specific counterparts across a multitude of tasks and datasets.

Furthermore, little research has been conducted with the goal of specifically identify-

ing the problems encountered when applying BERT (and its domain-specific derivatives)

to domain-specific datasets. As such, this review will also address the most prevalent

issues encountered by researchers when applying BERT to scientific and medical texts.

Lastly, BERT’s performance on non-English scientific and medical datasets will also be

evaluated, as this has similarly not been explored in current research.

Overall, this review seeks to obtain a comprehensive determination as to whether

BERT can be effective at modeling datasets that are outside the general domain. If BERT is

3



shown to be able to be successfully adapted for scientific and medical datasets, it is possi-

ble that BERT could similarly be adapted to other non-general domains as well. Further-

more, identifying effective methods of applying BERT to scientific and medical datasets,

as well as identifying the problems BERT encounters while being applied to datasets in

these domains, will provide a basis from which to conduct further research.

1.2 Research Questions

The research questions (RQs) for this SLR were formulated based on this review’s

objective of evaluating the current BERT implementations for scientific and medical

datasets. Because BERT is a novel architecture, there is a limited amount of research

regarding BERT’s specific adaptation to datasets whose data are similar in subject mat-

ter. The domains of science and medicine were chosen because these fields contain the

largest number of usable, domain-specific studies. This thesis seeks to answer the follow-

ing questions:

• RQ1: How does the performance of BERT-based approaches for modeling scientific and med-

ical datasets compare to the performances of other approaches?

• RQ2: How does BERT’s performance on scientific and medical datasets compare to further

pretrained, domain-specific BERT derivatives (e.g. BioBERT and SciBERT)?

• RQ3: What types of problems does BERT encounter when presented with scientific and

medical datasets?

• RQ4: How well does BERT perform on scientific and medical datasets that are in languages

other than English?

The following chapter will discuss the current body of research pertinent to answering
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these questions. Additionally, the research questions are accompanied by corresponding

hypotheses and justifications that can be found in Chapter 3.
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CHAPTER 2

RELATED WORK

This section denotes the origins of BERT and the previous approaches for modeling

datasets in NLP. Additionally, the advent of transfer learning in NLP is discussed, as is

BERT’s architecture and the current (literature) reviews that evaluate BERT’s application

to domain-specific datasets.

2.1 Origins

The following subsections discuss the origins of BERT, the influential technologies that

comprise it, and the impact BERT has had on NLP research.

2.1.1 Deep Learning, LSTM (Long Short-Term Memory), and ELMo

Prior to 2018, most SOTA NLP benchmarks used deep learning models, particularly

Recurrent Neural Networks (RNN). Considering how important word order is when de-

termining the meaning of a sentence, RNNs appeared particularly well-suited for NLP.

RNNs are designed to account for sequence order, as the hidden state at any time-step

is dependent upon the hidden-states of all of the previous time-steps. Conversely, Stan-

dard feed-forward networks are blind to previous states and can only “feed forward.”

While RNNs are effective at many NLP tasks, they pose multiple problems. RNNs’ se-

quential nature generally precludes them from working in parallel. As a result, training

can become very computationally expensive, especially with long sequences of words.

Additionally, long-term dependencies tend to get lost, as the model “forgets” what it pre-

viously learned (especially in the earliest parts of the sequence) as the gradients either

explode or vanish [Hochreiter and Schmidhuber, 1997].
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The LSTM [Hochreiter and Schmidhuber, 1997] architecture was developed, at

least in part, to remedy the issue of vanishing and exploding gradients. Orig-

inally developed in 1997 as a gap-insensitive alternative to traditional RNNs

[Hochreiter and Schmidhuber, 1997], LSTMs gained prominence in NLP due in large part

to their effective handling of long-term dependencies. Google’s Neural Machine Transla-

tion system [Wu et al., 2016], for example, consists of a network of LSTMs. LSTM’s are a

specific type of RNN where each time-step’s hidden state is replaced by a “memory cell.”

Each LSTM unit is comprised of a memory cell and a series of gates:

A multiplicative input gate unit is introduced to protect the memory contents stored in [the

unit] from perturbation by irrelevant inputs. Likewise, a multiplicative output gate unit

is introduced which protects other units from perturbation by currently irrelevant memory

contents stored in [the unit]. [Hochreiter and Schmidhuber, 1997]

From these gates, the memory cell is able to discern what information it should re-

member and what information it can forget, making LSTMs better-capable of maintain-

ing long-term dependencies in sequences than traditional RNNs. There have since been

additions and variations to the original LSTM model, such as the addition of a “forget”

gate [Gers et al., 2000] (which enables an LSTM to reset its own state), and the creation of

the Gated Recurrent Unit (GRU) [Cho et al., 2014].

The bidirectional LSTM (BiLSTM) was by far the most prolific LSTM architecture

found in the studies selected for inclusion in this review. The BiLSTM is simply the con-

catenation of two independent LSTMs. One LSTM reads the input sequence from front to

back, while the second LSTM reads the input sequence from back to front. An encoded

vector is then formed by the concatenation of both outputs.

ELMo is a language model that was developed by researchers at the Allen Insti-

tute of Artificial Intelligence by training a BiLSTM model on a billion-word corpus
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[Chelba et al., 2013][Peters et al., 2018]. ELMo is considered the first deep, contextualized,

and bidirectional language model. ELMo’s bidirectionality allows it to contextualize its

vector representations in a manner that largely mitigates the issue of polysemy in NLP.

For instance, the word “club” has different vector representations in the phrases “I am a

member of the club” and “he was struck by a club.” Additionally, ELMo is able to better

handle “out-of-vocabulary” (OOV) terms better than previous models, as ELMo’s vector

representations are character-based as opposed to word-based. This allows the model to

represent inscrutable words as a representation of its most frequently occurring character

combinations.

ELMo proved it was possible to leverage a pretrained model and fine-tune it toward

a downstream task, similar to Computer Vision’s ImageNet. When ELMo was pub-

lished in early 2018, it set a new SOTA for six NLP tasks including SQuAD and SNLI

[Peters et al., 2018]. This was a significant breakthrough, as previous SOTAs were mostly

achieved via deep learning (as opposed to transfer learning). ELMo was the first model to

demonstrate the potential of transfer learning to perform as well as (or outperform) deep

learning in NLP.

2.1.2 Encoder-Decoder, Attention, Self-Attention and Transformer

Prior to transformers, the encoder-decoder RNN was the preferred architecture for

modeling sequence-to-sequence tasks, especially the task of Machine Translation. The en-

coder would transform an input sequence from one language into a vector representation.

The vector was then fed into the decoder, which would transform it back into an output

sequence in a different language [Sutskever et al., 2014]. This was an important innova-

tion in Machine Translation, as sequences rarely align in a one-to-one fashion. Consider

the French phrase “il va faire chaud,” which means “it is going to be hot” in English. The

French sequence has four words, while the English equivalent has six words. A one-to-
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one alignment is not possible as the input and output are different lengths. The encoder-

decoder architecture mitigates this problem by using an RNN to encode the French input

into a vector and then uses another RNN to decode the vector and produce an output in

English [Sutskever et al., 2014].

Largely adopted for the task of Machine Translation, the attention mechanism was

an improvement to the original encoder-decoder architecture. The attention mechanism

computes a weight vector that specifies how much “attention” should be paid to each of

the other embeddings in the input at each time-step of the output. The output then uses

these attention weights to determine which words in the input are most important when

determining the correct word to generate in the output. Figure 2.1 shows an example of an

attention mechanism during a Machine Translation task. One can see at each time-step

in the output (English) where the most attention is being paid to in the input (French).

Unsurprisingly, the most attention is paid (in this case) to the output’s corresponding

French equivalent in the input, represented by the diagonal white squares.

Figure 2.1: Attention During Example Machine Translation Task
(machinelearningmastery.com)
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Unlike the traditional attention mechanism, which communicates attention weights

across layers, self-attention is only concerned with activations in the same layer in which

the attention is being applied. While attention mechanisms are often used to transfer

information from an encoder to a decoder, self-attention is only applied within a single

layer. Self-attention is good at modeling dependencies between different parts of the same

sequence, as opposed to the dependencies between two different sequences.

Transformers utilize self-attention for dependency modeling. Figure 2.2 illustrates a

Transformer layer’s self-attention mechanism. In this case (that of BERT), one can see

that there is no output, only input. This is because self-attention is only concerned with

within-sequence attention weights for the purposes of encoding. This example illustrates

the words being attended to by the word “it.”

Figure 2.2: Self-Attention of a Transformer Layer
(jalammar.github.io/illustrated-transformer)

Transformers eschew recurrence and convolution altogether and rely solely on self-

attention to formulate dependencies [Vaswani et al., 2017]. Transformers consist of six
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encoders and six decoders. Each encoder has two layers: a self-attention layer and a

feed-forward neural network layer. Each decoder consists of three layers: a self-attention

layer, an attention layer for the encodings, and a feed-forward neural network layer

[Vaswani et al., 2017]. The encoder generates encodings that indicate the relevant parts

of the input (where the attention should be paid), and the decoder takes these encodings

and uses them to generate an output.

The Transformer’s ability to facilitate training in parallel by forgoing recurrence in

favor of self-attention enabled pretrained models like BERT to be generated from the un-

supervised training of massive corpora.

2.1.3 Issues With Previous Approaches

Prior to the advent of the Transformer, previous NLP approaches encountered a wide

range of issues. Deep learning was the method of choice for many NLP tasks (usually via

RNN); as a result, many NLP tasks were subject to the same difficulties encountered when

applying deep learning to non-NLP tasks. Deep learning requires a massive amount of

both data and computational power. As such, training deep neural networks is not al-

ways practical. In many instances, SOTA GPUs cost thousands of dollars and still take

days to train large corpora. Additionally, many datasets are comprised of only a few

thousand instances and are therefore less-than-ideal candidates to effectively train deep

learning models. RNNs, specifically, are also prone to vanishing and exploding gradi-

ents due to their deep and sequential nature [Hochreiter and Schmidhuber, 1997]. LSTMs

were developed to combat the exploding and vanishing gradient problem encountered by

traditional RNNs and to preserve semantic dependencies across large sequences of text

[Hochreiter and Schmidhuber, 1997]. While this was an improvement over the base RNN

model, it was far from a panacea. LSTMs are still RNNs, and as such operate sequentially.

11



This makes them very difficult (if not impossible) to parallelize, which in turn precludes

the training of large amounts of data in a reasonable amount of time—something that is

absolutely necessary when generating effective transfer learning models in NLP.

Another problem was related to word embeddings. Algorithms like GloVe

[Pennington et al., 2014], for example, do not handle OOV words gracefully, nor does

GloVe have the ability to distinguish between homonyms: all instances of the word “club”

have the same vector representation, regardless of context. Furthermore, many of the

previous methods of generating word embeddings do not offer contextualization, as they

are based on the frequency of the words’ appearances (or co-occurrences) instead of the

words’ relative positional encodings. Poor word representation in the vector-space pre-

cluded transfer learning from being a viable alternative to deep learning until ELMo.

2.2 Transfer Learning

Transfer learning is the process of using knowledge gained from one task and apply-

ing it to other related tasks (towardsdatascience.com), allowing one to leverage pretrained

models as opposed to training a model from scratch. This provides a salient alternative

to deep learning, as transfer learning does not require the massive amounts of data and

computation required by deep learning once the pretrained model is fully trained. A fully

pretrained transfer learning model can be applied to a smaller dataset that would have

otherwise been intractable with deep learning approaches. A transfer learning model can

be fine-tuned for a specific task with a minimal amount of additional training and at a

fraction of the computational cost of deep learning, thus solving many of the aforemen-

tioned issues that plague deep learning.

Transfer learning has had a tremendous impact on the field of Computer Vision in
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particular. In its original publication, ImageNet was a database consisting of roughly 3.2

million hand-annotated images across (over) five thousand classes [Deng et al., 2009] (al-

though most models are trained on a distilled version consisting of one thousand classes).

Today, the ImageNet database boasts a collection of roughly 14.2 million images across ap-

proximately 22,000 classes (image-net.org). ImageNet’s power lies in its size: any Com-

puter Vision algorithm has the opportunity to train on ImageNet’s extensive database

before being used to model a downstream task. The weights generated by pretraining on

ImageNet are, as a result, able to serve as a platform from which to build off of when mod-

eling the downstream task. This is often done by simply adding an additional layer (of

classification, for example) on top of the pretrained model. Transfer learning is currently

the status quo for modeling many Computer Vision tasks such as image recognition and

image captioning.

The same approach can be taken to model datasets in NLP, as most of the computa-

tion power expended in deep NLP is used to gain an understanding of the underlying lan-

guage. Considering that within-language tasks are all predicated on the same lexicon and

semantic relationships (i.e., language), a pretrained English model, for example, should

be able to be leveraged and fine-tuned for any task in English. However, until recently,

this simply was not possible, as there did not exist a language model whose embeddings

were well-represented enough in the vector-space to usurp previous deep learning ap-

proaches. It was not until ELMo’s deep, bidirectional, and contextual encodings that

transfer learning’s efficacy was able to match deep learning’s in NLP. Since ELMo’s pub-

lication, other language models such as BERT, ULMFiT, and GPT-3 have been published

and shown to outperform many of the deep learning approaches that previously set the

SOTA on a variety of NLP tasks. Today, transfer learning is (nearly) as ubiquitous in NLP

as it is in Computer Vision.
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2.3 BERT

This section takes a deeper dive into the BERT model, examining its architecture and

core components. Training, current advances, and issues that currently surround the

model are also explored.

2.3.1 WordPiece Embeddings

Adopted from the Byte Pair Encoding (BPE) algorithm [Gage, 1994] originally created

for data compression, BERT uses WordPiece tokenization [Schuster and Nakajima, 2012]

to generate its 30,000-word vocabulary [Devlin et al., 2018]. These tokens consist of

words, subwords, and characters. WordPiece tokenization allows for a much better han-

dling of OOV words, as WordPiece tokenization allows obscure, OOV terms to be iden-

tified by the combination of their subword components [Schuster and Nakajima, 2012].

Subwords that are not prefixes are identified with ’##’ before the token, which can be

seen in Figure 2.3. In the figure, the word anachronism (something out of place in time),

for example, is broken down and represented by BERT as a combination of subwords

instead of being labeled as OOV. The figure shows a real-world example of how BERT to-

kenizes the word “anachronism.” Being able to avoid the use of OOV tokens is imperative

when modeling texts largely composed of uncommon words and phrases.

2.3.2 Architecture

Previous RNN models were trained in one direction, either front-to-back or vice versa.

BERT was born out of the desire for bidirectional contextualization in pretrained language

models. In a sentence, words generate their contextual significance from the words that
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Figure 2.3: BERT’s Tokenized Representation of the Word “anachronism”

both precede and succeed them. As such, unidirectional models are prone to inaccu-

rate contextualizations—especially with polysemic words. Consider the phrase “Ernie

went down to the bank...” If that phrase ends with “to go fishing,” the word “bank”

will have a different meaning (and therefore different embedding) than if the phrase

ends with “to make a withdrawal.” A unidirectional model would be unable to make

this distinction (reading the text from front to back). Therefore, it is important that lan-

guage models are able to contextualize bidirectionally. While ELMo achieved pseudo-

bidirectionality by training in each direction and then concatenating the results, BERT

was the first model to achieve true birdirectionality via the inclusion of Transformers in

its architecture [Devlin et al., 2018].

BERT was released with two versions: BERT-base and BERT-large, and each has a

cased and uncased iteration (there is also a Chinese BERT for Chinese and a Multilingual

BERT that was originally trained on 102 different languages). BERT-base has twelve lay-

ers (Transformer blocks), each with twelve self-attention heads and 768 hidden neurons.

BERT-base consists of approximately 110 million parameters: approximately 24 million

from the embeddings, 85 million from the transformers, and one million from the pooler

(BERT-large, comparatively, has roughly 340 million parameters) [Devlin et al., 2018]. Al-

though not specifically stated, it is inferred that [Devlin et al., 2018] opted for the above

parameters based on an ideal trade-off between model performance and memory require-
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ments. BERT-large is over three times as large, but it has not been shown to outperform

BERT-base by an equally significant margin. BERT-base’s architecture can be seen in Fig-

ure 2.4, where twelve encoders are stacked sequentially. Each encoder is a transformer

with its own attention heads. It is also important to note that only the encoder portion

of the transformer (shown) is included in BERT’s architecture, as BERT is not a genera-

tive model and does not implement a decoder. Figure 2.5 from the original BERT paper

illustrates BERT’s architecture compared to its peers GPT and ELMo. One can see by

the arrows that BERT is the only truly bidirectional architecture. GPT is unidirectional

(front-to-back), and ELMo achieves pseudo-bidirectionality by concatenating two sepa-

rate, unidirectional LSTMs.

Figure 2.4: BERT’s Architecture.
[Vaswani et al., 2017]
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Figure 2.5: Comparison of BERT’s Architecture to GPT and ELMo
[Devlin et al., 2018]

2.3.3 Training

BERT was originally trained via multitask, unsupervised learning on Wikipedia and

BookCorpus. Wikipedia consists of over 2.5 billion words [Devlin et al., 2018], and Book-

Corpus consists of nearly one billion words [Zhu et al., 2015]. [Devlin et al., 2018] em-

ployed two different methods during pretraining: masked language modeling (MLM)

and next sentence prediction (NSP). MLM is the process of randomly omitting a word

(or words) from a sentence and training the model to predict the missing words based

on context. NSP jointly trains text-pairs by inputting two sentences and then training the

model to discern whether or not the second sentence is a valid continuation of the first

[Devlin et al., 2018]. MLM was done with a masking rate of 15%, and NSP was done with

the correct sentence being present 50% of the time. The model was trained with a batch

size of 256 sequences * 512 tokens per sequence. Training was done over one million

steps, which equates to roughly forty epochs over 3.5 billion words. Training took four

days to complete on four cloud TPUs (sixteen TPU chips) [Devlin et al., 2018].

The pretraining diagram from the original BERT paper can be seen in Figure 2.6. Dur-

ing pretraining, each training instance is comprised of a pair of sentences. During the

MLM task, 15% of the words in each sentence are masked with either a “[MASK]” token

(80% of the time) or a random token (10% of the time). For the remaining 10%, the token

selected for masking remains unchanged. The addition of the random and unchanged
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tokens is done to mitigate the fact that the “[MASK]” token does not actually appear dur-

ing the fine-tuning process [Devlin et al., 2018]. After the tokens are masked, the model

then tries to discern the missing words. During the NSP task, the model looks at both

sentences and decides whether or not the second sentence is a valid continuation of the

first. The “[CLS]” token indicates the start of the input sequence, and “[SEP]” indicates

the separation of the first and second sentences.

Figure 2.6: Pretraining BERT [Devlin et al., 2018]

2.3.4 Advances

BERT was designed as a pretrained model that could be fine-tuned for any Natu-

ral Language Understanding (NLU) task with a minimal amount of additional training.
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When BERT was released in October 2018, it obtained a new SOTA on eleven separate

NLP benchmarks including GLUE [Wang et al., 2018], MultiNLI [Williams et al., 2018],

SQuAD 1.1, and SQuAD 2.2 [Rajpurkar et al., 2016]. This was significant, as it was the

first time that a task-agnostic pretrained model was able to outperform its deep-learning

peers on such a wide array of tasks. Furthermore, it led further credence to the idea

that transfer learning models could supplant deep learning ones. As a result, trans-

fer learning has emerged as the method of choice for modeling several different NLP

tasks. The fine-tuning diagram from the original BERT paper is depicted in Figure 2.7.

[Devlin et al., 2018] recommend fine-tuning BERT for two, three, or four epochs; in batch

sizes of either sixteen or thirty-two; and with a learning rate of either 5e-5, 3e-5, or 2e-5

[Devlin et al., 2018]. The figure demonstrates that the same BERT model is being used to

model three different tasks. In the SQuAD example, the BERT model takes two sentences

as the input: a question and a block of Wikipedia text. The model searches the Wikipedia

passage to find the correct sequence of words that answers the posed question. If the

passage cannot answer the question, the model labels the instance as unanswerable.

Fine-tuning BERT has become a popular approach for modeling many downstream

tasks such as Named Entity Recognition (NER), question answering, sentiment analysis,

relation extraction, intent classification, coreference resolution, and many more. Google

has even started incorporating BERT in its search engine (blog.google.com). Many bench-

marks continue to experience new SOTA results with BERT and transfer learning.

Additionally, BERT has since evolved into further pretrained, domain-specific models

that are designed for application toward specific subject matter. BioBERT [Lee et al., 2019]

and SciBERT [Beltagy et al., 2019], for example, were further pretrained with clinical and

medical corpora to give BERT a better understanding of scientific and medical termi-

nology (SciBERT also released an additional domain-specific model trained from scratch

[Beltagy et al., 2019]). Many of the words that pervade scientific and medical corpora are
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Figure 2.7: Fine-Tuning BERT [Devlin et al., 2018]

technical terms and not likely to be well-represented in canonical texts such as Wikipedia

or BookCorpus. This additional pretraining allows BERT to improve the contextual vec-

torization of terms that it was previously unfamiliar with.

BioBERT was further pretrained with PubMed (a corpus of thirty million citations and

abstracts of biomedical literature) (pubmed.ncbi.nlm.nih.gov) and PMC (a corpus of 6.5

million full-text biomedical and life sciences journal articles) (ncbi.nlm.nih.gov), while

SciBERT was further pretrained with a random sample of 1.14 million papers from Se-

mantic Scholar (semanticscholar.org). While BioBERT chose to utilize BERT’s lexicon,

SciBERT opted to create its own vocabulary (called SciVocab) based on the most fre-

quently occurring words and subwords in scientific research papers. The overlap be-

tween BERT’s vocabulary and SciVocab is only about 40%, illustrating the drastic differ-

ence in the frequency of words in scientific versus canonical corpora [Beltagy et al., 2019].

As a result, scientific terms need to be tokenized by subword components more often in

BioBERT than in SciBERT. WordPiece tokenization, the process by which BERT tokenizes

20

http://pubmed.ncbi.nlm.nih.gov/
http://ncbi.nlm.nih.gov/pmc
http://www.semanticscholar.org


words that are OOV, is illustrated in Figure 2.3. The performance of these domain-specific

BERT derivatives versus standard BERT is one of the concerns of this thesis and is subse-

quently addressed in RQ3.

2.3.5 Issues With BERT

While BERT is well-suited for many NLP tasks, it is not without its limitations. BERT

is a series of encoders and is not a generative model. As such, it cannot be used as-is for

Natural Language Generation. Furthermore, BERT’s input is limited to sequences of 512

tokens (or fewer) comprising one or two sentences [Devlin et al., 2018], making long-term

relationships between words difficult to identify. This was by design, as the self-attention

mechanism in the Transformer architecture is specifically designed to only consider in-

sequence embeddings when calculating attention weights; still, it is worth noting that it

can serve as a limitation when using BERT to discern long-distance relationships across

multiple sentences or pages.

Memory can also be an issue. Even with the 512-token input limit, I regularly encoun-

tered out-of-memory (OOM) issues on the dedicated Nvidia Tesla K80 GPU provided by

Colab when using batch sizes higher than six with BERT-base. It was not until the in-

put maximum was reduced to 128 tokens that the OOM issues completely subsided and

batch sizes of sixteen or thirty-two were able to be used without concern for memory.

Lastly, BERT is still subject to many of the same issues that torment other deep learning

approaches. Sparsely populated and imbalanced datasets, in particular, can be difficult

to apply BERT to in a meaningful and effective manner.
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2.4 Other Literature Reviews

To the best of my knowledge, there are currently no SLRs specific to BERT implemen-

tations on domain-specific datasets. The queries “allintitle: bert review” and “allintitle:

bert survey” were posed to Google Scholar. The searches yielded a total of twelve results

published in or after 2018 (the year BERT was published), five of which were specific to

BERT. No BERT-related results were SLRs. An additional Google (full search engine, not

just Scholar) search was conducted to see if there were any outlying reviews. Multiple re-

views containing BERT were found; however, nearly all these reviews concerned BERT’s

performance relative to its peers (primarily ELMo and GPT-2). Like Scholar, Google did

not yield any SLRs addressing domain-specific adaptation with BERT.

Although transfer learning is pervasive in NLP, BERT is a relatively new technology

and was only made public in 2018. While BERT has enjoyed a wide adaptation across

many NLP tasks, little research has been done on BERT’s efficacy on specific domains

and whether the base model can be improved upon for application toward specific sub-

ject matter. Specific domains often contain obscure words and phrases that are not preva-

lent in Wikipedia or BookCorpus, and as such are not likely to be well-represented in

BERT’s vector-space. BERT has been shown to generalize very well across task and sub-

ject matter [Devlin et al., 2018], but further research needs to be done to evaluate BERT’s

performance on domain-specific data. The purpose of this literature review is to evaluate

the most effective practices of modeling domain-specific scientific and medical datasets

with BERT.
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CHAPTER 3

METHOD

The SLR protocol for this review is primarily based on the guidelines set

forth by [Kitchenham, 2004]. Other sources such as [Heckman and Williams, 2011],

[Otter et al., 2019], [Kitchenham et al., 2009], [Hughes, 2019], and [VanLehn, 2011] were

also utilized. This section presents the SLR protocol, which includes hypotheses, search

strategy, study selection, and data synthesis.

3.1 Hypotheses

Each research question (except RQ3) is accompanied by a corresponding hypothesis

and justification. The hypotheses are listed below:

• Hypothesis (RQ1): BERT outperforms other approaches when applied to scientific

and medical datasets.

One of the contributing factors to BERT’s robustness is its use of WordPiece embeddings

in the place of OOV tokens. While WordPiece embeddings may not be as effective as hav-

ing the words themselves present in the underlying model’s vocabulary, they are never-

theless unique representations of otherwise unidentifiable words. Therefore, it is believed

that BERT should be able to outperform other approaches when applied to scientific and

medical datasets just as it has outperformed other models on general-domain datasets.

• Hypothesis (RQ2): Domain-specific pretraining and modeling of BERT outperforms

standard BERT when applied to scientific and medical datasets.
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BERT owes its success to the contextualized word representations in its vector-space.

Considering that many of the terms in scientific and medical datasets are rare in the

canonical texts on which BERT was trained, it stands to reason that BERT’s further pre-

training on domain-specific data would help improve the vector representations of words

that were largely underrepresented during BERT’s initial training. As such, it is pre-

dicted that exposing BERT to scientific and medical corpora before the fine-tuning process

will augment the model’s performance on these same types of datasets. WordPiece em-

beddings allow otherwise-OOV words to have unique representations in BERT’s vector-

space. As such, these embeddings are trainable. While the embedding representations

of OOV terms consist of multiple tokens (subwords), as opposed to a single token, the

fact that these rare words can be vectorized by BERT indicates that they are trainable and

thus able to be better contextualized through additional pretraining. It is possible that

further pretraining is more effective on words that are present in BERT’s vocabulary (as

a single token), but it is predicted that further pretaining the subword representations

of domain-specific words not present in BERT’s lexicon will nevertheless provide better

contextualization than the original embeddings that were generated via pretraining on

canonical corpora.

• Hypothesis (RQ4): BERT is not the best-performing approach for modeling scientific

and medical datasets in languages other than English.

BERT’s contextualization is word-based (as opposed to character-based, like ELMo

[Peters et al., 2018]). Unlike English BERT, Chinese BERT is character-based. Because of

this, there is skepticism regarding its potential for contextualizing words as well as En-

glish BERT. For all datasets that are not in English or Chinese, multilingual BERT is used.

Unfortunately, multilingual BERT was trained on so many languages that it is doubtful

that it can be particularly effective on any single language. For these reasons, it is sur-
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mised that BERT will not be the preferred approach for modeling datasets in languages

other than English.

Answering the research questions and evaluating these hypotheses will go a long way

in determining how robust BERT is to texts whose vocabularies are not well-represented

in BERT’s lexicon. Furthermore, BERT’s performance will be assessed across multiple

tasks, datasets, and languages. This will provide insight into the most effective methods

of applying BERT to scientific and medical datasets. RQ3 did not have an accompany-

ing hypothesis, as it is merely a survey of prevalent issues affecting researchers when

applying BERT to scientific and medical datasets.

3.2 Search Strategy

This section illustrates the process by which papers were gathered for this review.

It includes the terms and databases used for the search. The search window was from

BERT’s original publication date in October 2018 through the end of May 2020.

3.2.1 Search Terms

Because BERT is a novel architecture whose published body of work is limited in size,

all BERT-related research was initially considered during the search. Thus, the only term

searched for across all databases was “bert.” All papers containing “bert” in the title that

were present in one of the databases listed in Table A.1 in Appendix A were considered

for inclusion in this review. Each paper was initially inspected to ensure the following

inclusion criteria were met:

• Paper must be relevant to BERT (as opposed to an individual named Bert, Bert and
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Ernie from Sesame Street, the plant Stevia rebaudiana Bert., etc.).

• Paper must be available in English.

• Paper must not be a press release.

Accounting for these criteria, the initial search yielded 550 total papers, 425 of which

were unique. Duplicates were merged based on the latest version number. If the version

numbers were the same (or unavailable), papers were merged based on the most recent

publication date.

3.2.2 Databases

Table A.1 in Appendix A lists the databases that were searched for BERT-related stud-

ies. The number of studies initially retrieved from each (that also adhered to the above

criteria) is listed next to each database. The list is arranged by the total number of papers

found in each database.

This list of databases was compiled by examining the most prevalent databases in the

realm of computer science. Additionally, databases were added based on recommenda-

tions from the Thesis Advisor, Professor Peter Hastings. Relevant databases outside of

computer science (i.e., computational linguistics) were also included, as there is a consid-

erable overlap in NLP between computer science and computational linguistics.

3.3 Study Selection

This section describes the process taken for selecting studies for the review and also

explains the manner in which data was synthesized.
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3.3.1 Study Selection Process

The process for selecting studies for inclusion in this review was a three-step process

that involved accepting papers based on evaluating each study’s title, abstract, and finally,

the entire paper. At each step, papers were discarded for not meeting the criteria specific

to that stage of quality control. 425 unique BERT-related studies were initially considered

for inclusion based on the criteria listed in Section 3.2.1. Forty-nine papers remained

after the first round of quality control based on title. Twenty-nine papers remained after

the second round of quality control based on abstract. Twenty-seven papers remained

after the third round of quality control based on the reading of the entire paper and were

subsequently included in this review. The number of studies evaluated at each quality

control stage is listed in Table 3.1.

Table 3.1: Number of Papers Accepted and Rejected at Each Stage of Quality Control

Quality Control Stage Accepted Rejected

Initial Search 425

Quality Control 1 (Title) 49 376

Quality Control 2 (Abstract) 29 20

Quality Control 3 (Full Paper) 27 2

Total 27

The specific criteria used for evaluation at each stage of quality control are listed in

the subsections that follow.

3.3.1.1 Quality Control 1 (Title)

In the first round of quality control, each paper was evaluated based on its title. The

criteria used for inclusion in the next stage of quality control, Quality Control 2 (Abstract),
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were:

• Paper must be relevant to applying BERT to scientific or medical corpora.

• Paper must be freely available through DePaul’s library of databases.

376 papers were rejected in Quality Control 1. Quality Control 1 winnowed the field

considerably by requiring each BERT paper selected be specific to applying BERT to sci-

entific or medical datasets. Furthermore, some qualifying papers were excluded based

on their inaccessibility. This was mostly due to certain papers being only available on

smaller, foreign servers that were not accessible through DePaul’s library of databases.

3.3.1.2 Quality Control 2 (Abstract)

In the second round of quality control, each paper was evaluated based on its abstract.

The criteria used for inclusion in the next quality control, Quality Control 3 (Full paper),

were:

• Paper must be in the realm of NLP and not multimodal (e.g. no image captioning).

Additionally, the paper must meet at least one of the following criteria:

• Paper is published in a peer-reviewed journal or conference, workshop, symposium,

or congress proceedings specified in the list of databases in Table A.1 in Appendix

A (not including arXiv or Google Scholar).

• Paper has not yet been published, but has been accepted for publication to a journal,

conference, workshop, symposium, or congress.
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• Paper has not been published or accepted for publication but is widely referenced

across the industry (having at least 20 citations on Google Scholar, at least one of

which is from a peer-reviewed source).

Twenty papers were rejected in Quality Control 2. Certain papers were multimodal

and were discarded, as they were outside the scope of this work. Additionally, because

BERT is a new technology and its body of work is limited, open access databases (such as

arXiv) were included for consideration. It is also becoming more and more commonplace

for computer science researchers to post their work to open access sites, so eschewing

them in their entirety in favor of a purely peer-reviewed body of papers would have

omitted some key works (the original BERT paper, for example, was published to arXiv

and is not located in any peer-reviewed journal). Unfortunately, many of these types

of papers are not peer-reviewed and can therefore be apocryphal. For that reason, the

criteria above were implemented to ensure that all relevant, but only quality, papers were

considered for inclusion in the review.

3.3.1.3 Quality Control 3 (Full Paper)

In the third round of quality control, each paper was evaluated based on the paper in

its entirety. All papers that passed Quality Control 3 were included in the review. The

criteria used for inclusion were:

• Paper must make relative performance to other teams available if the paper accom-

panies a competition.

• Paper must use a variation of the original BERT model.

Two papers were rejected in Quality Control 3. One was rejected due to the unavail-

ability of the competition’s results. Without those results, it is not possible to determine
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the relative efficacy of the paper’s proposed BERT implementation. This is important, as

this thesis seeks to identify the most effective methods of applying BERT to scientific and

medical datasets, and a model’s efficacy cannot be evaluated if it cannot be compared

to the other models that it competed against. The other paper was rejected because it re-

duced BERT’s dimensionality before implementing it. This review is only concerned with

BERT variations that stem from the original BERT-base or BERT-large models.

3.3.2 Data Synthesis

Following Quality Control 3, papers were reread to gather pertinent data. For each

paper, the following data was extracted and logged:

• Title

• Author(s)

• URL

• Publication date

• BERT models

• Dataset language

• Publication/Proceedings

• Tasks

• Model structure

• Dataset type

• Approaches taken

• Performance metric

• Additional notes

Reasons for inclusion or exclusion at each quality control stage were also tracked. Ad-

ditionally, a separate spreadsheet was maintained as a visual representation of papers

where each sheet in the workbook compared all papers across a single attribute. The

sheets in this spreadsheet were: tasks, languages, BERT models, and publication type.

After the data was collected, studies were reread to extract information relevant to an-

swering each research question. These notes were maintained as well.
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CHAPTER 4

QUALITATIVE RESULTS

Chapter 4 examines the composition of the body of works that comprise this review.

Studies are aggregated by publication type, model type, task, and dataset language. This

is done in order to provide insight into the different types of tasks that BERT is being

applied to (and with what models) in the domains of science and medicine. The next

chapter, Chapter 5, contains the performance metric comparisons of the studies’ various

models (both BERT and non-BERT). Chapter 4 is intended to answer the question, “what

types of studies are found in this review?,” while Chapter 5 seeks to answer the research

questions and evaluate the hypotheses.

4.1 Publications

Of the twenty-seven studies selected for this review, twelve were selected from work-

shops, ten were selected from conferences, three were selected from journals, one was se-

lected from a symposium, and one was selected from a congress. Table B.1 in Appendix

B shows the publication sources for the studies and the number of studies included from

each source.

4.2 Models

Of the twenty-seven studies selected for this review, twelve used English BERT (either

BERT-base or BERT-large), seven used Chinese BERT, and five used multilingual BERT.

Twenty-two studies experimented with standard BERT, ten studies experimented with a

BERT model pretrained on custom corpora, eleven studies tried applying BioBERT, one
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study tried applying SciBERT, and sixteen studies experimented with at least one non-

BERT model. Some studies used multiple BERT models. In total, sixteen different studies

experimented with some sort of further pretraining, either via a precompiled model such

as BioBERT or SciBERT, or via additional pretraining on custom corpora. The breakdown

of studies by the type of model applied (across all languages) can be see in Figure 4.1 (the

three right-most bars in Figure 4.1 are the further pretrained models). Table 4.1 shows the

various models used for each study.

Figure 4.1: BERT Models Applied by Study

4.3 Tasks

Ten different tasks were modeled across the twenty-seven studies selected for this

review. Of those studies, thirteen performed NER, nine performed classification, six per-

formed relation extraction, three performed normalization, three performed text infer-

ence, two performed coreference detection, two performed sequence labeling, two per-

formed anonymization, one performed question answering, and one performed ellipsis

detection. Some models performed multiple tasks. Figure 4.2 shows the number of stud-

ies that performed a particular task. Table 4.2 shows the tasks performed by each study.

Additionally, the various tasks that were modeled are enumerated in the following sub-
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Table 4.1: Models Used

Study BERT Pre. BERT BioBERT SciBERT Non BERT

[Akhtyamova, 2020] X X X

[Alsentzer et al., 2019] X X

[Dai et al., 2019] X X

[Ding et al., 2019] X

[Garcı́a-Pablos et al., 2020] X X

[Hakala and Pyysalo, 2019] X

[Lee et al., 2019] X X

[Li et al., 2019a] X X X

[Li et al., 2019b] X X

[Li et al., 2020] X X X

[Lin et al., 2019a] X X

[Lin et al., 2019b] X X X

[Liu et al., 2019] X X

[Miftahutdinov et al., 2019] X X X

[Peng et al., 2020] X X

[Peng et al., 2019] X X

[Phongwattana and Chan, 2019] X X

[Sänger et al., 2019] X X X

[Song et al., 2019] X X

[Sun and Yang, 2019] X X

[Sung et al., 2019] X X

[Trieu et al., 2019] X X

[Wang et al., 2019] X X

[Xue et al., 2019] X X

[Yu et al., 2019] X X X X

[Zhang et al., 2019a] X X

[Zhang et al., 2019b] X X

Total 22 10 11 1 16

Pre. BERT = Experimented with a pretrained BERT model

Non BERT = Experimented with a non-BERT model

sections. The results for the performances of the various models across the different tasks

and languages is located in Table 5.1 in section 5.
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Figure 4.2: Number of Studies That Performed Each Task

NER = Named Entity Recognition RE = Relation Extraction NO = Normalization TI = Text Inference CL = Classification
CD = Coreference Detection SL = Sequence Labeling AN = Anonymization QA = Question Answering ED = Ellipsis Detection

4.3.1 Named Entity Recognition

NER is the process of identifying key information in a body of text, i.e., named en-

tities. It is used to identify the important elements in a text and can also help sort un-

structured data by identifying important terms, phrases, and entities (en.wikipedia.org).

An example of NER is identifying all of the different characters (persons, not letters of

the alphabet) present in a Harry Potter book. NER is particularly difficult with scientific

and medical datasets, as it is often the esoteric, domain-specific jargon that needs to be

extracted. Named entities such as medical conditions, chemical compounds, and clinical

symptoms are not likely to be well-represented in canonical corpora. As such, NER is a

commonly pursued task in the realms of science and medicine.

4.3.2 Classification

Classification is the process of labeling an instance as belonging to a particular group.

An example of a classification task is determining whether a lump present in a mammo-

gram is benign or malignant. Classification is particularly important in NLP, as many
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Table 4.2: Tasks Performed

Paper NER RE No TI Cl CD SL An QA ED

[Akhtyamova, 2020] X

[Alsentzer et al., 2019] X X X

[Dai et al., 2019] X

[Ding et al., 2019] X X X

[Garcı́a-Pablos et al., 2020] X X

[Hakala and Pyysalo, 2019] X

[Lee et al., 2019] X

[Li et al., 2019a] X X

[Li et al., 2019b] X

[Li et al., 2020] X

[Lin et al., 2019a] X X

[Lin et al., 2019b] X

[Liu et al., 2019] X

[Miftahutdinov et al., 2019] X X X

[Peng et al., 2020] X X X

[Peng et al., 2019] X X X

[Phongwattana and Chan, 2019] X

[Sänger et al., 2019] X

[Song et al., 2019] X

[Sun and Yang, 2019] X X

[Sung et al., 2019] X

[Trieu et al., 2019] X

[Wang et al., 2019] X

[Xue et al., 2019] X X

[Yu et al., 2019] X

[Zhang et al., 2019a] X

[Zhang et al., 2019b] X

Total 13 6 3 3 9 2 2 2 1 1

NER = Named Entity Recognition RE = Relation Extraction No = Normalization TI = Text Inference Cl = Classification

CD = Coreference Detection SL = Sequence Labeling An = Anonymization QA = Question Answering ED = Ellipsis Detection

NLP tasks involve extracting semantic meaning from sequences of words. Tasks such as

sentiment analysis, intent classification, and topic labeling are all types of classification

that are used in NLP to discern meaning from text. In this review, classification tasks are
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grouped together for analytical purposes, as each type of classification task is concerned

with predicting a label from an instance.

4.3.3 Relation Extraction

Relation Extraction is the process of detecting semantic relationships between differ-

ent entities in a body of text. It can be used to identify correlative pairs of entities, such as

the relationships between various diseases and the gene mutations that cause them. Re-

lation extraction can also be used educationally to discern the degree to which a student’s

essay demonstrates his or her understanding of the course material. [Cochran et al., 2020]

addressed this in their work with detecting causal relations in student short-answer es-

says. Relation extraction is a key component of NLP, as it involves detecting how different

entities are related to each other; these relationships can often escape human detection.

4.3.4 Additional Tasks

Seven additional tasks were addressed in the studies that comprise this review, but

each of these tasks was modeled by three or fewer studies. As such, these seven tasks

were combined to form this section.

Normalization. Text normalization is the process of transforming text into a specific,

consistent format (en.wikipedia.org). Normalization is often done in order to aid another

downstream task such as classification. An example of normalization is the handling of

different date formats: 1/1/1970 may be classified as a different date than 1-1-1970 if

the two dates are not first normalized. This is important in the domains of science and

medicine in NLP because many scientific terms often correspond to terms in common us-
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age. The chemical compound NaCl, for example, is also referred to as ”sodium chloride”

and is referred to colloquially as ”salt.” Without normalization, a model may overlook

the fact that all three of these terms refer to the same entity.

Text Inference. Text inference, or Natural Language Inference (NLI), is the task of

determining whether a given hypothesis is true (entailment), false (contradiction), or un-

determined (neutral) based on a given premise (nlpprogress.com). An example would be

inferring whether or not the hypothesis ”the Doors are a rock band” can be gleaned from

the premise ”Jim Morrison was the lead singer of The Doors” (in this case the answer is

no, and the result is ”neutral”). NLI is important in NLP because it is used to determine

whether or not a piece of text (the premise) is relevant to answering a hypothesis. Tasks

like question answering can use NLI to decide which parts of a passage are important in

determining an answer to the posed question.

Coreference Detection. Coreference detection is the task of identifying all expressions

in a text that refer to the same entity (en.wikipedia.org). This can be incredibly difficult,

especially if there is ambiguity present in the text. Consider the phrase ”the dog liked

the rain, and John hated it.” It is not clear whether John’s hatred is directed at the dog

or the rain. Coreference detection aims to resolve this conundrum by identifying all ref-

erences to a particular entity, which enables one to recognize parts of text that could be

problematic due to ambiguity.

Sequence Labeling. Sequence labeling assigns a label to each member of a given

sequence (en.wikipedia.org). An example of this is part-of-speech (POS) tagging, where

each word in a sequence is labeled with its corresponding part of speech (noun, verb,

adjective, etc.). Sequence labeling is important in NLP because the information learned

from the sequence labels can then be used in conjunction with other models (such as

language models) to augment performance.
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Anonymization (Deidentification). Deidentification is a subset of NER that recog-

nizes sensitive information that needs to be redacted. An example of anonymization is

training a model to automatically redact patient names from hospital records. This is of

particular concern in medicine, as much of the information in medical records is sensitive

and governed by stringent privacy laws. Anonymization can also be used in other capac-

ities, such as deidentifying a job applicant’s gender and race to prevent bias during the

hiring process.

Question Answering. Question answering is the process of building a model capable

of answering questions by querying a base of knowledge (en.wikipedia.org). Examples

of question answering models are Apple’s Siri, Google’s Google Assistant, and Amazon’s

Alexa. Each of these models queries a database (or the Internet) to answer questions

posed to them by humans. Question answering is also heavily utilized in customer ser-

vice applications as well, as an increasing number of companies are opting for automated

assistance in lieu of in-person operators.

Ellipsis Detection. Ellipsis detection is the process of detecting an omission from a

clause that is nevertheless understood in the context of the elements that are present. For

instance, in the clause, ”John can play the guitar, Mary the violin,” the phrase ”can play”

is understood to be in between the words ”Mary” and ”the violin” (en.wikipedia.org).

Ellipsis detection, in this example, seeks to identify the missing phrase ”can play.” Ellipsis

detection is important, as it seeks to identify specific sequences of words that language

models may overlook due to a particular idea not having been explicitly stated. In the

previous example, a language model may interpret the phrase ”Mary the violin” as a

reference to a violin whose name is Mary, as opposed to a reference to a person named

Mary who plays the instrument the violin. Ellipsis detection aims to resolves these types

of conflicts.
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4.4 Languages

Of the twenty-seven studies selected for this review, fifteen used English datasets,

seven used Chinese datasets, four used Spanish datasets, and one used a German dataset.

The papers whose datasets were in Spanish and German used multilingual BERT. Figure

4.3 shows the number of studies that modeled each dataset language. All five studies

that modeled Spanish and German datasets applied the multilingual version BERT. The

breakdown of studies by dataset language is illustrated in Table 4.3.

Figure 4.3: Number of Studies That Modeled Each Dataset Language

Table 4.3: Dataset Languages by Study

Language Quantity

English 15

Chinese 7

Spanish 4

German 1
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CHAPTER 5

QUANTITATIVE RESULTS

Unlike Chapter 4, which sought to examine the composition of the studies included in

this review, Chapter 5 is provided specifically to answer the research questions and eval-

uate the hypotheses. This is done by comparing the performance metrics for each study

across a variety of models, tasks, datasets, and languages. For each study, the follow-

ing information is included: tasks modeled, dataset language, subject matter or type of

dataset, BERT-based approaches taken, standard BERT performance (if attempted), pre-

trained BERT performance (if attempted), BioBERT performance (if attempted), SciBERT

performance (if attempted), non-BERT model performance (if attempted), and non-BERT

model type (if attempted). These performance metrics are compared to each other in or-

der to answer the research questions and evaluate the hypotheses. Table 5.1 details the

findings. The aggregated data is presented in section 5.1, followed by sections corre-

sponding to each research question.

5.1 Aggregated Data From All Studies

The data was extracted and aggregated in order to answer the research questions and

evaluate the hypotheses. Specifically, the performance metrics were included to make the

following comparisons between models applied to the same task and dataset:

• BERT’s performance versus the best-performing non-BERT model (RQ1).

• Domain-specific pretrained BERT’s performance versus that of standard BERT

(RQ2).

• BERT’s performance versus the best-performing non-BERT model on datasets in

languages other than English (RQ4).
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• Domain-specific pretrained BERT’s performance versus that of standard BERT in

languages other than English (RQ4).

The performance metric used across different rows varies and is dependent upon the

choice of each study’s researchers (although each study used either accuracy or F1-score);

however, all metrics within each row are the same type, making it possible to obtain a true

apples-to-apples comparison. Abbreviations were used in order to limit the horizontal

span of the table to one page. As such, a legend can be found below the table.
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Table 5.1: Results From Each Study Included in This Review

Study Task Lang Data Type Approaches BERT Pre. BERT BioBERT SciBERT Non Perf. Non Type

[Akhtyamova, 2020] NER Spa Clinical Pretraining 84.00 89.00 87.00 FastText Em-
beddings

[Alsentzer et al., 2019] NER Eng Biomedical BioBERT + Pre-
training

*79.70 *83.35

TI Eng Biomedical BioBERT + Pre-
training

77.60% 82.70%

An Eng Biomedical BioBERT + Pre-
training

*93.35 *93.90

[Dai et al., 2019] NER Chi Clinical BERT-BiLSTM-
CRF

*74.55 *67.21 BiGRU - CRF

[Ding et al., 2019] NER Eng Drug Labels BioBERT + En-
semble

62.91

RE Eng Drug Labels BioBERT 46.77

No Eng Drug Labels BioBERT 62.39

[Garcı́a-Pablos et al., 2020] An Spa Clinical Fine-Tuning 96.50 95.10 spaCy

Cl Spa Clinical Fine-Tuning 95.00 89.50 spaCy

[Hakala and Pyysalo, 2019] NER Spa Clinical Fine-Tuning 88.24

[Lee et al., 2019] TI Eng Clinical BioBERT + BiL-
STM + Atten-
tion

80.90% 82.40%

[Li et al., 2019a] NER Eng Scientific Multi-Task
Learning,
BioBERT

47.10 51.90 44.00 BILSTM + CRF

RE Eng Scientific Multi-Task
Learning,
BioBERT

81.80 84.70

[Li et al., 2019b] No Eng Clinical BioBERT + Pre-
training

*72.81 *73.49

[Li et al., 2020] NER Chi Clinical BERT-BiLSTM-
CRF

90.50 91.60 87.90 BiLSTM + CRF

[Lin et al., 2019a] CD Chi Clinical Fine-Tuning 87.03 89.95 Rule-based
Model
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Table 5.1: Results From Each Study Included in This Review

Study Task Lang Data Type Approaches BERT Pre. BERT BioBERT SciBERT Non Perf. Non Type

ED Chi Clinical Fine-Tuning 63.54 70.61 DNN

[Lin et al., 2019b] RE Eng Clinical Pretraining,
BioBERT

*61.80 *61.85 *62.45

[Liu et al., 2019] Cl Eng Clinical Pretraining *76.00 *84.50

[Miftahutdinov et al., 2019] No Eng Tweets Fine-Tuning 43.20

Cl Eng Tweets Fine-Tuning 57.38 51.64 SVM

SL Eng Tweets BioBERT + CRF 65.80

[Peng et al., 2020] NER Eng Biomedical,
Clinical

Pretraining,
Multi-Task
Learning

*87.57 *86.57

RE Eng Biomedical,
Clinical

Pretraining,
Multi-Task
Learning

*76.97 *76.07

TI Eng Clinical Pretraining,
Multi-Task
Learning

84.60% 83.20%

[Peng et al., 2019] BLUE Eng Scientific Pretraining,
BioBERT

82.30** 80.50**

[Phongwattana and Chan, 2019] NER Eng Scientific Multi-Task
Learning,
BioBERT, Pre-
training

*85.91 *78.47 LSTM

[Sänger et al., 2019] Cl Ger Scientific Pretraining 77.80 78.20 72.50 SVM

[Song et al., 2019] Cl Chi Diagnoses BERT + CNN 92.04% 90.67% One-Hot Char-
acter Encodings

[Sun and Yang, 2019] NER Spa Biomedical BioBERT 89.24 89.02

[Sung et al., 2019] Cl Eng Scientific Pretraining *80.03 *80.76

[Trieu et al., 2019] CD Eng Biomedical Parse Tree Fil-
tering + Fine-
Tuning

45.50 37.93 LSTM

[Wang et al., 2019] Cl Eng Chemical Pretraining 75.89% 70.38% Seq3Seq
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Table 5.1: Results From Each Study Included in This Review

Study Task Lang Data Type Approaches BERT Pre. BERT BioBERT SciBERT Non Perf. Non Type

[Xue et al., 2019] NER Chi Biomedical Multi-Task
Learning

96.89 95.24 BiLSTM

RE Chi Biomedical Multi-Task
Learning

88.51 87.29 BiLSTM

[Yu et al., 2019] Cl Eng Scientific Masked Sen-
tence Model,
Pretraining

86.19 91.15 86.81 92.60 BiLSTM + CRF

[Zhang et al., 2019a] Cl Chi Clinical, Scien-
tific

Fine-Tuning,
Average Pooler

*77.15 *65.50 Sequence Gen-
eration Model

[Zhang et al., 2019b] NER Chi Clinical BERT-BiLSTM-
CRF

88.45 86.84 CNN-BiLSTM-
CRF

* Metrics were generated by taking the average of multiple trials or datasets

** The BLUE Benchmark consists of ten datasets across five tasks and uses multiple evaluation metrics. Three datasets are used to perform NER, all of which use
F1-score. Three datasets are used to perform relation extraction, two of which use micro F1-score and one of which uses macro F1-score. Two datasets are used
to perform sentence similarity, all of which use the Pearson Correlation Coefficient. One dataset is used to perform document classification and uses the accuracy
metric. One dataset is used to perform text inference and uses F1-score.

% Accuracy metric used in lieu of F1-score

Boldfaced score indicates best-performing model

Non Perf. = Performance of non-BERT model Non Type = Type of non-BERT model Pre. BERT = Metric from pretrained BERT model

NER = Named Entity Recognition RE = Relation Extraction No = Normalization TI = Text Inference Cl = Classification

CD = Coreference Detection SL = Sequence Labeling An = Anonymization BLUE = BLUE Benchmark ED = Ellipsis Detection
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5.2 BERT Approaches Versus Non-BERT Approaches for Modeling Scientific and

Medical Datasets (RQ1)

BERT was designed to be used as-is (with minimal fine-tuning) [Devlin et al., 2018],

thus providing a salient alternative to more computationally expensive deep learning

approaches. This paper seeks to answer the following question about how BERT is being

used to model scientific and medical datasets:

• RQ1: How does the performance of BERT-based approaches for modeling scientific and med-

ical datasets compare to the performances of other approaches?

The original hypothesis for RQ1 set forth at the beginning of this thesis was

that BERT would outperform other approaches when modeling scientific and medical

datasets. This hypothesis was supported: BERT-based approaches outperformed non-

BERT approaches significantly. Fifteen studies compared the performance of at least one

BERT-based model to a non-BERT model across nineteen different task-dataset combina-

tions. Of the nineteen instances, fifteen of the comparisons yielded BERT as the better-

performing model. If multiple BERT models were used during the comparison, the worst-

performing model was used when calculating the increase (or decrease) in performance.

This was done in an effort to, as much as possible, isolate the effect of using BERT-based

models versus non-BERT models. On average, performance was enhanced 2.61% when

applying the worst-performing BERT-based model compared to the best-performing non-

BERT model. This was statistically significant, as a two-tailed paired t-test yielded p =

0.0318 which was less than the critical value of p = 0.05 needed to reject the null hypothe-

sis that BERT-based and non-BERT models performed equally.

Of the four instances where BERT was not the best-performing model, two instances

were deep learning models, one instance was a rule-based model, and one instance used
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FastText embeddings (fasttext.cc). Interestingly, the study that used FastText embeddings

applied BERT to a Spanish dataset, and a pretrained version of multilingual BERT re-

sulted in a greater F1-score than the FastText embeddings [Akhtyamova, 2020] despite

standard BERT’s underperformance.

The prevalent approaches to applying BERT to scientific and medical datasets include

fine-tuning, further pretraining (either manually or by using a domain-specific model

such as BioBERT), ensembling, or a combination thereof. The most frequent method of

modeling scientific and medical datasets through alternative means was via a BiLSTM

approach. Figure 5.1 illustrates the averages of the performance metrics (accuracy of F1-

score) when comparing BERT-based models to non-BERT models when measured on the

same task-dataset combination. Table 5.2 depicts the individual comparisons of BERT’s

performance to non-BERT models applied to the same tasks and datasets.

Figure 5.1: Comparison of Performance of BERT-Based Approaches to Non-BERT Approaches
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Table 5.2: BERT Versus Non-BERT Approaches

Study BERT Pre.
BERT

Bio-
BERT

Sci-
BERT

Non
Perf.

Non Type

[Dai et al., 2019] 74.55 67.21 BiGRU - CRF

[Garcı́a-Pablos et al., 2020] 96.50 95.10 spaCy

95.00 89.50 spaCy

[Li et al., 2019a] 47.10 51.90 44.00 BILSTM + CRF

[Li et al., 2020] 90.50 91.60 87.90 BiLSTM + CRF

[Lin et al., 2019a] 87.03 89.95 Rule-based Model

63.54 70.61 DNN

[Phongwattana and Chan, 2019] 85.91 78.47 LSTM

[Sänger et al., 2019] 77.80 78.20 72.50 SVM

[Song et al., 2019] 92.04% 90.67% One-Hot Character
Encodings

[Trieu et al., 2019] 45.50 37.93 LSTM

[Wang et al., 2019] 75.89% 70.38% Seq3Seq

[Xue et al., 2019] 96.89 95.24 BiLSTM

88.51 87.29 BiLSTM

57.38 51.64 SVM

[Yu et al., 2019] 86.19 91.15 86.81 92.60 BiLSTM + CRF

[Zhang et al., 2019a] 77.15 65.50 Sequence Genera-
tion Model

[Zhang et al., 2019b] 88.45 86.84 CNN-BiLSTM-
CRF

% Accuracy metric used in lieu of F1-score

Boldfaced score indicates best-performing model

Non Perf. = Performance of non-BERT model

Non Type = Type of non-BERT model

Pre. BERT = Metric from pretrained BERT model

5.3 BERT Efficacy Versus Pretrained BERT Models (RQ2)

Several researchers have taken BERT and further pretrained it with large, domain-

specific scientific and medical corpora. These models were then released with the inten-

tion of being used as-is, just as BERT was. Of these models, BioBERT is currently the
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most used with 538 citations on Google Scholar. SciBERT trails in a distant second with

178 citations. This paper seeks to answer the following question with regard to standard

BERT’s efficacy relative to its further-pretrained peers:

• RQ2: How does BERT’s performance on scientific and medical datasets compare to further-

pretrained, domain-specific BERT derivatives (e.g. BioBERT and SciBERT)?

The original hypothesis for RQ2 set forth at the beginning of this thesis was that

BERT models pretrained on scientific and medical corpora would outperform standard

BERT on datasets consisting of similar subject matter as the data seen during pretrain-

ing. This hypothesis was supported: pretrained BERT models significantly outper-

formed their non-pretrained counterparts. Twelve studies compared standard BERT to

a BERT model that had undergone domain-specific pretraining. These twelve studies

compared BERT models across fifteen different task-dataset combinations. Of the fifteen

instances, fourteen reported that further pretraining on domain-specific data augmented

BERT’s performance. If multiple pretrained BERT models were used during the compari-

son, the best-performing pretrained model was used when calculating the increase (or de-

crease) in performance. This was done in an effort to identify the maximum performance

enhancement that was achieved when using a pretrained BERT model in lieu of standard

BERT. On average, performance was enhanced 2.69% when applying the best-performing

pretrained BERT model compared to standard BERT. This was statistically significant, as

a two-tailed paired t-test yielded p = 0.0011 which was less than the critical value of p =

0.05 needed to reject the null hypothesis that pretrained BERT and standard BERT mod-

els performed equally. This indicates that, in the reviews selected for this study, further

pretraining BERT on domain-specific data was just as impactful as using BERT over an-

other model altogether. This is evidenced in Table 5.3, where one can see that nearly all

of the best-performing models from each row incorporated domain-specific pretraining.
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Additionally, Figure 5.2 illustrates the averages of pretrained BERT’s performance versus

that of standard BERT models when applied to the same task-dataset combinations.

Table 5.3: Pretrained BERT Versus Standard BERT

Study BERT Pre. BERT BioBERT SciBERT

[Akhtyamova, 2020] 84.00 89.00

[Alsentzer et al., 2019] 79.70 83.35

77.60% 82.70%

93.35 93.90

[Lee et al., 2019] 80.90% 82.40%

[Li et al., 2019a] 47.10 51.90

81.80 84.70

[Li et al., 2019b] 72.81 73.49

[Li et al., 2020] 90.50 91.60

[Lin et al., 2019b] 61.80 61.85 62.45

[Liu et al., 2019] 76.00 84.50

[Sänger et al., 2019] 77.80 78.20

[Sun and Yang, 2019] 89.24 89.02

[Sung et al., 2019] 80.03 80.76

[Yu et al., 2019] 86.19 91.15 86.81

% Accuracy metric used in lieu of F1-score

Boldfaced score indicates best-performing model

Pre. BERT = Metric from pretrained BERT model

In the one study where further pretraining was less effective than standard

BERT, the researchers compared BioBERT to multilingual BERT on a Spanish dataset

[Sun and Yang, 2019]. Although BioBERT underperformed multilingual BERT, BioBERT

attained an F1-score only 0.22% lower than multilingual BERT. This is interesting, con-

sidering that BioBERT is only trained on English corpora. The authors of the study

([Sun and Yang, 2019]) surmised that this is likely due to the fact that many chemicals

and proteins have the same names in Spanish as they do in English, but they did not pro-

vide evidence to corroborate this as being an explanation for comparable performance
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Figure 5.2: Comparison of Performance of Pretrained BERT to Standard BERT

between the two models.

Of the twelve studies that incorporated pretrained BERT models (and compared them

to standard BERT), only one study selected for this review ([Yu et al., 2019]) used SciB-

ERT. SciBERT underperformed its manually pretrained counterpart by 4.34%, and both

models underperformed the SOTA for the task—a BiLSTM whose performance bested

the pretrained BERT model by 1.45%. Both pretrained models did, however, outperform

standard BERT. BioBERT outperformed all other models (standard BERT and other pre-

trained BERT models) in all instances except for the study by [Sun and Yang, 2019].

5.4 Problems Encountered Applying BERT to Scientific and Medical Datasets (RQ3)

Much of the obscure verbiage present in scientific and medical datasets is not part

of BERT’s vocabulary. As a result, these words are separated by BERT into WordPiece

tokens. While these WordPiece tokens are thought to be better than the alternative (OOV

tokens), they nevertheless create a challenge in NLP for datasets riddled with obscure
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words and phrases. This paper seeks to answer the following question with regard to

the different types of problems incurred while applying BERT to scientific and medical

datasets:

• RQ3: What types of problems does BERT encounter when presented with scientific and

medical datasets?

There was no corresponding hypothesis for this research question, as this research

question merely seeks to document the most prevalent problems that are encountered

when applying BERT to scientific and medical datasets. Of the twenty-seven studies se-

lected for this review, nineteen of them identified specific problems that were encoun-

tered while applying BERT to scientific and medical datasets. The most common prob-

lems dealt with the data being imbalanced, the number of classes being numerous, and

the dataset texts being too long and spanning too many input sequences. Figure 5.3 il-

lustrates how many studies mentioned each particular problem encountered. Table 5.4

illustrates which studies reported which problems when applying BERT to scientific and

medical datasets. Only the studies that reported problems are enumerated in the table.

The specific problems encountered are outlined in the subsections that follow.

5.4.1 Imbalanced Data

Five of the nineteen studies that mentioned problems applying BERT to scientific and

medical datasets referenced dataset imbalance. Even in cases where the dataset was rela-

tively balanced, a single dominating class (a control group, for instance) could cause the

model to perform preferentially in favor of the more prevalent group. As a result, the

model’s recall could drop substantially. While this issue is not specific to scientific and

medical datasets, it occurs more frequently due to the domains’ tendency to include a
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Figure 5.3: Number of Studies Referencing Each Issue

Ext = Model does not extrapolate to other datasets Eng = Difficult to find pretraining data in non-English languages
LD = Large amounts of data needed for further pretraining Gen = Hard to generalize domain-specific model to canonical text
Len = Length of text spans multiple input sequences WP = Problems with WordPiece embeddings
Cla = Number of classes is too numerous One = Models often only trained on one dataset
Imb = Data imbalance DNN = Deep learning still more effective at certain tasks than BERT
Norm = Difficult to normalize terms consisting of multiple words

“control” group in studies. For instance, when extracting the side effects of a drug from

a Randomized Controlled Trial’s (RCT) clinical notes, the “asymptomatic” class would

occur far more frequently than any other class (side effect). Because of this, scientific and

medical datasets often have imbalanced classes, making it difficult to effectively model

them.

5.4.2 Length of Text

Of the nineteen studies that mentioned problems applying BERT to scientific and med-

ical datasets, four of them referenced the length of text as being an issue. Although BERT

has been shown to effectively provide context within instances, this context does not ex-

tend across multiple sentences that span multiple inputs. BERT limits its input instances

to 512 tokens, so contextualization outside of that parameter proves difficult. Tasks like

relation extraction and coreference resolution become increasingly difficult the farther
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Table 5.4: Problems Reported by All Studies

Title Ext LD Len Cla Imb Norm Eng Gen WP One DNN

[Akhtyamova, 2020] X

[Alsentzer et al., 2019] X

[Ding et al., 2019] X

[Hakala and Pyysalo, 2019] X

[Li et al., 2019a] X

[Li et al., 2019b] X X X

[Li et al., 2020] X

[Lin et al., 2019a] X

[Lin et al., 2019b] X

[Liu et al., 2019] X

[Miftahutdinov et al., 2019] X

[Peng et al., 2019] X

[Song et al., 2019] X X X

[Sun and Yang, 2019] X

[Sung et al., 2019] X

[Trieu et al., 2019] X

[Xue et al., 2019] X

[Yu et al., 2019] X

[Zhang et al., 2019a] X

Totals 1 1 4 3 5 1 2 2 2 1 1

Ext = Model does not extrapolate to other datasets Eng = Difficult to find pretraining data in non-English languages

LD = Large amounts of data needed for further pretraining Gen = Hard to generalize domain-specific model to canonical text

Len = Length of text spans multiple input sequences WP = Problems with WordPiece embeddings

Cla = Number of classes is too numerous One = Models often only trained on one dataset

Imb = Data imbalance DNN = Deep learning still more effective at certain tasks than BERT

Norm = Difficult to normalize terms consisting of multiple words

away elements reside in the text. This is problematic in scientific and medical corpora, as

many texts (scientific papers and clinical reports, for example) span multiple pages and

often only mention a particular part of a relation one time, early in the text. For instance, a

subject’s clinical notes for an RCT could mention the drug in the first paragraph and then

spend ten pages discussing its side effects. Trying to extract the relationship between the

drug on page one and a side effect on page ten could prove difficult. [Yu et al., 2019] tried

to address this issue via a Masked Sentence Model (as opposed to a word-level Masked
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Language Model). Their result outperformed BERT, but it did not outperform the pre-

vious SOTA for the task which was a bidirectional (fully trained, not transfer learning)

RNN.

5.4.3 Number of Classes

Of the nineteen studies that mentioned problems applying BERT to scientific and med-

ical datasets, three of them referenced the large number of classes as being an issue. A

large number of classes is common in scientific and medical corpora, as many of the tasks

involve classifying diverse label arrays such as chemical compounds, clinical symptoms,

and medical conditions. This is already an issue in NLP with canonical corpora, but

the problem is magnified with scientific and medical texts. As mentioned earlier, these

domain-specific corpora often have a null hypothesis class, and an increase in class num-

ber tends to further prejudice the model toward the prevalent class.

Furthermore, an increase in class size often yields sparsely populated datasets (one

is presumably more likely to encounter “fatigue” as a drug side effect than “temporary

blindness,” for example). Because of this, many classes will inevitably have very few

instances from which to train, making already-abstract concepts more difficult to predict.

Additionally, one is likely to encounter many zero-shot instances, where the model is

forced to try and predict a class that it was never exposed to during training. I found this

challenge particularly difficult in a previous work with [Cochran et al., 2020]. BERT was

applied to Hughes’ [Hughes, 2019] work, which tried to detect causal relations in short-

answer essays written by Chicago adolescents regarding the causes of coral bleaching

and skin cancer (separate datasets). Because there were dozens of possible causal chains,

and only about eight thousand training instances (sentences) per dataset (most of which

were in the “no relation” class), evaluations of the test sets always encountered multiple
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instances of classes that had never been seen by the model during training.

5.4.4 Other Issues

Other problems were identified while applying BERT to scientific and medical

datasets but were not as frequently reported. As such, the issues addressed by two or

fewer papers were combined to comprise this subsection.

Two studies referenced the lack of availability of large scientific and medical corpora

for conducting further pretraining in languages other than English. Both of these studies

were referencing Spanish datasets, specifically. This is significant considering that there

were only four studies that modeled Spanish datasets chosen for inclusion in this review

and two of them mentioned this issue. This review has alluded to the effectiveness of

domain-specific pretraining and domain-specific pretrained models, so lack of data for

further pretraining on non-English datasets needs to be addressed in future works.

Two studies referenced difficulties generalizing domain-specific models to canonical

texts. Although domain-specific models are effective at modeling their domains, they can

“forget” their previous knowledge and become ineffective when applied to datasets even

slightly outside of the domain of their pretraining. For example, multiple studies fur-

ther pretrained BioBERT with clinical corpora. These studies would outperform standard

BioBERT on clinical data, but would then underperform standard BioBERT when applied

to scientific (non-clinical) data.

Two studies referenced difficulties with WordPiece embeddings. Because both BERT

and BioBERT (not SciBERT) use canonical vocabularies, many of the more technical words

in scientific and medical datasets are represented as WordPiece embeddings and not ac-

tual words. While further pretraining can improve the contextual vectorizations of these
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embeddings, it is likely not as effective as it would be had the words themselves been

present in the underlying lexicon.

One study expressed difficulty reproducing its results with additional datasets. One

study referenced the massive amount of data needed for additional pretraining. One

study mentioned the difficulty normalizing instances of multiple words. One study ref-

erenced the fact that many studies evaluate their models on only a single dataset. One

study mentioned that deep learning is still more effective for certain tasks.

5.5 BERT Performance on Non-English Datasets (RQ4)

As of this writing, Google has released three different versions of BERT (discrimi-

nated by language): English BERT, Chinese BERT, and multilingual BERT. The current

iteration of multilingual BERT was trained on 104 languages, but it is the same size as

the other BERT models in Chinese and English (twelve Transformer layers, 768 hidden

units, twelve attention heads, 110 million parameters). Because of this, it was initially

surmised at this thesis’ outset that multilingual BERT would not be as effective on non-

English datasets as BERT-base or BERT-large is on English datasets. Additionally, further

pretraining BERT in languages other than English is difficult, as scientific and medical

corpora large enough from which to conduct additional pretraining are much less read-

ily available. Both BioBERT and SciBERT, for example, were only further pretrained on

English corpora. It is also important to note that Chinese BERT implements character-

level embeddings as opposed to word-level ones, as (unlike English characters) Chinese

characters convey semantic meaning when expressed individually. This paper seeks to

answer the following question with regard to applying BERT to scientific and medical

datasets in languages other than English:
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• RQ4: How well does BERT perform on scientific and medical datasets that are in languages

other than English?

The original hypothesis for RQ4 set forth at the beginning of this thesis was that

BERT would not perform as well as other approaches when modeling scientific and

medical datasets in languages other than English. This hypothesis was not supported:

BERT did not significantly underperform other methods when applied to non-English

scientific and medical datasets. Twelve studies in this review applied BERT to non-

English scientific and medical datasets: seven applied Chinese BERT to Chinese datasets,

four applied multilingual BERT to Spanish datasets, and one applied multilingual BERT

to a German dataset. These twelve studies modeled a total of fifteen task-dataset combi-

nations.

Of the twelve studies that applied non-English BERT models to scientific and medical

datasets, ten of them compared BERT’s performance to a non-BERT method. These ten

studies modeled a total of thirteen task-dataset combinations. Of the thirteen instances,

eleven of them reported BERT as being the superior approach. On average, performance

was enhanced 2.05% when applying standard BERT compared to a non-BERT model

when modeling scientific and medical data in a language other than English; however,

the performance gain was not as substantial as the 3.83% increase obtained by choosing

BERT over a non-BERT model when modeling these same types of datasets in English.

Additionally, a two-tailed paired t-test yielded p = 0.1507, which was not lower than the

critical value p = 0.05. Thus, the null hypothesis that both BERT and non-BERT models

performed equally on non-English scientific and medical datasets could not be rejected.

However, it is possible that there does exist a statistically significant outperformance by

BERT and that there were simply too few available instances from which to determine

statistical significance. This possibility should be explored in future work. Figure 5.4

illustrates the average performance metrics broken down by language (including the av-
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Figure 5.4: Comparison of Performances of BERT-Based and Non-BERT Approaches Across Lan-
guages

erage across all languages). For each language, the blue bar represents the BERT-based

model, the gray bar represents the non-BERT model, and the red bar represents the per-

formance gained from opting for the BERT-based model in lieu of the non-BERT one. The

performance metrics for the twelve studies can be seen individually in Table 5.5. Both

instances where BERT was not the superior model were part of the same (Chinese) study.

The authors, [Lin et al., 2019a], achieved better results applying a rule-based model to the

task of coreference detection and a deep learning model to the task of ellipsis detection.

Additionally, three studies (one in each non-English language) compared pretrained

BERT models to standard BERT. All three reported improved results with domain-specific

pretraining. On average, performance was enhanced 2.17% when applying a pretrained

BERT model compared to standard BERT when modeling scientific and medical data in

a language other than English; however, the performance gain was not as substantial as

the 3.09% increase obtained when opting for pretrained BERT over standard BERT when

modeling these same types of datasets in English. Additionally, the null hypothesis that

58



Table 5.5: BERT Approaches Versus Non-BERT Approaches on Non-English Datasets

Study Lang BERT Non Perf. Non Type

[Akhtyamova, 2020] Spa 84.00 87.00 FastText Embeddings

[Dai et al., 2019] Chi 74.55 67.21 BiGRU - CRF

[Garcı́a-Pablos et al., 2020] Spa 96.50 95.10 spaCy

Spa 95.00 89.50 spaCy

[Li et al., 2020] Chi 90.50 87.90 BiLSTM + CRF

[Lin et al., 2019a] Chi 87.03 89.95 Rule-based Model

Chi 63.54 70.61 DNN

[Sänger et al., 2019] Ger 77.80 72.50 SVM

[Song et al., 2019] Chi 92.04% 90.67% One-Hot Character Encodings

[Xue et al., 2019] Chi 96.89 95.24 BiLSTM

Chi 88.51 87.29 BiLSTM

[Zhang et al., 2019a] Chi 77.15 65.50 Sequence Generation Model

[Zhang et al., 2019b] Chi 88.45 86.84 CNN-BiLSTM-CRF

% Accuracy metric used in lieu of F1-score

Boldfaced score indicates best-performing model

Non Perf. = Performance of non-BERT model

Non Type = Type of non-BERT model

both pretrained BERT and standard BERT models performed equally on non-English sci-

entific and medical datasets was unable to be rejected due to a two-tailed paired t-test

yielding p = 0.2692, which was greater than the p = 0.05 value needed for rejection. It

is possible that there does exist a statistically significant outperformance by pretrained

BERT and that there were simply too few available instances from which to determine sta-

tistical significance. This possibility should also be explored in future work. One study

applied BioBERT to a Spanish dataset and barely underperformed multilingual BERT.

This instance was not counted toward the net effect of further pretraining, however, be-

cause BioBERT was trained only on English corpora. The performance metrics for the

three studies can be seen in Table 5.6.

59



Table 5.6: Pretrained BERT Versus Standard BERT on Non-English Datasets

Study Lang BERT Pre. BERT

[Akhtyamova, 2020] Spa 84.00 89.00

[Li et al., 2020] Chi 90.50 91.60

[Sänger et al., 2019] Ger 77.80 78.20

Boldfaced score indicates best-performing model

Pre. BERT = Metric from pretrained BERT model

Chinese. Seven studies applied Chinese BERT to nine different task-dataset combi-

nations. Seven of the nine instances (six of seven studies) reported that Chinese BERT

outperformed other non-BERT approaches. One study that applied Chinese BERT to sci-

entific and medical datasets conducted domain-specific pretraining, and that instance was

the best-performing. On average, Chinese BERT outperformed non-BERT approaches on

Chinese datasets by 1.94%. The study that pretrained BERT with Chinese domain-specific

data saw an additional 1.10% increase in performance relative to standard BERT. How-

ever, neither of these numbers was statistically significant. A two-tailed paired t-test for

BERT’s comparison to non-BERT approaches in Chinese yielded p = 0.3093 which was

not below the critical level of p = 0.05 needed to reject the null hypothesis that the two

approaches are equal in performance. No two-tailed paired t-test was performed com-

paring pretrained BERT to standard BERT in Chinese, as there was only one instance of a

pretrained BERT model being applied to a Chinese dataset. The performance metrics for

the seven studies that modeled Chinese datasets can be seen in Table 5.7.

Spanish. Four studies applied multilingual BERT to five different task-dataset com-

binations. Of the three instances where BERT was compared to other approaches, BERT

outperformed the other approaches in two instances. In the instance where BERT did

not outperform, FastText embeddings were used; however, once BERT was pretrained

on domain-specific data, the BERT model outperformed the FastText embeddings. One
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Table 5.7: Chinese BERT Performance Metrics

Study Lang BERT Pre. BERT Non Perf. Non Type

[Dai et al., 2019] Chi 74.55 67.21 BiGRU - CRF

[Li et al., 2020] Chi 90.50 91.60 87.90 BiLSTM + CRF

[Lin et al., 2019a] Chi 87.03 89.95 Rule-based Model

Chi 63.54 70.61 DNN

[Song et al., 2019] Chi 92.04% 90.67% One-Hot Character Encodings

[Xue et al., 2019] Chi 96.89 95.24 BiLSTM

Chi 88.51 87.29 BiLSTM

[Zhang et al., 2019a] Chi 77.15 65.50 Sequence Generation Model

[Zhang et al., 2019b] Chi 88.45 86.84 CNN-BiLSTM-CRF

% Accuracy metric used in lieu of F1-score

Boldfaced score indicates best-performing model

Pre. BERT = Metric from pretrained BERT model

Non Perf. = Performance of non-BERT model

study applied BioBERT to a Spanish dataset. While BioBERT did not outperform mul-

tilingual BERT, the results were similar (within 0.22%). This is interesting, as BioBERT

is trained on only English corpora. On average, multilingual BERT outperformed non-

BERT approaches on Spanish datasets by 1.30%. However, this was not statistically sig-

nificant. A two-tailed paired t-test for BERT’s comparison to non-BERT approaches in

Spanish yielded p = 0.6492 which was not below the critical level of p = 0.05 needed to

reject the null hypothesis that the two approaches are equal in performance. One study

pretrained multilingual BERT on Spanish scientific and medical corpora before applying

it to the dataset and realized a 5% performance increase over standard BERT and a 2%

increase over FastText embeddings. Again, this was not statistically significant, as there

was only a single study that further pretrained BERT and applied it to a Spanish dataset.

The performance metrics for the four studies that modeled Spanish datasets can be seen

in Table 5.8.
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Table 5.8: Multilingual BERT Performance Metrics on Spanish Datasets

Study Lang BERT Pre. BERT BioBERT Non Perf. Non Type

[Akhtyamova, 2020] Spa 84.00 89.00 87.00 FastText Em-
beddings

[Garcı́a-Pablos et al., 2020] Spa 96.50 95.10 spaCy

Spa 95.00 89.50 spaCy

[Hakala and Pyysalo, 2019] Spa 88.24

[Sun and Yang, 2019] Spa 89.24 89.02

Boldfaced score indicates best-performing model

Pre. BERT = Metric from pretrained BERT model

Non Perf. = Performance of non-BERT model

German. One study applied multilingual BERT to a German dataset. The study re-

ported that standard BERT outperformed a support vector machine (SVM) approach by

5.3%, and further pretraining BERT on domain-specific data yielded another 0.4% im-

provement over standard BERT. None of the performance increases were statistically sig-

nificant, however, as there was only one study selected for inclusion in this review that

applied BERT to a dataset in German. The performance metrics for the study that mod-

eled the German dataset can be seen in Table 5.9.

Table 5.9: Multilingual BERT Performance Metrics on German Datasets

Study Lang BERT Pre. BERT Non Perf. Non Type

[Sänger et al., 2019] Ger 77.80 78.20 72.50 SVM

Boldfaced score indicates best-performing model

Pre. BERT = Metric from pretrained BERT model

Non Perf. = Performance of non-BERT model

Non Type = Type of non-BERT model
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CHAPTER 6

DISCUSSION

This discussion will address the principal findings as they pertain to the research ques-

tions, the limitations of the review, the implications of the findings going forward, and

topics to address in future works.

6.1 Principal Findings

For RQ1, BERT’s performance relative to other approaches for modeling scientific

and medical datasets, BERT outperformed the other approaches by an average of 2.61%,

which was statistically significant. This was particularly pronounced in English, where

BERT-based models outperformed non-BERT models by an average of 3.83%. Fifteen

studies compared BERT-based approaches to other approaches across nineteen task-

dataset combinations, and BERT was the best-performing model in fifteen of those cases.

The prevalent methods of applying BERT to scientific and medical datasets included fine-

tuning, further pretraining (either manually or by using a domain-specific model such as

BioBERT), ensembling, or a combination thereof.

In the four instances where the BERT-based model was not the superior approach,

two used deep learning approaches, one used FastText embeddings, and one used a rule-

based model. Of theses same four instances where BERT was not the best-performing

model, only one applied BERT to an English dataset. One study (two instances) ap-

plied Chinese BERT to a Chinese dataset, and one study applied multilingual BERT to

a Spanish dataset. In the study where multilingual BERT underperformed on the Span-

ish dataset, further pretraining increased BERT’s performance, and the pretrained BERT

model ultimately eclipsed both the standard BERT and non-BERT methods. The most
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frequent method of modeling scientific and medical datasets through alternative (non-

BERT) means was via a BiLSTM approach.

For RQ2, standard BERT versus domain-specific pretrained models, pretrained mod-

els outperformed standard BERT by an average of 2.69%. This was statistically signif-

icant and was particularly pronounced in English, where pretrained BERT models out-

performed standard BERT by an average of 3.09%. Twelve studies compared the perfor-

mance of standard BERT to at least one other pretrained BERT model across fifteen dif-

ferent task-dataset instances, where fourteen instances reported pretrained BERT models

as being superior to standard BERT. This indicates that further pretraining BERT before

fine-tuning was just as impactful as modeling a task with BERT in lieu of a non-BERT

model.

The one study where further pretraining BERT had an adverse effect on the model’s

performance was when BioBERT was applied to a Spanish dataset. However, even on a

Spanish dataset, BioBERT only underperformed standard BERT by a slim margin, which

indicates that BioBERT has the potential to be effectively applied to scientific and medical

corpora in languages other than, but alphabetically similar to, English.

For RQ3, problems encountered while applying BERT to scientific and medical cor-

pora, a few issues were frequently mentioned. The most frequent problem identified by

researchers was the data imbalance that pervades many scientific and medical corpora.

Although not a problem specific to scientific and medical datasets, data imbalance is a

significant issue in these domains due to these datasets’ penchant for uneven data dis-

tribution between classes. RCTs for drug trials, for example, always have a “control”

group, so it is reasonable to expect that a null hypothesis class will significantly outweigh

each individual class that pertains to a specific drug side effect. Similar issues were en-

countered with [Cochran et al., 2020] while trying to use BERT to identify causal relations

in short-answer essays written by high school students: most sentences did not contain

64



any causal relation, thereby biasing the model in favor of the “null” class. Some studies

were able to mitigate the issue of data imbalance by manually balancing the data during

preprocessing.

Another issue plaguing researchers attempting to apply BERT to scientific and medical

datasets is the large amount of classes endemic to scientific and medical texts. Classifica-

tion becomes difficult when the number of classes is numerous—especially if the dataset

itself is small in size. I experienced this problem first-hand as well during the same work

with [Cochran et al., 2020]. Each of the datasets in that study contained roughly eight

thousand to ten thousand instances split between fifty to one hundred classes. The sparse

population of the datasets created problems during training, as many of the classes were

woefully underrepresented. This precipitated a substantial amount of (largely unsuccess-

ful) zero-shot learning.

The other issue that is prevalent when applying BERT to scientific and medical cor-

pora is the issue concerning length of text. Tasks like relation extraction and coreference

resolution become increasingly difficult when these connections must be identified across

multiple pages of text. BERT has been shown to be astute at identifying relationships be-

tween sentences but only if those sentences are in the same input sequence. For sequences

separated by a significant amount of text, BERT often struggles to identify relationships

between them. One study, for example, reported that deep learning is still more effective

than BERT-based approaches for coreference resolution in Chinese [Lin et al., 2019a]. This

issue becomes more pronounced the farther apart the sequences are from each other.

For RQ4, BERT’s performance on non-English datasets, results were evaluated across

three languages: Chinese, Spanish, and German. The Chinese studies were conducted

with Chinese BERT, and the Spanish and German studies were conducted with multilin-

gual BERT. On average, BERT’s application to scientific and medical datasets in languages

other than English outperformed non-BERT models by 2.05%, but this result was not sta-
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tistically significant. Additionally, while a noticeable improvement over the non-BERT

approaches, the augmentation in performance was not as pronounced as BERT’s 3.83%

performance improvement over non-BERT models when applied to English datasets.

Ten studies in this review compared BERT’s performance (across thirteen different task-

dataset combinations) to other approaches when applying BERT to non-English scientific

and medical datasets. Of the thirteen instances, eleven of them reported BERT as being

the superior approach. Both instances where BERT was not the best-performing model

were from the same Chinese study ([Lin et al., 2019a]).

Additionally, three studies compared pretrained BERT models to standard BERT.

All three reported improved results with domain-specific pretraining, indicating that

domain-specific pretraining can be effective on scientific and medical datasets in lan-

guages other than English. On average, further pretraining increased BERT’s perfor-

mance on non-English datasets by an average of 2.17%, but this was not statistically sig-

nificant. The difference was noticeable, but it was also less than the 3.09% performance

increase seen when further pretraining BERT for English datasets.

Seven studies across nine task-dataset combinations applied BERT to scientific and

medical datasets in Chinese. Seven of the nine reported the BERT-based approach as

being the best approach. On average, Chinese BERT outperformed non-BERT approaches

on Chinese datasets by 1.94%. Additionally, one study further pretrained Chinese BERT

on domain-specific data. That study saw a 1.10% performance increase when compared to

standard BERT. However, none of the results specific to Chinese datasets were statistically

significant.

Three studies compared multilingual BERT with at least one other non-BERT approach

when modeling scientific and medical datasets in Spanish. BERT outperformed the other

approaches in two instances of the three. On average, multilingual BERT outperformed

non-BERT approaches on Spanish datasets by 1.30%. In the instance where BERT did not
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outperform, [Akhtyamova, 2020] opted for FastText embeddings; however, once BERT

was pretrained on domain-specific data, the BERT model outperformed the FastText em-

beddings. This study saw further pretraining precipitate a 5.0% performance improve-

ment over standard BERT and a 2.0% improvement over FastText embeddings. However,

none of the results specific to Spanish datasets were statistically significant.

One study applied multilingual BERT to a German dataset and reported that standard

BERT outperformed an SVM approach by 5.3%. This same study also pretrained BERT on

domain-specific corpora prior to fine-tuning and reporting a 0.4% increase in performance

relative to standard BERT. Because there was only one study included in this review that

applied BERT to a German dataset, none of the German-specific results were statistically

significant.

6.2 Limitations

Because this paper is a thesis, and therefore completed by a lone researcher, I was not

able to leverage [Kitchenham, 2004]’s guidance with regard to SLRs that calls for each

author to rate a potential source for inclusion and then use the aggregation of the ratings

(and the accompanying discourse) to ultimately deem a source worthy of inclusion. Fur-

thermore, in an effort to include the latest research in a limited body of works, I opted to

include papers in this review that had been accepted for publication but not necessarily

published. As such, it is possible that a paper accepted for publication in a journal or in-

clusion in proceedings was subsequently withdrawn and therefore never peer-reviewed.

Additionally, the search for studies to include in this review defined a search window

from BERT’s release in October 2018 through May 2020 (when the search was conducted).

425 unique studies were found in the aforementioned databases (including arXiv and
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Google Scholar) that included “bert” in the title. On October 18, 2020, a cursory search

yielded over 1,100 such papers. It follows, then, that there is a large corpus of research

that has been published since the initial search and is not included (or ever considered for

inclusion) in this review.

As with any literature review, there exists the possibility of works being over-

looked or unavailable for inclusion due to publication bias (i.e., the file-drawer problem

en.wikipedia.org). BERT is currently a popular architecture for modeling many different

NLP tasks. As such, it is possible that researchers may abstain from publishing results

where BERT underperforms other approaches. This could lead to a collective bias toward

BERT in published BERT-related research.

The scope of the review must also be considered. Statistical significance was deter-

mined across twenty-seven studies, and in no case was the number of instances (task-

dataset combinations) used for comparison greater than nineteen. Furthermore, with re-

gard to the instances where the null hypothesis could not be rejected (non-English BERT

versus non-English non-BERT), it was not the case that BERT underperformed non-BERT

models on non-English scientific and medical datasets. The null hypothesis was that the

two model types performed equally, so failure to reject the null hypothesis merely indi-

cates that the data were unable to prove otherwise. This means that I was unable to reject

or confirm my own hypothesis that BERT would not be the best-performing model on

non-English scientific and medical datasets and that additional research is still needed

(with a greater number of sources) to effectively evaluate this hypothesis.

Lastly, while it is believed that the efficacy of domain-specific pretraining before the

fine-tuning process will result in more effective models for additional domains other than

science and medicine, this research was limited to scientific and medical datasets. There-

fore, further research must be conducted to determine whether or not other domains can

benefit from domain-specific pretraining and domain-specific modeling. Additionally,
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the results from this review are not meant to be interpreted as the “best” ways to ap-

ply BERT to scientific or medical datasets in an absolute sense; instead, this work merely

seeks to: compare BERT-based models to non-BERT models, identify current approaches

researchers are taking when applying BERT to scientific and medical datasets, and iden-

tify the methods that have so far proven to be the most effective.

6.3 Implications

This review demonstrates that BERT is a robust language model that can be effectively

applied to texts whose words are largely outside of BERT’s vocabulary. Additionally,

further pretrained domain-specific BERT models are often more effective than standard

BERT when applied to scientific and medical datasets. This includes both additional pre-

training on custom corpora and precompiled domain-specific models such as BioBERT.

As a result, it is suspected that other domains outside of science and medicine could also

benefit from domain-specific BERT implementations, and more research should be con-

ducted to determine whether or not this is the case. Lastly, BERT’s robustness to esoteric

verbiage in non-English datasets suggests that other languages could also benefit from

further research regarding applications of BERT (both further-pretrained and standard)

to non-English datasets.

6.4 Future Work

More research needs be done to create additional language-specific BERT models.

While multilingual BERT is effective on other Latin-based languages such as Spanish,

BERT’s effectiveness at modeling datasets in languages with alternative writing systems
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needs to be explored. Languages like English, Spanish, and Russian are alphabetic, while

character-based languages like Chinese and Japanese are ideographic. While all of the

aforementioned languages were present during multilingual BERT’s pretraining, it is pos-

sible that the combination of multiple writing systems may hinder multilingual BERT’s

performance relative to a system-specific or language-specific model.

Additionally, this review compared twenty-seven studies across multiple tasks and

languages. Because the scope of this review was limited by the availability of research

evaluating BERT’s application to scientific and medical datasets, aggregating the data

proved difficult. No more than seven studies modeled datasets using the same non-

English BERT model. Similarly, no single task was addressed by more than thirteen stud-

ies. This made it difficult to obtain meaningful results across both tasks and languages. As

such, research evaluating BERT’s performance on scientific and medical datasets specific

to a single task and a single language should be conducted in the future.

Multiple studies in this review also referenced the lack of large scientific and med-

ical corpora that are available in languages other than English. The development and

publication of these corpora would go a long way toward improving BERT’s efficacy on

scientific and medical datasets in non-English languages. Further research should also

be conducted to see if applying domain-specific BERT models to additional domains is

as effective as applying these models to the domains of science and medicine. Other do-

mains such as law, finance, and art are rife with equally esoteric jargon and as such could

potentially benefit from domain-specific BERT adaptations either via further pretraining

from canonical corpora or via training from scratch on purely domain-specific corpora.

A recent publication [Gu et al., 2020] by Microsoft researchers suggests that pretrain-

ing BERT from scratch solely on domain-specific corpora (as opposed to canonical train-

ing followed by domain-specific training) can be an even more effective means of apply-

ing BERT to scientific and medical corpora. PubMedBERT, as the researchers have named
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their model, utilizes a vocabulary generated from the frequencies of words’ occurrences in

the PubMed corpus. PubMedBERT achieves a new SOTA on a ”wide range of biomedical

applications” [Gu et al., 2020], and its creators believe that their findings may precipitate

similar successes in other domains as well [Gu et al., 2020].
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APPENDIX A

DATABASES SEARCHED

Table A.1: Databases Searched

Database Quantity

Google Scholar—arXiv 200

arXiv (not published anywhere else) 77

Google Scholar—other sources 62

IEEE Xplore 49

Google Scholar—Association for Computational Linguistics 48

SpringerLink 28

Google Scholar—educational domains (.edu) 20

Google Scholar—Semantic Scholar 18

Web of Science 13

Association for Computing Machinery Digital Library 9

Google Scholar—Ceur Workshop 8

Google Scholar—public entity domains (.gov) 5

Computers and Applied Sciences Complete 4

EBSCO Academic Search Complete 4

Google Scholar—private entity domains (.com) 3

ScienceDirect 2

CiteSeerX 0

Dissertations and Theses Full Text (ProQuest) 0

JSTOR 0

ProQuest Linguistics Database 0

Total 550

Total (unique, after merging duplicates) 425
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APPENDIX B

PUBLICATIONS BY TYPE

Table B.1: Publications by Type

Publication Type Quantity

ACM International Conference on Bioinformatics, Computa-
tional Biology and Health Informatics

Conference 1

AMIA Annual Symposium Proceedings Symposium 1

BioNLP Workshop and Shared Task Workshop 2

Ceur Workshop Proceedings of the CLEF eHealth Challenge Workshop 1

Clinical Natural Language Processing Workshop Workshop 2

Conference of Open Innovations Association (FRUCT) Conference 1

Conference on Empirical Methods in Natural Language Process-
ing and the International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP)

Conference 1

Conference on Language Resources and Evaluation (LREC 2020) Conference 1

IEEE International Conference on Bioinformatics and
Biomedicine (BIBM)

Conference 1

International Conference on Asian Language Processing (IALP) Conference 1

International Conference on Information Reuse and Integration
for Data Science (IRI)

Conference 1

International Conference on Intelligent Computation Technology
and Automation (ICICTA)

Conference 1

International Conference on Neural Information Processing Conference 1

International Congress on Image and Signal Processing, BioMed-
ical Engineering and Informatics (CISP-BMEI)

Congress 1

JMIR Medical Informatics Journal 1

Joint International Information Technology and Artificial Intelli-
gence Conference (ITAIC)

Conference 1

Journal of Biomedical Informatics Journal 1

Journal of Data and Information Sciences Journal 1

SIGBioMed Workshop on Biomedical Language Processing Workshop 1

Social Media Mining for Health Applications (SMM4H) Work-
shop & Shared Task

Workshop 1

Text Analysis Conference (TAC) Track on Drug-Drug Interaction
Extraction from Drug Labels Workshop

Workshop 1

Workshop on BioNLP Open Shared Tasks Workshop 4
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APPENDIX C

INCLUDED STUDIES

Table C.1: Studies Selected for Inclusion in This Review

[Akhtyamova, 2020] [Li et al., 2020] [Song et al., 2019]

[Alsentzer et al., 2019] [Lin et al., 2019a] [Sun and Yang, 2019]

[Dai et al., 2019] [Lin et al., 2019b] [Sung et al., 2019]

[Ding et al., 2019] [Liu et al., 2019] [Trieu et al., 2019]

[Garcı́a-Pablos et al., 2020] [Miftahutdinov et al., 2019] [Wang et al., 2019]

[Hakala and Pyysalo, 2019] [Peng et al., 2020] [Xue et al., 2019]

[Lee et al., 2019] [Peng et al., 2019] [Yu et al., 2019]

[Li et al., 2019a] [Phongwattana and Chan, 2019] [Zhang et al., 2019a]

[Li et al., 2019b] [Sänger et al., 2019] [Zhang et al., 2019b]
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