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• We assessed the space-time relation of
vegetation vitality andpoverty transition.

• Vegetation restoration helped poverty
alleviation in poor karst counties.

• Karst vegetation was more affected by
both of poverty and rocky desertification.

• Trade-offs relation in poverty andvegeta-
tion is high in the quick green area.

• Ecological assessments should consider
poverty in the rocky desertification area.
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Vegetation recovery and poverty alleviation are critical problems in the karst national designed poor counties
(NPDC) in southwest China. However, little information is available about the relationship between poverty
and vegetation dynamics in these areas. In this study, we used remote sensing and statistical datasets from
2000 to 2015 to identify the relations between vegetation dynamics and poverty among the NPDC in southwest
rocky desertification areas. We estimated the vegetation dynamics using the Normalized Difference Vegetation
Index and poverty with the rural per capita net income. Local indicator of spatial association and the
space-time transition type of poverty were applied to identify spatial patterns of the poverty spatial distribution
relationship and transition. Also, poverty, natural and ecological governance factorswere assessed using theGeo-
detectormethod to uncover the driving factors of karst vegetation. The results showed that vegetation increased
significantly (p < 0.05) in karst NPDC (82.82%) and rocky desertification control counties (78.77%). The karst
NPDC was significantly clustered. The hot spots of rural per capita net income changed from west and north
(2000) to only north (2015) and cold spots changed from east and south (2000) to only south (2015). The
rural per capita net income spatiotemporal transitionwas higher in 2000 than in 2015.We found aweak synergy
between vegetation change and poverty type transition in 42.86% of the browning counties, 45.45% in the slowly
greening counties, and 43.65% in stable greening counties. However, 57.50% of counties in the quick greening
counties showed a tradeoff relationship with the poverty type transition. The rocky desertification rate and
ecological engineering measures affected vegetation dynamics importantly. The results will help decision-
makers to understand the interdependence between vegetation and poverty. This will contribute to better
policies formulation to tackle poverty in the karst rocky desertification area.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Human activities and climate change have a substantial impact on
vegetation dynamics and ecosystems vitality (Defriez and Reuman,
2017; Smith et al., 2019; Song et al., 2018; Zhu et al., 2016). The complex
interactions between land use and climate change will increase land
degradation, especially in vulnerable ones such as karst ecosystems
(Gutiérrez et al., 2014). Karst occupies more than 10% of the land
surface, and it is extremely vulnerable to desertification (Ford and
Williams, 2007). Rocky desertification occurs in several countries such
as in Belize, Guatemala, Mexico of North America, Israel of the Middle
East, and East and Southeast Asia, including the Ryukyu Islands of
Japan and Indonesia (S. Zhao et al., 2020; R. Zhao et al., 2020). Due to
human activities, karst desertification is also widely distributed in the
European Mediterranean basin (Ezio et al., 1999; Pardo-Igúzquiza
et al., 2012), in areas such as the Dinaric Karst (Gams and Gabrovec,
1999). One of the most well-known examples is located in Southwest
China (Jiang et al., 2014). The region had experienced severe degrada-
tion through rocky karst desertification between the 1950s and 1990s
(Zhang et al., 2017), increasing soil degradation (Wang et al., 2004;
J.Y. Zhang et al., 2016). However, in previous years, a regreening trend
was observed in this area (Chen et al., 2019). Restoration measures
designed by the National Forestry and Grassland Administration were
carried out in 465 counties of southwest China tomitigate rocky desert-
ification. Two hundred seventeen of these counties were classified as
nationally designated poor counties (NDPC) by the Chinese govern-
ment. Due to these restrictions, and the unique geological conditions,
the development in these NDPC was limited, resulting in high poverty
levels (Desmond, 2017; Pang et al., 2018).

Because of the limited resources in the karst rocky desertification
area, life is harsh. Therefore, the interaction between poverty and the
environment needs to be assessed and is critical to supporting sustain-
able development measures (Moser, 1998; Tallis et al., 2008; Tallis
and Kareiva, 2006). Here, poverty is a consequence of the harsh envi-
ronment and land degradation (Jiang et al., 2014). The per-capita
income is low compared to neighbor regions (Ravallion and Chen,
2019). In recent years, several measures were carried out with success
for vegetation restoration (e.g., grain for green) and poverty alleviation.
Since 1998 several projects were carried out in Southwest China to re-
duce land degradation. Although the effect of governance on vegetation
restoration has been studied, its impact on poverty and its relation
between poverty and vegetation restoration received little attention.
Therefore, the assessment of this relationship is meaningful for
decision-makers to incorporate into plans for this area.

Vegetation recovery plays an essential role in ecological restoration
and has implications in the socio-economic status of the environment
(Zhu et al., 2016). For example, the environmental Kuznets Curve
expresses the relation between the environment and economy factors
(Dinda, 2004), and allows to identify the relation between vegetation
and poverty. In recent years, poverty decreased in the Chinese karst
area due to vegetation restoration (Wang et al., 2004; Chen et al.,
2019; Montalvo and Ravallion, 2010). However, macro socio-economic
circumstances do not encourage local farmers to protect the environ-
ment in karst rocky desertification in southwest China (Yan and Cai,
2015). This means that vegetation recovery and poverty alleviation
have different trends. However, sustainable land use management can
balance human demand and environment quality in rocky desertifica-
tion in a karst area (Zhang et al., 2020). Nevertheless, the relation
between vegetation restoration and poverty alleviation in this area is
not entirely understood. Therefore, it is vital to identify the relations
between vegetation restoration and poverty reduction. It is vital to iden-
tify if this relation is synchronized or delayed, and what are the driving
factors that influence this relationship in space and time. (Desmond,
2017; Zhou and Liu, 2019).

Normalized difference vegetation index (NDVI) is a widely used
method to detect vegetation greening and suitable to assess restoration
impacts (Liu et al., 2015; Pettorelli et al., 2005). The maximization
synthesis method used in NDVI spatial analysis has been applied to
measure the maximum vegetation per unit. However, the relation
between NDVI and restoration practices in the karst area is variable
and in space, and the effects are lagged. (Cheng et al., 2017; Tong
et al., 2018; J.Y. Zhang et al., 2016). The impacts of restoration depend
on several environmental and socio-economical aspects (e.g., topography,
precipitation, management, population dynamics). Therefore, it is a
highly dynamic process (Liu et al., 2018; Wu et al., 2015; Xu and
Zhang, 2018). Local and global spatial autocorrelation analysis are
useful methods for identifying vegetation restoration and poverty
space characters (Cai et al., 2017; He et al., 2019). Local spatial auto-
correlation path analysis (LISA) is used to find discrete objects'
change process (Ord and Getis, 2010; Sokal et al., 1998). LISA
space-time transitions can identify the clusters (space-time lock,
flow, and coagulation).

Tradeoffs and synergies assessments have been widely applied
in ecosystem services studies to assess human-land relationships
(Bennett et al., 2009). In this work, the identification of tradeoffs and
synergies analysis is essential to study the relation of vegetation restora-
tion and poverty transition in space and time (X. Liu et al., 2019; Y. Liu
et al., 2019; Schirpke et al., 2019). This can assess whether human
wellbeing and restoration measures are interdependent. The Geo-
detector model can identify the degree of influence of the different
driving factors and evaluate the importance of each factor. This method
has been used in the relations between the environment and humans to
solve vague and uncertain problems (Gao and Wang, 2019; H. Wang
et al., 2019; K. Wang et al., 2019), typical in social geography (Su et al.,
2020; S. Zhao et al., 2020; R. Zhao et al., 2020). It can examine the strat-
ified heterogeneity of every single factor. The causal relationship
between the two factors can be detected by examining the spatial distri-
bution of the two factors. The interaction detector can be used to evalu-
atewhether the combination of two factorswill increase or decrease the
single dependent factor's explanatory power. Also, the collinearity of
the dependent variable will not affect the accuracy of the method
(Wang et al., 2016). In our study, the Geo-detector was applied to iden-
tify the most problematic interaction effects on the vegetation restora-
tion degree. Poverty spatial heterogeneity was overlooked in previous
studies, and very little information is available about the interdepen-
dence between vegetation restoration and poverty. Therefore, in this
work, we used the poverty space transition as one factor. This will
help to understand the spatiotemporal interdependence between
poverty and vegetation restoration.

This paper aims to study the spatiotemporal tradeoffs and synergies
in vegetation vitality and poverty transition in the rocky desertification
area. The specific objectives are to: 1) detect the vegetation trend and
poverty situation and assess the spatiotemporal vegetation dynamic
and poverty transition dynamic, 2) evaluate the importance of poverty
transition on vegetation restoration by analyzing multivariate factors
relationship that rules it and 3) identify the regional tradeoffs and
synergies relationship in vegetation restoration and poverty transition.
This work will be extremely relevant to decision-makers to understand
the relations between vegetation status and poverty and the factors that
influence it.

2. Materials and methods

2.1. Study area

The study area is located in the Southeast of China and includes eight
provinces in the karst region (Sichuan, Chongqing, Yunnan, Guizhou,
Hunan, Hubei, Guangdong, and Guangxi). This area has a unique geo-
logical setting and high landscape heterogeneity. It is a very fragile
environment. Due to a high population density and consequent
land degradation, environmental problems have become increas-
ingly severe. Moreover, it shows a continuous expansion trend in
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agriculture and urban areas, representing a threat to the Yangtze
River's ecological security and the Pearl river basin. The climate of
the China southwestern karst region is humid and subtropical
(Zhou et al., 2018). Also, agriculture and urban areas' development
are increasing water demand (Lang et al., 2018). The poor regions are
mainly populated by older people that are vulnerable to the high inci-
dence of geological/geomorphological disasters (Cheng et al., 2018b).
National Forestry Administration of China divided the area according
to environmental conditions (e.g., geomorphology), causes of rocky
desertification, and other social factors. The regions are Gorge (A),
Trough valley (B), High mountain (C), Plateau (D), Fault basin (E),
Plain (F), Peak cluster epikarst (G) and Hills with depressions (H). All
217 counties in this territory were classified as “poor” (The State
Council Leading Group Office of Poverty Alleviation and Development,
2014) (Fig. 1).

2.2. Datasets and framework

The datasets used – NDVI, annual cumulative total precipitation,
annual mean temperature, rock desertification rate, rural per capita
net income (RPI), and karst control ecological engineering imple-
mentation area – and data processing are shown in Table 1. The
spatial analysis of NDVI assessed the vegetation trend at the pixel
level, while the other analyses were carried out at administrative
unit level. The framework applied in this study is described in
Fig. 2.

2.3. Methods

2.3.1. Vegetation trend
In order to assess the vegetation trend from 2000 to 2015 (NDVI) in

time and space, we applied the non-parametric Theil-Median (TS) (Sen,
Fig. 1. (a) Location of the study area (b) Rocky desertification control counties by the NFC in so
Plain; G: Peak cluster epikarst; H: Hills with depressions; (c) Nationally designated poor count
1968) and the Contextual the Mann-Kendall tests (CMK) (Neeti and
Eastman, 2011) calculated at the pixel level. Significant correlations
were considered at a p < 0.05. The trend is calculated according to the
formula:

δ ¼ mean
NDVI j−NDVIi

j−i

� �
ð1Þ

where δ is the calculated trend value, and NDVIt is the NDVI value at
time t (i ≤ t ≤ j).

2.3.2. Spatial analysis

2.3.2.1. Poverty spatial distribution and analysis. Moran's I was ap-
plied to measure the global spatial autocorrelation. This method
was used to assess the spatial pattern of the RPI. The formula of
Moran's I is:

I ¼ n∑n
i¼1∑

n
j¼1ωij xi−xð Þ xj−x

� �
S∑n

i¼1 xi−xð Þ2
ð2Þ

where n is the number of space units, xi is the attribute value of the ith
space unit, and ωij is the value in the spatial weight matrix, so S is the
sum of all the elements in the matrix. The range of Moran's I is [−1,1].
An index higher than 0 represent positive spatial autocorrelation
(clustered pattern), while an index lower than 0 indicates a negative
spatial correlation (dispersed pattern). Values close to 0 show that the
variable had a random pattern.

A Hot Spot Analysis (Getis-Ord Gi⁎) was applied to identify spatial
poverty patterns. This tool is used to identify spatial clustering of high
uthwest China. A; Gorge; B: Trough valley; C: Highmountain; D: Plateau; E: Fault basin; F:
ies (NDPC).



Table 1
Datasets used this work.

Data Using Description Resolution Period Reference

Karst rocky
desertification
control counties

Counties were divided
into zones of 8 rocky
desertification ecological
control

Counties Derived from the documents of National
Forestry grassland administration

Every zone was divided according to the Outline of
the plan for comprehensive control of rocky
desertification in karst areas (2006–2015).

NDVI Index from 0 to 1 1 km 2000 to
2015

Derived from the Data Center of Resources
and Environmental Sciences, Chinese
Academy of Sciences (http://www.resdc.
cn/data.aspx?DATAID=257)

This dataset was produced based on the SPOT-VGT
NDVI data (10-Day, 1 km). The annual pixel value is
generated by using the Maximum Value Composite
method (MVC). Annual pixel values less than 0.1
were excluded in order to present karst vegetation
distribution accurately.

Annual cumulative total
precipitation

Site data Point data 2000 to
2015

Derived from National meteorological
information center (http://data.cma.cn/)

Spatially using the ANUSPLIN software to
interpolate into a spatial resolution of 1 km and
temporal resolution of one year (covariate factor:
altitude and slope) (Hijmans et al., 2005).

Annual mean
temperature

Site data Point data 2000 to
2015

Derived from National meteorological
information center (http://data.cma.cn/)

Spatially using the ANUSPLIN software to
interpolate into a spatial resolution of 1 km and
temporal resolution of one year (covariate factor:
altitude and slope) (Hijmans et al., 2005).

Rock desertification
rate

Geological survey
statistics showing the
proportion in percentage

Counties Derived from Institute of Karst, Chinese
Academy of Geological Sciences

Using the regional geological mapping method on the
basis of actual observation and analysis. The value of
each county is obtained through administrative
boundaries and mapping statistical data.

Rural per capita net
income (RPI)

Statistical data，
Statistical Yearbook of
each province

Counties 2000 to
2015

Derived from Statistical Yearbook of each
province (http://data.cnki.
net/Yearbook/Navi?type=type&code=A)

Through the query of the province yearbook,
concluded the statistical data of each county.

Karst control ecological
engineering
implementation area

Geological survey
statistics showing the
proportion in percentage

Counties Derived from Institute of Karst, Chinese
Academy of Geological Sciences

Using the regional geological mapping method on the
basis of actual observation and analysis. The value of
each county is obtained through administrative
boundaries and mapping statistical data.
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(hot) and low (cold) values with statistical significance. The formula
of Gi

∗ is:

G�
i ¼

∑n
j¼1ωi; jx j−

∑n
j¼1xj

n
∑n

j¼1ωi; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j¼1x
2
j

n
−

∑n
j¼1xj

n

 !2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n∑n

j¼1ω2
i; j− ∑n

j¼1ωi; j

� �2	 

n−1

vuut
ð3Þ
Fig. 2. Framework app
where xj is the attribute value for year j, ωi, j is the spatial weight
between year i and j, and n is equal to the year's total number.

The local indicator of spatial association (LISA) was applied to iden-
tify the space-time transition. The Anselin Local Moran's I tool was used
in local autocorrelation to identify the interdependence between the
studied counties' attributes. At the same time, the cluster/outlier type
(COType) field of the tool will clarify the HH, LL, HL, and LH. It is a
method that shows a cluster situation every two times to identify the
lied in this study.

http://www.resdc.cn/data.aspx?DATAID=257
http://www.resdc.cn/data.aspx?DATAID=257
http://data.cma.cn/
http://data.cma.cn/
http://data.cnki.net/Yearbook/Navi?type=type&code=A
http://data.cnki.net/Yearbook/Navi?type=type&code=A


Table 2
The types of the space-time transition. HHt, HLt, LLt, LHt represent the results of local spatial autocorrelation in each county in year t. HH: the area indicating the high value is surrounded by
other areas of high value; LH: the area indicating the low value is surrounded by other areas of high value; LL: the area indicating the low value is surrounded by other areas of low value;
HL: the area indicating the high value is surrounded by other areas of low value; space-time lock, flow and coagulation are sequentially expressed levels of time and space transitions.
According to the situation change, the invariant, one side transformed, both sides transformed are the space-time lock, flow and coagulation, respectively.

Type Description Evolution Time and space transition

Type0 No transition between self and neighbors. Invariant Space-time lock (SL) (low level)
Type1 Self-transition, neighbors no-transition. HHt → LHt+1, HLt → LLt+1, LHt → HHt+1, LLt → HLt+1 Space-time flow (SF)

(middle level)Type2 Neighbors transition, self no-transition. HHt → HLt+1, HLt → HHt+1, LHt → LLt+1, LLt → LHt+1

Type3A Self and neighbors transform in the same direction. HHt → LLt+1, LLt → HHt+1 Space-time coagulation (SC)
(high level)Type3B Self and neighbors transform in the contrary direction. HLt → LHt+1, LHt → HLt+1

5S. Zhao et al. / Science of the Total Environment 752 (2021) 141770
transition (Ord and Getis, 2010; Sokal et al., 1998). The space-time tran-
sition was divided into four types: Type0, Type1, Type2, Type3 (Rey and
Janikas, 2006) (Table 2). Spatial analysis was carried out with
ArcGIS 10.6.

2.3.2.2. Relationship between vegetation trend and poverty. Based on the
rate of vegetation change in the grid, the zonal statistical tool was
applied to calculate the mean NDVI at the county level. If the NDVI
variability was greater than zero, we observed a greening trend. If it is
lower than 0, we found a browning trend. In order to assess the degree
of vegetation greening, the natural discontinuous point method was
used. The levels of vegetation greening were divided into slow, stable,
and quick. NDPC was divided into three categories according to the
time and spatial transition of poverty: space-time lock (SL), space-
time flow (SF), and space-time coagulation (SC). These represent
the low, middle and high degrees/possibilities of the spatiotemporal
poverty transition.

Tradeoff and synergy analysis has been used in the game research
(J. Li et al., 2019; Z. Li et al., 2019; Qi et al., 2013) and ecosystem services
(X. Liu et al., 2019; Y. Liu et al., 2019; Zhou et al., 2016) research to
identify conflicts and benefits. A positive relation between two factors
represents a synergy, while a negative relation is considered a tradeoff.
(Defriez and Reuman, 2017). In this work, we assessed the relation
between vegetation patterns and poverty. The degree of relation
(tradeoffs and synergies) is shown in Table 3.

2.3.3. Geo-detectors: factors affecting vegetation changes
Geo-detector is a method used to detect the interaction of driving

factors based on the calculation of the variance (H. Wang et al., 2019;
K.Wang et al., 2019). The independent variable needs to be continuous,
and the driving variables should be divided into the categories (Wang
and Hu, 2012). The factor can detect not only the spatial heterogeneity
of the dependent variable but also the power of the determinant of
the independent variables on the dependent variable. The value is
measured by the q value.

q ¼ 1−
∑L

h¼1Nhσ2
h

Nσ2 ¼ 1−
SSW
SST

ð4Þ
Table 3
The balance relationship in vegetation and poverty transition.

Vegetation change level Poverty transition type Trade-off and synergy

Browning SL Trade-off
SF Weak synergy
SC Strong synergy

Slowly greening SL Trade-off
SF Weak synergy
SC Strong synergy

Stable greening SL Trade-off
SF Weak synergy
SC Strong synergy

Quick greening SL Trade-off
SF Weak synergy
SC Strong synergy
SSW ¼ ∑L
h¼1Nhσ2

Nσ2 ð5Þ

SST ¼ Nσ2 ð6Þ

where h = 1,…, L is the layer of independent variable X. Nh and N are
the number units in layer h and all regions, respectively. σh

2 and σ2 are
the variances in the layer and the variance in the region. SSW is the
sum of the spatial variance in layers; SST is the total variance of Y in
the region, L means the layer number. The q value is taken from 0
to 1. If factor X controls the vegetation trend, the q value is 1; if the
factor X is not related to Y, the q value is 0.

The interaction detector of geo-detector is robust compared to other
statistical methods in the interaction analysis. It can identify the combi-
nation of every two factors' driving degree by the q values (Wang et al.,
2016). The result of the two factors interaction can be classified into five
types (Table 4).

The most suitable factors are shown in Table 4. According to local
characteristics, the variation of vegetation was taken as the dependent
variable Y. The independent variable will be selected from the following
factors (J. Li et al., 2019; Z. Li et al., 2019; Tong et al., 2018; Wang et al.,
2015; Yang et al., 2017; Zhang et al., 2018): Poverty factor: The poverty
transition type from 2000 to 2015 is the independent variable X1.
Annual average annual precipitation of the county is the independent
variable X2, the annual average temperature of the county is the inde-
pendent variable X3, the incidence of rocky desertification in the county
is the independent variable X4, county rocky desertification control area
is the independent variable X5. The percentage of ecological restoration
per county is the independent variable X6 (Table 4).

3. Results

3.1. Vegetation dynamic in karst national designed poor counties

TS and CMK test results showed that vegetation cover increased sig-
nificantly between 2000 and 2015 in karst national designed poor
counties (NDPC) and rocky desertification counties (RDC) by 81.87%
and 78.77%, respectively. On the contrary, a significant decreasing
trend was observed in 0.99% (NDPC) and 1.26% (RDC) (p < 0.05).
Overall, more than 80% of the vegetation in karst NDPC was gradually
greening, and no more than 1% of NDPC had a growing browning
increase. However, the greening degree in RDC was lower than in
NDPC, which was nearly 3%. Overall, almost no browning trend was
observed in both regions. The most browning trend was observed in
RDC (p < 0.05) and a higher percentage (19.97%) was observed in
RDC, compared to NPDC (17.15%). The significant trend (both greening
and browning) in vegetation vitality was higher in NPDC (82.58%) than
in RDC (80.30%) (p < 0.05). (Figs. 3 and 4).

In the karst trough valley (B), karst plateau (D), and peak cluster
epikarst (G) of NDPC regions, more than 80% area showed a greening
trend (Table 5). Among all the karst NDPC regions, karst highmountains
(C) are the ones with a lower greening trend and higher browning
trend.



Table 4
Geo-detector layers selection.

Variable Type/layers Name Instruction The category/range

Y Vegetation
change

NDVI variation According to the zone statistic tool to calculate the NDVI
variation to represent the value of every county.

X1 Poverty factor Poverty transition type According to SL, SF, SC classification According to the Table 2
X2 Natural factor Annual cumulative total

precipitation
According to the zone statistic tool to calculate the average
annual cumulative total precipitation to represent the value of
every county. According to the result, it is made into 6 ranges.

700–900 mm, 900–1100 mm, 1100–1300 mm,
1300–1500 mm, 1500–1700 mm,
1700–1900 mm

X3 Annual mean temperature According to the zone statistic tool to calculate the annual mean
temperature to represent the value of every county. According to
the result, it is made into 6 ranges.

8 °C–11 °C, 11 °C–14 °C, 14 °C–17 °C,
17 °C–20 °C, 20 °C–22 °C

X4 Rock desertification rate According to geological survey statistics, the value of every
county is classified into 10 ranges.

<10%, 10%–20%, 20%–30%, 30%–40%, 40%–50%,
50%–60%, 60%–70%, 70%–80%, 80%–90%, >90%

X5 Ecological
governance
factor

RDC type According to Fig. 1, it is classified into 8 categories. A: Gorge; B: Trough valley; C: High mountain; D:
Plateau; E: Fault basin; F: Plain; G: Peak cluster
epikarst; H: Hills with depressions;

X6 The percentage of the karst
control ecological engineering
implementation area

According to geological survey statistics, the value of every
county is the ratio of the area of karst control ecological
engineering implementation to the total area of the county
classified into 10 categories.

<10%, 10%–20%, 20%–30%, 30%–40%, 40%–50%,
50%–60%, 60%–70%, 70%–80%, 80%–90%, >90%
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3.2. Vegetation recovery with the spatiotemporal poverty distribution and
transition

3.2.1. Poverty spatial distribution relationship and transition characters
Moran's I results for RPI in karst NDPC from 2000 to 2015 are shown

in Table 6. In all the cases, poverty had a significant clustered pattern,
especially in 2000 and 2001. The pattern of hot and cold spots in RPI
changed between 2000 and 2015. In 2000, hotspots were concentrated
in the western and northern regions and the cold spots in eastern and
southern areas. In 2015, this pattern changed, and the hot spots were
located, especially in the north of the study area. The cold spots were
observed in the south (Fig. 5a and b).

The spatiotemporal transition in RPI can be observed in Fig. 5c, and d.
The spatiotemporal transition was more evident in 2000 than in 2015. In
2000, LL andHL countieswere located in the south andwest. The counties
with LHandHHwere identified in the east andnorthparts. In 2015, the LL
and HL were observed in the south, LH, and HH in the north.

3.2.2. Coupling relationship between vegetation and poverty time-space
transition

The results showed that the relation between vegetation and
povertywas variable in space.We observed synergies between vegetation
Fig. 3. Spatial NDVI trends during the period 2000–2015 in (a) RDC (b) karst NDPC in 1 km res
area, respectively. The darker green and red color indicates a p value less than 0.01, while the lig
The grey color means the non-rocky desertification control counties. (For interpretation of the
article.)
and poverty transitions in most of the cases. Nevertheless, the pro-
portion of weak synergies (42.86%) was higher than that of strong
synergies (8.76%). The weak synergies between vegetation change
and poverty transition type were 42.86% (browning), 45.45% (slowly
greening), 43.65% (stable greening), and 37.50% (quick greening).
However, a tradeoff between vegetation change and the poverty
transition type was observed in 42.86% (browning), 40.91% (slowly
greening), 48.41% (stable greening), and 57.50% (quick greening).
Notably, only the tradeoff relationship in quick greening counties
was higher than 50%. Strong synergies were observed in 14.29%
(browning), 13.64% (slowly greening), 7.94% (stable greening), and
5.00% (quick greening) areas. The tradeoffs between vegetation
and poverty transition in karst fault basin (E), karst plain (F), karst
peak cluster epikarst (G), and karst hills with depressions (H) were
higher than the synergies (Fig. 5). In the areas karst gorge (A),
karst trough valley (B), karst high mountain (C), and karst plateau
(D), it was observed the opposite. In the area karst fault basin
(E) and karst plain (F), we did not identify a strong synergy relation-
ship. Considering all the regions, we found 51.61% of the studied area
a synergistic relationship and 48.39% a tradeoff. Nevertheless, the
proportion of weak synergy (42.86%) was higher than that of strong
synergy (8.76%) (Figs. 6 and 7).
olution. The green and the red color means the significant increasing and decreasing NDVI
hter indicates a p value between 0.01 and 0.05. The yellow colormeans no significant areas.
references to color in this figure legend, the reader is referred to the web version of this



Fig. 4. Percentage of significant greening area and browning area (p < 0.05) in RDC and NPDC.
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3.3. Geo-detectors: the association of vegetation and poverty, the degree of
impact and mutual influence

The groups of factors that can affect vegetation importantly were
0.323 (X4∩X6, rocky desertification rate, and ecological engineering im-
plementation area); 0.245 (X5∩X6, RDC type, and ecological engineering
implementation area); 0.242 (X1∩X4, space-time poverty transition
type and rocky desertification rate); 0.238 (X4∩X5, the rocky desertifica-
tion rate, and RDC type) (Table 7).

The space-time poverty transition type (X1) can produce a strong
positive effect on the vegetationwhen combinedwith the rocky desert-
ification rate (X4). Among the natural factors, the rocky desertification
rate (X4) can be combined with the space-time poverty transition
type (X1), the RDC type (X5), and the area of ecological restoration
implementation (X6) to affect the vegetation changes in a robust syner-
getic way. The annual average temperature and annual precipitation
have little effect on vegetation changes. For the ecological governance
factors, RDC type (X5) and the area of ecological restoration implemen-
tation (X6) can produce positive effects with X1, X2, X3, and X4.

4. Discussion

Previousworks showed that China's vegetation increase contributed
importantly to global greening (Chen et al., 2019; Zhu et al., 2016). Due
to the afforestation, vegetation restoration, and agricultural intensifica-
tion, pronounced greening has been observed in China and India (Piao
Table 5
Rank of the proportion of significant area in the karst NDPC vegetation dynamic in differ-
ent RDC types.

Rank
(high to low)

The proportion
of significant
greening area
(p < 0.05)

RDC
type

Rank
(low to high)

The proportion
of significant
browning area
(p < 0.05)

RDC
type

1 83.23% B 1 0.10% G
2 82.95% D 2 0.14% B
3 82.01% G 3 0.18% D
4 74.20% A 4 0.19% A
5 67.87% F 5 0.21% F
6 65.77% H 6 0.23% H
7 58.50% E 7 0.68% E
8 34.45% C 8 3.08% C

Italicized fonts: the same order in both rankings.
et al., 2020). This is primarily a consequence of the numerous restora-
tion programs (such as soil and water conservation, natural forest
conservation and Grain for Green), which are a step toward reaching
the United Nations Sustainable Development Goals (Yu et al., 2020).

The greening trend observed in our work was identified previously
in the studied area (Tong et al., 2018; S. Zhao et al., 2020; R. Zhao
et al., 2020). The vegetation of the karst NPDC has become significantly
greener. On average, it was higher than in RDC. From 2000 to 2015,
several restoration programs (fast-growing and high-yielding Timber,
forest ecosystem compensation, wildlife conservation, and nature
protection, the partnership to combat land degradation, rocky desertifi-
cation treatment, grassland ecological protection, and cultivated land
quality) were implemented in NPDC (Yang et al., 2017; Zhang et al.,
2018). The Chinese government made a high investment in the area
to reduce poverty (Ouyang et al., 2016) so that NPDC of the RDC area
could have better results. The implementation of the same measures
in different areas proved to have heterogeneous impacts due to the
complex terrain and fragile ecosystem (H. Wang et al., 2019; K. Wang
et al., 2019). Overall, the greening in karst NPDC is a consequence of
nature and restoration programs (Tong et al., 2018).

For karst NDPC among the various RDC, karst trough valley (B),
plateau (D), and peak cluster epikarst (G) areas had better results
after vegetation restoration. In these regions, frequent droughts are con-
sidered a problem for vegetation development. Better management of
Table 6
the global spatial autocorrelation results of RPI in karst NPDC.

Year Moran's I Z-value p-Value

2000 0.260 12.636 0.000
2001 0.234 11.405 0.000
2002 0.190 9.312 0.000
2003 0.185 9.073 0.000
2004 0.173 8.493 0.000
2005 0.164 8.070 0.000
2006 0.117 5.804 0.000
2007 0.120 5.920 0.000
2008 0.131 6.434 0.000
2009 0.118 5.818 0.000
2010 0.142 6.976 0.000
2011 0.157 7.708 0.000
2012 0.157 7.698 0.000
2013 0.142 6.987 0.000
2014 0.193 9.424 0.000
2015 0.188 9.211 0.000



Fig. 5. Poverty hotpots (a, b) and LISA cluster (p < 0.05) distribution (c, d) of NPDC. The map (a) and (c) are for 2000 and the (b) and (d) are for 2015.

Fig. 6. Synergies and tradeoffs percentage accumulation of the relationship between vegetation change andpoverty transition in karst national designed poor counties and the relationship
affected by browning, slowly greening, stable greening and quick greening areas.
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Fig. 7. Spatial distribution of various vegetation trend level and poverty transition type during 2000–2015 for the karst national poor county. The color shows the vegetation trend level
(red for browning and the darkness of the green color for thedegree of greening). Thepattern shows thepoverty transition type (Dots for SL, Slashes for SF and imaginary linemesh for SC).
The overlay of color and pattern represent both the vegetation trend and the poverty transition type in every county. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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water resources and irrigation efficiencywould contribute to alleviating
the effects of the drought (Yang et al., 2017). So, the efficient use of
water resources is a concern in the region. In some areas, terracing has
been used to reduce soil and water losses (H. Wang et al., 2019; K.
Wang et al., 2019). On the other hand, restoration of vegetation in the
high mountain (C) and fault basin (E) was less successful. In the fault
basin, soil and water storage are more difficult, affecting vegetation
recovery (Zhou et al., 2020). Previousworks highlighted that vegetation
restoration practices is not the only solution for all areas (Bryan et al.,
2018). This shows that the restoration measures should be more
detailed in the study area and applied according to the environmental
characteristics. Other measures, such as ecological and engineering
control measures could be considered to restore vegetation in karst
rocky desertification area in China.
Table 7
The dominant interactions between two covariates on vegetation trends.

Interaction Degree of the
relationship
(q)

Poverty transition ∩ Precipitation 0.060
Poverty transition ∩ Temperature 0.055
Poverty transition ∩ Rock desertification rate 0.242
Poverty transition ∩ RDC type 0.046
Poverty transition ∩ Ecological engineering implementation area 0.120
Precipitation ∩Temperature 0.099
Precipitation ∩ Rock desertification rate 0.165
Precipitation ∩ RDC type 0.133
Precipitation ∩ Ecological engineering implementation area 0.154
Temperature ∩ Rock desertification rate 0.196
Temperature ∩ RDC type 0.131
Temperature ∩ Ecological engineering implementation area 0.125
Rock desertification rate ∩ RDC type 0.238
Rock desertification rate ∩ Ecological engineering
implementation area

0.323

RDC type ∩ Ecological engineering implementation area 0.245

Poverty transition∩ RDC type is Bi-factor enhancement and others are the Nonlinear
enhancement. Bold and underlined front is the q value at the top.
The spatiotemporal poverty distribution in karst NPDC changed
from 2000 to 2015, showing that RPI was not stable. This may be attrib-
uted to the delay in responding to the implemented measures. Society
responds differently to the same measures and the greening trend.
Also, poverty is influenced by many variables, not all related to vegeta-
tion restoration (Cao et al., 2014).

The change of spatiotemporal poverty transition pattern in karst
NPDC from2000 to 2015 showed that the poverty reasons also changed.
Vegetation restoration was an opportunity for poverty alleviation and
wellbeing improvement. Relocating population to settlements reduced
poverty (Cao et al., 2009). In Guizhou province, the authorities relocated
the population and planted trees to alleviate poverty (Cheng et al.,
2017). This measure decreased rural population poverty and the pres-
sures on vulnerable karst areas (Yang et al., 2020). Also, the relocation
of the population contributed to vegetation reestablishment in rural
areas (Cao et al., 2014; H. Wang et al., 2019; K. Wang et al., 2019).

In the quick greening area, the vegetation change and the poverty
transition had a tradeoff relationship. However, synergies were identi-
fied in a not so quick greening area. From this, it can be observed that
the rapid growth of vegetation did not improve poverty alleviation.
Therefore, the vegetation growth resulted from the control of rocky de-
sertification did not increase human wellbeing. Also, no strong synergy
was observed in the counties located in the fault basin (E) and hills with
depressions (H). This means that the vegetation improvement in these
two areas did not change the poverty status as well. The harsh natural
conditions (e.g., sinkholes) and the high vulnerability to floods and
landslides, in fault basin (E) and hills with depressions (H), made vege-
tation restoration not so effective as in other areas. The reduced natural
capacity for the soils to store water reduced the effectiveness of the
restoration measures (Gutiérrez et al., 2014; Zhou et al., 2018). The
poor natural conditions influence the residents' farming, land quality,
water supply, and other basic productions and living conditions. This
decreases the region and poverty transition. Therefore, poverty allevia-
tion in karst NDPC is not only related to the vegetation greening but also
the RDC type.

The results showed that high mountain (C), Plain (F), and Plateau
(D) are the main areas of strong synergy between vegetation change
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degree and poverty transition. This means that the relationship
between vegetation change and poverty transition in these areas of
the RDC is higher than in other areas. Compared with other regions,
the altitude in Plateau (D) and High mountain (C) is variable with the
complex terrain, which results in themicroclimates and diverse vegeta-
tion types. Restoration measures and the availability of resources
decreased population poverty (Cao et al., 2009). In the Plain (F) area,
agriculture development increased population income and reduced
poverty. Therefore, vegetation development (by restoration and crops)
was vital for poverty alleviation in the RDC. Ecological restoration
improved vegetation coverage, water conservation, and reduced the
exposition to natural disasters (Liao et al., 2018). In fact, the fragile
karst ecosystem associated with high human pressure is a cause of natu-
ral disasters and poverty in southwestern China's karst areas (Wang
et al., 2004). Fortunately, we found a synergy between karst NPDC vege-
tation and the poverty transition. On this basis, the measures applied
were beneficial for agriculture development, promote transportation,
improve education, and ultimately ensure people's cultural level and
spiritual abundance. Geo-detector analysis highlighted that the interac-
tion between the rocky desertification rate and poverty transition type
(X1∩X4) is relevant and can influence the vegetation. In this work, the
poverty transition type factor was important for vegetation dynamics
in RDC. Geographic conditions influence household productivity (Jalan
and Ravallion, 2002). In the karst NPDC, the rocky desertification rate
affected vegetation development and land productivity. Therefore,
natural factors are responsible for poverty (Jiang et al., 2014). The most
determinant factor for karst vegetation is the interaction of rocky desert-
ification rate and area of ecological restoration (X4∩X6). This is a conse-
quence of natural factors and environmental governance options.
Ecological restoration measures prevented the rocky desertification,
which was beneficial for the environment and population living in
NPDC. Overall, the rocky desertification rate (X4) can interact with the
poverty transition (X1), RDC type (X5), and the area of ecological
engineering implementation (X6). This makes rocky desertification rate
(X4) an important active factor. Rocky desertification is a barrier for the
vegetation establishment. It also influences the socio-economic develop-
ment of the area and the restoration measures implemented (J.Y. Zhang
et al., 2016).

The interaction of RDC type and ecological engineering implementa-
tion (X5∩X6) highlighted the importance of governance factors. Overall,
the rocky desertification rate (X4) and the ecological governance factors
(X5 and X6) should be the next concerns for vegetation restoration in
karst NPDC. The ecological governance factor increased the interaction
with other factors, showing that restoration measures are essential for
the greening trend. It is crucial to reduce desertification and increase
the resilience of the studied area to natural disasters (Liao et al., 2018;
Tong et al., 2018). Implementing environmental management in the
rocky desertification area is in line with the local natural and social
background and has positive implications. Successful measures need
to consider the environmental and social conditions of the area. Weak
measures such as unsuitable species selection and low compensation
rates for peasants may undermine restoration programs (Tong et al.,
2017).

Vegetation restoration can improve poverty alleviation. This synergy
contributes to the wellbeing of the local communities. How to balance
the poverty alleviation measures and ecology recovery will be the
next critical problem in rural karst area in southwest China (Cheng
et al., 2018b; Fisher et al., 2014; J. Zhang et al., 2016). This study's results
are relevant for policy-making since we identified the areas where veg-
etation restoration has positive or no impacts on poverty alleviation.
This information will be useful to improve population wellbeing.
Overall, several studies highlighted that restorationmeasures improved
environmental quality (e.g., Peng et al., 2011; Liu et al., 2014), ecosys-
tem health (Liao et al., 2018), ecosystem services provisioning (Tian
et al., 2016) and households livelihood diversity (J. Zhang et al., 2016)
of southwest China karst region. Nevertheless, human management
and climate conditions, also local realities, need to be considered in
the measures (Tong et al., 2017), in order to avoid conflicts, although
the population in this region is more aware of environmental problems,
especially related to land and water management (Oliver et al., 2020).
Different restoration practices are needed in areas where the vegetation
restorationwas not so effective in reducing poverty (e.g., highmountain
and fault basin). The limited environmental conditions did not allow
restoration practices to reduce poverty in these areas. Therefore, future
policies should be tailored to tackle poverty in such areas. Measures
such as subsidies, compensations, tax reductions could be established.
Synergies and tradeoffs analysis were crucial to understanding the com-
plex relations between vegetation restoration and poverty alleviation.
Therefore, for policy-making, these analyses could be considered before
design or implement plans or strategies. On the global scale, achieving
the United Nations (poverty reduction, vegetation recovery, and
wellbeing promotion), spatiotemporal tradeoffs, and synergies in vege-
tation vitality and poverty transition in a rocky desertification area will
be the next step (Administration, 2018). The enacted further develop-
ment policy efforts can be the pathways to sustainable development
and poverty eradication (UNEP, 2011). However, we should not ignore
the completion of the policy and the effectiveness test for a long time
to ensure the policy power (Crespo Cuaresma et al., 2018). In the
human-land developing progress, the frequency of harsh conflicts in
NPDC hamper the possibility for the development of a sustainable
plan for future land management. Furthermore, the solution should
come from considering the vegetation and poverty and the ecology-
development balance. Therefore, ecological and environmental degra-
dation and poverty must be tackled together to achieve the win-win
strategies on local and national levels (Cheng et al., 2018a).

Modeling exercises have limitations and uncertainties. In this work,
we tried to tackle this by selecting the best resolution data and data
from official sources. Data availability is one of the most common bar-
riers to developing high-resolution studies (e.g., Shay et al., 2016;
Rova et al., 2018; Inacio et al., 2020). The period of analysiswas between
2000 and 2015. Unfortunately, for the studied area, there was not more
recent data than 2015. We acknowledge the necessity of more updated
data, and this will be more relevant and would strengthen and make
more actual our analysis and proposals for the management of NPDC.
Nevertheless, we studied a robust period (2000–2015), and the conclu-
sions obtained from this work are trustworthy. We are aware that the
NDVI resolution (1 km2) overlooks fine-scale details and is not appro-
priate to local level studies. However, for the spatial scale of this work
(regional), it provides satisfactory results. Another limitation and source
of uncertainty was the fact that point data (Annual cumulative total
precipitation and Annual mean temperature) was interpolated, and
there are always errors (e.g., Bier and Godoy de Souza, 2017; Jain and
Flannigan, 2017; Garcia-Santos et al., 2020). In our study, to be aligned
with NDVI data, the pixel resolution was 1 km2. Therefore, at a local
level, the generalization can be high. The resolution of socio-economic
data (e.g., Rock desertification rate, RPI) is coarser, which increases the
generalization when compared to biophysical data (e.g., NDVI). In this
case, we have only a general idea of each county but cannot understand
the heterogeneities at a finer scale. This is a significant limitation and
can produce some uncertainties in the analysis at the county level. In
the process of performing spatial assessments (e.g., hotspot, LISA),
assessing synergies and tradeoff, and geodetector analysis, all the data
were analyzed at the county scale (including NDVI, Annual cumulative
total precipitation, and Annual mean temperature, losing even more
detail). The values in each county correspond to the average value to
be comparable. This also increase the error of the analysis. Similar obsta-
cles were identified also in previous works that assessed data with
different spatial resolutions (e.g., Immitzer et al., 2018; Räsänen and
Virtanen, 2019; Pastén-Zapata et al., 2020). Despite the limitations
and uncertainties observed, we consider that our work is significant to
decision-making and contribute to understanding the factors involved
in vegetation restoration and poverty transition.
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5. Conclusion

In the karst NPDC of southwest China, the vegetation restoration
effect was more evident than other RDC areas. This is an evidence that
vegetation recuperation reduced poverty levels. Inmost cases of vegeta-
tion growth, there were synergies with poverty alleviation. However, in
situations where vegetation grows quickly, there is a tradeoff relation-
ship with poverty alleviation. The vegetation in the areas where this
occurs is mainly influenced by the interaction of the rocky desertification
rate and ecological restoration. The poverty transition type can also sub-
stantially impact the rocky desertification rate and affect vegetation
changes. The rocky desertification rate can influence the vegetation
changes in a strong synergy with the space-time poverty transition
type, the RDC type, and the area of ecological restoration implementation.
The poverty alleviation can impact on vegetation recovery positively.We
should pay more attention to land management to maintain the sustain-
ability of the human-ecological system.
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