
Retrieval and Perfect Hashing using

Fingerprinting

Ingo Müller12, Peter Sanders1, Robert Schulze2, and Wei Zhou12

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{ingo.mueller,sanders}@kit.edu,wei.zhou@student.kit.edu

2 SAP AG, Walldorf, Germany
robert.schulze@sap.com

Abstract. Recent work has shown that perfect hashing and retrieval of
data values associated with a key can be done in such a way that there
is no need to store the keys and that only a few bits of additional space
per element are needed. We present FiRe – a new, very simple approach
to such data structures. FiRe allows very fast construction and better
cache efficiency. The main idea is to substitute keys by small fingerprints.
Collisions between fingerprints are resolved by recursively handling those
elements in an overflow data structure. FiRe is dynamizable, easily paral-
lelizable and allows distributed implementation without communicating
keys. Depending on implementation choices, queries may require close to
a single access to a cache line or the data structure needs as low as 2.58
bits of additional space per element.

1 Introduction

Consider a set S of n keys from some universe U . Often we want to map S
to unique integer IDs from a small range. A mapping with this property is
called a perfect hash function. Similarly, we often want to store data values
associated with the keys. This is known as a retrieval data structure. These two
problems are closely interrelated. In particular, perfect hash functions can be
used to implement a retrieval data structure by indexing an array of values.
The classical way to implement these data structures uses hash tables storing
the keys and/or values. However, it turns out that it is not necessary to store
the key values. If the keys are big, this optimization can be important. For
example, suppose that S is a set of URLs and we want to store one out of a
small number of categories for each element of S. Another application example
is storing flags for graph exploration in a large implicitly defined graph where
the keys are quite large state descriptions of a finite automaton [1]. For further
applications refer to [2]. We also encountered the retrieval problem in context of
a the SAP HANA main memory column oriented data base [3]. In such a column

store DB, each attribute of a relation is stored as a separate column. In order to
keep large data sets in main memory, data compression is important in column
stores. Perhaps the most important compression technique replaces elements
from a large universe U (e.g., strings) by an ID that can be encoded with a few

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/382465111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

bits in many cases (dictionary compression). A retrieval data structure can be
used to provide efficient mapping from U to IDs. SAP was interested in variants
with very high query performance even at the price of somewhat larger space
consumption than previous work. Since many data structures are accessed at the
same time in HANA, an additional aspect was that we cannot assume lookup
tables to remain in cache between accesses. Hence a small “cache footprint” of
the data structure was an important design consideration.

Previous retrieval data structures in one way or the other cause multiple
cache faults for each query. Refer to Section 3 for details. Here we explore the
possibility to achieve higher performance by using a single hash function evalu-
ation leading to access of a single cache line which yields the desired result. Our
basic approach is quite simple minded and builds on traditional hash table data
structures, in particular those for external memory: Keys are mapped to buckets

capable of storing several values. The new aspect is that we do not store the keys
themselves but only small fingerprints based on another hash function. On the
first glance, this idea does not work since several elements in the same bucket
may have the same fingerprint making them indistinguishable. This problem is
solved by moving all colliding elements to an overflow data structure. Similarly,
surplus elements from overfull buckets are moved to the overflow data structure.
The overflow data structure can be based on the same principle using a fresh
hash function. Elements not fitting there are moved to a secondary overflow data
structure and so on. We may stop the recursion once the number of elements
is small enough to use a more expensive data structure. This yields constant
worst case access time and the expected number of cache faults can be close
to one. Section 4 describes the Fingerprint Retrieval approach (FiRe) in more
detail. In particular, we explain how using compression of the set of fingerprints
in a bucket, the required space can become close to the space needed just for
storing the function values. It turned out that the FiRe approach has additional
advantages that may be even more important for some applications. In partic-
ular we can dynamize the data structure allowing insertions and deletions in
expected constant time. In Section 5 we explain how the FiRe approach can be
adapted to perfect hash functions. In Section 6 we report on experiments with
a performance oriented implementation of FiRe. FiRe significantly outperforms
competing solutions with respect to construction time and query time. The price
is sometimes but not always higher space overhead which is nonetheless much
smaller than for ordinary hashing. Section 7 summarizes the results and discusses
possible future work.

2 Preliminaries

We use i..j as a shorthand for {i, . . . , j}. Let n = |S|. An obvious lower bound for
the space consumption of a retrieval data structure is rn bits. For the analysis
we assume that the used hash functions h : U → 1..m behave like truly random
functions, i.e., we assume that they are drawn uniformly at random from the set
of mappings from U to 1..m. This can be justified theoretically using a “splitting

trick” [4]. A perfect hash function h : U → 1..m is an injective mapping from
S to 1..m. h is a minimal perfect hash function if m = n. In this paper, log x
denotes the base two logarithm. f(n) ∼ g(n) expresses that f converges to g as
n → ∞. A pair (s, t) ∈ M ⊆ R

2 is Pareto optimal with respect to M if no other
element (s′, t′) ∈ M dominates x, i.e., s′ ≤ s and t′ ≤ t.

3 Related Work

Fingerprinting is a well known technique [5] for indexing data structures but it
has not been applied to perfect hashing or retrieval so far. Most applications
use fairly large fingerprints in order to avoid collisions. The cuckoo filter [6] uses
small fingerprints to obtain an approximate dictionary. Unique features of FiRe
are its simplicity and that it is able to repair collisions.

Theoretical solutions for perfect hashing with a constant or even optimal
number of bits per element have been known for a long time [7]. However, prac-
tical solutions have emerged only recently – raising significant interest in the
topic. The compressed hash-and-displace algorithm [8] (CHD) uses a primary
hash function to identify the index of a secondary hash function. This index is
geometrically distributed with constant expectation and with clever compression
[9] needs only a constant number of bits. CHD has relatively expensive queries
since it performs select operations on large sparse bit vectors. CHD is also in-
herently sequential since it relies on a greedy construction algorithm. The BPZ
algorithm by Botelho, Pagh and Ziviani [10] computes the hash function value
based of three random table lookups. Hence, using BPZ for retrieval implies
about four cache faults for each access for large inputs. Computing the table is
based on an inherently sequential greedy algorithm for ordering the edges of a
3-regular random hypergraph. The EPH algorithm [2] uses the splitting trick to
compute minimal perfect hash functions. The main difference to FiRe is that
the resulting buckets in EPH have variable size and use no fingerprints but the
BPZ algorithm to build bucket local perfect hash functions. Another external
hash table represents buckets using entropy coded tries (ECT) [11] storing the
longest distinguishing prefix of a hash value. These can be viewed as “perfect”
fingerprints leading to a single stage lookup desirable for external memory but
also introducing complication and computational overhead not appropriate for
our high performance setting.

The retrieval problem can also be solved directly. The CHM algorithm [12]
uses yet another greedy algorithm to compute a table of m = O(n) r-bit values
so that the retrieved value is the xor of k ≥ 2 values at hashed table positions.

These results can be viewed as show cases of algorithm engineering since
they combine interesting ideas and highly nontrivial theoretical analysis in such
a way that one gets surprisingly good results that are practically useful. FiRe
is different in that it starts from a simple-minded idea and has a very simple
analysis and implementation. The surprising part is that one gets competitive
and in some aspects superior results this way.

4 Retrieval using Fingerprint Hashing

4.1 The FiRe Data Structure

The first level of a FiRe data structure consists of an array B of m = n/b
buckets. A bucket is an array of a values with r bits each. For each stored value,
the bucket also stores a fingerprint in the range 1..k. An element s ∈ S is mapped
to a bucket by a hash function hB : U → 1..m. Its fingerprint is obtained by a
hash function hf : U → 1..k. We can equivalently assume that we have a single
hash function h → 1..km defining both bucket position and fingerprint. The
first level can only hold values for elements with a unique value of h, i.e., no two
elements of S stored in the first level may be mapped to the same bucket and

have the same fingerprint – a fingerprint collision. If more then a such eligible
elements are mapped to the same bucket, any a of them can be chosen.

The first level is constructed by mapping elements to their buckets, removing
elements involved in fingerprint collisions, and then removing elements from
overloaded buckets. Elements not stored in the first level are moved on to the
second level which is built in an analogous way. This process is repeated until a
maximum number of levels L is reached. Layer L+1 is a fallback data structure
which stores the remaining elements and guarantees constant worst case access
time using any of the previous techniques. We can also use L = ∞, eliminating
the fallback data structure. Figure 1 summarizes the structure of FiRe. As long
as a constant fraction of the remaining elements considered can be stored in each
iteration, the overall construction time is linear.

A query for key u checks whether an element with fingerprint hf (u) is stored
in bucket hB(u) of level 1. In the positive case, the associated data element is

...

Level 1

...

Level 2

· · · ...

Level L

PHF

based

retrieveal

data

structure

Level L+ 1

m buckets

fingerprints v1 v2 · · · va

a cells

A Bucket

Fig. 1. Schematic diagram of a FiRe data structure.

returned. Otherwise, the next level is queried. As long as L and a are constants,
this yields constant worst case query time. For L = ∞ the worst case query
time can be made logarithmic by restarting the construction process of a layer
whenever it is much smaller than expected.

Representing Fingerprints There are several ways to represent fingerprint in-
formation with different trade-offs between space consumption and query time.
Refer to the full paper for details. Most of the time we will consider bit vectors
using k bits for representing all fingerprints in a bucket. Also interesting are

information theoretically optimal representations requiring
⌈

log
∑a

i=0

(

k
i

)

⌉

bits.

Asymptotic Analysis For details refer to the full paper. Here we only outline the
basic ideas of an analysis as m → ∞ assuming that L = ∞ and the parameters
a, b, and k are the same on all levels. We first show that the probability of a
particular fingerprint value to represent exactly one element is p1 ∼ b

ke
−b/k. We

then argue that the number of non-colliding elements allocated to a bucket is
approximately B(k, p1) binomially distributed which implies that the expected

number of empty cells in a bucket is a0 ∼
∑a−1

i=0 (a− i)
(

k
i

)

pi1(1−p1)
k−i. Since the

overall number of empty cells is sharply concentrated around its expectation,
we can use a0 to estimate the space overhead per element as s ∼

ra0+sf
a−a0

bits per
element where sf denotes the number of bits needed to store the fingerprints of
a bucket. The expected number of accessed levels is ℓ ∼ b

a−a0
.

4.2 Choosing Parameters

The performance of the FiRe data structure with respect to space consumption
and query time depends on the parameters a, b, k, on implementation choices,
in particular for representing fingerprints, on r, and on hardware parameters
like the cache line size. Hence, it is a complex problem how to actually set the
parameters. Moreover, in most situations there is not one optimal choice but a
trade-off between space and time. Hence, we are interested in a set of parameter
settings representing Pareto optimal solutions with respect to space and time
while excluding suboptimal choices that are dominated by other choices. We
propose to attack this problem by starting from hardware and implementation
constraints generating a small set of reasonable choices for setting a, k, and
the fingerprint representations. For each of these choices, b will be the only
remaining free parameter. We then have to find out which of these choices yield
Pareto optimal solutions for some values of b.

We exemplify this methodology for an example oriented at the column store
application mentioned in the introduction. We consider a machine with cache
line size 64 and we want to store values with r = 32 bits. We are interested in
very fast access and thus choose the bit vector representation for fingerprints.
For the same reason, we want buckets to fit perfectly into a cache line. This
implies that k should be a multiple of 32 and that a = 16− k/32. Figure 2 plots
the resulting trade-off for k ∈ {32, 64, 96, 128}. These plots were obtained by

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 1.5 2 2.5 3

sp
ac

e
ov

er
he

ad
 [b

its
/e

le
m

en
t]

l

opt. encoding a=14, k=149
bit vector a=15, k= 32
bit vector a=14, k= 64
bit vector a=13, k= 96
bit vector a=12, k=128

Fig. 2. Expected number of levels accessed versus space overhead for r = 32 and
bit-vector encoding of fingerprints.

computing the pairs (ℓ, s) for b ∈ 1..100. The case k = 32 is not useful since
it leads to too many fingerprint collisions. The case k = 64, a = 14 is perhaps
the most useful one since it is good for a wide range of trade-offs. In particular,
its space overhead becomes as low as 4.586 bits per element for b = 64. If we
are willing to spend 5 bits per element, ℓ = 2.1 expected level access suffice (at
b = 29). To achieve ℓ < 1.3, it is better to use k = 96, a = 13. To achieve
ℓ < 1.15, it is better to use k = 128, a = 12. The corresponding ranges of b for
which the respective cases are Pareto optimal are 1..11 for k = 128, 12..16 for
k = 96, and 17..64 for k = 64. For comparison, the solid curve shows the values
for a = 14, k = 129 assuming an information theoretically optimal encoding of
the fingerprints. This curve dominates all the other curves. However, note that
the query time for this case is likely to be quite large anyway due to overhead
for decoding the fingerprints. Hence, this curve should rather be viewed as an
optimistic estimate for the performance of some very clever implementation that
offers a combination of space efficient encoding and fast decoding.

External, Parallel, and Distributed Processing In the full paper we explain how
to construct a FiRe data structure in external memory and on a parallel ma-
chine. Due to the decomposition into independent buckets this is very easy and
efficient. Perhaps more interestingly, FiRe can be implemented in various dis-
tributed settings so that communication volume is very low. In particular, there
is no need to communicate keys.

4.3 Dynamization

FiRe directly supports an update operation – changing the value associated with
a key. The same holds for retrieval data structures based on perfect hashing but
other data structures such as CHM [12] do not allow updates.

An advantage of the FiRe is that it can be augmented to allow modifications

(insertions and deletions) in expected constant time. Existing superlinear lower
space bounds [13,14] make this appear difficult without access to the key infor-
mation. However, we will now argue that additional information only needs to be
available during modifications. This setting does not save memory but has useful
applications anyway. One example is when the FiRe data structure fits into fast
memory (e.g., L3 cache) and the augmented information fits into the next level
of the memory hierarchy (e.g., main memory). In this situation, the dynamized
FiRe will be faster than alternative solutions when there are much more queries
than modifications. Another scenario is distributed computing where the key
information is available on one site A and another site B only stores the data
needed for queries. A modification will then be done on A which sends only the
information required to change the FiRe data structure at site B.

In order to support insertions, we need to store two kinds of additional in-
formation. First, we need to know the keys of the elements stored in a bucket.
When a newly inserted element x suffers a fingerprint collision with an element
y, both x and y need to be moved on to the next level. When x collides with
a fingerprint that already suffered a collision previously, this also needs to be
known. We call such a fingerprint “blocked”. To insert an element x, we inspect
the bucket i = hB(x). If the fingerprint f = hf (x) is unused, and block i is
not full, the value for x is inserted into block i and f is marked as used. The
dynamic part of the data structure remembers x. In all other cases, f becomes
blocked for block i and the insertion attempt moves on to the next level. If x
had to move on because of another element y stored there (i.e., f was used but
not blocked previously), element y is also moved to the next level.

Note that in the worst case, a single insertion can cause a chain reaction
leading to a number of element moves exponential in the number of levels L. In
the full paper we analyze this effect using branching processes and show that the
situation remains stable as long as k > b. When this condition becomes violated,
the data structure should be rebuilt.

The easiest way to handle deletions is to ignore them – the specification of
retrieval data structures does not specify anything about the result of a query for
an element outside S. The stability condition for the branching process should
then define n (and, as a consequence b = n/m) as the number of stored elements
plus the number of inserted elements. We can also trigger rebuilding when this
value of n differs too much from the number of non-deleted elements. Actual
deletion of an element stored in a bucket is easy. We just remove it from the cell
it previously occupied and set its finger print from used to unused.

If we insist on keeping the retrieval part of the FiRe data structure identical
to what we would get in the static case, we additionally need to be able to
unblock blocked fingerprints. For this we need to count the number of times

a fingerprint is used. When this count goes down to one, we have to find the
element which wants to move there, delete it from the subsequent layers and
move it to the current layer. A similar case applies when an element is deleted
from a full bucket. Then the block has room for an element associated with a
blocked fingerprint with count one.

5 Fingerprint Based Perfect Hashing (FiPHa)

Perfect hashing can be viewed as FiRe with r = 0, i.e., there is no need to
store any associated information – we only store fingerprint information in the
buckets. The fingerprint information can be used to define the injective function
hp(x) := ahb(x)− a+rankB(x) if hf (x) is a valid fingerprint in bucket B[hb(x)]
and where rankB(x) counts the number of one-bits in the fingerprint bit vector
of bucket B[hb(x)] up to position hf (x). If hf (x) is not a valid fingerprint in
bucket B[hb(x)], we return the value of hp(x) for the next layer and add the
offset am. The analysis of FiPHa is analogous to the analysis of FiRe. We get
expected space overhead of s = nsf/(a− a0) bits and as before ℓ = b/(a− a0).
The expected range of the perfect hash function is n/(1− a0

a). This can be seen as
follows: In layer 1, we will consume range am. In expectation, am−a0m elements
will be mapped to this range. The resulting ratio is am/(am−a0m) = 1/(1− a0

a).
Since the same ratio will be observed on all levels, the overall expected range is
n/(1− a0

a).
For example, assuming information theoretically optimal representation of

fingerprints, cache line size 64 bytes, and optimizing for space, we set k = b = 543
and a = 200. We get expected space s = 2.61 bits per element, ℓ = 2.77 expected
layer accesses and the perfect hash function has expected range 1.026n. In this
case, compression does not actually help a lot. Consider uncompressed bit vector
representation, k = b = 512 and a = 188. We then get space 2.79 bits, 2.78 layer
accesses, and range 1.023n.

FiPHa is dynamizable in a way analogous to FiRe.

Minimal perfect hashing. We can get a minimal perfect hash function by us-
ing only a single large bucket (i.e., b = n, m = 1, a = ∞) and by setting the
bucket size a to the actual number of elements stored in that bucket (i.e., all
those elements not moved on to the next layer). The price we pay for this con-
ceptual simplification is that now the rank function has to work on an input
of size O(n). Fortunately, it is well known how to do this with constant query
time and information theoretically optimally up to lower order terms. There are
even practical implementation, e.g., [15]. The asymptotic analysis is also greatly
simplified since there is no need to account for empty cells. In the full paper we

argue that the expected space consumption per stored element is H(p1)
p1

where
H denotes the entropy function and p1 is the probability that a fingerprint is
used exactly once in a bucket. The expected number of accessed levels is en/k.
Optimizing for space consumption we get p1 = 1/e at k = n. This value yields
H(1/e) ≈ 2.58 bit of space per element and expected number of accessed levels

e. If we are willing to spend 3 bits per element, we get about 1.58 expected level
accesses. For 4 bits per element the same figure becomes 1.21 expected level
access.

6 Experiments

We show results for 108 32 bit integers (data set INT) and and 108 3-grams
(sequences of 3 words) randomly choosen from the 1.33·108 3-grams from Google
Books [16] starting with n (data set NGRAM). We evaluate the retrieval data
structures on both data sets and with r ∈ {8, 32, 64} bits for data values.

We have implemented the FiRe and FiPHa data structures using bit vector
representation of fingerprints. Refer to the bachelor thesis of Wei Zhou [17]
for more details. Buckets are aligned to cache lines. We use Jenkins [18] fast
and simple hash function (we also tried the newer SpookyHast with similar
results). The implementation uses GNU C++ 4.8.1 with compilation options -O3
-m64 -msse4.2 -fopenmp -std=c++11 -march=native. Elements are assigned
to buckets with the fast parallel radix sort algorithm from [19]. All experiments
have been performed using a single core of a machine with 48 GByte RAM and
2 Intel Xeon X5650 hexa-core processors with 2.66 GHz clock frequency and 12
MByte L3 cache. The cache line size of this processor is 64 byte. For each of value
of r we have configured FiRe with three parameter settings that achieve ℓ close
to 1.05, 1.25, and 1.5 respectively. In the full paper we list these configurations.
Here we denote them FiRe5, FiRe25, and FiRe50 respectively. All these variants
use L = 8 levels. The fallback data structure uses our own implementation of
the BPZ algorithm [10]. FiPHa is configured as introduced in Section 5.

We compare FiRe and FiPHa with five state of the art implementations from
the CMPH library [20]. All these algorithms use the Jenkins hash function [18].
CHM-x refers to the CHM algorithm [12] where x indicates how many values
are xor-ed. CHD-α stands for the CHD algorithm [8] where α denotes the load
factor used in [8] – 0.99 means that a nearly minimal perfect hash function
is generated. We have also made measurements using the STL unordered map

hash table (using Jenkins hash function and preallocating as many buckets as
elements). STL not only needs much more space but is also about three times
slower than FiRe both with respect to construction time and query time.

Figure 3 visualizes the remaining results. The full paper gives the correspond-
ing numeric values. With respect to construction time FiRe is four times faster
than the fastest competitors (CHD-0.5) and 17 times faster than the slowest one
(CHD-0.99). FiPHa is considerably slower to construct, but still faster than all
competitors. With respect to space consumption, FiRe50 is competitive with the
other implementations for r ≥ 32. Only FiPHa and CHD-0.99, which compute a
near minimal perfect hash function, beat all the other codes significantly, with a
small advantage for CHD-0.99. However, this comes at the price of a much larger
construction time. For r = 8 or for FiRe5 and FiRe25, FiRe needs significantly
more space then the other codes. However this is still much less than an ordi-

r = 8 r = 32 r = 64

0

500

1000

1500

2000

2500

3000

3500

4000

F
iR
e
5

F
iR
e
2
5

F
iR
e
5
0

F
iP
H
a

C
H
M
-2

C
H
M
-3

B
P
Z

C
H
D
-0
.5

C
H
D
-0
.9
9

F
iR
e
5

F
iR
e
2
5

F
iR
e
5
0

F
iP
H
a

C
H
M
-2

C
H
M
-3

B
P
Z

C
H
D
-0
.5

C
H
D
-0
.9
9

F
iR
e
5

F
iR
e
2
5

F
iR
e
5
0

F
iP
H
a

C
H
M
-2

C
H
M
-3

B
P
Z

C
H
D
-0
.5

C
H
D
-0
.9
9

b
u
il
d
ti
m
e
[n
s
/
el
em

en
t]

0

10

20

30

40

50

60

70

80

F
iR
e
5

F
iR
e
2
5

F
iR
e
5
0

F
iP
H
a

C
H
M
-2

C
H
M
-3

B
P
Z

C
H
D
-0
.5

C
H
D
-0
.9
9

F
iR
e
5

F
iR
e
2
5

F
iR
e
5
0

F
iP
H
a

C
H
M
-2

C
H
M
-3

B
P
Z

C
H
D
-0
.5

C
H
D
-0
.9
9

F
iR
e
5

F
iR
e
2
5

F
iR
e
5
0

F
iP
H
a

C
H
M
-2

C
H
M
-3

B
P
Z

C
H
D
-0
.5

C
H
D
-0
.9
9

sp
a
ce

ov
er
h
ea
d
[b
it
s
/
el
em

en
t]

0

50

100

150

200

250

300

350

400

450

F
iR
e
5

F
iR
e
2
5

F
iR
e
5
0

F
iP
H
a

C
H
M
-2

C
H
M
-3

B
P
Z

C
H
D
-0
.5

C
H
D
-0
.9
9

F
iR
e
5

F
iR
e
2
5

F
iR
e
5
0

F
iP
H
a

C
H
M
-2

C
H
M
-3

B
P
Z

C
H
D
-0
.5

C
H
D
-0
.9
9

F
iR
e
5

F
iR
e
2
5

F
iR
e
5
0

F
iP
H
a

C
H
M
-2

C
H
M
-3

B
P
Z

C
H
D
-0
.5

C
H
D
-0
.9
9

q
u
er
y
ti
m
e
[n
s
/
el
em

en
t]

Fig. 3. Comparison of space, construction time and query time. The left and the right
bar show the values of the INT and the NGRAM data set respectively.

nary hash table. However, more space efficient implementations of fingerprint
sets may improve this in the future, in particular for small r.

As expected, FiRe has the best query times. The only competitor with com-
parable performance, CHM-2, actually needs a similar amount of space as FiRe
but is clearly beaten with respect to construction time. Also recall that CHM
does not support updates of the retrieved information. As expected FiPHa has
worse query performance than FiRe but remains competitive with CHD-0.99,
the only competitor with a similar space overhead, while having a considerably
lower construction time. Overall, we also see a significant performance advantage
compared to competitors of comparable functionality.

7 Conclusion

In retrospect, we find it surprising that fingerprint based hashing was not the
first method tried for space efficient perfect hashing and retrieval data structures.
At least conceptually it looks simpler than previous methods. We have shown
that it also allows faster (and parallel) construction and faster queries. The
advantages of fingerprinting for dynamization and distributed implementation
seem even more fundamental. Since so many results follow from the fingerprinting
approach, it looks interesting to look for further applications and refinement.

We could radically reduce the number of empty cells by mapping overflowing
elements to the same level. For example, we could adapt the bucket-cuckoo
hashing approach [21] to fingerprinting as in [6] for approximate dictionaries.
We pay with more expensive construction and we will need somewhat larger
fingerprints but for large r this should overall save space.

It might be possible to find better trade-offs between space and query time
by using different parameters on different levels of the FiRe data structure. It
looks promising to optimize for space efficiency on the first level and change the
parameters in favor of lower query time on the following levels. Good combina-
tions could be found systematically using dynamic programming – we maintain
a set of Pareto optimal configurations using i levels of hierarchy and use this to
build solutions with i+ 1 levels.

In order to get a good practical compromise between space efficiency and
speed, it would be interesting to look for a representation of the fingerprint sets
that allows fast rank-queries and need space close to the lower bound.

Acknowledgements We would like to thank Martin Dietzfelbinger for valuable
suggestions including the idea to combine fingerprints with cuckoo hashing. Se-
bastian Schlag provided a very good implementation of the radix sorter.

References

1. Edelkamp, S., Sanders, P., Simecek, P.: Semi-external LTL model checking. In:
20th International Conference on Computer Aided Verification. (2008) 530–542

2. Botelho, F.C., Ziviani, N.: External perfect hashing for very large key sets. In: 16th
ACM Conference on Information and Knowledge Management. (2007) 653–662

3. Färber, F., et al.: SAP HANA Database: Data management for modern business
applications. SIGMOD Rec. 40(4) (January 2012) 45–51

4. Dietzfelbinger, M.: Design strategies for minimal perfect hash functions. In:
Stochastic Algorithms: Foundations and Applications. Volume 4665 of LNCS.
Springer Berlin Heidelberg (2007) 2–17

5. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development 31(2) (1987) 249–260

6. Fan, B., Andersen, D.G., Kaminsky, M.: Cuckoo filter: Better than bloom. ;login
38(4) (2013)

7. Hagerup, T., Tholey, T.: Efficient minimal perfect hashing in nearly minimal space.
In: STACS 2001. Volume 2010 of LNCS. Springer (2001) 317–326

8. Belazzougui, D., Botelho, F.C., Dietzfelbinger, M.: Hash, displace, and compress.
In: Algorithms-ESA. Volume 5757 of LNCS. Springer (2009) 682–693

9. Fredriksson, K., Nikitin, F.: Simple compression code supporting random access
and fast string matching. In: Experimental Algorithms (SEA). Volume 4525 of
LNCS. Springer (2007) 203–216

10. Botelho, F.C., Pagh, R., Ziviani, N.: Simple and space-efficient minimal perfect
hash functions. In: 10th WADS. Volume 4619 of LNCS. Springer (2007) 139–150

11. Lim, H., Andersen, D.G., Kaminsky, M.: Practical batch-updatable external hash-
ing with sorting. In: ALENEX. (2013) 173–182

12. Dietzfelbinger, M., Pagh, R.: Succinct data structures for retrieval and approximate
membership. In: 35th ICALP. Volume 5125 of LNCS., Springer (2008) 385–396

13. Demaine, E., Meyer auf der Heide, F., Pagh, R., Pǎtraşcu, M.: De dictionariis dy-
namicis pauco spatio utentibus. In: LATIN 2006: Theoretical Informatics. Volume
3887 of LNCS. Springer (2006) 349–361

14. Eppstein, D., Goodrich, M.: Straggler identification in round-trip data streams via
newton’s identities and invertible Bloom filters. IEEE Trans. Knowl. Data Eng.
23(2) (2011) 297–306

15. Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: 11th
Symposium on Experimental Algorithms. Volume 7276 of LNCS. Springer (2012)
295–306

16. Google: Google books Ngram Viewer
17. Zhou, W.: A compact cache-efficient function store with constant evaluation time.

Bachelor thesis at KIT and SAP (2013)
18. Jenkins, B.: Algorithm alley: Hash functions. Dr. Dobb’s Journal (1997)
19. Sanders, P., Wassenberg, J.: Engineering a multi-core radix sort. In: Euro-Par.

Volume 6853 of LNCS., Springer (2011) 160–169
20. de Castro Reis, D., Belazzougui, D., Botelho, F.C., Ziviani, N.: CMPH – CMinimal

Perfect Hashing Library http://cmph.sf.net.
21. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly

packed constant size bins. Theoretical Computer Science 380(1–2) (2007) 47–68
22. McDiarmid, C.: Concentration. In: Probabilistic Methods for Algorithmic Discrete

Mathematics. Springer (1998) 195–247
23. Sanders, P., Schlag, S., Müller, I.: Communication efficient algorithms for funda-

mental big data problems. In: IEEE Int. Conf. on Big Data. (2013)

