
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2020) 17:1331–1373
https://doi.org/10.1007/s11554-019-00883-w

ORIGINAL RESEARCH PAPER

Reviewing GPU architectures to build efficient back projection
for parallel geometries

Suren Chilingaryan1 · Evelina Ametova2,3 · Anreas Kopmann1 · Alessandro Mirone4

Received: 8 October 2018 / Accepted: 10 May 2019 / Published online: 26 June 2019
© The Author(s) 2019

Abstract
Back-Projection is the major algorithm in Computed Tomography to reconstruct images from a set of recorded projec-
tions. It is used for both fast analytical methods and high-quality iterative techniques. X-ray imaging facilities rely on
Back-Projection to reconstruct internal structures in material samples and living organisms with high spatial and temporal
resolution. Fast image reconstruction is also essential to track and control processes under study in real-time. In this article,
we present efficient implementations of the Back-Projection algorithm for parallel hardware. We survey a range of parallel
architectures presented by the major hardware vendors during the last 10 years. Similarities and differences between these
architectures are analyzed and we highlight how specific features can be used to enhance the reconstruction performance. In
particular, we build a performance model to find hardware hotspots and propose several optimizations to balance the load
between texture engine, computational and special function units, as well as different types of memory maximizing the uti-
lization of all GPU subsystems in parallel. We further show that targeting architecture-specific features allows one to boost
the performance 2–7 times compared to the current state-of-the-art algorithms used in standard reconstructions codes. The
suggested load-balancing approach is not limited to the back-projection but can be used as a general optimization strategy
for implementing parallel algorithms.

Keywords Parallel algorithms · Hardware architecture · GPU computing · Synchrotron tomography · Back-projection ·
CUDA · OpenCL

1 Introduction

X-ray tomography is a powerful tool to investigate materials
and small animals at the micro- and nano-scale [1]. Infor-
mation about X-ray attenuation or/and phase changes in the
sample is used to reconstruct its internal structure. Recent

advances in X-ray optics and detector technology have paved
the way for a variety of new X-ray imaging experiments aim-
ing to study dynamic processes in materials and to analyze
small organisms in vivo. At the Swiss Light Source (SLS)
scientists were able to take high quality 3D snapshots of 150
Hz oscillations of a blowfly flight motor [2]. A temporal
resolution of 20 ms was achieved during a stencil test per-
formed at SLS [3] and also in the analysis of morphological
dynamics of fast-moving weevils at the ANKA synchrotron
at KIT [4].

To achieve these results, the instrumentation used at
imaging beamlines has recently undergone a major update.
The installed streaming cameras are able to deliver up to
hundreds of thousands of frames per second with a con-
tinuous data rate up to 8 GB/s [5]. Newly developed con-
trol systems at ANKA [6], SLS [5], and other synchrotron
facilities use the acquired imaging information to track
the processes under study and adjust the instrumentation
accordingly. These control systems rely highly on the per-
formance of the integrated image processing frameworks.

 * Suren Chilingaryan
 chilingaryan@kit.edu

 Evelina Ametova
 evelina.ametova@manchester.ac.uk

 Anreas Kopmann
 kopmann@kit.edu

 Alessandro Mirone
 mirone@esrf.fr

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 KU Leuven, Leuven, Belgium
3 The University of Manchester, Manchester, UK
4 ESRF, Grenoble, France

http://orcid.org/0000-0002-2909-6363
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-019-00883-w&domain=pdf

1332 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

Faster acquisition and a high level of automation is essential
to study dynamic phenomena and at the same time enables
experiments with significantly increased sample through-
put. For example, in 2015 Diamond Light Source (DLS)
reported that typically about 3000 scans are recorded dur-
ing 5 days of operation at a single imaging beamline [7].
Consequently, the amount of data generated at imaging
beamlines quickly grows and results in a steep rise of the
required computing power. In order to achieve higher tem-
poral resolution and to prolong the duration of experiments,
advanced methods are developed that incorporate a priori
knowledge in the reconstruction procedure. These methods
are able to produce high-quality images from undersampled
and underexposed measurements, as demonstrated by [8,
9]. Unfortunately these methods are computationally sig-
nificantly more demanding than traditional reconstruction
algorithms and further increase the load on the computing
infrastructure [10].

To tackle the performance challenge several recon-
struction frameworks have been developed and optimized
to utilize the parallel capabilities of nowadays comput-
ing architectures. At SLS GridRec, a fast reconstruction
approach optimized for conventional CPU technology, has
been adopted [11]. The reconstruction is scheduled across
a dedicated cluster and reconstructs a 3D image within
a couple of minutes [5]. Other frameworks use GPUs to
accelerate the computation and are able to achieve minute-
scale reconstructions at a single node equipped with multi-
ple GPU adapters. PyHST is developed at ESRF and uses
the CUDA framework to offload image reconstruction to
NVIDIA GPUs [12]. The second version of PyHST provides
also a number of iterative reconstruction techniques [13].
The UFO parallel computing framework is used at ANKA
synchrotron to realize in-vivo tomography and laminogra-
phy experiments [14, 15]. It constructs a data processing
workflow by combining basic building blocks in a graph
structure. OpenCL is used to execute the reconstruction
at parallel accelerators with a primary focus on NVIDIA
and AMD GPUs. ASTRA is a fast and flexible develop-
ment platform for tomographic algorithms with MATLAB
and python interfaces [16, 17]. It is implemented in C++
and uses CUDA to offload computations to GPU. Several
other frameworks are based on the ASTRA libraries to pro-
vide GPU-accelerated reconstruction, for instance the Savu
framework at DLS [7] or TomoPy at the Advanced Photon
Source (APS) [18]. Recent versions of TomoPy also support
UFO and GridRec as backends. All of the GPU-accelerated
frameworks are capable to distribute the computation to a
GPU cluster as well.

While most of the nowadays imaging frameworks rely
heavily on parallel hardware to speed-up the reconstruc-
tion, specific features of the GPU architecture are rarely
considered. On other hand, the hardware architectures differ

significantly [19]. Organization of memory and cache hierar-
chies, performance balance between different types of opera-
tions, and even the type of parallelism varies. A significant
speed-up is possible if details of the specific architecture are
taken into account as illustrated in [20]. Fast execution is
especially important if the reconstruction is embedded in a
control workflow. Minimal latency is essential to track faster
processes and to improve the achieved spatial and temporal
resolutions. Due to unavoidable communication overhead, it
is not always possible to reduce the latencies by scaling the
reconstruction cluster.

For online monitoring and control, normally fast analyti-
cal methods are used to reconstruct 3D images. There are
two main approaches: Filtered Back Projection (FBP) and
methods based on the Fourier Slice Theorem [21]. The later
methods are asymptotically faster, but due to the involved
interpolation in the Fourier domain are more sensitive to
the quality of the available projections. For typical geom-
etries Fourier-based methods are several times faster using
the same computing hardware [22] and should be preferred
if the computing infrastructure is limited to general-purpose
processors only [5]. A recent study suggests to implement
back projection as convolution in log-polar coordinates in
order to gain high reconstruction speed with interpolation in
the image domain [23]. However, this new method has not
yet been adopted in production environments. Still, Filtered
Back Projection is the method of choice, largely due to it
simplicity and robustness. Therefore, the efficiency of the
FBP implementation is still crucial for the operated moni-
toring and control systems. Furthermore, methods used for
low dose tomography normally consist out of sequences of
forward and back projections. And, thus, a faster implemen-
tation of the back projection lowers also the computational
demands for high-quality offline reconstruction and might
reduce the required hardware investments.

While there are several articles aiming at optimization
of Back Projection for general-purpose processors and Intel
Xeon-Phi accelerators [24], up to our knowledge there are
no publications considering the variety of GPU architec-
tures. A number of papers addresses specific GPU architec-
tures [25, 26]. Multiple papers perform a general analysis
of a range of GPU architectures, reveal undisclosed details
trough micro-benchmarking, and propose guidelines for per-
formance optimization [27–29]. This information is invalu-
able to understand factors limiting performance on a specific
architecture and to find an alternative approach to achieve
a better performance. Several papers propose methods to
auto-tune computation kernels [30]. However, the tuning
is limited to finding optimal configuration of pre-defined
parameters like desired occupancy, dimensions of execution
blocks, etc. For instance, there are no automated solutions
to tune the balance between the texture engine and the com-
putational cores.

1333Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

In [31], we presented two highly-optimized back-pro-
jection algorithms for NVIDIA Pascal GPUs and a hybrid
approach to balance the load between different GPU sub-
systems using both in parallel. While the algorithms can
be used on different hardware, multiple modifications are
required to address the differences in the architectures effi-
ciently. Furthermore, the proposed hybrid approach is only
suitable for the NVIDIA GPUs of a few latest generations. A
different scheme to balance load is required for AMD, Intel,
and older NVIDIA GPUs. In this paper, we review a variety
of parallel architectures presented in the last 10 years and
establish a methodology to expand the original work to dif-
ferent parallel hardware. We discuss hardware differences in
detail, build performance model, and demonstrate how these
differences can be addressed to optimize the performance of
the FBP algorithm. Particularly, we suggest modifications to
adapt the developed algorithms for the architectures with on-
chip memory optimized for 64-bit access. To address further
differences in memory subsystems, we propose several alter-
native caching methods. We introduce an approach to reduce
the overall number of executed instructions for systems
with a bottleneck in the instruction throughput. We discuss
optimal blocking strategies in great detail and suggest how
the code-generation can be tweaked on the NVIDIA plat-
form. We also propose two new methods to balance the load
between different GPU subsystems. One targets NVIDIA
Kepler architecture and another can be applied universally
but with a minor penalty to the quality. The proposed perfor-
mance model allows us to estimate the speed also for future
architectures and select the appropriate modification and
parametrization of the algorithms. Up to our knowledge, we
present the first comprehensive overview of the GPU archi-
tectures across multiple vendors and GPU generations. Fur-
thermore, using the back-projection algorithm as an exam-
ple, we also illustrate how specific hardware features can be
addressed and estimate possible gains. So the contribution
of this paper goes beyond the proposed back-projection algo-
rithm and also suggests optimization strategies suitable for
other applications.

In this paper we focus on the optimizations of the back-
projection algorithm and only briefly mention the organi-
zation of data flow as it is already explained in literature
[12, 15]. We also do not cover scaling issues since the
proposed optimizations can be easily integrated in existing
frameworks like ASTRA, PyHST, or UFO which provide
multi-GPU and GPU-cluster support already. The article
is organized as follows. The hardware setup, software
configuration, and pseudo-code conventions are listed in
Sect. 2. A short introduction to parallel architectures that
is required to understand the proposed optimizations is
given in Sect. 3. In this section we also highlight the dif-
ferences between the considered parallel architectures. The

Filtered Back Projection algorithm and its state-of-the-art
implementation are presented in Sect. 4. A number of opti-
mizations to this implementation are proposed in Sect. 5.
An alternative implementation relaying on a different set
of hardware resources is developed in Sect. 6. A hybrid
approach combining both approaches to fully utilize all
hardware resources is presented in Sect. 7. The achieved
performance improvements are finally discussed in Sect. 8.

2 Setup, methodology, and conventions

2.1 Hardware platform

To evaluate the performance of the proposed methods, we
have selected 9 AMD and NVIDIA GPUs with different
micro-architectures. Table 1 summarizes the considered
GPUs. These GPUs were assembled into the 3 GPU serv-
ers. The newer NVIDIA cards with Maxwell and Pascal
architectures were installed in a Supermicro 7047GT based
server specified in Table 2. The older NVIDIA cards and
all AMD cards were installed in two identical systems
based on the Supermicro 7046GT platform. The full speci-
fication is given in Table 3. Additionally, we have tested
how the developed code is performing on an Intel Xeon
Phi 5110P accelerator. The accelerator was installed in the
first platform along with the newer NVIDIA cards.

Table 1 List of selected GPU architectures

Vendor GPU Arch. Code Release

NVIDIA GeForce GTX 295 GT200 GT200 2009
NVIDIA GeForce GTX 580 Fermi GF110 2010
NVIDIA GeForce GTX 680 Kepler GK104 2012
NVIDIA GeForce GTX Titan Kepler GK110 2013
NVIDIA GeForce GTX 980 Maxwell GM204 2014
NVIDIA GeForce GTX Titan X Pascal GP102 2016
AMD Radeon HD-5970 VLIW5 Cypress 2009
AMD Radeon HD-7970 GCN1 Tahiti 2012
AMD Radeon R9-290 GCN2 Hawaii 2013

Table 2 Server for newer NVIDIA cards

Platform Supermicro 7047GT GPU Server
Motherboard Supermicro X9DRG-QF with Intel C602 chipset
Memory 256 GB DDR3-133 Memory
Processor Dual Intel Xeon E5-2640 (24 cores at 2.5 GHz)

1334 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

2.2 Software setup

All described systems were running OpenSuSE 13.1. The
code for the NVIDIA cards was developed using the CUDA
framework. As newer versions of the framework have
dropped support for older GPUs, we have used CUDA 6.5
for the NVIDIA GeForce GTX295 card and CUDA 8.0 for
other NVIDIA GPUs. The AMD version of the code is based
on OpenCL and was compiled using AMD APPSDK 3.0.
Additionally, we have tested the performance of Xeon CPUs
and a Xeon Phi accelerator using Intel SDK for OpenCL.
Since the latest version of Intel OpenCL SDK does not sup-
port Xeon Phi processors any more, again we needed to use
two different SDK versions. The newer one was used to
evaluate the performance of the Xeon processors while the
older one served to execute the developed methods on the
Xeon Phi accelerator. All installed software components are
summarized in Table 4.

2.3 Benchmarking strategy

In this article we are not aiming to precisely characterize
the performance of the graphics cards, but rather validate
the efficiency of the proposed optimizations. For this rea-
son we take a relatively lax approach to the performance
measurements. In most tests, we use a data set consisting of
2048 projections with dimensions of 2048 by 2048 pixels
each. 512 slices with same dimensions are reconstructed
and the median reconstruction time is used to estimate the
performance.

Starting with the Kepler architecture, NVIDIA introduces
the GPUBoost technology to adapt the clock speed accord-
ing to the current load and the processor temperature [32].
To avoid significant performance discrepancies, we run a

heat-up procedure until the performance stabilizes. Further-
more, we verify that the actual hardware clock measured
before start of measurements (but after the heat-up pro-
cedure) does not significantly differ from the clock meas-
ured after the measurements. Otherwise, we re-run the test.
Finally, we exclude all I/O operations in the benchmarks.
The reconstructions are executed using dummy data and the
results are discarded without transferring them back to the
system memory.

2.4 Quality evaluation

Some of the suggested optimizations alter the resulting
reconstruction. To assess the effect on quality, we compare
the obtained results with the standard reconstruction in
such cases. The standard Shepp Logan Head Phantom with
a resolution of 1024 × 1024 pixels is used for the evaluation
[33]. We also illustrate the differences between standard and
reduced quality methods using a cross-section slice from a
real volume with a fossilized wasp from a recent experi-
ment conducted at ANKA synchrotron [34]. The projection
images were recorded using a 12-bit pco.dimax camera [35].
More details about the setup of the imaging system are avail-
able in the referenced article. As the changes are typically
small and are hardly visible in the 2D image, we show a
profile along vertical line crossing most of the features in
the slice, see Fig. 1.

2.5 Pseudo‑code conventions

To avoid long code listings we use pseudo-code to describe
the algorithms. We use mixture of a mathematical and a
C-style notation to keep it minimalistic and easy to fol-
low. C syntax is mostly adapted for operations, loops, and
conditionals. We use ∕ to denote integer division and % for
modulo operation. No floating point division is performed
in any of algorithms. The division is always executed on

Table 3 Servers for AMD and older NVIDIA cards

Platform Supermicro 7046GT GPU Server
Motherboard Supermicro X8DTG-QF with Intel 5520 chipset
Memory 96 GB DDR3-1066 Memory
Processor Dual Intel Xeon X5650 (12 cores at 2.67 GHz)

Table 4 Software components

Operating System OpenSuSE 13.1
System Configuration kernel 3.11.10, glibc 2.18, gcc 4.8.1
CUDA Platform CUDA SDK 8.0.61, driver 375.39
CUDA Platform (GT200) CUDA SDK 6.5.14, driver 340.102
AMD platform APP SDK 3.0.130.136, driver 15.12
Intel platform OpenCL SDK 2017 v. 7.0.0.2511
Intel platform (Xeon Phi) MPSS 3.5.1, OpenCL SDK 4.5.0.8

Fig. 1 Synthetic Shepp-Logan phantom (left) and a reconstructed
cross-section slice of a fossilized wasp (right) are used for quality
evaluation. All profile plots in the article are shown along the red ver-
tical lines

1335Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

positive integer arguments and produces integer number
which is rounded towards zero. The standard naming
scheme for variables is used across all presented algo-
rithms. We group related variables together. The same let-
ter is used to refer all variables of the group and the actual
variable is specified using subscript. Furthermore, some
algorithms use shared memory to cache the data stored
in global or constant memory. In such cases, we keep the
variable name, but add superscript indicating the memory
domain. For instance, cS

s
 points to the sine of the projec-

tion angle stored in the shared memory. c is a group of
variables storing the projection constants. cs refers specifi-
cally the sine of the projection angle and the superscript ⋅S
indicates that the copy in shared memory is accessed. All
variables used across the algorithms are listed in Tables 5,
6, and 7. The superscripts used to indicate memory seg-
ment are specified in Table 8.

We use ⋅ symbol to denote all vector variables, i.e.
float2, float4, etc. Furthermore, all proposed algorithms
are capable to reconstruct 1, 2, or 4 slices in parallel. If
more than 1 slice is reconstructed, the accumulator and a
few other temporary variables use the floating-point vector
format to store values for multiple slices. These variables
are marked with ⋅̃ . All arithmetic operations in this case
are performed in vector form and affect all slices. The vec-
tor multiplication is performed element wise as it would be
in CUDA and OpenCL. We use the standard C notation to
refer array indexes and components of the vector variables.
The arrays are indexed from 0. For instance s̃[0].x refers
to the first component of the accumulator. The assign-
ment between vector variable and scalars are shown using
curly braces, like {x, y} = s̃[0] . The floating point constants
are shown without C type specification. However, it is of
utmost importance to qualify all floating-point constants

Table 5 List of parameters used in code snippets

Var Type Description

np int Number of projections
nv int Number of slices reconstructed in parallel
nq int Number of pixels assigned per GPU thread
ns int The side of a pixel square reconstructed by a thread block
nt int2 Dimensions of thread block
sp int Size of the larger projection block, indicates the size of caches holding projection constants and hm values
sd int Size of data cache, specifies how many projection lines are cached
st int Number of threads assigned to cache a projection row, see Sect. 6.3 and Table 14
si int Iterations required to completely cache a projection row (determined based nt , �� , and the used caching

optimizations as explained in Sect. 6.3)
va float2 The position of rotation axis
cc float[] Constant array storing cosine values of the projection angles
cs float[] Constant array storing sine values of the projection angles
�cs float2[] Constant array storing (cosine, sine) pairs for each projection angle
ca float[] Constant array storing coordinate of the rotational axis with applied per projection correction to compen-

sate for possible mechanical displacements
cm float[] Constant array storing coefficients required to quickly compute ��

Table 6 List of indexes used in code snippets

Var Type Description

mb int2 The index of a thread block within the computation grid. Referred as blockIdx in CUDA or get_group_id() in OpenCL
mt int2 The index of a thread with the thread block. Referred as threadIdx in CUDA or get_local_id() in OpenCL
mg int2 The index of a thread within the computation grid, i.e. �� ∗ �� +��

m�
∗

int2 The re-mapped index, the number is specified in superscript if multiple mappings are used
f∗
g

float2 The absolute coordinates of the reconstructed pixel according to the selected mapping, usually: � �
�
= ��

�
− ��

fb float2 The absolute coordinates of a pixel block (i.e. coordinates of the pixel processed by the first thread of the block)
mp int For algorithms processing multiple projections in parallel, it defines a projection index in a group
md int For algorithms caching the sinogram in shared memory, this is a mapping selecting offset in the cache
ml int Linear addressing of threads in the thread block (�� .� ∗ �� .� +�� .�). It is another mapping used for caching con-

stants.

1336 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

as single precision in the C code, i.e. using 0.5f in place
of 0.5. Otherwise the double-precision arithmetic will be
executed severely penalizing performance on majority of
consumer-grade GPUs.

To perform thread synchronization and to access the
texture engine, the algorithms rely on a few functions pro-
vided by CUDA SDK or defined in the OpenCL specifica-
tions. To preserve neutrality of notation, we use abbrevi-
ated keywords to reference this functions. This list of used
abbreviations along with the corresponding CUDA and
OpenCL functions are listed in Table 9. Actually, the syn-
tax of OpenCL and CUDA kernels is very closely related.
Only a few language keywords are named differently. It is
a trivial task to generate both CUDA and OpenCL kernels
based on the provided pseudo-code.

We use integer division and modulo operations across
the code listings. These operations are very slow on GPUs
and actually should be performed as bit mangling operations
instead. However, the optimizing compilers can replace them
automatically by the faster bit-mangling instructions. So,
we are free to use notation which is easier to read. There
are a few other cases where the optimization is left to the
compiler.

3 Parallel architectures

The architectures of nowadays GPUs are rather heterogene-
ous and includes multiple types of computational elements.
The performance balance between these elements is shifting
with each release of a new GPU architecture. To feed the fast
computational units with data, a complex hierarchy of mem-
ories and caches is introduced. But the memories are very
sensitive to the access patterns and the optimal patterns also
differ between the hardware generations [36]. In this section
we briefly explain the GPU architecture and elaborate dif-
ferences between the considered GPUs with a focus on the
aspects important to implement back projection efficiently.

Table 7 List of variables used in code snippets

Var Type Description

h float The required projection bin (including offset from the center)
hi int The position of the required projection bin in the cache
hf float The floating-point representation of ��
hl float The offset from the center of bin (i.e. coefficient for linear interpolation)
hb float The bin required by the first thread of the block
hm float[] The smallest bin required by a thread block in the selected projection row
hx float[][] The cache storing the value of �� + ��.� ∗ �� − �� for each column of pixels processed by a thread block (and for

each of �� cached projections)
p∗ int Projection number (p) and projection iterators (�� , ��)
q∗ int Pixel block iterators
d̃ float[][] The cache storing a subset of sinogram required to process �� projections for the current thread block
s̃ float[] Variable accumulating the impact of the projections. Defined as array if the thread is responsible for multiple pixels
r̃ float[][] The reconstructed slice

Table 8 Memory domains

Superscript Domain

⋅
G Variable in global GPU memory
⋅
C Variable in constant memory
⋅
S Variable in shared memory

Table 9 CUDA/OpenCL functions

Function Description

sync Denotes a synchronization point. The further execution is blocked until all threads of the block reach this point. It is implemented
with __syncthreads() command in CUDA and barrier() with the CLK_LOCAL_MEM_FENCE type in OpenCL

fence Enforces ordering of loads and stores. Equivalent to __threadfence_block() in CUDA and mem_fence() in OpenCL
tex2d 2D fetch from the texture mapped to the sinogram. It is implemented with tex2D() function in CUDA and read_imagef () in OpenCL.
shfl ∗ A group of CUDA functions (__shfl, __shfl_up, __shfl_down, __shfl_xor) used to exchange data between the threads of a warp [36].

The vector types are not supported by CUDA functions. If shfl is applied to vector data, it is actually implemented as several calls
to the corresponding function using all vector components one after another. There is no AMD counterpart of these functions.

floor Rounding towards negative infinity

1337Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

To simplify reading for a broader audience, we use the more
common CUDA terminology across this paper.

3.1 Hardware architecture

The typical GPU consists of several semi-independent
Streaming Multiprocessors (SM) which share global GPU
memory and L2 cache [37]. Several Direct Memory Access
(DMA) engines are included to move data to and from sys-
tem memory. Each SM includes a task scheduler, computing
units, a large register file, a fast on-chip (shared) memory,
and several different caches. There are a few types of com-
puting units. The number crunching capabilities are pro-
vided by a large number of Arithmetic Units (ALU) also
called Core units by NVIDIA. ALUs are aimed on single-
precision floating point and integer arithmetic. Some GPUs
also include specialized half precision and double precision
units to perform operations with these types faster. There are
also architecture-specific units. All NVIDIA devices include
Special Function Units (SFU) which are used to quickly
compute approximates of transcendent operations. The lat-
est Volta architecture includes Tensor units aimed on fast
multiplication of small matrices to accelerate deep learn-
ing workloads [38]. AMD architectures adapt scalar units
to track loop counters, etc [39]. The memory operations are
executed by Load/Store (LD/ST) units. The memory is either
accessed directly or Texture units are used to perform a fast
linear interpolation between the neighboring data elements
while loading the data.

The computing units are not operating independently, but
grouped in multiple sets which are operating in a Single
Instruction Multiple Data (SIMD) fashion. Each set is able
to execute the same instruction on multiple data elements
simultaneously. Several such sets are included in SM and,
often, can be utilized in parallel. The SM scheduler employs
data- and instruction-level parallelism to distribute the work-
load between all available sets of units. However, it is archi-
tecture depended which combination of instructions can be
executed in parallel. The simplified and generalized scheme
of GPU architecture is presented in Fig. 2 and is further
explained in the next subsections.

3.2 Execution model

The GPU architectures rely on SIMT (Single Instruction
Multiple Threads) processing model [36]. The problem is
represented as a 3D grid of tasks or threads in CUDA ter-
minology. All threads are executing the same code which
is called kernel. The actual work of a thread is defined by
its index (x, y, z) within the grid. Typically, a mapping
between a thread index and image coordinates is estab-
lished and each GPU thread processes the associated pixel
or a group of pixels. Since memory access patterns matter,
finding a suitable mapping has a very significant impact
on the performance. In many practical applications, mul-
tiple mappings are used during the execution of a kernel.
Particularly, all presented algorithms use 2 to 4 different
mappings during the kernel execution.

The grid is split in multiple blocks of the same size.
The blocks are assigned to a specific SM and are exe-
cuted on this SM exclusively. Consequently, the informa-
tion between threads of the same block can be exchanged
using the fast shared memory local to SM. When a block
is scheduled, all threads belonging to this block are made
resident on the selected SM and all required hardware
resources are allocated. A dedicated set of registers is
assigned to each of the threads. However, not all threads
of the block are executed simultaneously. The SM distrib-
utes resident threads between computational units in por-
tions of 32/64 threads which are called warps. All threads
of a warp are always executed simultaneously using one
of available sets of units. If the execution flow within the
warp diverges, it is executed sequentially: first all threads
of the first branch are executed while others are kept idle
and, then, vice-versa. To achieve optimal performance it is
important to keep all threads of a warp synchronized, but
the execution of complete warps may diverge if necessary.
Similarly, the memory access patterns and locality are
extremely important within a warp, less important within a
block, but rather irrelevant between different blocks. GPUs
always assign threads with consecutive indexes to the same

Fig. 2 Generalized scheme of GPU architecture. A typical GPU
includes DMA engines, Global GPU memory, L2 cache, and multiple
Streaming Multiprocessors (SM). The integrated DMA engines are
primarily used to exchange data between GPU and system memory
over PCIe bus, but also can be utilized to communicate with other
devices at the PCIe bus (right). Each SM includes several types of
caches and computational units (left)

1338 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

warp and the thread mappings are always constructed with
these considerations in mind.

At each given moment, the SM executes a few warps
while several others are idle, either waiting for memory
transaction to complete or for a set of units to become avail-
able. This is one of the mechanisms used to hide latencies
associated with long memory operations. While one warp is
set aside waiting for the requested data, the computational
units are kept busy executing other resident warps. As the
registers are assigned to all threads permanently and are not
saved/restored during scheduling, the switching of the run-
ning warp inflicts no penalty.

3.3 Memory hierarchy

Compared to a general-purpose processor the ratio between
computational power and throughput of the memory subsys-
tem is significantly higher on GPUs. To feed the computa-
tion units with data, the GPU architectures rely on multiple
types of implicit and explicit caches which are optimized for
different use cases. Furthermore, the maximum bandwidth
of GPU memory is only achieved if all threads of a warp
are accessing neighboring locations in memory. For optimal
performance some architectures may require even stricter
access patterns.

There are 3 types of general-purpose memory available
in the GPU. A large amount of global memory is accessible
to all threads of the task grid. Much smaller, but signifi-
cantly faster shared memory is local to a thread block. The
thread-specific local variables are normally hold in registers.
If there is not enough register space, a part of variables may
be offloaded to the local memory. The thread-specific, but
dynamically addressed arrays are always stored in the local
memory (i.e. if array addresses can’t be statically resolved
during the compilation stage). In fact, the local memory is
a special area of the global memory. But the data will be
actually written and read to/from L1 or L2 cache unless an
extreme amount of local memory is required. Even then,
access to variables in the local memory inflicts a severe
performance penalty compared to the variables kept in the
registers and should be avoided if possible.

To reduce the load on the memory subsystem, GPUs try
to coalesce the global memory accesses into as few transac-
tions as possible. This can only be realized if the threads of
a warp are addressing adjacent locations in the memory. The
memory controller aggregates the addresses requested by
all threads of a warp and issues a minimal possible amount
of 32- to 128-byte wide transactions. These transactions are
subject to alignment requirements as well. It does not matter
in which order the addresses are requested by the threads of
a warp. The maximum bandwidth is achieved if as few as
possible of such transactions are issued to satisfy the data
request of the complete warp. This was different in older

hardware when the stricter access patterns had to be fol-
lowed. If it is not possible to implement coalesced access
strategy, the shared memory is often used as explicit cache
to streamline accesses to the global memory [40].

The shared memory is composed out of multiple data
banks. The banks are 32- or 64-bit wide and are organized
in a such way that successive words are mapped to succes-
sive banks. The shared memory bank conflict occurs if the
threads of a warp are accessing multiple memory locations
belonging to the same bank. The conflicts causes warp seri-
alization and may inflict a significant penalty to the shared
memory bandwidth. Furthermore, the achieved bandwidth
depends on a bit-width of the accessed data. The Kepler
GPUs are equipped with 64-bit shared memory and only
deliver full bandwidth if 64-bit data is accessed. While the
AMD Cypress and Tahiti GPUs are equipped with 32-bit
shared memory, the performance is still considerably
improved if 64-bit operations are performed. Increasing the
data size beyond 64-bit has a negative impact on the per-
formance on some architectures. 128-bit loads from shared
memory always cause bank conflicts on NVIDIA GT200,
NVIDIA Fermi, and all AMD architectures. We tackle
the differences between shared memory organization in
Sects. 6.3 and 6.4.

Most of the GPU architectures provide both L1 and L2
caches. However, the amount of the cache per compute ele-
ment is quite low. On NVIDIA Fermi and Kepler GPUs,
both L1 cache and shared memory are provided using the
same hardware unit and the ratio between the size of L1
cache and the shared memory is configured at compila-
tion stage [37, 41]. Only buffers that are read-only during
a complete execution of a kernel are usually cached in L1.
This property is not always detected by the compiler and
should be either hinted in the code or enforced using a spe-
cial CUDA intrinsic instruction [41]. There are two addi-
tional caches optimized for specific use-cases. The constant
memory is used to store parameters which are broadcasted
to all threads of the grid. For optimal performance 64-bit
or 128-bit access is required [42]. The texture engine pro-
vides a cache optimized for spatial access. While the line of
L1 cache is typically 128-byte long, the texture cache oper-
ates with lines of 32-bytes allowing to fetch the data from
multiple rows of an image as required to perform bi-linear
interpolation.

3.4 Texture engine

The texture engine associates a dimensional information
with buffers in the global GPU memory [43]. By doing so,
it is able to interpret the memory as a multi-dimensional
object and perform implicit interpolation if a texel with frac-
tional coordinates is requested. Nearest-neighbor or linear
interpolation modes are supported. The texture engines are

1339Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

able to work with a variety of data types. Besides simple
integer and floating-point numbers, they are also capable to
interpolate and return the values encoded in standard vector
types. The performance is defined by the number of texels
processed per time unit and is called texture filter rate. Up
to a threshold, the filter rate is independent from the actu-
ally used data type. The same number of texels is returned
per second if either 8, 16, or 32-bits are used to encode the
texel values. For the larger vector types the theoretical fil-
ter rate, however, is not actually reached. Depending on the
GPU architecture, a maximum 32-, 64-, or 128-bit values are
processed at a full speed.

To achieve maximum performance it is also necessary
to ensure the spatial locality of the texture fetches. The
locality is important at several levels. At a block level it
results in a high level of texture cache utilization. A more
dense access layout within a warp reduces the number of
required transactions to the texture cache. While it is not
documented, the distribution of the fetch locations between
groups of 4 consecutive threads impacts performance sig-
nificantly if a bi-linear interpolation is performed. To verify
it, we developed a small benchmark using the techniques
proposed by Konstantinidis and Cotronis for gpumembench
and mixbench suites [42, 44]. Figure 3 shows two different
thread assignments to fetch 16 texels from a 4-by-4 pixel
square. The fetched coordinates are always slightly shifted
from the pixel centers to ensure that the bi-linear interpola-
tion is actually executed. There is a little difference if 32-bit
data is accessed. For 64-bit data, however, the thread assign-
ments following Z-order curve reach almost 100% of the
theoretical maximum while only 50% is achieved if simple
linear layout is used. Section 5.5 discusses the effect of the
optimized fetch locality on a performance of tomographic
reconstruction.

We also used the developed benchmark to find the maxi-
mum size of fetched data which is still filtered at full speed.
Our results show that all NVIDIA GPUs starting with Fermi

benefit from the 64-bit texture fetches if requests are prop-
erly localized. It is also supported by the latest of the consid-
ered chips from AMD. However, the OpenCL kernel must
be compiled with OpenCL 2.0 support enabled. It is done by
passing -cl-std=CL2.0 flag to clBuildProgram() call. Other-
wise, the full performance is only achieved if the nearest-
neighbor interpolation is performed. This is always the case
for older AMD devices. If the texture engine is configured
to perform linear-interpolation on 64-bit data, only the half
of throughput is delivered on these AMD architectures. On
other hand, all AMD devices are able to deliver the full
performance using the 128-bit data if the nearest-neighbor
interpolation is utilized. The NVIDIA devices are limited
by 64-bit in both cases.

3.5 Task partitioning

The number of resident threads directly affects the ability of
the SM to hide memory latencies. Each architecture limits
the maximum number of resident warps per SM. Since SM
has only a limited amount of registers and shared memory,
the actual number of resident warps could be bellow this
limit. The ratio between the actual and the maximum num-
ber of resident warps is called occupancy and has a signifi-
cant impact on the performance. The complexity of the ker-
nel dictates how many registers is required per thread and,
hence, restricts the maximum amount of resident threads on
the SM. It is possible to target occupancy on NVIDIA plat-
form. If a higher occupancy is requested, the CUDA com-
piler either reduces the number of used registers in a price
of repeating some computations or offloads part of the used
variables in the local memory. Vice-versa, the compiler may
perform more aggressive caching and pre-fetching if lower
occupancy is targeted. Both approaches may significantly
improve the performance under different conditions. The
optimal occupancy depends on both, work-load and hard-
ware capabilities. On one hand, it should be high enough to
ensure that the SM scheduler always has warps ready to exe-
cute. On other hand, prefetching may significantly improve
performance of memory bound applications. Furthermore,
offloading variables to local memory will not necessarily
harm the performance if the local memory is fully backed by
L1 cache. Consequently, more registers can be made avail-
able for prefetching also without decreasing occupancy.
However, the shared memory available to applications is
reduced on Fermi and Kepler platforms if a large amount of
L1 cache is dedicated to the local memory. A very detailed
study of the optimal occupancy under different workloads
is performed in the Ph.D. thesis of Vasiliy Volkov [27]. We
study the effect of occupancy tuning on the performance
of the back projection kernel in Sects. 5.7 and 6.9. Both
reduced and increased occupancy are found practically use-
ful in different circumstances.

Fig. 3 Two ways to exploit spatial locality while fetching 16 texels
from a 4-by-4 pixel square. A simple linear mapping is used to assign
a group of 16 threads to the square (left). Alternative mapping along
Z-order curve improves the spatial locality withing groups of 4 con-
secutive threads (right)

1340 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

GPUs have varying limits on a number of threads allowed
per block. To achieve a higher occupancy, multiple thread
blocks can be scheduled on the same SM simultaneously.
The maximum number of resident blocks is architecture
dependent and is further restricted by the requested amount
of shared memory. The required shared memory is not
always proportional to the size of a thread block. The larger
blocks may require less shared memory per thread. As the
block is always made resident as a whole, some configura-
tions are better mapped to available resources while other
leave part of the memory unused.

3.6 Code generation

Even the fast shared memory has a relatively high latency
[28]. Consequently, GPU vendors provide several mecha-
nisms to hide this latency and preserve the high memory
bandwidth. The thread is not stalled until the executed
memory operation is finished. The GPU scheduler launches
the operation, but proceeds issuing independent instructions
from the execution flow of the thread until the requested
data is actually required. If the next instruction in the flow
depends on the result of the memory operation which is not
completed yet, the SM puts the thread aside and schedules
another resident thread as stipulated by SIMT execution
model. For compute-bound applications, the optimizing
compiler re-arranges instructions to interleave memory
operations with independent arithmetic instructions and uses
both described mechanisms to avoid performance penalties
due to memory latencies [27].

If an application is memory bound, the compiler vice-
versa groups multiple load operations together to benefit
from streaming. The latency, then, has to be hidden only
a single time for all load operations which are streamed
together. This mechanism is of a great importance to per-
form texture fetches as a texture cache hit reduces usage of
memory bandwidth, but not the fetch latency [36]. Further-
more, several 32-bit loads from the consecutive addresses
may be re-combined by a compiler in a single 64- or 128-bit
memory instruction. It reduces the number of issued instruc-
tions and gives the warp scheduler an opportunity to increase
the Instruction Level Parallelism (ILP) by launching addi-
tional instructions in the vacated execution slots. With the
Kepler architecture, this scheme may even double the shared
memory bandwidth by utilizing 64-bit memory banks more
efficiently. Several papers show a significant performance
improvement also on other architectures [29].

The described optimizations are performed automatically
by the compilers from AMD and NVIDIA. The loops are
unrolled and instructions are re-arranged as necessary to
increase the hardware utilization. The loop unrolling not
only allows the compiler to optimize the instruction flow,
but also reduces the load on the ALUs. In particular, the

computation of array indexes is replaced by static offsets at
compilation stage. In some cases, however, it is possible to
further improve the generated code by enforcing the desired
unrolling factors and by targeting the occupancy. This is
discussed in Sect. 6.9. Furthermore, the data layout may be
adjusted in order to give compiler more options in optimiz-
ing the code flow. The algorithm described in Sect. 5.6 relies
on a large number of independent operations to compensate
the low occupancy. In Sect. 6.8 we optimize the data layout
to enable the re-combination of memory instructions.

3.7 Scheduling

To provide high performance, the GPU architectures include
multiple components operating independently. Texture
fetches, memory operations, several types of arithmetic
instructions are executed by different blocks of GPU in par-
allel. Hence, the kernel execution time is not determined as
a sum of all operations, but rather is given by the slowest
execution pipeline. One strategy to implement an efficient
algorithm is to balance operations between available GPU
blocks uniformly and minimize the time required to exe-
cute the slowest pipeline. Using this methodology we were
able to gain significant performance improvements. Sec-
tion 6.6 discusses balancing of SFU and ALU operations to
speed-up the linear interpolation on the Kepler architecture.
Two different back-projection algorithms are combined in
Sect. 7.1 to balance the load across all major GPU subsys-
tems. As result the proposed hybrid approach outperforms
the fastest of the algorithms by 40% on Pascal and Maxwell
architectures.

Each SM includes one or more warp schedulers which
execute instructions of resident warps. Each scheduler is able
to issue either a single instruction per-clock or at each clock
to dual-issue two independent instructions from the same
warp. On most architectures the number of warp schedul-
ers is synchronized with the number of independent ALU
units. All available units are fully utilized if a single ALU
instruction is scheduled by each warp scheduler at every
clock cycle. The SM processor on Kepler, however, includes
6 sets of ALUs, but only 4 warp schedulers [41]. To achieve
100% utilization all SM schedulers are expected at each sec-
ond clock cycle to select two independent instructions from
the execution flow and dispatch them to 2 different sets of
ALU units. The VLIW architecture adopted by the older
AMD GPUs requires 4 to 5 independent instructions in the
flow for optimal performance [45]. The flow of independent
instructions and dual-issue capabilities are also required to
utilize multiple functional blocks of GPU in parallel.

Only a little official information is available about instruc-
tions which can be schedulled in parallel. The CUDA C
Programming Guide states that SFUs are used to compute
approximates of transcendent functions [36]. In fact, they

1341Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

are also used to perform bit-mangling, type-conversions, and
integer multiplication on the NVIDIA Kepler, Maxwell, and
Pascal GPUs. We developed a micro-benchmark to verify if
certain instructions can be dual-issued. The idea is to meas-
ure the throughput of each individual instruction and, then,
compare it to throughput of their combination. The instruc-
tions are assumed to be executed by the same function unit
if the combination runs slower than the slowest of the indi-
vidual instructions. In particular we found out that NVIDIA
GPUs starting with Kepler execute rounding, type conver-
sion, and bit-shift operations in parallel with ALU instruc-
tions, but slow down the computation of sine and cosine
approximates. Consequently, we assume that SFUs are used
to execute these operations. On Maxwell and Pascal, the bit-
wise operations also slow down ALU instructions slightly.
Both SFUs and ALUs are used in this case. However, the
decrease is small and additional ALU-operations are still
possible to execute in parallel. There is no parallelism of
these operations on the AMD platform.

3.8 Synchronization

The GPU memory hierarchy and a few synchronization
primitives are used to efficiently coordinate work between
threads. The fast shared memory is used to exchange infor-
mation between threads of the same block. An even faster
shuffle instruction is available on NVIDIA GPUs since the
Kepler generation. It allows to exchange data stored in the
registers of multiple threads belonging to the same warp
[41]. Both CUDA and OpenCL provide a fast synchroniza-
tion instruction which ensures that all threads of a block
have completed the assigned part of the work and reached
the synchronization point. This allows to split execution of a
kernel in multiple phases with different thread mappings. For
example in the algorithm described in Sect. 6.2, the threads
are first mapped to the elements of a cache and are used to
prefetch data from global memory. After synchronization the
threads are re-assigned to the pixels of output image and use
the cached information to compute their intensities.

The synchronization may restrict the ability of the SM
schedulers to benefit from the ILP parallelism if the groups
of instructions aimed on different functional units are sepa-
rated by a synchronization primitive. Partial remedy is to
allocate more resident blocks to SM by increasing occupancy
or by using smaller blocks. Still, a well composed code usu-
ally results in better performance if it allows the compiler to
re-arrange execution flow and dual-issue instructions.

3.9 Communication

Most GPUs include a pair of DMA engines and are able
to perform data transfers over the PCIe bus in both direc-
tions in parallel with kernel executions. This, however,

requires page-locked (non swappable) host memory. While
OpenCL does not define how the page-locked memory can
be obtained, in practice it can be done by allocating a host-
mapped GPU buffer. This is realized by calling clCreate-
Buffer with CL_MEM_ALLOC_HOST_PTR flag. While
only the host buffer is required in this case, the command
allocates also the GPU buffer. The memory overcommitting
is, however, supported on NVIDIA platform. Consequently,
only the host memory is actually reserved. The correspond-
ing GPU buffer is never accessed and, correspondingly,
the GPU memory is not reserved. On the AMD platform,
however, the memory is actually set aside for both buffers
immediately. Consequently, the amount of GPU memory
available to application is reduced. To enable parallel data
transfer and computations, double buffering technique along
with asynchronous CUDA/OpenCL API are typically used.
The CUDA/OpenCL events are used for synchronization.

In addition to the DMA engines used for communication
with the host memory, the professional series of GPUs also
support a slave mode of DMA operation. In this mode the
other devices on the PCIe bus are able to write data directly
into the GPU memory. Starting with the Kepler micro-archi-
tecture, this feature is supported by the NVIDIA Tesla cards
using the GPUDirect technology [46]. AMD provides the
DirectGMA technology to enable the feature on the GCN-
based AMD FirePro cards [47]. The GPUDirect technology
is already used in several MPI frameworks to speed-up com-
munication in Infiniband networks [48].

3.10 Summary

We summarize the properties of target GPUs in Table 10.
Besides the hardware specification available in the vendor
white papers, we present architecture-specific information
obtained using micro-benchmarking and further investi-
gate the performance balance of different operations. Only
characteristics important to implement fast back-projection
kernel are included. For this reason, we only report through-
put of the floating-point, bit-mangling, and type-conversion
instructions.

Compared to the GT200, the Fermi architecture signifi-
cantly improved the arithmetic capabilities, but the texture
filter rate has not changed. Instead, the texture units got the
ability to fetch 64-bit data at full speed. The Fermi GPUs also
lost the capability to dual-issue instructions from the same
warp and are the most restricted architecture of the considered
ones concerning the ability to schedule instructions to differ-
ent execution pipelines in parallel. Consequently, the Fermi
performance is likely improved if the number of the required
instructions is reduced. One option is to organize the data
in a way allowing wider 64/128-bit memory operations and
texture fetches. The Kepler architecture massively improved
the performance of the texture engine. But the throughput of

1342 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

Table 10 List and specification of considered GPU architectures

NVIDIA GeForce [36] AMD Radeon [49]

GTX295a GTX580 GTX680 Titan GTX980 Titan X HD5970a HD7970 R9-290

Architecture GT200 Fermi Kepler Kepler Maxwell Pascal Cypress Tahiti Hawaii
Architecture Code Name GT200 GF110 GK104 GK110 GM204 GP104 VLIW5 GCN1 GCN2
Release year 2009 2010 2012 2013 2015 2016 2009 2012 2013
Reference [50] [37] [51] [41] [52] [53] [54] [39] [39]
Global memory

 Global memory (GB) 0.9 1.5 2 6 4 12 1 3 4
 Memory bandwidth (GB/s) 112 192 192 288 224 480 128 264 320
 L2 cache (KB) – 768 512 1536 208 3072 512 768 1024
 L2 bandwidth (GB/s) – 296 515 763 641 1351 371 710 970

Execution units
 Number of SM 30 16 8 14 16 28 20 32 40
 ALU reference clock (MHz) 1242 1544 1006 837 1126 1417 725 925 947
 ALU max turbo clock (Mhz) – – 1110 1202 1392 1911 – – –
 ALU benchmark clock (MHz)c 1242 1544 1006 993 1252 1759 725 925 947
 Warp schedulers (per SM) 1 2 4 4 4 4 1 5 5
 Max instructions per warp 2 1 2 2 2 2 5 1 1
 ALU units (per SM) 8 2 × 16 6 × 32 6 × 32 4 × 32 4 × 32 16 × 4 4 × 16 4 × 16
 SFU units (per SM) 2 4 32 32 32 32 16 – –
 Texture units (per SM) 2.66b 4 16 16 8 8 4 4 4
 ILP required for peak GFlops Yes No Yes Yes No No Yes No No

Hardware resources
 Warp size 32 32 32 32 32 32 64 64 64
 Max resident warps (per SM) 32 48 64 64 64 64 24 40 40
 Shared memory (KB/SM) 16 16–48 16–48 16–48 96 96 32 64 64
 Registers (KB/SM) 64 128 256 256 256 256 256 256 256
 Max 32-bit regs. per thread 128 63 63 255 255 255 248 256 256
 Regs. per thread at full occupancy 16 21 32 32 32 32 40 25 25

Shared and constant memory
 Shared memory banks 16 32 32 32 32 32 32 32 32
 Sh.mem bank width (bits) 32 32 64 64 32 32 32 32 32
 Sh.mem bank broadcasts Yes Yes Yes Yes Yes Yes No Yes Yes
 Speed-up using 64-bit loadsd – – 100% 100% – – 15%d 40% –
 Conflict-free loads (up to, bits) 32 64 128 128 128 128 64 64 64
 Sh.mem max bandwidth (GB/s) 1324 1581 2060 3559 2564 6304 1856 3789 4849
 C.mem. max bandwidth (GB/s)e 875 1511 1980 3120 4186 11500 928 7578 9697

Instruction throughput
 Units executing FP-insructions ALU,SFU ALU ALU ALU ALU ALU ALU,SFU ALU ALU
 Units executing bit-shiftsf ALU ALU SFU SFU ALU,SFU ALU,SFU SFU ALU ALU
 Units executing type-conversionsf ALU ALU SFU SFU SFU SFU SFU ALU ALU
 FP performance (GFlops)g 994h 1581 3090 5338 5128 12608 2320 3789 4849
 Bit-shift performance (G-ops) 331 395 258 444 1282 3152 232 1894 2424
 Type-mangling performance (G-ops) i 331 395 258 444 641 1576 232 1894 j 2424 j

Performane of texture engine
 Texture engine (GT/s) 51 49 129 222 160 394 58 118 152
 TE, 64-bit data, bi-linear (GT/s)f 25 49 123 204 156 398 26 55 113
 TE, 64-bit data, nearest (GT/s)f 25 50 132 212 156 400 52 103 131
 TE, 128-bit data, nearest (GT/s)f 12 25 70 114 79 200 49 116 147

1343Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

integer, bit-mangling, and type-conversion operations has actu-
ally slowed down compared to the Fermi devices. Further-
more, the ILP become a necessity for optimal performance.
On Pascal, the amount and performance of the shared memory
has doubled. While the amount of available registers has not
changed, the generated code is typically requires less registers.
Consequently, it is either possible to achieve higher occupancy
or execute more sophisticated kernels at the same occupancy.

There is a few important differences between NVIDIA
and AMD platforms. AMD provides less control over the
code-generation. The NVIDIA compiler can be parametrized
to use less registers for generated code. This option is not
available for AMD. Neither of the considered AMD devices
support the half-precision extension of the OpenCL specifi-
cation. While we can use the smaller data representation to
reduce texture and shared memory bandwidth on NVIDIA
platform, it is not possible to achieve it with AMD. On the
other hand, the AMD devices are capable to perform full-
speed texture filtering also using 128-bit data if the nearest-
neighbor interpolation is selected. Furthermore, the ratio
between the shared memory throughput and the perfor-
mance of the texture engine is 2 - 4 times higher on AMD
devices. Consequently, it is more likely that caching of the
fetched data in the shared memory will result in performance
improvements. The organization of AMD Cypress GPUs

differs from the other considered architectures significantly.
It has very slow constant memory and relies on ILP paral-
lelism extensively. Five instructions has to be scheduled at
each clock cycle for optimal performance. Vice-versa the
GCN-based devices do not provide ILP. There is also no par-
allelism between floating-point and bit-mangling/type-con-
version instructions. The throughput of arithmetic operations
is comparatively slow and is bottleneck for the proposed
algorithms. There are also minor differences between two
generation of GCN platform. The first generation of GCN
chips performs better if 64-bit operations are performed on
the shared memory. This is not required in the second gen-
eration of the architecture anymore. Starting with GCN2, the
AMD devices are capable to perform 64-bit texture fetches at
full pace also if bi-linear interpolation is employed.

To build an efficient implementation of the algorithm
it is important to account for the described architectural
differences. Across all architectures a good locality of the
texture fetches has to be ensured and optimal access pat-
terns to global and shared memory has to be followed. It
is necessary to adjust the algorithm flow to balance the
load between different execution pipelines according to
their hardware capabilities. Finally, also the right balance
between ILP, streaming memory operations, and achieved
occupancy has to be found.

The presented numbers are either taken from the referenced programming guide and specifications or computed based on the other presented
values. All exceptions which are obtained using micro-benchmarking are indicated with footnotes.
aThe characteristics for a single GPU core are given
b On GT200 the texture units are not included in SM, but are part of Texture Clusters which includes several SM
cGPUBoost technology adjusts clock according to load and temperature. In this row we specify the approximate clock rate during the bench-
marks
dUsing 64-bit loads are only faster if two shared memory operations can’t be combined in a single VLIW instruction
e On NVIDIA platform the bandwidth of constant memory is obtained with benchmarking
fMeasured using micro-benchmarking
gMAD/FMA are counted as two operations
hGT200 is capable to launch 4 floating-point multiplications per SFU
iRounding operations and converting between 32-bit integer and floating-point types
j On GCN architectures, we have measured a 4-times higher type-mangling performance as compared to the values listed in the AMD specifica-
tion. The measured values are presented in the table

Table 10 (continued)

NVIDIA GeForce [36] AMD Radeon [49]

GTX295a GTX580 GTX680 Titan GTX980 Titan X HD5970a HD7970 R9-290

Performance ratios
 Constant to shared memories 1 1 1 1 2 2 0.5 2 2
 C.mem to texture (words/texels) 6.5 8 4 4 8 8 4 16 16
 Sh.mem to texture (words/texels) 6.5 8 4 4 4 4 8 8 8
 Type-conv to texture (Ops/texels) 6.5 8 2 2 4 4 4 16 16
 GFlops to texture (Ops/texels) 19.4 32 24 24 32 32 40 32 32
 GFlops to sh.mem (Ops/words) 3 4 6 6 8 8 5 4 4
 GFlops to type-conversion 3 4 12 12 8 8 10 2 2

1344 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

4 Tomographic reconstruction

At synchrotron imaging beamlines, information about X-ray
attenuation or/and phase changes in the sample is used to
reconstruct its internal structure. The objects are placed on
a rotation stage in front of a pixel detector and rotated in
equiangular steps. As the object rotates, the pixel detector
registers a series of two-dimensional intensity images of
the incident X-rays. Typically the X-rays are not detected
directly, but converted to visible light using a scintillator
placed between the sample and pixel detector. Then, the con-
ventional CCD cameras are used to record intensities which
actually correspond to projections of the sample volume.
Due to the rather large source-to-sample distance, imaging
at synchrotron light sources is usually well described by a
parallel-beam geometry. The beam direction is perpendicu-
lar to the rotation axis and to the lines of the pixel detector.
Therefore, the 3D reconstruction problem can be split into a
series of 2D reconstructions performed with cross-sectional
slices. An origin of coordinate system coincides with center
of sample rotation stage and rotation axis is anti-parallel
to gravity. To reconstruct a slice, the projection values are
“smeared” back over the 2D cross section along the direction
of incidence and are accumulated over all projection angles.
To compensate blurring effects, high-pass filtering of the
projection data is performed prior to back projection [21].

The typical reconstruction data flow using parallel accel-
erators is represented on Fig. 4. The projections are loaded
into the system memory either from a storage facility or
directly from a camera and, then, transferred into the GPU
memory before executing pre-processing or reconstruction
steps. From cameras equipped with PCIe-interface it is also
possible to transfer the projections directly into the GPU
memory using GPUDirect or DirectGMA technologies.
The later is supported by UFO framework [15]. The loaded
projections are pre-processed with a chain of filters to com-
pensate the defects of optical system. Then, the projections
are rearranged in order to group together the chunks of data
required to reconstruct each slice. These chunks are called
sinograms and are distributed between parallel accelerators
available in the system in a round-robin fashion. Filtering
and back-projection on each slice are performed on each

GPU independently, the results are transferred back, and
are either stored or passed further for online processing and
visualization. To efficiently utilize the system resources, usu-
ally all described steps are pipelined. The output volume is
divided into multiple subvolumes, each encompassing mul-
tiple slices. The data required to reconstruct each subvolume
is loaded and send further trough the pipeline. While next
portion of the data is loaded, the already loaded data is pre-
processed, assembled in sinograms, and reconstructed. The
preprocessing is significantly less computational-intensive
compared to the reconstruction and is often, but not always,
performed on CPUs. OpenCL, OpenMP, or POSIX threads
are used to utilize all CPU cores. The pre-processed sino-
grams are, then, distributed between GPUs for reconstruc-
tion. For each GPU a new data pipeline is started. While one
sinogram is transferred into the GPU memory, the sinograms
already residing in GPU memory are first filtered, then back
projected to the resulting slice, and finally transferred back
to the system memory. Event-based asynchronous API and
double-buffering are utilized to execute data transfer in par-
allel with reconstruction. Basically, such approach allows to
use all system resources including Disk/Network I/O, PCIe
bus, CPUs, and GPUs in parallel.

A single row from each of the projections is required to
reconstruct a slice of output 3D volume. These rows are
grouped together in a sinogram. For the sake of simplic-
ity, we refer to these rows as projections while discussing
reconstruction from sinograms. Each slice is reconstructed
independently. First, each sinogram row is convolved with
a high-pass filter to reduce blurring - an effect inherent to
back-projection. The convolution is normally performed as
multiplication in Fourier domain. The implementation is
based on available FFT libraries. NVIDIA cuFFT is used
on CUDA platform and either AMD clFFT or Apple oclFFT
is utilized for OpenCL. For optimal FFT performance, mul-
tiple sinogram rows are converted to and from FFT domain
together using batched transformation mode. After filtering,
the buffer with filtered sinograms is either bind to texture
on CUDA platform or copied into the texture if OpenCL is
used. The pixel-driven approach is used to compute back-
projection. For each pixel (x, y) of the resulting slice, the
impact of all projections is summed. This is done by com-
puting the positions rp where the corresponding back pro-
jection rays are originated and interpolating the values of
projection bins around this position.

If � is an angle between consecutive projections, the posi-
tions are computed as follows:

As computation of trigonometric function is relatively
slow on all GPU architectures, the values of cos(p�) and
sin(p�) are normally pre-computed on CPU for all pro-
jections, transferred to GPU constant memory, and, then,

(1)rp(x, y) = x ⋅ cos(p�) − y ⋅ sin(p�)

Fig. 4 The data flow in image reconstruction framework. The data
is split in blocks and processed using pipelined architecture to effi-
ciently use all system resources

1345Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

re-used for each slice. Assuming this optimization, the back
projection performance is basically determined by how fast
the interpolation could be made. Two interpolation modes
are generally used. The nearest neighbor interpolation is
faster and better at preserving the edges while the linear
interpolation reconstructs the texture better. While more
sophisticated interpolation algorithms can be used as well,
they are significantly slower and are rarely if ever used. All
reviewed reconstruction frameworks rely on GPU texture
engine to perform interpolation. This technique was first
proposed in the beginning of the nineties for the SGI Reali-
tyEngine [55].

5 Back‑projection based on texture engine

The standard implementation described in previous section
performs fairly good. The compilers included in the CUDA
Framework and AMD APPSDK are optimize the execution
flow automatically. The loops are unrolled and the opera-
tions are re-arranged to allow streaming texture loads as
explained in the Sect. 3.6. Still, the default implementation
does not utilize all capabilities of texture engine and sig-
nificant improvement can be achieved on all architectures.

5.1 Standard version

First, we will detail how the standard implementation works.
Each GPU thread is responsible for a single pixel of output
slice and loops over all projections to sum the contribution
from each one. At each iteration, a projection is performed
to find a coordinate where the ray passing through the recon-
structed image pixel hits the detector. The value at the cor-
responding position in the sinogram row is fetched using
the texture engine and summed up with the contributions
from other projections. The texture engine is configured to
perform either nearest-neighbor or linear interpolation as
desired. The projection is computed according to Eq. 1. To
align the coordinate system with rotational axis, the position
of the rotational axis is first subtracted from the pixel coordi-
nates and, then, added to the computed detector coordinate
to find the required position in the sinogram. To compensate
for possible distortions of imaging system during the experi-
ment, the rotational center is not constant, but may include
per-projection corrections. Sine and cosine of each projec-
tion angle as well as the corrected position of the rotation
axis are read from a buffer in the constant memory which is
generated during the initialization phase. The computation
grid is split in square blocks of 16-by-16 threads. It results
in optimal occupancy across all considered platforms. The
corresponding pseudo-code is presented in Algorithm 1.

Input: Texture and the projection constants cC∗ .
Dimensions (n∗) and parameters (v∗) as specified in
Table 2.5. The indexes (m∗) and other used
variables are described in Table 2.6 and 2.7

Output: Reconstructed slice r̃G

begin
r̃ = 0
fg = mg − va

for (p = 0; p < np; p += 1)
h = cCa [p] + fg.x ∗ cCc [p] − fg.y ∗ cCs [p]
r̃ += tex2d(h + 0.5, p + 0.5)

end
r̃G[mg.y,mg.x] = r̃

end

Algorithm 1: Standard implementation of the back-
projection kernel

The CUDA platform supports two slightly different
approaches to manage textures: the texture reference API
and the texture object API [36]. The texture reference API is
universal and is supported by all devices. The texture object
API is only supported since Kepler architecture. While the
reference API can be used on all devices, as we found out
the object API outperforms it on the devices with compute
compatibility 3.5 and later. Therefore, we use the reference
API for GT200, Fermi, and the first generation of Kepler
devices and the object API for all newer architectures.

5.2 Multi‑slice reconstruction

The texture engines integrated in all recent generations
of GPUs are capable filter 8-byte data at the full pace, see
Sect. 3.4. The standard reconstruction algorithm can ben-
efit from this feature only if changed to double-precision
for better accuracy. But this have a little use in practice. In
parallel tomography, however, exactly the same operations
are performed for all the reconstructed slices. Therefore, it
is possible to reconstruct multiple slices in parallel if the
back projection operator is applied to a compound sinogram
which encodes bins from the several individual sinograms
as vector data. Particularly, it is possible to construct such
sinogram using float2 vector type and interleave values from
one sinogram as x components and from another as y, see
Fig. 5. With float2-typed texture mapped on this interleaved
sinogram, it is possible to fully utilize the bandwidth of the
texture engine and reconstruct two slices in parallel. The
interleaving is done as an additional data preparation step
between filtering and back projection steps. The back pro-
jection kernel is, then, adjusted to use the float2 type and
writes the x component of the result into the first output slice
and the y component into the second. There is a consider-
able speed-up on all relevant architectures as can be seen
on Fig. 6.

1346 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

5.3 Using half‑precision data representation

Since the NVIDIA texture engine is currently limited to
8-byte vectors, the proposed approach can’t be scaled to 4
slices if the single-precision input is used. However, CUDA
supports half-precision data type which encodes each float-
ing-point number using 16 bits only. While reduced preci-
sion might affect the quality of reconstruction, the majority
of cameras has only a dynamic range of 16 bits or bellow.
High-speed cameras actually used for time-resolved syn-
chrotron tomography have even a lower resolution of 10-12
bits only. Since the higher frequencies in a sinogram are
amplified during the filtering step, it is impossible to repre-
sent the filtered sinograms by integer numbers without loss
of precision. However, using a half-precision floating-point
representation to store the input data should have a limited
impact on the resulting image quality if all further arithmetic
operations are performed in single-precision. Unfortunately,
the half-precision textures are not supported in the latest
available version of CUDA yet (CUDA 8.0). While one can
store the half-precision numbers in the GPU memory, it is
impossible to map the corresponding texture. Still, it is pos-
sible to speed-up the reconstruction if the nearest-neighbor
interpolation mode is selected. After filtering, the sinograms
are down-sampled to the half-precision format and inter-
leaved. The texture-mapping is created using the float2 data
type. Upon request the texture engine returns the nearest
value without performing any operations on it. Therefore,
the appropriate data is returned even if an incompatible for-
mat is configured. It is important that the data size is correct.
To avoid further penalty to the precision, the half-precision
numbers are immediately casted to single-precision using
__half22float2 instruction and all further operations are per-
formed in single-precision as usual.

The Fig. 6 indicates a significant speed-up on all NVIDIA
architectures except Kepler. As can be seen from Table 10,
the type casting is very slow on Kepler and caps the per-
formance gains. The proposed method is also not viable
on AMD platform. Neither of the considered AMD GPUs
support half-precision extension of OpenCL specification.
Without this extension, no hardware instruction is available
to convert between half-precision and single-precision.
While such conversion can be performed using several bit
mangling operations, it would cap the possible performance
gain as well.

The penalty to the quality of the reconstruction induced
by reduced precision is evaluated in Figs. 7 and 8. It is
negligible for both synthetic Shepp Logan phantom and
the selected dataset with the measured data. However, the
behavior for different real-world measurements may vary,
especially if projections are obtained using a camera with

Fig. 5 Interleaving two sinograms to allow utilization of full 8-byte
filtering bandwidth on post Fermi NVIDIA GPUs

Fig. 6 The figure evaluates efficiency of optimizations proposed for
texture-based back-projection kernel. The measured throughput is
compared to the maximum filter rate of a texture engine and the per-
formance is reported as a percent of achieved utilization. The results
are reported also for processing multiple slices in parallel. The near-
est-neighbour interpolation is used to measure performance if 4 slices
are reconstructed in parallel. On NVIDIA platform the data is also
stored in the half float data representation in this case. For single- and
dual-slice reconstruction, the performance is measured for bi-linear
interpolation mode and the sinogram is stored in the single-precision
floating point format on all platforms. The blue bars show perfor-
mance of the standard Algorithm 1 just modified to process multiple
slices in parallel. The green bars show improvements due to a better
fetch locality. The red bars show the maximum performance achieved
by using Algorithm 3 with optimal combination of tweaks explained
through Sect. 5. Table 13 summarizes the architecture-specific
parameters used at each GPU. The utilization is reported according to
the supported filter rate, not the bandwidth. While the lower utiliza-
tion is achieved for multi-slices reconstruction modes, the actual per-
formance is higher as 2-/4-slices are processed using a single texture
access

1347Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

high dynamic range. As the optimization proposed in this
subsection changes the reconstruction results, it is impor-
tant to verify that the achieved quality is still satisfactory
for the considered application.

5.4 Efficiency of the standard algorithm

The Fig. 6 evaluates efficiency of texture engine utilization.
While performance in a single-slice processing mode is
close to theoretical maximum on a majority of the consid-
ered architectures, the efficiency drops significantly if multi-
ple slices are reconstructed in parallel. The AMD cards and
the cards based on the NVIDIA Kepler architecture show
sub-optimal performance also in a single-slice reconstruc-
tion mode.

As was discussed in Sect. 3.7, GPU architectures include
multiple functional blocks operating independently. The per-
formance of the GPU application is typically restricted by
the slowest and/or most loaded of these blocks. Secondly,
complex algorithms require a large amount of hardware
resources like registers and shared memory. Large footprint
on resources may constrain parallelism and, consequently,
limit an GPU ability to hide memory latencies and sched-
ule load across all available functional units. The discussed
algorithm relies on:

• Texture engine to fetch and interpolate data
• ALUs to find the ray incidence point
• Constant memory to load projection constants
• The SFU units are used for type conversions and integer

multiplication on the recent NVIDIA devices. The major
load is from conversion between half- and single-preci-
sion formats in 4-slice reconstruction mode. The SFUs
are also used for addressing constant memory arrays and
to convert a loop index to the texture-coordinate along
the projection axis.

The standard algorithm has a small register footprint and
all GPUs provide enough computing power to find inci-
dence points. The performance of the texture engine, how-
ever, is sub-optimal across all architectures if multi-slice
reconstruction is performed. The reason is the bad locality
of the texture fetches. The AMD GPUs are also restricted
by the performance of the texture cache if only a single-
slice is reconstructed. On top of that, the Kepler and AMD
VLIW systems have comparatively slow constant memory
which also bounds the performance bellow the theoretical
throughput. Finally, the low SFU performance on the Kepler
GPUs restricts the reconstruction if half-float format is used
to store the sinograms. More information about GPU capa-
bilities and the relative performance of GPU components is
given in Table 10.

Fig. 7 Comparison of two reconstructions of the Shepp Logan Head
Phantom using a single-precision (red) or half-precision (green)
input. A profile (top) and absolute difference between reconstructions
(bottom) are shown along the line crossing maximum of features on
the phantom. Due to very small differences between reconstructions,
the red and green lines completely overlap in the top plot

Fig. 8 Comparison of two reconstructions of the fossilized wasp data-
set using a single-precision (red) or half-precision (green) input. A
profile (top) and absolute difference between reconstructions (bottom)
are shown along the selected line crossing multiple features. Due to
very small differences between reconstructions, the red and green
lines completely overlap in the top plot

1348 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

5.5 Optimizing locality of texture fetches

The standard algorithm maps each GPU thread to a single
pixel of output slice. The default mapping is linear: the
thread with coordinates (x, y) in a computational grid is
used to reconstruct the pixel with coordinates (x, y) in a
slice. Since every thread in a wrap reconstructs consecu-
tive pixel along x axis, a large range of sinogram bins is
always accessed. Up to 16 different locations is fetched
by a warp if 16-by-16 thread blocks are utilized. As it was
discussed in the Sect. 3.4, the locality of fetches within a
block, a warp, and also within a group of 4 consecutive
threads is important to keep the texture engine running at
full speed.

To improve the locality of the texture fetches, a new
thread-to-pixel mapping is proposed. The thread blocks
assignments are kept exactly the same as in the stand-
ard version. I.e. each block of 256 threads is responsible
for an output area of 16-by-16 pixels. However, this area
is further subdivided into 4-by-4 pixel squares. Within
each square, the threads are mapped along Z-order curve
as illustrated in Fig. 10, left. Then, a group of 4 threads
fetches positions in a sinogram row which are maximum
3 bins apart. And only up to 5 elements are required to
perform corresponding linear interpolations. The data
required for 16 threads is limited to 8 bins only. Table 11
shows the effect of remapping for the 1- and 2-slice recon-
struction on NVIDIA Titan X GPU. According to Fig. 6 a
significant speed-up is also achieved on other architectures
unless the performance is also capped by other factors.

The pseudo-code to compute the new thread indexes is
given in Algorithm 2. The only required modification in
Algorithm 1 is to use the updated indexes m′

t
 in place of

ones reported by CUDA/OpenCL.

Input: mt is the original mapping as reported by
CUDA/OpenCL

Output: m 1
t is a new mapping proposed in section 5.5 to

improve locality of the texture fetches. mp and

m 2
t define an alternative mapping allowing also

to reduce the load on constant memory as
explained in section 5.6.

begin
/* Each thread is responsible for one of 4 pixels

laying within a small 2x2 pixel square which is
in its own right is one of 4 squares composing
the larger 4x4 pixel block. Here we determine the
sequential number of pixel in small square, the
sequential number of the small square in the
larger pixel block, and the sequential number of
these block. */

blockn = mt.y
squaren = mt.x / 4
pixeln = mt.x % 4
/* Converting the sequential number to x,y

coordinates. */
block = {blockn % 4, blockn / 4}
square = {squaren % 2, squaren / 2}
pixel = {pixeln % 2, pixeln / 2}
/* Compute the actual pixel offset for the first

mapping */

m 1
t = 4 ∗ block + 2 ∗ square + pixel

/* Compute the projection and pixel offset for the
second mapping */

m 2
t = 2 ∗ square + pixel

m
2
t .x += 4 ∗ block.x

mp = block.y

end

Algorithm 2: Optimizing thread mapping for the better
cache locality and reduced load on constant memory

5.6 Optimizing memory bandwidth

Even though the new thread mapping gives a significant
speed-up on a majority of considered architectures, the per-
formance on Kepler and AMD VLIW GPUs is still bound
by the slow constant memory. To process a projection, GPU
threads load several geometric constants to locate point of
incidence as defined in Eq. 1. These constants can be re-used
multiple times if each GPU thread would reconstruct several
pixels. Since pixels are reconstructed independently, it will
also increase the number of independent instructions in the
execution flow and improve a scheduler ability to hide mem-
ory latencies and to issue multiple instructions per clock.
There are two approaches how to adapt thread-to-pixel map-
ping. Either the number of threads in a computational grid
is reduced proportionally or a new mapping scheme is con-
structed in a way that the same amount of threads is running
but each thread contributes to multiple resulting pixels. The
later can be achieved by processing several projections in
parallel. Then, each thread is responsible for a group of pix-
els but loops over a subset of all projections only. Another
thread would contribute to the same group of pixels but from
a different subset of projections.

Table 11 Queries to texture cache with standard and optimized map-
ping on NVIDIA GeForce Titan X (Pascal)

The table compares efficiency of the texture fetches using standard
linear mapping scheme and the new scheme with improved locality.
The measurements obtained using NVIDIA profiler for the 1- and
2-slice reconstruction modes. The table lists:
aNumber of 32-byte queries issued to texture cache per fetch
bHit rate of the texture cache,
c L2 cache hit rate
dAchieved reconstruction performance in giga-updates per second

Slices Approach Queriesa Tex. hitsb L2 hitsc Perf.d

1 Standard 0.43 96.0% 89.0% 381 GU/s
Remapped 0.39 95.5% 89.4% 376 GU/s

2 Standard 0.61 91.5% 88.6% 534 GU/s
Remapped 0.53 93.8% 88.3% 724 GU/s

1349Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

Both methods perform similarly if properly optimized for
the target GPU. Using the second approach, however, the
dimensions of computational grid stay unchanged. Conse-
quently, it has advantage for region of interest (ROI) and
small-scale reconstructions. For this reason, we focus on this
method and elaborate how it is implemented and tuned to
run efficiently across platforms. To preserve good locality of
texture fetches, the mapping described in previous section is
adapted with small changes. The thread blocks assignments
are kept the same. Each block is responsible for an output
area of 16-by-16 pixels and this area is further subdivided
into 4-by-4 pixel squares. In contrast to original mapping,
however, 64 threads are assigned per square. Each thread is
responsible to compute a contribution to the pixel value from
a quarter of all available projections. Hence, each thread
processes 4 pixels and each pixel is reconstructed using 4

threads. To avoid costly atomic operations, the contribu-
tions of the projection subsets are summed independently.
Then, the threads are re-assigned to perform reduction in
the shared memory and compute the final value of a pixel.
To preserve a good spatial locality of the texture fetches, 4
neighboring projections are processed in parallel and the
threads step over 4 projections at each loop iteration.

There are 256 threads in a block and 64 threads are
assigned to reconstruct each 4-by-4 pixel square. Therefore,
4 such squares are processed in parallel and a complete set of
16 squares requires 4 steps of a loop. Figure 9 shows several
possible sequences to serialize processing. The first mapping
is sparse and results in a reduced cache hit rate as compared
to the other options. Since only a single pixel coordinate has
to be incremented in a pixel loop, the third option requires
less registers compared to the second. While the second
mapping has a better access locality within the 64-thread
warps of the AMD platform, it does not affect performance
in practice. On other hand, the register usage is very high
in multi-slice reconstruction modes and the extra registers
cause reduced occupancy or the spillage of registers into the
local memory. Therefore, the third approach is preferred.

A request to multiple locations in the constant memory
by a warp is serialized on NVIDIA platform. To avoid such
serialization, all threads of a warp are always assigned to the
same projection. The following mapping scheme is adopted.
The lowest 4 bits of the thread number in a block define
the mapping within a 4-by-4 pixel square. A group of 16
threads follows Z-curve as explained in the Sect. 5.5. Next
2 bits define a square and the top 2 bits define the processed
projection. Figure 10 illustrates the proposed mapping and
Algorithm 2 provides the corresponding pseudo-code.

The pseudo-code for the complete approach is presented
in Algorithm 3. There are two distinct processing steps. First
the partial sums are computed in an 4-element array. It is
declared as a local variable and both NVIDIA and AMD
compilers are able to back it with registers because of the
fixed size. The outer loop starts from the first projection
assigned to a thread and steps over the projections which
are processed in parallel. The large loop-unrolling factor
requested with pragma preprocessor directive has a posi-
tive impact on performance, especially on Kepler architec-
ture. At each iteration constants are loaded and inner loop
is executed to process 4 pixels the thread is responsible for.
After completion of all projections, the reduction loop is
executed. The partial sums are written into shared memory
and reduction is performed. To avoid non-coalesced global
memory writes, first all results are stored in a shared mem-
ory buffer r̃S and, then, written in the coalesced manner. The
synchronization is needed when switching different map-
ping modes. Since each reduction is performed by a single
warp only, it is sufficient to prevent compiler from reorder-
ing read and write operations in-between of reduction steps

Fig. 9 The figure illustrates several ways to assign a block of GPU
threads to an area of 16-by-16 pixels. Since 4 projections are pro-
cessed at once, only 64 threads are available for entire area and it take
4 steps to process it completely. For each possible scheme in gray are
shown all pixels which are processed during the first step in paral-
lel. The first mapping (left) is sparse and results in increased cache
misses. The second mapping (center) requires more registers and may
cause reduced occupancy. So, the third mapping (right) is preferred

Fig. 10 Mapping of a block with 256 threads to reconstruct a square
of 16-by-16 pixels along 4 projections. 4 steps are required to process
all pixels. A group of 64 consecutive threads is responsible to pro-
cess a rectangular area of 16 by 4 pixels (middle). 4 projections are
processed in parallel using 4 such groups (right). Each 4-by-4 pixel
square is reconstructed by 16 threads arranged along Z-order curve
(left). For each output pixel or block of pixels, the assigned range of
threads is shown in the figure

1350 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

using fence operation. Alternatively, the shuffle operation
may be utilized to perform reduction on Kepler and newer
NVIDIA architectures. Then, neither fence nor if-condition
are required. The reduction loop using the shuffle instruction
is shown in Algorithm 4.

for(j = 0; j < 2; j++) {
i = 2 >> j;
...

}

Input: Texture and the projection constants cC∗ .
Dimensions (n∗) and parameters (v∗) as specified in
Table 2.5. The indexes (m∗) and other used
variables are described in Table 2.6 and 2.7.
Mappings m 2

t and mp are computed as explained
in Algorithm 2.

Shared: s̃S [64][4], r̃S [16][16]
Output: Reconstructed slice r̃G

begin
/* Computing pixel coordinates using the new mapping

*/

m 2
g = mb ∗ nt + m 2

t

f ′g = m 2
g − va

/* Computing partial sums */
s̃[4] = {0}
for (p = mp; p < np; p += 4)

cs = cCs [p].y
h = cCa [p] + f ′

g.x ∗ cCc [p] − f ′
g.y ∗ cCs [p] + 0.5

for (q = 0; q < 4; q += 1)
s̃[q] += tex2d(h, p + 0.5)
h −= 4 ∗ cs

end
end
/* Reduction */

m 3
t = {mt.x % 4, 4 ∗ mt.y + mt.x / 4}

for (q = 0; q < 4; q += 1)
/* Moving partial sums to shared memory */

s̃S [nt.x ∗ m
2
t .y + m

2
t .x][mp] = s̃[q]

sync
/* Performing reduction */
for (i = 2; i ≥ 1; i /= 2)

if m
3
t .x < i then

s̃S [m 3
t .y][m 3

t .x] += s̃S [m 3
t .y][m 3

t .x+ i]

end
fence

end
/* To coalesce global memory writes, results are

grouped in shared memory */

if m
3
t .x == 0 then

r̃S [4∗q+m
3
t .y/16][m 3

t .y%16] = s̃S [m 3
t .y][0]

end
sync

end
r̃G[mg.y][mg.x] = r̃S [mt.y][mt.x]

end

On GTX295 using CUDA6, there are a few glitches
significantly affecting performance. The fence instruction
prevents unrolling of the reduction loop. Consequently,
the array with partial sums is referenced indirectly using
the loop index. This forces the compiler to allocate
array in the local memory instead of using registers and
causes enormous penalty to the performance. Therefore,

a standard __syncthreads is used instead. The loop is also
not unrolled if the inner reduction loop is implemented
directly as written in Algorithm 3. The following formula-
tion causes no issues:

for (q = 0; q < 4; q += 1)
/* Moving partial sums to shared memory */

s̃S [nt.x ∗ m
2
t .y + m

2
t .x][mp] = s̃[q]

sync
/* Performing reduction */

r̃ = s̃S [m 2
t .y][m 2

t .x]
for (i = 2; i ≥ 1; i /= 2)

r̃ += shfl xor(r̃, i, 4)
end
/* To coalesce global memory writes, the results are

grouped in shared memory */

if m
3
t .x == 0 then

r̃S [4 ∗ q + m
3
t .y / 16][m 3

t .y % 16] = r̃
end

sync
end

Algorithm 4: The reduction loop of Algorithm 3 using
shuffle instruction

The GPU constant memory is optimized with
the assumption that always the same constants are
accessed by all threads of a computational grid. Since the
new algorithm goes over several projections in parallel,
this assumption is not valid any more. While the proposed
mapping avoids major penalty due to warp serialization,
slow constant memory is still a bottleneck on older AMD
devices. To avoid performance penalty, faster and larger
shared memory is used instead in this case. The projec-
tion constants are initially stored in global GPU memory
and, then, are cached in shared memory. The Algorithm 5
contains alternative implementation of the accumulation
step for Algorithm 3. Shared memory is additionally con-
figured to store constants for up to 256 projections. In fact,
the same shared memory buffer may be used in the both
steps of algorithm, first for caching constants and later
for a data exchange while performing reduction. An outer
loop processing blocks of 256 projections is introduced.
At each iteration of the loop, the threads of a block are,
first, used to read the constants from global memory and
fill the cache. To allow 64-bit loads, we use a float2 vari-
able to store values of both trigonometric functions. After
synchronization, the inner projection loop is started to
compute partial sums. The inner loop is implemented as in
Algorithm 3 with only difference that constants are loaded
from shared memory. This method, however, cannot be
used across all platforms. While majority of NVIDIA
GPUs showed similar performance for both implemen-
tations, Kepler-based GPUs perform better if constant
memory is utilized.

1351Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

Input: Similar to Algorithm 3, but projection constants
cG∗ are provided in global GPU memory

Shared: cS
cs[sp], c

S
a [sp]

for (pb = 0; pb < np; pb += sp)
/* Caching projection constants in shared memory */
ml = mt.y ∗ nt.x + mt.x

cS
cs[ml] = {cGc [pb + ml], cGs [pb + ml]}

cSa [ml] = cGa [pb + ml]
sync

/* Computing partial sums */
for (p = mp; p < min(sp, np − pb); p += 4)

cs = cScs[p].y
h = cSa [p] + f ′

g.x ∗ cScs[p].x − f ′
g.y ∗ cScs[p].y + 0.5

for (q = 0; q < 4; q += 1)
s̃[q] += tex2d(h, pb + p + 0.5)
h −= 4 ∗ cs

end
end

sync
end

Algorithm 5: The main loop of Algorithm 3 modified to
cache geometrical constants in the shared memory

5.7 Optimizing occupancy

Similarly to the standard algorithm, the optimized version
can be easily adapted to process 2- and 4-slices in paral-
lel. Only accumulators and intermediate buffers have to be
declared with the appropriate vector type. However, the
usage of hardware resources grows significantly if multi-
ple slices are processed in parallel. In a 4-slice mode, 16
registers (32-bit each) are required only to accumulate the
partial sums. The large register footprint reduces occupancy
and may result in a sub-optimal performance unless treated
properly.

The register allocation is completely out of developer
control on AMD platform. NVIDIA allows to target the
desired number of blocks executed by each SM in parallel.
It is done using __launch_bounds__ keyword. The CUDA
optimizer, then, changes the code generation algorithm to
meet the target. It prevents data pre-fetching and also may
result in an increased computational load and/or in a more
intensive usage of L1 caches as a part of local variables is
offloaded to local memory. On Fermi and Kepler architec-
tures, 64 KB of on-chip memory is split between L1-cache
and shared memory according to the user-specified con-
figuration. By default 48 KB is assigned to shared memory
and only 16 KB is left for L1 cache. If the shared memory
consumption is low enough, it is possible to re-balance this
ratio and achieve a high occupancy on one hand and ensure

that there is enough L1 cache to back all the required local
memory on the other.

The Table 12 summarizes resource consumption, theoret-
ical occupancy, and achieved performance on the NVIDIA
GTX Titan with and without resource restriction. The results
show that improved occupancy may bring a considerable
speed-up also if significant number of variables has to be
offloaded to local memory, provided it is backed by L1
cache. Without restriction the generated code requires 38
registers if 2-slice reconstruction mode is enabled. This lim-
its the number of resident threads to 1724 or 6 blocks and
results in 75% occupancy. The performance is improved by
15% if CUDA compiler is instructed to allow execution of 8
blocks, i.e. running at full occupancy. To fulfill this require-
ment the compiler puts 6 variables in the local memory.
However, 16 KB of L1 cache is not enough to assure backing
of the required local memory for 8 resident blocks. On other
hand, only 4 KB of shared memory is required per block
for temporary buffers or 32 KB for all 8 blocks. Therefore,
the ratio between L1 cache and shared memory is shifted
to allow 32 KB of L1 cache. This is done using cudaFunc-
SetCacheConfig command with cudaFuncCachePrefer
argument to specify preference for L1 cache. The recom-
mended restrictions for other architectures are summarized
in Table 13

Both shared and constant memories are comparatively
slow on Kepler with respect to the performance of the tex-
ture engine, see Table 10. Furthermore, 64-bit access is
required to fully utilize the available bandwidth of shared
memory. This is given in the multi-slice reconstruction
mode. However, 64-bit operation should be also enabled in
CUDA using cudaDeviceSetSharedMemConfig command
with cudaSharedMemBankSizeEightByte argument. The
constant memory also performs better if 64- or 128-bit wide
access is performed. A speed-up is achieved if all projection
constants are grouped together and stored as a single float4
vector. Even if only 3 components of the vector are actually
required (i.e. one quarter of bandwidth is actually wasted),
the performance is considerably better.

5.8 Summary

We have introduced a new cache-aware algorithm which is
able to reconstruct up to 4 slices in parallel. Several modi-
fications are proposed to improve performance on specific
GPU architectures. The optimal configuration and the cor-
responding performance are summarized in Table 13. The
achieved efficiency is further analyzed on Fig. 6. For a
single slice reconstruction mode, the performance is above
90% of the theoretical maximum across all considered
platforms. Depending on the architecture, it corresponds
to a speed-up of up to 90% as compared to the origi-
nal algorithm. Using the multi-slice reconstruction and

Table 12 Occupancy and performance of NVIDIA GeForce GTX
Titan (Kepler) using 2-slice reconstruction mode

Restricted Registers Local Mem. Occupancy (%) Performance

No 38 – 75 320 GU/s
Yes 32 24 bytes 100 368 GU/s

1352 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

half-float data representation, it is possible to quadruple
performance on Fermi and the latest AMD and NVIDIA
architectures. Efficiency of about 80-90% is achieved if the
optimized reconstruction kernel is utilized. The efficiency
of Kepler GPUs is restricted due to comparatively slow
on-chip memory and low performance of SFU units which
are used to perform type mangling operations. Neverthe-
less, 2 to 3 times speed-up over the standard single-slice
algorithm is achieved due to the proposed optimizations.

6 Alternative algorithm based on ALUs

While it is possible to reach a very high reconstruction speed
by processing multiple slices in parallel, this option is not
available on all GPUs. Furthermore, the ability to re-combine
slices for parallel reconstruction may be limited due to archi-
tecture of data processing pipeline or by the latency require-
ments. According to specifications, the majority of GPUs are
able to perform over 32 floating-point operations during a sin-
gle texture fetch, see Table 10. Only 9 floating-point opera-
tions are required to perform a single update of back projection

algorithm [55]. Therefore, an alternative implementation using
the algebraic units to perform interpolation may outperform
the texture-based kernel by 3-times if executed on a single
slice. The challenge is to feed the data into the floating-point
units at the required rate. The L1 cache integrated in SM is
small with low associativity and, consequently, is susceptible
of cache poisoning. As result, the loads from global memory
limit performance severely. In this section we present a back
projection algorithm based on ALU to perform interpolation
and using shared-memory as an explicit cache. First, we will
explain the concept and present a base version of the algo-
rithm. Then, we build a simplified performance model and
analyze that limits the performance on each of the hardware
platforms. Finally, multiple adjustments are discussed to
slightly shift balance between memory operations and differ-
ent types of computations and to address the capabilities of a
specific architecture better.

6.1 The concept

The proposed approach is illustrated on Fig. 11. To avoid
the penalties associated with global memory loads, shared
memory is used to cache all bins required for reconstruction
by a block of threads. To reserve a large enough buffer for
the cache, it is necessary to find an upper bound of bins (b)
required to reconstruct a rectangular block of pixels (S) with
dimensions n by m. It is defined as

where rp(x, y) is the incident offset in a projection row which
is computed as defined in Eq. 1. If (x0 , y0) is the coordinates
of maximum of rp and (x1 , y1)—of minimum, the equation
can be reformulated as

or

where � is some angle. Then, bp can be estimated as:

It is independent of processed projection and is minimal
if the area S is square. In this case the value of b does not
exceed n ⋅

√

2 . For practical purposes we assume that 3
2
n

bins are required per projection to reconstruct a full pixel
square with side n. To perform caching, it is necessary to
find the minimal required bin (hm) for each projection.

bp = max
(x,y)∈S

rp(x, y) − min
(x,y)∈S

rp(x, y)

bp = (x0 − x1) ⋅ cos(p�) − (y0 − y1) ⋅ sin(p�)

bp =

√

(x0 − x1)
2 + (y0 − y1)

2
⋅ cos(� + �)

bp ≤
√

(n)2 + (m)2 ⋅ cos(� + �)

Table 13 Performance and configuration of cache-aware texture-
based back-projection kernel

The table summarizes the performance and optimal configuration for
the texture-based back-projection kernel. Information is provided for
all supported slice-modes

Configuration

GPU nv Perf. Occupancy L1/ShMem Cache

GTX295 1 49 GU/s 75% – –
GTX580 1 49 GU/s 50% 16/48 –

2 97 GU/s 50% 16/48 –
4 172 GU/s 50% 16/48 –

GTX680 1 118 GU/s 100% 16/48 –
2 232 GU/s 100% 32/32 –

Titan 1 200 GU/s 100% 16/48 –
2 362 GU/s 100% 32/32 –

GTX980 1 155 GU/s 100% – –
2 304 GU/s 100% – –
4 555 GU/s 75% – –

Titan X 1 389 GU/s 100% – –
2 726 GU/s 100% – –
4 1396 GU/s 75% – –

HD5970 1 56 GU/s – – 256
HD7970 1 115 GU/s – – 256
R9-290 1 146 GU/s – – 256

1353Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

Then, the reconstruction is performed in two stages. First,
the required bins are cached for a set of projections. After-
wards, the reconstruction is performed using the data in the
cache. To perform caching, the threads of a block are split
in several groups. Each group is responsible to cache bins
for a single projection. A subset of a sinogram row consist-
ing of 3

2
n bins is extracted starting at an offset equal to the

hm . Based on a thread index in a group, the offset in a sino-
gram is computed and the corresponding bin is cached in a
shared memory array. If necessary, a few bins with a stride
equal to a number of threads in a group are cached by the
same thread. The threads of a block are, then, re-assigned
to match the output pixels and process the contributions
from the cached projections in a loop. As usual, the threads
determine a position where the ray passing through the
reconstructed pixel hits the detector row. The correspond-
ing bin in a sinogram is computed by each thread and an
offset from the hm value is found. Typically the offset is not
integer and falls in between of two cached values. Depend-
ing on the configured interpolation mode either the offset is
rounded to the nearest integer and a single value is loaded
from shared memory or both neighboring values are loaded
and the linear interpolation is performed to compute the
impact of a projection.

Both steps depend on the hm to perform caching and
to locate the required value in the cache. This operation
is costly and would add significantly to computation bal-
ance if executed by each thread and for each projection.
To reduce amount of required operations, the hm values
are cached in the shared memory during the first stage of
algorithm and, then, re-used in the second. Furthermore,
the minimal bin is always accessed while reconstructing
one of the corners of the pixel square. The actual corner
is only depending on the projection angle and is the same
across all squares of the reconstructed slice. Therefore,
a single value is required for each projection to compute
minimal bin. This value (cm) can be defined as the differ-
ence between the position accessed to compute a top-left
pixel of a square and the minimal position accessed across
this square. Then, it is computed as:

Using cm , the minimal required bin (hm) is computed as:
hm = floor(hb + cm) , where hb is the bin accessed by the first
thread of a block. It is computed based on a index of a thread
block in the computational grid as described in Table 7. The
cm is computed during the initialization stage and is stored
along with other projection constants in the GPU constant
memory.

cm = n ⋅max(0, cos(�p),− sin(�p), cos(�p) − sin(�p))

Multiple auxiliary operations are required to perform
reconstruction. The sinogram values are fetched from the
cache, interpolated, and summed up. On top of that, the
hm is computed for each projection, the selected parts of
sinogram are cached, and the corresponding positions in
the projection cache are determined for each pixel. These
operations add an additional load on GPU and signifi-
cantly reduce the performance. While it is impossible to
eliminate the auxiliary operations entirely, there are two
major ways to scale down their proportion. Either several
slices are reconstructed in parallel or a larger pixel area is
assigned to a thread block for reconstruction. First option
allows to reduce proportion of computations needed to
determine which data is cached for each projection and
to find the required offset in the shared memory array.
Since the reconstruction is not bound by a performance
of the texture engine any more, there is no restriction on
a number of slices processed in parallel. It is possible to
reconstruct 4 or more slices together provided there is
enough hardware resources to handle the data. Proportion-
ally less data have to be cached if a larger area is assigned
to a thread block. Consequently, the load on global and
shared memories is reduced. This is achieved either by
increasing a number of threads in a block or by assigning
multiple output pixels to each thread. Since the constants

Fig. 11 The figure illustrates reconstruction process relaying on
the shared memory cache and the algebraic units to perform back-
projection. To reconstruct 32 × 32 square, a thread block caches
48 bins from each projection row. The projections are processed in
groups moderated by the size of available shared memory. At first,
the required subset of bins in each projection is determined (left).
The selected subsets along with their offsets in the projection rows
are cached in the shared memory (center). Then, the reconstruction is
performed and projections are processed in a loop one after another
(right). Each thread is responsible for several pixels of output slice.
For each pixel the required position in the sinogram is computed. The
cache offset for the considered projection row is subtracted from this
position and the offset in the cache is determined (bottom). As the
offset is typically not integer, two array elements are loaded from the
cache and interpolation is performed

1354 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

can be stored in the registers and re-used to process mul-
tiple pixels, the load on constant memory is reduced in
the last case as well. So, the first option cuts down the
amount of computations significantly. The second method
cuts down computations to lesser extent, but also reduces
an utilization of shared memory slightly. Both ways, how-
ever, increase the use of hardware resources significantly.
More shared memory and more registers are required. The
optimal compromise between these options has to be found
for each targeted platform. Furthermore, there are multiple
ways to implement the described operations. Each variant
will put more load on one GPU subsystem or another. The
additional shared-memory caches can be utilized to shift
the balance between computations and memory opera-
tions. In the next subsection we present a base implemen-
tation and will target the specific architectures across the
rest of the section.

6.2 Base implementation

Processing only a single pixel per thread is sub-optimal
across all targeted platforms. The optimal load is between
4 and 16 pixels depending on the available hardware
resources. Since square areas are most efficient to cache,
we target areas of either 32-by-32 or 64-by-64 pixels per a
thread block. While intermediate sizes can be used as well,
for power of two sizes it is easy to design thread mappings
suitable for both caching and accumulation stages of the
reconstruction process. For sake of simplicity, in Algo-
rithm 6 we present a simple version processing 4 pixels
per a thread. A block of 256 threads is used to reconstruct
a square of 32-by-32 pixels. The maximum number of bins
accessed per projection, then, is equal to 32 ⋅

√

2 or 46.
If the linear interpolation is used, up to 47 elements in a
sinogram array are actually accessed for each projection.
Therefore, 16 threads cache all required values in 3 steps.
To avoid conditionals all 48 values are always cached. This
ratio keeps if 64-by-64 area is reconstructed. The 96 val-
ues has to be cached. The number of projections processed
in parallel is limited by the available shared memory and
the size of a single projection row in the cache. A group of
16 projections may be cached at once if only a single slice
is reconstructed. For 4-slice mode or if a 64-by-64 area is
reconstructed, only 8 projections are typically processed in
parallel. Reducing this number further may have negative
impact on the performance as many threads would need
to wait at the synchronization point reducing the effective
occupancy.

Input: Texture and the projection constants cC∗ .
Dimensions (n∗), cache sizes (s∗), and parameters
(v∗) as specified in Table 2.5. The used variables are
described in Table 2.6 and 2.7.

Assume: ns = 32, nq = 4, st = 16, si = 3
Shared: d̃S [sd][32 ∗ ns], h̃S

m[sd]
Output: Reconstructed slice r̃G

begin
/* Simplified mapping */
{md,mp} = mt

m′
t = {nt ∗ (mt.y % 2) + mt.x,mt.y / 2}

m′
g = {ns ∗ mb.x + m′

t.x, ns ∗ mb.y + m′
t.y}

/* Set accumulators to 0 and run projection loop */
s̃[nq] = {0}
for (pb = 0; pb < np; pb += sd)

if mp < sd then
/* Compute the minimal required bin */
p = pb + mp

hb = cCa [p] + fb.x ∗ cCc [p] − fb.y ∗ cCs [p]
hm = floor(hb + cCm[p])
/* Cache it in the shared memory */
if md == 0 then

hS
m[mp] = cCa [p] − hm

end
/* Cache the data in the shared memory */
for (i = 0; i < si; i += 1)

h = i ∗ st + md

d̃S [mp][h] = tex2d(hm +h+0.5, p+0.5)
end

end
sync

for (pi = 0; pi < sd; pi += 1)
p = pb + pi

cs = cCs [p]
h = hS

m[pi] + f ′
g.x ∗ cCc [p] − f ′

g.y ∗ cCs [p]
for (q = 0; q < nq; q += 1)

/* Compute the offset in cache */
hi = floor(h)
hl = h − hi

/* Iterpolate */

d̃1 = d̃S [pi][hi]
d̃2 = d̃S [pi][hi + 1] − d̃1

s̃[q] += d̃1 + hl ∗ d̃2
/* Move to the next position */
h −= (ns / nq) ∗ cs

end
end

sync
end
/* Save the results to global memory */
for (q = 0; q < nq; q += 1)

r̃G[m′
g.y + 8 ∗ q][m′

g.x] = r̃[q]
end

end

Algorithm 6: ALU-based implementation of the back-
projection kernel

As was already explained, the hm is computed during the
caching stage and also stored in shared memory. Instead
of repeated computation, the value is loaded from shared
memory during the reconstruction stage. To find the required
offset in the cache, a difference between the position in a
sinogram row (h) and hm is computed. The equation for h
includes the projection-corrected position of the rotational
axis (ca) which is constant for all pixels. It can be integrated
into the hm already during the caching step of the algorithm.

1355Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

So the value of ca − hm is stored in shared memory instead
of hm . Then, only the pixel-dependent part of the projection
equation is computed inside of the main loop.

Since no interpolation is required while the data are read
from global memory, it is possible to access the sinograms
directly rather than using texture fetches. The loads are
always coalesced and thread blocks read each value only
once. However, NVIDIA relays on the same LD units to
perform the shared and global memory operations. Hence,
either a shared memory or a global memory instruction will
be executed by SM at each clock. On other hand, texture
loads are performed using the specialized units on all archi-
tectures. Therefore, it is possible to load data from global
and shared memory simultaneously if global memory is
accessed using the texture engine. It makes the texture
engine a preferred option to get the data in the shared mem-
ory cache. To avoid unnecessary interpolations, the texture
engine is configured to use nearest neighbor interpolation.

6.3 Optimizing the thread mapping to avoid shared
memory bank conflicts

Like for the texture-based reconstruction kernel, the thread-
to-pixel mapping is important to achieve a good perfor-
mance. The main goal is to reduce shared memory trans-
actions and avoid shared memory bank conflicts during
the both stages of reconstruction. On all architectures, the
warps need to avoid accessing multiple rows of the same
shared memory bank in a single instruction. While the warp
consists of 64 threads on the AMD platform, maximum
32 shared memory banks are supported on the reviewed
GPUs. To prevent bank conflicts, it is only necessary to
avoid accessing the same bank across a group of 32 threads
[49]. Therefore, there is no need to tackle the larger warp
size on AMD while discussing the shared memory access.
Furthermore, there are several architecture specific restric-
tions. The Fermi and AMD devices are not capable to handle
128-bit data efficiently [36, 49]. Using 64-bit wide opera-
tions is extremely important on the Kepler architecture to
utilize the full performance of shared memory. Only half
of the bandwidth is available if 32-bit access is performed.
While not as significant as on the Kepler architecture, 64-bit
loads are about 20% faster on AMD Cypress and Tahiti [49].

No changes are required to benefit from the 64-bit shared
memory in the multi-slice reconstruction modes. A 64-bit
access can be easily facilitated in the caching step of the
algorithm also if a single-slice reconstruction is performed.
Each thread is made responsible to cache 2 bins at once.
First, 2 texture fetches are performed to extract values of
the neighboring bins. Then, both values are assembled in a
64-bit float2 vector and are written into the shared memory
using a single operation, see Algorithm 7. This approach,
however, reduces the locality of texture fetches. Since hm

may have an odd value, switching to float2 textures is not
an option. However the load on the texture engine is quite
low and in contrast to shared memory has little impact on
overall reconstruction speed. This optimization is relevant
on NVIDIA Kepler and both older AMD GPUs.

for (i = 0; i < si; i += 1)
h = 2 ∗ (i ∗ st + md)
d1 = tex2d(hm + h + 0.5, p + 0.5)
d2 = tex2d(hm + h + 1.5, p + 0.5)
*(float2)(&d̃S [mp][h]) = (float2){d1, d2}

end

Algorithm 7: The caching stage of Algorithm 6 optimized
for architectures with 64-bit shared memory

Only the half of the available shared memory banks are
utilized on the NVIDIA Fermi and all AMD GPUs if 128-bit
data is accessed. To circumvent the problem, it is possible
to split the float4 vectors in two parts, store them in the two
buffers in shared memory separately, and re-combine back
before performing interpolation, see Algorithm 8.

begin
for (i = 0; i < si; i += 1)

h = i ∗ st + md

d̃ = tex2d(hm + h + 0.5, p + 0.5)
dS

1 [mp][h] = (float2){d.x, d.y}
dS

2 [mp][h] = (float2){d.z, d.w}
end
...

d̃1 = (float4){dS
1 [pi][hi],dS

2 [pi][hi]}
d̃2 = (float4){dS

1 [pi][hi + 1],dS
2 [pi][hi + 1]}

d̃2 = d̃2 − d̃1

...
end

Algorithm 8: Modification of Algorithm 6 to split the 4-
slice cache as required on Fermi and AMD architectures

In the first stage of algorithm, the number of threads
assigned to cache each projection is adjusted to optimize
access to the shared memory. If a large 64-by-64 area is
reconstructed, a full warp of 32 threads can be assigned for
each projection row avoiding any possible bank conflicts.
Unfortunately, it is not completely optimal on the Kepler
architecture as, then, it is impossible to re-combine two bins
into a single 64-bit wide write as explained above. It is also
not possible to assign 32 threads per row for a smaller 32-by-
32 area because only 48 bins has to be cached per projection
in this case. And it is a bad idea to keep the half of threads
idling. Therefore, several projection rows are processed
by each warp in the described cases. This potentially may
cause bank conflicts. If only a single slice is reconstructed,
however, the banks are shifted from one projection row to
another as illustrated on Fig. 12. The caching is performed
without bank conflicts if either 16 threads are assigned per
projection row on the platforms with 32-bit shared mem-
ory or 8/16 threads are used on the Kepler devices. Only 8

1356 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

threads are used to allow bin re-combination if a small area
is reconstructed. 16 threads per projection are optimal on
all platforms if multiple slices are reconstructed. The 64-bit
banks storing float2-sinogram are shifted across projection
rows exactly the same way as 32-bit banks do if a simple
float-sinogram is reconstructed. And on platforms with
32-bit shared memory it is enough to prevent bank conflicts
within a group of 16 threads while dealing with 64-/128-bit
data. The optimal settings for each reconstruction mode are
summarized in Table 14.

According to the documentation it does not matter how
the threads of a half warp are accessing shared memory.
In practice, however, we found that on recent NVIDIA
devices the performance of 64- and 128-bit loads is
slightly improved if only 1-2 different memory locations
are accessed by groups of 4 consecutive threads. The local-
ity of shared memory loads is improved if each half-warp
is mapped to a square consisting of 4-by-4 pixels and the
threads are arranged along Z-order curve similarly to the
texture fetches. All 256 threads of a block are mapped to
16 such squares. For the reasons explained in Sect. 5.6, the
squares are arranged linearly along x-axis. Two rows of 4 ×
4 squares are processed in parallel if a small 32-by-32 area
is reconstructed. A single row is covered for the bigger area
or if only 128 threads are assigned per a block. The remain-
ing rows are processed over 4-16 steps. The threads accu-
mulate the sums for each pixel in a register-bound array
and dump it to global memory once the processing of all
projections is completed. The complete mapping scheme is
illustrated on Fig. 13. The performance of NVIDIA Titan
X is increased by 3% if the described mapping is utilized.

6.4 Advanced caching mode

For linear interpolation two neighboring bins are always
loaded, but it is impossible to perform 64-bit load due to

the alignment requirements. Consequently, only a half of
the available bandwidth is used on the Kepler architec-
ture in the single-slice processing mode. To allow 64-bit
access, both values required to perform linear interpola-
tion are stored as float2 vector in the corresponding bin
of the cache. The size of cache is doubled, but also the
achieved bandwidth is increased by factor of two on the
Kepler platform and is considerably improved on the AMD
devices which are optimized for 64-bit loads. The required
amount of shared memory is still adequately low and does
not limit occupancy if the single-slice reconstruction is

Fig. 12 The figure illustrates how the warps are assigned to cache
a subset of a sinogram on the systems with 32-bit and 64-bit shared
memory. For each projection 48 bins which are required to recon-
struct area of 32-by-32 pixels are cached. The shared memory banks
used to back each group of 16 bins are specified considering that
32-bit data format is used

Fig. 13 The assignment of block threads to pixels as proposed for
ALU-based reconstruction

Table 14 The optimal parameters to prevent shared memory bank
conflicts in ALU-based reconstruction kernel

For each considered configuration, the number of threads per pro-
jection row and the required optimizations are specified. The dou-
ble-buffer optimization splits the shared memory cache in 2 parts
to prevent bank conflicts on the NVIDIA Fermi and all considered
AMD architectures. The write64 optimization combines two writes to
shared memory to use full bandwidth of Kepler GPUs

Area nv Platform Threads Optimizations

Standard caching mode (see Sect. 6.3)
32 × 32 1 32-bit 16 -

64-bit 8 write64
2 32-bit 16 –

64-bit 16 –
4 AMD and Fermi 16 double-buffer

Kepler+ 16 –
64 × 64 1 32-bit 32 –

64-bit 16 write64
2 32-bit 32 –

64-bit 32 –
4 AMD and Fermi 32 double-buffer

Kepler+ 32 –

Advanced caching mode (see Sect. 6.4)
32 × 32 1 All 16 –
64 × 64 1 All 32 –

1357Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

performed. Furthermore, one floating-point operation is
eliminated in the interpolation step of algorithm if the sec-
ond component of cached vector actually stores the differ-
ence between the values of consecutive bins in a sinogram
as shown on Fig. 14.

The caching procedure is modified as shown in Algo-
rithm 9. To reduce required inter-thread communication,
each thread caches several consecutive bins. The commu-
nication is, then, only required to compute the second part
of the last bin which is assigned to a thread. The shuffle
instruction is used on Kepler and the newer NVIDIA archi-
tectures. A read from shared memory is performed on the
NVIDIA Fermi and all AMD GPUs after the fence-style
synchronization. In this case the shared memory cache is
also padded by one extra column to allow an unconditional
read by the last thread in a group assigned to a projection
row.

begin
h = si ∗ md

d1 = tex2d(hm + h + 0.5, p + 0.5)
d = d1
for (i = 0; i < (si − 1); i += 1)

dn = tex2d(hm + i + 1.5, p + 0.5)
dS [mp][h + i] = (float2){d, dn − d}
d = dn

end
d1 =shfl down (d1, 1, st)
dS [mp][h + (si − 1)] = (float2){d, d1 − d}

end

Algorithm 9: Advanced Caching Mode for Algorithm 6

In case of a 32-by-32 pixel area, 16 threads per projec-
tion row are used on all platforms independent of the width
of a shared memory bank. The banks are shifted between
projection rows on the 64-bit platforms as explained in
Sect. 6.3. And for 32-bit architectures it is enough to avoid
bank conflicts within a half-warp only. Furthermore, there
is also no bank conflicts between the threads of a half-
warp as the stride is not a multiple of 4, see illustration
in Fig. 15. A full warp is used per row if a thread block is
assigned to process larger 64-by-64 pixel area. The same
number of steps is, then, required to process the complete

projection row and, consequently, shared memory is
accessed with the same stride without bank conflicts.

6.5 Modeling

The proposed method is relatively complex and utilizes
multiple GPU subsystems. There are many ways to tune
the proposed algorithm to address the capabilities of a
targeted architecture better. It is important to understand
the limiting factors in each case. Here, we try to build a
simplified performance model. First, we identify several
distinct operations required to perform back projection:

1. The projection constants are loaded from memory. And
the minimal required bin is computed to decide which
data have to be cached.

2. The sinogram subsets are fetched from the texture and
cached in shared memory.

3. For each reconstructed pixel, the corresponding position
in a sinogram is determined.

4. The offset in the shared memory array is computed.
5. Depending on the requested interpolation type, one or

two values are fetched and the contribution of a projec-
tion is added to the accumulator.

These operations rely on several hardware components:

• Constant memory is used to retrieve projection con-
stants.

• Texture Engine is used to retrieve the sinogram values.
• Shared memory is used while caching the data and

retrieving the cached values to perform interpolation.
• ALUs are used for general-purpose computations, par-

ticularly to perform projection and interpolation.

Fig. 14 Advanced Caching Mode. Two values are cached for each bin
of a sinogram. The second value stores the difference between neigh-
boring bins to allow faster interpolation. The shuffle instruction is
used to get values from the bins cached by a different GPU thread

Fig. 15 The figure illustrates how the shared memory banks are
accessed if advanced caching mode is used, see Sect. 6.4. The pre-
sented layout is employed to reconstruct area of 32 × 32 pixels. The
grayed boxes indicate the banks accessed by a warp during the first
caching pass. Two values are cached for each bin and, consequently,
each bin spans over two memory banks on the platforms with 32-bit
shared memory. On these platform it is also only necessary to avoid
conflicts within a half-warp. So, the accesses for second half-warp are
not shown

1358 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

• SFUs are used on Kepler, Maxwell, and Pascal archi-
tectures to perform rounding operations, to convert data
between floating point and integer representation, and to
perform bit-shifts. These instructions are used to com-
pute offsets in the cache and to perform interpolations.
While the bit-shifts are not used directly in pseudo-code,
they are implicitly utilized to resolve addresses in the
constant and shared memory arrays.

Each of these components may limit the performance if
its resource is exceeded. Furthermore, there is also a limit on
a number of instructions which SM is able to schedule per
a clock cycle. Particularly, the warp scheduler on Fermi is
limited to a single instruction per clock. If a memory instruc-
tion is launched, the half of ALUs are kept idle. To estimate
the performance we assess the number of required opera-
tions according to the presented pseudo-code. We assume
that the performance is either capped by the slowest of the
components or by a total number of instructions. It is a very
rough estimate. The developed kernels are resource inten-
sive and are executed at a significantly reduced occupancy.
It is difficult to predict how the compiler will generate the
code to manage the available resources. Furthermore, some
variables are moved to the slower local memory. The local
memory is backed by L1 cache which shares the hardware
with shared memory on the Fermi and Kepler based GPUs.
Consequently, the operations with such variables are not
only increasing latency, but also may penalize the shared
memory performance. Nevertheless, the obtained estimates
allow us to choose the required optimization strategy for
each architecture.

Instructions required to perform a single update on a pixel
value are summarized bellow for the reconstruction using
the linear interpolation. Rounding/type-conversions (TC)
and bit-shift (BS) operations are counted separately because
they are scheduled differently on Maxwell/Pascal and Kepler
GPUs. For each operation the normalization coefficient, i.e.
the number of updates performed per the specified number
of instructions, is indicated. Fused-Multiply-Add (FMA) is
counted as a single instruction.

1. Computing and caching of hm (per nt ∗ nq ∗ nv updates)

• Constant Memory (128-bit): st
• Shared Memory (32-bit): st (because a full warp is

executed anyway)
• FP: 4st (to compute hb and hS

m
)

• TC: st (rounding)
• BS: 2st (resolving addresses in constant and shared-

memory arrays)

2. Caching (per nt ∗ nq ∗ nv updates)

• Texture Fetches: 3
2

√

nt ∗ nq

• Shared Memory (type-dependent, but always
64-bit in Advanced Caching Mode): 3

2

√

nt ∗ nq
• FP: 4st (3 if Advanced Caching Mode is not used)
• TC: st (integer to float conversion of projection

number to perform texture fetch)
• BS: 2st (resolving addresses in the shared-memory

array)

3. Setting inner-projection loop and evaluating required
position in sinogram (per nq ∗ nv updates):

• Constant Memory (64-bit): 1 (only cosine and
sine of the angle are required here)

• Shared Memory (32-bit): 0.25–1 (offsets for 4
projections can be loaded at once using a single
128-bit load if the loop is unrolled)

• TC: 2–3 (computing h, updating loop index unless
unrolled)

• BS: 1–3 (resolving addresses in the constant array
and also in both shared memory caches unless the
loop is fully unrolled)

4. Computing an offset in the cache and the coefficient for
linear interpolation (per nv):

• FP: 2 (update to the next offset; computation of
interpolation coefficient unless nearest neighbor
mode is selected)

• TC: 2 (rounding and float-to-integer type conver-
sion; only a single operation is required if nearest
neighbor interpolation is performed)

• BS: 1 (resolving the address in the shared memory
array)

5. Linear Interpolation (for each update):

• Shared Memory (type dependent): 1 (2 if
Advanced Caching Mode is not used)

• FP: 2 (interpolation and update; 3 operations if
Advanced Caching Mode is not used and only 1 if
nearest neighbor interpolation is performed)

Further, a single-slice reconstruction (nv = 1) using
advanced caching mode is evaluated. Blocks of 256
threads (nt = 256) are assigned to process a 32-by-32 pixel
square (nq = 4). For sake of simplicity we assume that 16
threads are used to cache a single projection row and that
the inner projection loop is fully unrolled. We skip the
texture fetches as load is very low and certainly is not a
limiting factor here. Then, the following number of opera-
tions is estimated per a single update:

• Constant Memory: 2.3 bytes (0.3 instructions)
• Shared Memory: 8.7 bytes (1.1 instructions)
• FP: 4.6 (counting FMA as a single operation)

1359Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

• TC: 2.0
• BS: 1.3
• Instructions: 8.2

To verify these estimates, the prototype implementation
was executed under CUDA profiler. The number of esti-
mated and measured operations is compared in Table 15.
There is a difference, but the error is within 10%.

Table 16 evaluates the maximum performance according
to each execution unit. The throughput is taken from Table 10
and the load is computed according to the list above using the
following assumptions which are explained in the Sect. 3.7.
NVIDIA Maxwell and Pascal are not restricted to the SFU to
perform bit-shifts, but are able to use also ALU units. On this
devices we do not include the integer multiplications in the
SFU balance. On NVIDIA Kepler we do. SFUs are either not
available or not used on AMD GCN and NVIDIA Fermi. So,
all types of operations are counted together in the ALU balance.

As can be seen, the performance bottleneck is architecture
dependent. The AMD VLIW and NVIDIA Kepler GPUs
are bound by ability to perform rounding operations and to
convert variables between integer and floatint-point repre-
sentation. While not limiting performance in the modeled
configuration, this still sets a quite low threshold on Maxwell
and Pascal GPUs. However, the main limiting factor on these
architectures is the shared memory bandwidth. The Fermi
GPU is only capable to dispatch a single instruction per
warp and, consequently, bound by the instruction through-
put. Finally, AMD GCN based devices are restricted by the
performance of algebraic units.

6.6 Rounding using floating‑point arithmetic

The Kepler performance is severely limited because due
to rounding and type conversion operations. The reason is
the slow performance of SFU units on the Kepler platform.
Total 3 SFU operations are required to compute offset in
shared memory and to perform linear interpolation.

float hf = floor(h);
int hi = (int)hf ;
float d = dS [hi];

Each of the listed instructions uses SFU. The first instruc-
tion performs rounding and the second converts floating-
point number to integer. The last operation involves a bit-
shift to resolve the address of an array element. The array
index is multiplied by the size of a data type, but the bit shift
is actually performed in place of multiplication because the
data size is always power of two. Instead, it is possible to
perform multiplication using the floating point numbers and
operate with pointers directly, like:

float hf = floor(h);
int hi = (int)(4.f ∗ hf);
float d = ∗(float∗)((void∗)dS + hi);

Then, one of the 3 SFU instructions is replaced with 2
floating-point operations. However, it is possible to elimi-
nate the SFU instructions entirely. Since the offsets are
always small positive numbers, rounding and type-conver-
sion operations can be implemented using the floating-point
arithmetic only. IEEE754 specification defines the format

Table 15 Estimated and measured number of different operations
required to perform back-projection using linear interpolation

a A sum of integer and floating-point instructions is given
The table gives the number of operations required to perform back-
projection of a single slice using linear-interpolation, processing 4
pixels per GPU thread, and with the advanced caching mode ena-
bled. The measured values are obtained on NVIDIA GeForce Titan
X (Pascal) using nvprof. The SFU usage is represented by value of
inst_bit_convert metric. It is impossible to separate the number of
integer multiplications from other instructions executed on ALU.
Therefore, a common number is given based on the sum of inst_fp_32
and inst_integer metrics. The shared memory operations are given
as a sum of counts for shared_store and shared_load events. To esti-
mate the number of constant memory operations, from the number of
executed load/store instructions obtained using ldst_executed metric
we have subtracted all other memory operations which are reported
as shared_store, shared_load, and global_store events and all texture
transactions which are counted in tex_cache_transactions metric

SFU Int FP Shared Constant

Estimated 2.03125 1.3125 4.625 1.125 0.265625
Measured 2.032125 5.87a 1.265625 0.297875

Table 16 Performance estimates according to model

The table gives the estimates for maximum performance of back-pro-
jection kernel and reports the performance bottleneck for each con-
sidered GPU. The numbers are given in giga-updates per second. The
performance limit for each execution unit is evaluated separately and
the minimum throughput bounding the kernel performance is high-
lighted in bold. The estimation is made for a kernel configured to run
linear-interpolation and process 4 pixels per GPU thread and running
in the single slice reconstruction mode with advanced caching enabled

GPU Mem ALU SFU OPS Limit

GTX580 145 99 – 97 Instructions
GTX680 188 334 77 252 SFU
Titan 325 577 133 436 SFU
GTX980 234 432 315 628 Memory
Titan X 576 1062 776 1545 Memory
HD5970 169 145 114 114 SFU
HD7970 346 238 – 1160 ALU
R9-290 443 304 – 1485 ALU

1360 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

of a single-precision floating point number [56]. It is illus-
trated on Fig. 16. For positive numbers, the representation
is defined as:

Consequently all fractional components are eliminated if 223
is added to a number.

The rounded number is obtained if 223 is subtracted back
afterwards. To compute floor() it is necessary to subtract 0.5
before these operations. I.e. the following implementation
is suggested:

float e23 = exp2(23.f);
float h′ = h − 0.499999f ;
float htmp = h′ + e23;
float hf = htmp − e23;

The proposed method replaces a single SFU-based round-
ing instruction with 3 floating-point operations. The e23 con-
stant is computed only once in the beginning of a kernel and
does not add much to the computation balance. It is further
possible to make a float-to-integer conversion using a simple
integer subtraction which is performed by ALU. The small
integer numbers are fully encoded by the fraction portion of
an IEEE 754 number. There are still some significant bits
representing exponent, but they can be easily eliminated as
illustrated on Fig. 16.

int hi = __float_as_int(htmp) - 0x4B000001;

The __float_as_int is a simple cast (re-interpretation) of a
floating point number as an integer. Using the pointer arith-
metic notation, it is equivalent to ∗ (int ∗)&htmp . Still there
is an index computation left. It is often reasonable to keep
some load on SFUs as well. If indexing is left unchanged,
the d[__float_as_int(htmp − 0 × 4B000001)] is replaced with
a single iSCADD operation combining multiplication and
integer subtraction. It is executed on SFU in a single clock
cycle. Consequently, 2 SFU instructions are replaced with 3
floating point operations and a single SFU instruction is left.
The other option is to eliminate SFU instructions entirely.
It is possible with

htmp = 4 * htmp - (4 - 1) * e23;

void *addr = (void*)dS + __float_as_int(htmp);
float d = *(float *)(addr);

 In this case 3 SFU instructions are replaced with 5 float-
ing-point operations. The method to use depends on the

(2)f = 2e−127 ⋅

(

1 +
∑

fi ⋅ 2
i−23

)

(3)f + 223 = 223 ⋅

(

1 +
∑

fi ⋅ 2
i−23

)

expected operation balance. It can be estimated using the
performance model which was proposed in Sect. 6.5. Either
way the result is exact and there is no penalty to quality.

To perform nearest-neighbor interpolation, 2 SFU
instructions are required on Kepler. One instruction can be
easily replaced with floating-point operation by performing
multiplication before type conversion as explained above.
Otherwise, the SFU instructions are completely replaced
with 3 floating-point operations.

The performance along with a number of instructions
issued per update is shown in Table 17 for NVIDIA GTX
Titan. The speed-up of 20% is achieved if rounding is
implemented using floating point instructions, but index
computation is left on SFU. The complete elimination
of SFU instructions puts unnecessary load on ALUs and
keeps SFU units idle. This method has a little impact on
the VLIW architecture. While the performance is limited
by the throughput of integer instructions, the difference
between performance of floating-point and special units is
not as high as on Kepler. Consequently, the performance is
limited approximately at the same level.

Fig. 16 IEEE 754 representation of single-precision floating-point
number (top) and an example how to get the standard integer repre-
sentation in fraction part by adding 223 (bottom)

Table 17 Different interpolation modes on Titan (Kepler) GPU

The table compares performance of 3 different rounding modes
described in Sect. 6.6. The performance is measured on the Kepler-
based Titan GPU and the number of issued instructions is obtained
using NVIDIA profiler. The number of floating point and integer
operations is reported by inst_fp_32 and inst_integer metrics corre-
spondingly. The integer counter includes both additions/subtractions
executed on ALU and iSCADD operations executed on SFU. Con-
sequently, the number of integer operations is constant because the
iSCADD instruction is just replaced with integer addition. The bit-
convert instructions are reported as inst_bit_convert and actually rep-
resent the rounding and type-mangling operations

Instructions

Method Performance FP Integer Bit-convert

Stanard 165 GU/s 4.5 1.4 2.03
FP round 197 GU/s 7.5 1.4 0.03
FP round and index 182 GU/s 8.5 1.4 0.03

1361Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

6.7 Half‑float cache

Like in the texture-based reconstruction algorithm, the half-
float representation may be used to speed-up reconstruction.
While the texture engine is not a performance-limiting factor
here, the bottleneck in shared memory is lifted on the Max-
well and Pascal architectures if half-float values are cached
in shared memory. The values are converted to a single-
precision format just before computing interpolation. Since
the texture units are always used in the nearest neighbor
mode, it possible to use the half-float data representation
also to speed-up reconstruction performing linear interpo-
lations. About 10% performance increase is measured on
Pascal and Maxwell if 4 slices are reconstructed in parallel
and the linear interpolation is performed. High load on SFU
units to convert between half and floating-point representa-
tion prevents larger speed-ups. It is also the reason why no
performance improvements are reported on other platforms.
On professional series of Tesla cards with Pascal architec-
ture it could be possible to achieve higher performance by
keeping the computations in half-precision all way through
the end. The results, however, are expected to suffer from
additional performance degradation. In any case this is not
feasible on Titan X because of significantly lower through-
put of high-float arithmetic.

6.8 Additional caches

The Fermi performance is limited by the throughput of ALU
units and also by a number of instructions it is able to dis-
patch per clock cycle. Using the advanced caching mode,
the interpolation footprint is reduced by a single instruction.
Advanced caching is used across multiple platforms in the
single-slice reconstruction mode. On Fermi, however, it also
improves performance if multi slices are reconstructed in
parallel. The vectors fetched from the texture engine are split
into the components and are cached using 2 or 4 independent
caches. Furthermore, there is an additional option to slightly
reduce the number of operations. Two FMA instructions are
required to find the required offset in the cache.

This computation is performed once per each pixel the
thread is responsible for. If 16 pixels are assigned to each
thread, the impact is negligible in the overall computational
balance. Fermi is, however, limited by the amount of avail-
able registers and unlike newer architectures is restricted to
process only 4 pixels per thread. Therefore, it is relevant to
reduce the number of instructions required to compute h.
When hS

m
 value is cached, only a single thread in every 16

is actually used to perform the caching. Instead the cached

h = hS
m
[p] + f �

g
.x ∗ cC

c
[p] − f �

g
.y ∗ cC

s
[p]

value may include the x component as well and utilize all
threads with a minimal extra load. I.e. the following value
is cached in shared memory instead of hS

m
:

Then, 32 values are cached per projection row, but only one
FMA is used to compute the offset:

The amount of required shared memory is significantly
increased, but there is no additional memory traffic. A warp
is either loading the same value which is broadcasted from a
single shared memory bank or up to 32 values are loaded and
all banks are utilized. Furthermore, the cosine of a projec-
tion angle is not loaded any more from the constant memory.
Extra instructions, however, are dispatched unless special
care is taken. As was mentioned in Sect. 6.5, the 64- or 128-
bit loads are performed to load hS

m
 if the projection loop is

unrolled. This is possible because the values for consecutive
projections are stored next to each other. Technically it is
possible to organize the new cache to keep such arrange-
ment, but there is a better option which is independent of
loop-unrolling. The threads of the block are assigned to
process a 16-by-16 pixel square at each step instead of the
mapping proposed in Fig. 13. In Sect. 5.6 the linear mapping
scheme is reasoned by ability to maintain only a single index
because, then, each thread needs to increment an y-coordi-
nate only. This is given using the new caching scheme as the
x component is already included in the value loaded from
the cache. Each thread processes 4 pixels with coordinates
(x, y), (x + 16, y) , (x, y + 16) , and (x + 16, y + 16) . It loads
hS
x
[pi][x] and hS

x
[pi][x + 16] using a single 64-bit instruction

and only need to increment the y-coordinate. The utilization
of the shared memory bandwidth is increased as each thread
needs to load 64 bits per projection instead of 32. But the
total memory bandwidth is still exactly the same as in the
base implementation due to reduced requests to constant
memory. About 5% speed-up is achieved on the NVIDIA
Fermi and AMD Tahiti architectures.

Few other values can be cached to slightly shift the bal-
ance of operations. In some cases, it is beneficial to cache
also trigonometric constants in shared memory. This is
slightly improves the performance across NVIDIA archi-
tectures. The hm value is normally computed multiple times
by all threads responsible to cache a specific projection row.
The extra load is not very high, but can be avoided for a
price of several additional registers required to introduce a
third stage in the reconstruction process. At first, threads of
a block are assigned to compute hm values for 256 projec-
tions and cache it in shared memory. Then, the values are
just loaded at each loop iteration. It was found useful on

hS
x
[mp][mt.x] = cC

a
[p] + fg.x ∗ c

C
c
[p] − hm

h = hS
x
[p][m�

t
.x] − f �

g
.y ∗ cC

s
[p]

1362 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

the AMD VLIW architecture. Vice-versa the caching of hm
can be disabled altogether on the systems with fast ALUs,
but slow shared memory. The suggested cache settings are
summarized in Table 18.

6.9 Managing occupancy

The number of pixels processed per block and per thread
is one of the main parameters affecting the performance.
The optimal configuration depends on the available GPU
resources, but also on the size of the reconstructed image.
The number of executed blocks could be insufficient to load
GPU evenly if large pixel blocks are used in conjunction
with a small image. However, the texture-based approach is
expected to perform better for small images in any case. To
summarize the performance and optimal configuration we
assume that the sufficiently large image is reconstructed and
focus on the hardware capabilities only. Depending on the
available GPU resources 4, 8, or 16 pixels are assigned per
thread. In the last case each thread block is responsible to
reconstruct an area of 64 × 64 pixels. Otherwise, only 32 ×
32 pixels are processed. The block of 128 threads is used to
allow processing of 8 pixels per thread.

If a number of concurrently processed slices is given,
there are still multiple factors affecting the performance. The
optimal implementation of the proposed algorithm should
ensure that:

• The full occupancy is achieved to hide latencies effi-
ciently.

• A large reconstruction area is assigned to each thread
block to reduce amount of caching operations per recon-
structed pixel.

• As many pixels as possible are assigned to each GPU
thread. It allows to reduce a proportion of the auxiliary
operations required to compute offsets in the cache and

also ensures that a large amount of independent instruc-
tions is in execution flow as required by the architectures
relaying on the instruction level parallelism (ILP).

• The number of threads assigned to cache each projection
row is in accordance with the requirements specified in
Table 14. Then, no shared memory bank conflicts occur
and the shared memory writes are executed optimally.

• The number of projections cached at each step is enough
to utilize all threads in the block. Otherwise, the threads
idling at the synchronization point reduce the efficiently
achieved occupation.

• The projection loop is completely unrolled to provide
additional ILP parallelism and ensure that multiple
32-bit memory operations can be combined into a single
64-/128-bit instruction.

• The generated code is able to issue multiple load opera-
tions in a streaming fashion as explained in Sect. 3.6. It
allows to reduce penalty inflicted by the memory access
latencies if other mechanism fail to hide them entirely.

• All appropriate optimizations discussed through this sec-
tion are implemented.

Due to hardware limitations it is impossible to achieve
all these goals simultaneously. The number of required reg-
isters is steeply increased with a number of pixels assigned
per thread and restricts the achieved occupancy. Using the
multi-slice reconstruction mode, either a high occupancy
or a high number of pixels per thread is possible to achieve.
The amount of available shared memory restricts how many
projections could be cached at the desired occupancy level.
If this restriction is low, the high effective occupancy is still
possible to achieve in the caching stage if more threads are
used to cache each projection or smaller 128-thread blocks
are in use. The first option is only available if 16 pixels are
reconstructed per thread. Consequently, a high number of
registers is required in both cases. Furthermore, the num-
ber of threads assigned per projection is in turn restricted if
shared memory is optimized for 64-bit writes. Most of the
proposed optimizations increase the usage of registers or/
and shared memory. The use of additional caches could have
a negative general impact if the increased shared memory
footprint results in a lower number of cached projections or
reduces the achieved occupancy. The streaming loads cause
a significant increase of consumed registers and definitively
reduce the occupancy. Hints to compiler reducing the unroll-
ing of inner projection loop are used to prevent this. Further-
more, the desired occupancy can be targeted on NVIDIA
platform. Forcing the higher occupancy may result in addi-
tional computational load may and cause the compiler to
back part of the local variables with slower local memory
instead of registers. Vice-versa under low occupancy, the
compiler may be able to increase ILP parallelism and per-
form stream-loading more efficiently.

Table 18 Suggested cache settings for ALU-based reconstruction ker-
nel

Caches

GPU nv d̃ hm∕hx cs sp

Fermi 1, 2 Adv. hx cs –
4 Adv. hm cs –

Kepler and later 1 Adv. hm cs –
2, 4 Std. hm – –

VLIW 1 Adv. hm – 256
2, 4 Std. hm – 256

GCN 1 Adv. hx – 256
2, 4 Std. hx – 256

GCN2 1 Adv. hm – –
2, 4 Std. hm – –

1363Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

The importance of the described aspects differs between
architectures and an optimal compromise has to be found
for each targeted platform. We found out that targeting 50%
occupancy is optimal across majority of architectures. On
the platforms with a larger register bank, the occupancy
above 50% is achieved by default. If 50% is targeted, more
registers are available for data streaming which has often
a positive impact on the performance. Vice-versa, on the
systems with a small register bank the default occupancy is
typically low and restricting the amount of used registers to
ensure 50% occupancy results in a faster code. We also have
found that it is important to keep at least 50% of threads busy
in the caching stage. Above this threshold the under-utiliza-
tion has an impact, but relatively insignificant. Therefore, to
cope with shortage of shared memory, the number of cached
projections is decreased in steps of 4.

The Maxwell and Pascal GPUs have a large amount of
both shared memory and registers, but are bound by the
shared memory bandwidth. An area of 64-by-64 pixels are
processed by each thread block on these platforms in order
to reduce amount of shared memory writes. In the linear
interpolation mode the amount of shared memory operations
is well balanced with ALU throughput. The streaming of
memory reads is not required if the shared memory loads are
interleaved with ALU- and SFU-bound interpolation instruc-
tions. Thus, the 100% occupancy is targeted and a speed-up
of 15% is measured. This is not the case in the nearest neigh-
bor interpolation mode. The shared memory bandwidth is
the bottleneck in this case and the performance is improved
if multiple shared memory loads are streamed together.
Consequently, significantly more registers are required. By
default the CUDA compiler does not utilize the streaming
capabilities fully, but runs at 62% occupancy. Requesting
occupancy to 50% allows to stream more loads together and
improves performance by 7%. The impact of occupancy on
the performance for both linear and nearest-neighbor inter-
polation modes are reviewed Table 19.

The Kepler GPUs has the same amount of registers as
Maxwell and Pascal. However, a more aggressive unrolling
is required and is performed by the CUDA compiler to ensure
the wide memory accesses and to enable the longer flow of
independent instructions. The ILP parallelism is required to
allow 4 warp scheduler to utilize all 6 ALU blocks integrated
in the Kepler SM. Consequently, an increased number of reg-
isters is used to execute the same code. For instance, the
reconstruction based on the linear interpolation as discussed
in the previous paragraph would use 55 registers if compiled
for the Kepler architecture (compute capability 3.5) instead of
only 40 registers which are required if Pascal architecture is
targeted. The performance at 100% occupancy is sub-optimal
if linear interpolation is performed. On other hand, the 64
registers available at 50% occupancy are not enough to enable
efficient streaming of the shared memory loads. Therefore,

a small pixel area of 32-by-32 pixels is reconstructed per
block and the block is reduced to 128 threads only. The last
point is important to keep a high level of ILP and also to
achieve a full thread utilization in the caching stage as the
number of cached projections is limited due to low amount
of available shared memory. Using nearest neighbor interpo-
lation, there is enough registers to organize stream-loading
at 50% occupancy also for the larger pixel area. The Fermi
architecture includes only a half of the Kepler registers and
is bound to 32-by-32 pixel area in all interpolation modes.
While the amount of the shared memory is the same as on
Kepler, fewer blocks are required to achieve full occupancy
here. Consequently, it is possible to cache more projections
at 50% occupancy. On GT200 the amount of registers is even
lower and it is not suitable to implement the proposed scheme
with sufficiently high performance.

While there is no option to instruct compiler on the
desired occupancy on the AMD GCN devices, the used
caches are aimed to ensure that at least 50% occupancy can
be achieved. The VLIW architecture needs to issue 4–5 inde-
pendent instructions at each clock. Therefore, it is important
to ensure a very large ILP parallelism even in price of sig-
nificantly reduced occupancy. The larger area is assigned to
a thread block for a single-slice reconstruction and a smaller
thread block is used to process 8 pixels per thread in all
other cases. The algorithm is running at about 35% of the
maximum occupancy.

Table 20 summarizes the proposed configuration and
gives the measured performance. If only a single slice is
available for reconstruction, the new algorithm outperforms
the texture-based version across all considered architec-
tures. The maximum speed is better on Fermi and on all
AMD architectures if the linear interpolation is performed.
Using the nearest-neighbor interpolation the performance
is improved on Kepler GPUs and also across all target

Table 19 The effect of occupancy-targeting on the performance for
NVIDIA Titan X GPU

The best performance is highlighted in bold
A single slice reconstruction is executed with the settings configured
according to Table 20 with the only exception of occupancy which is
set as specified in the Target column

Target Registers Local memory Occupancy Performance

Linear interpolation mode
– 40 – 75% 565 GU/s
50% 64 – 50% 570 GU/s
100% 32 8 bytes 100% 620 GU/s

Nearest neighbour interpolation mode
– 48 – 62% 1082 GU/s
50% 64 – 50% 1158 GU/s
100% 32 40 bytes 100% 954 GU/s

1364 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

architectures in the case if the quality is not compromised
by a half-float data representation.

The GPU-specific tuning has a major positive effect on
the performance. However, new architectures are announced
yearly. A throughout study would be required to adjust

parameters accordingly. Furthermore, the generated code
varies significantly for the devices of different compute capa-
bilities even within the same architecture family. While we
had not studied it in detail, there are also differences depend-
ing on the CUDA version. To avoid manual work, the actual

Table 20 Performance and
configuration of ALU-based
back-projection kernel

The table summarizes the performance and optimal configuration for the ALU-based back-projection ker-
nel. The performance is reported for the linear and nearest neighbor interpolation modes. The configuration
specifies: nq —a number of pixels per thread, sd —a number of cached projections, U—unrolling hint for
inner projection loop, R—the units to perform rounding and type conversions (index is always computed
using SFU), O—the desired occupancy. The caches are configured as specified in Table 18. The number of
threads to cache a projection row is determined according to guidelines in Table 14.
aThe configuration and performance are specified for half-float data representation. The half-float values
are also cached in the shared memory.
bBecause of the reduced shared memory requirements, 16 projections are cached in the nearest neighbor
interpolation mode.
c A larger 64 × 64 area is reconstructed if nearest neighbour interpolation is performed. The 16 pixels are
assigned to each GPU thread.
dEach GPU thread caches 2 values at once to enable 64-bit writes if nearest neighbor interpolation is used.
Consequently, only 16 threads are used per projection row and 16 projections are cached to utilize all
threads.
eThe 50% occupancy is targeted in nearest-neighbor interpolation mode.
fSince 64 × 64 blocks are assigned to the thread block in the nearest-neighbor interpolation mode, the 32
threads are used per projection row and only 8 projections are cached

Perf. (GU/s) Configuration

GPU nv Lin NN nq sd U R O

GTX580 1 80 120 4 16 – SFU 75%
2 113 188 4 16 – SFU 50%
4 142 247 4 8b – SFU 50%

GTX680 1 123 195 8c 8d 4 ALU 50%
2 160 290 8 8 2 ALU 50%
4 165 306 4 8 2 SFU 50%

Titan 1 195 268 8c 8d 4 ALU 50%
2 237 429 8 8 2 ALU 50%
4 278 471 4 8 2 SFU 50%

GTX980 1 218 452 16 8 – SFU 100%e

2 269 510 16 8 – SFU 50%
4a 292 567 4 16 – ALU 50%

Titan X 1 606 1161 16 8 – SFU 100%e

2 692 1328 16 8 – SFU 50%
4a 743 1405 4 16 – ALU 50%

HD5970 1 63 116 16 8c – – –
2 71 146 8 16 – – –
4 73 160 8 8 – – –

HD7970 1 178 290 16 8c – – –
2 221 430 4c 16f - – –
4 233 450 4 8 – – –

R9-290 1 219 341 16 8 – – –
2 298 582 4c 16f – – –
4 383 635 4 16 – – –

1365Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

configuration can be parametrized and a quick search in the
parameters space executed to find the optimal settings. The
parameters may include numeric options like the targeted
occupancy, number of cached projections, unrolling factor,
etc. But also switching on and off specific optimizations and
caches is feasible. Automated approach would not deliver the
optimal performance if the new functional blocks are intro-
duced like Tensor Units on a recently announced NVIDIA
Volta architecture. However, it can address the shifts in the
operation balance.

6.10 CPU and Xeon Phi

While we are not aiming on the CPU-based architec-
tures, the OpenCL code developed for AMD platform is
easy to modify to run also on general-purpose processors
and we have evaluated CPU performance for the sake of
completeness. The texture-engine is not provided by the
general-purpose processors. While the recent versions of
OpenCL frameworks emulate the missing functionality,
better performance is achieved by targeting the algebraic
units of CPU directly. We adapted both standard and the
ALU-based algorithms to load data directly from system
memory instead of fetching it using texture engine. The
standard algorithm is additionally modified to perform lin-
ear interpolation explicitly. The main difference between
two methods is that the ALU algorithm caches data in
shared memory while the adapted standard method loads
data directly from system memory relaying on CPU caches.
In fact, however, there is no a special hardware compo-
nent backing shared memory. The appropriate blocking is
enough to utilize CPU caches and the intermediate caching
step is not necessarily required. On other hand, the amount
of required computations is reduced if the second term for
linear interpolation and a few other intermediate values are
pre-computed and cached in shared memory as proposed
in Sects. 6.4 and 6.8. In either case, the performance is
improved if multiple slices are reconstructed in parallel and

a larger pixel area is assigned to a thread block. Actually,
on newer systems supporting 256-bit AVX instructions it
makes sense to scale up processing to at least 8 slices in
parallel. Allocating a larger amount of pixels per block is
relevant to use the cache efficiently. The optimal number is
determined by the size of L2 cache available per CPU core.

To evaluate performance we used a server equipped with
two Intel Xeon X5650 processors (6 cores, 2.66 - 3.06 GHz,
12 MB L2 cache, 128-bit SSE4.2 instructions) and the Intel
Xeon Phi 5110P accelerator (60 cores, 1.05 GHz, 30 MB
L2 cache, 512-bit IMCI instructions). There are two major
OpenCL frameworks supporting general-purpose proces-
sors. AMD and Intel deliver their own SDKs, but the proces-
sors by both vendors are supported in either case. The AMD
framework is not capable to run ALU algorithm efficiently
without further adaption. A faster reconstruction is possible
if the simpler standard algorithm is used instead. Still, it is
significantly slower compared to the performance delivered
by the Intel SDK running the same OpenCL code on the
same hardware. The speed is even faster if Intel is running
the ALU variant with advanced caching mode and hx cach-
ing enabled. The best performance is measured in a 4-slice
reconstruction mode and with 64 × 64 regions assigned per
a thread block. To evaluate performance we compared the
reconstruction speed against the CPU-version of PyHST
[12]. It implements multi-thread and cache-aware recon-
struction, but does not perform implicit vectorization. Each
thread processes a subset of all slices. The compound sino-
grams for simultaneous reconstruction of several slices are
not supported. The performance is summarized in Table 21.
PyHST outperforms the OpenCL prototype if it is executed
in the single-slice mode, but it is slower if multiple slices are
reconstructed at once. The performance of 33 GU/s is meas-
ured if a newer server with dual Xeon E5-2680 v.3 (12 cores,
2.50–3.30 GHz, 30 MB L2 Cache, 256-bit AVX2 instruc-
tions) is used. Even then the achieved reconstruction speed
is inferior to the performance delivered by the slowest of
considered GPUs. As Xeon Phi line is discontinued, the lat-
est versions of Intel OpenCL SDK does not support of Xeon
Phi processors any more. For this reason we had to resort
to much older version from 2014. This version perform sig-
nificantly worse on general-purpose CPUs. The delivered
performance is on pair with SDK from AMD. Consequently,
the measured performance is barely above the speed of a pair
of old Xeon processors.

There is a significant architectural difference between CPU
and GPU platforms which is not considered in our imple-
mentation. When a thread block is scheduled to SM, the SM
permanently assigns registers to all threads of the block and
can switch executed threads without significant penalty. It is
not the case for general-purpose processors. The used registers
has to be saved and restored as block execution progresses and
a processing of a new thread is started by the CPU core [57].

Table 21 Performance using general-purpose processors

PyHST is implemented using traditional threaded code and is not
relaying on either on AMD or Intel OpenCL platform

2x Xeon X5650 Xeon Phi 5110P

Method nv AMD Intel Intel

PyHST 12 9.3 GU/s –
Standard 1 1.2 GU/s 3.6 GU/s 16.2 GU/s

4 4.2 GU/s 10.2 GU/s 12.1 GU/s
Synchronized 1 0.9 GU/s 3.9 GU/s

4 3.2 GU/s 10.6 GU/s
ALU algorithm 1 0.9 GU/s 6.1 GU/s 2.7 GU/s

4 3.7 GU/s 14.1 GU/s 0.2 GU/s

1366 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

To avoid an associated performance penalty, the threads on
CPU platform are usually execute a large amount instructions
before switching. Particularly, for the proposed back-projec-
tion algorithm this means that a thread will process multiple
projections before giving a way to other threads of a block.
Consequently, the data cached from the first projection of a
block is already evicted from the L1 cache when the next
thread is started. While it can be prevented by synchronizing
block threads at each projection iteration, the performance
will be penalized just other way due to expensive context
switches. This penalty is actually playing a significant role in
the performance difference between AMD and Intel SDKs.
Using Intel SDK, the performance of the standard algorithm
is slightly improved if the synchronization is performed before
moving to a next projection. On AMD, this penalizes perfor-
mance even more as it is shown in Table 21. The higher per-
formance probably can be achieved if a way can be found to
reduce the number of context switches without penalizing L1
cache hit rate significantly. However, it is much simpler to tar-
get general-purpose architectures using a simple C code. No
context switches are required if CPU cores are made responsi-
ble for different subsets of slices. And both L1 and L2 caches
can be targeted with the appropriate blocking directly.

7 Hybrid approaches

We have proposed two algorithms to perform back-projec-
tion. One relays on the texture engine and is bound to its
performance. The second is using shared memory and ALUs
with only a small load on the texture engine. In this section
we propose two methods to balance the load across all hard-
ware components.

7.1 Combined approach for Pascal architecture

On Maxwell and Pascal architectures shared memory and
SFU performance are the main limiting factor for the ALU-
based algorithm. Both of these resources are very lightly
utilized by the texture-based kernel. Therefore, it is possible
to run the texture-based kernel for one part of the blocks
and ALU-based kernel for another. NVIDIA allows to detect
which SM executes the block. Consequently, it is possible
to ensure that the desired ratio between texture- and ALU-
based kernels is achieved.

An array is statically defined in the global memory space.
The first thread of a block is resolving the SM number using
get_smid() instruction and increments the corresponding cell
of the array using an atomic operation. The block number
within a cell is obtained and depending on the requested
ratio one of the two algorithms is executed. The code snippet
is shown bellow.

else reconstruct_alu (...);
}

__device__ uint smblocks [128] = {0};
__global__ static void reconstruct_hybrid () {

__shared__ uint block;
if ((threadIdx.x == 0)&&(threadIdx.y == 0)) {

uint smid = get_smid ();
block = atomicAdd (& smblocks[smid], 1);

}
__syncthreads ();
if (block &1) reconstruct_tex (...);

In Sect. 5.6 we proposed an advanced thread mapping
scheme for the texture-based kernel. The intention was to
keep pixel-to-block assignments minimal and preserve the
performance also for small images. The ALU kernel, how-
ever, aims for larger image sizes and works with 32-by-32
area at minimum. Therefore, an alternative simpler map-
ping is utilized for the texture-based kernel if it is executed
as part of the hybrid approach. The block-to-pixel assign-
ments are kept in sync with the ALU-based kernel. At each
step a standard region of 16-by-16 pixels is processed. The
thread to pixel assignments follow the mapping described
in Sect. 5.5. Each thread is responsible for 4 to 16 pixels
and processes them in a loop. The same texture is used to
perform linear interpolation in blocks running the texture-
based algorithm and to cache data if the blocks execute the
ALU-based reconstruction. The performance and utilization
of GPU subsystems using the different reconstruction modes
is reviewed in Table 22.

In 2-slice reconstruction mode, the performance of the
texture-based and ALU-based kernels is very close. There-
fore, half of the blocks run the ALU-based reconstruc-
tion and the other half uses the texture engine. The hybrid
approach outperforms the optimized texture-based method
by 30% in this case. The ALU-based reconstruction is signif-
icantly faster if only a single slice is reconstructed. The SM
on Pascal and Maxwell runs up to 8 blocks with 256 threads
each. The ALU reconstruction is executed for 5 blocks and
the texture based reconstruction is performed for other 3. It

Table 22 Utilization of functional units in hybrid reconstruction
mode

Utilization of NVIDIA GeForce Titan X (Pascal) subsystems with
Texture-based, ALU-based, Hybrid, and Oversampling reconstruction
algorithms. Two slices are reconstructed in parallel according to the
configuration given in Tables 13 and 20. The utilization is obtained
using nvprof based on the following metrics: tex_fu_utilization,
shared_utilization, single_precision_fu_utilization, special_fu_utili-
zation

Method Texture Shared ALU SFU Perf.

Texture 100% 20% 40% 10% 726 GU/s
ALU 10% 90% 60% 50% 693 GU/s
Hybrid 70% 70% 70% 40% 995 GU/s
Overs. 20% 90% 50% 40% 1107 GU/s

1367Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

is possible to secure 20% higher throughput over the plain
ALU-based reconstruction. Too many registers are required
if 4-slices are reconstructed in parallel. Consequently, a low
occupancy penalizes the performance of the texture-based
kernel significantly.

While it is possible to use the described approach using
the nearest-neighbor interpolation, in practice there is a
little speed-up. The ALU kernel outperforms the texture-
based kernel significantly unless 4-slice reconstruction is
performed using the half-float data. Consequently, there is
a little effect if they are executed in parallel. The proposed
method is only suitable for Maxwell and Pascal architec-
tures. All other devices are bound by the performance of
the ALU units. While the Kepler architecture has a very
high ALU performance, ALUs are also utilized to perform
rounding operations to overcome the slow SFU performance.
Since the texure-based kernel also uses ALUs intensively, no
performance gains are measured. The used configuration and
the achieved performance on Maxwell and Pascal platforms
are presented in Table 23.

7.2 Oversampling

There is an alternative approach to improve the utilization of
the texture engine using the ALU-based reconstruction. The
idea is to sample several values for each bin of a sinogram
and use the nearest-neighbor instead of linear interpolation,
see Fig. 17. While more shared memory is required, the
number of computations and memory transactions is reduced
in this case. A significant speed-up is achieved compared to
linear interpolation if 4 values are sampled for each bin at
offsets .00, .25, .50, and .75. Figures 18 and 19 compare the
described approach against the reconstructions performed
using the nearest neighbor and linear interpolation. In both
cases the reconstruction in oversampling mode is more simi-
lar to the results obtained using the linear interpolation.

Implementation-wise a few modifications are required
for the optimal performance. The amount of used shared
memory is quadrupled. To achieve reasonable occupancy the
number of cached projections has to be reduced. Typically
only 4–8 projections are processed in parallel. The amount
of available shared memory on Kepler still does not allow
to reach 50% occupancy if multiple slices are reconstructed.
The performance is significantly penalized if only 2 projec-
tions are cached per iteration of the projection loop. There-
fore, the Kepler GPUs are running with occupancy under
50%. On the Kepler-based Titan card the actual occupancy
allowed by shared memory is hinted and 72 registers are
used per thread. The GeForce GTX680 is restricted to 63
registers per thread and hinting occupancy bellow 50% is
not useful as extra registers can’t be assigned.

To avoid idling at synchronization point, 32 to 64 threads
are used to cache each projection row. The texture engine
is expected to perform linear interpolation to deliver data
at fractional offsets. Consequently, the half-float data rep-
resentation can’t be used together with the oversampling.
If the caching of hx is enabled as explained in Sect. 6.8, the
first 16 threads of each warp are assigned to cache the first
component of hx vector and the second half-warp stores the
second half of the value. It allows to cache all required data
using a single 32-bit instruction and reduces the required
shared memory bandwidth.

The data locality is significantly worse if the oversam-
pling approach is used. Up to 4 times more values are
accessed by each warp. Consequently, there is a high pos-
sibility of shared memory bank conflicts. To reduce the
amount of conflicts, the data vectors are split if multiple
slices are reconstructed in parallel. The vector components
used to represent each sinogram are extracted after texture
fetch and are stored into the 2–4 separate caches. On the
systems with 32-bit shared memory, a dedicated buffer is
allocated for each sinogram component. On the platforms

Table 23 Performance and
configuration of hybrid back-
projection kernel

The table summarizes the performance and optimal configuration for the hybrid back-projection kernel.
Both texture engine and ALUs are used to perform interpolation. The configuration specifies: T/A—is a
ratio between the blocks executing Texture-based reconstruction and the blocks running ALU-based algo-
rithm, nq —a number of pixels per thread, sd —a number of cached projections, U—unrolling hint for inner
projection loop, R—the units to perform rounding and type conversions (index is always computed using
SFU), O—the requested occupancy. The caches are configured as specified in Table 18. The number of
threads to cache a projection row is determined according to guidelines in Table 14

Configuration

GPU nv Perf T/A nq sd U R O

GTX980 1 266 GU/s 3/5 16 8 – SFU 100%
2 389 GU/s 1/1 4 16 – SFU 100%

Titan 1 734 GU/s 3/5 16 8 – SFU 100%
2 995 GU/s 1/1 4 16 – SFU 100%

1368 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

preferring 64-bit over 32-bit loads, the data is split only if
4-slice reconstruction is performed. Two buffers are used
in this case, each storing the sinogram components for a
pair of reconstructed slices. During the accumulation step,
the values are extracted from all caches using the same
index and re-combined into the appropriate vector again.
To allow 64-bit writes also during a single-slice recon-
struction, on Kepler platform the re-combination of shared
memory writes is performed as explained in Sect. 6.3. The
used configuration and achieved performance are summa-
rized in the Table 24.

8 Conclusion

We have surveyed a range of GPU architectures presented
by the major hardware vendors in the last 10 years. Table 10
lists architecture details and summarizes rather considerable
shifts of the performance balance between different hard-
ware pipelines. The throughput ratio between the floating
point and type-conversion instructions has fluctuated 8-fold.
The type-conversions are executed at a half rate of the peak
floating-point performance on AMD GCN GPUs, but only
a single type-conversion instruction can be executed per 12
floating-point operations on NVIDIA Kepler GPUs (consid-
ering the peak rates). On the other hand, the type-conversion
instructions can be executed in parallel with floating-point
operations on NVIDIA Kepler, but not on AMD GCN. The
ratio between the theoretical throughput of floating-point
instructions and the shared memory bandwidth has changed
2.6 times across the reviewed architectures. A 2-fold change
is reported between the throughput of floating point opera-
tions and the filtering rate of the texture engine. Further-
more, we found that even more considerable architectural
changes have been introduced in some products. AMD has
replaced the VLIW architecture by GCN effectively mov-
ing from the instruction level parallelism to a SIMT-only
model. On NVIDIA platforms, execution of bit mangling
and type conversion operations was shifted between ALU
and SFU units. In recent architectures half-float and Tensor
Units have been introduced to accelerate machine learning
algorithms. The study demonstrates that these changes are

Fig. 17 The figure illustrates the oversampling reconstruction
approach. To reconstruct a 32 × 32 pixel square, a thread block
caches 192 values per projection (left). The values are fetched from
48 bins at uniform intervals using the texture engine. Then, the recon-
struction is performed and projections are processed in a loop one
after another (right). To determine required position in the cache, the
offset from the first bin of the cache is multiplied by 4 and the result
is rounded to the nearest integer. The value at this position is loaded
from the array and used to update pixel value

Fig. 18 Comparison of the reconstructions performed using nearest
neighbor (NN) and linear interpolation with the hybrid oversampling
approach (overs). The profile plot along the selected line is shown in
the top part of the figure for the phantom and all reconstruction meth-
ods. The absolute difference from precise phantom image is shown
along the same line in the bottom part

Fig. 19 Comparison of the reconstructions performed using nearest
neighbor (NN) and linear interpolation with the hybrid oversampling
approach. The profile plot along the selected line is shown in the top
part of the figure for the fossilized wasp dataset and all reconstruction
methods. The absolute difference from the reconstruction performed
using linear interpolation is shown along the same line in the bottom
part

1369Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

highly relevant to the performance of developed algorithms
and a significant speed-up is possible if low-level details of
the GPU architecture are taken into the consideration. In
addition to GPU architectures, we also reviewed the Intel
Xeon-Phi technology in Sect. 6.10. We show that the
OpenCL algorithms developed for GPUs are barely suited
for this architecture due to the different scheduling model.
The standard threaded code is easier to implement and better
fitting for general-purpose CPUs and Intel accelerators based
on Xeon Phi technology.

We present two algorithms to perform fast back-projec-
tion on the variety of GPU architectures. The first utilizes
the texture engine for interpolation. The second algorithm
relies on ALU units and shared memory. Furthermore, we
proposed two hybrid approaches to combine these methods

and achieved an even higher performance by balancing the
load across the GPU subsystems. In Sect. 5.2 we show that
a higher utilization of the texture engine can be achieved if
the data is re-arranged in larger vector types. Such vectors
are streamed by the texture engine at the same rate as sim-
ple floating-point numbers provided that the high locality of
the texture fetches can be ensured across half-wraps and also
within groups of 4-consecutive threads. On some architec-
tures we can further double the performance by switching to
a half-precision data representation at a price of some penalty
to the image quality. The only requirement is the ability of the
hardware to perform high-speed transformation between half-
and single-precision formats of floating point numbers. Even
if half-precision floating point numbers are not directly sup-
ported by the texture engine, in Sect. 5.3 we demonstrated that

Table 24 Performance and
configuration of ALU-based
back-projection kernel
performing oversampling-based
interpolation

The table summarizes the performance and optimal configuration for the ALU-based back-projection ker-
nel if oversampling and nearest neighbor interpolation are used to update values of reconstructed pixels.
The configuration specifies: nq —a number of pixels per thread, C—a number of separate arrays used to
cache singoram (either a dedicated array is used to store each component of sinogram vector or two com-
ponents are stored together to allow 64-bit writes), st∕sd —a number of threads used to cache projection
row and a number cached projections, U—unrolling hint for inner projection loop, R—the units to perform
rounding and type conversions (index is always computed using SFU), O—the desired occupancy. The
caches are configured as specified in Table 18
a Each GPU thread caches 2 values at once to enable 64-bit writes
b The use of SFU is also avoided while resolving array addresses, see Sect. 6.6

Configuration

GPU nv Perf nq C st∕sd U R O

GTX580 1 80 GU/s 4 1 32 / 8 – SFU 75%
2 116 GU/s 4 2 32 / 8 – SFU 50%
4 142 GU/s 4 4 64 / 4 2 SFU 50%

GTX680 1 123 GU/s 16 1 32 / 4 a 4 ALUb 50%
2 160 GU/s 8 1 32 / 4 2 ALU 50%
4 165 GU/s 4 2 64 / 4 2 SFU 50%

Titan 1 195 GU/s 16 1 32 / 4 a 4 ALUb 50%
2 237 GU/s 8 1 32 / 4 2 ALU 43%
4 279 GU/s 4 2 64 / 4 2 SFU 37%

GTX980 1 218 GU/s 16 1 32 / 8 – SFU 50%
2 269 GU/s 16 2 64 / 4 – SFU 50%
4 292 GU/s 4 4 64 / 4 2 SFU 50%

Titan X 1 606 GU/s 16 1 32 / 8 – SFU 50%
2 693 GU/s 16 2 64 / 4 – SFU 50%
4 743 GU/s 4 4 64 / 4 2 SFU 50%

HD5970 1 63 GU/s 16 1 32 / 8 a – – –
2 71 GU/s 8 1 32 / 4 – – –
4 73 GU/s 8 2 32 / 4 2 – –

HD7970 1 178 GU/s 16 1 32 / 8 a – – –
2 222 GU/s 4 1 32 / 8 – – –
4 233 GU/s 4 2 64 / 4 2 – –

R9-290 1 219 GU/s 16 1 32 / 8 – – –
2 298 GU/s 4 2 32 / 8 – – –
4 384 GU/s 4 4 64 / 4 2 – –

1370 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

they still can be efficiently utilized by binding a texture with
the forged data type. To reach the maximal theoretical rate of
the texture engine, the performance bottleneck caused by the
low throughput of constant memory and SFU units is resolved
by re-assigning work between GPU threads as explained in
Sect. 5.6. While this approach results in a lower occupancy
on the AMD platform, the resulting performance is consider-
ably improved especially on AMD VLIW-based GPUs. On
the NVIDIA platform we are able to enforce 100% occupancy
instead, see Sect. 5.7. Consequently, a relatively large amount
of local memory is used, but it is completely backed by the
L1 cache and the performance is improved significantly on
most NVIDIA architectures as well. As can be seen from
Fig. 6, a high utilization of the texture engine is achieved
across all hardware platforms. The algorithm is highly port-
able, and only a minor adjustment of the algorithm parameters
is required to adapt it to a specific hardware. In contrast, the
ALU-based algorithm requires significant modifications for
some of the considered architectures. As we have shown in
Sect. 6.5, different functional blocks may limit the algorithm
performance depending on the underlying hardware. Conse-
quently, we were able to significantly boost its performance by
re-balancing the load of these functional blocks. For the Max-
well and Pascal micro-architectures, we run both algorithms
in parallel efficiently redistributing the load between tex-
ture engine, shared memory, and ALUs. This approach is
explained in Sect. 7.1. Because of the slow throughput of
Keplers SFU units, in Sect. 6.6 we proposed an alternative
method to perform rounding and type-conversion operations
using ALUs instead of SFUs. Consequently, part of SFU load
is shifted to ALUs and a higher performance is achieved. In

Sect. 6.8, we introduce additional caches for the Fermi archi-
tecture to reduce the total number of issued instructions. For
the AMD VLIW architecture, we significantly increase an
amount of work per GPU thread. Consequently, the kernel
runs at a very low occupancy but utilizes the instruction level
parallelism better. In Sect. 6.9 we also discuss the optimal
occupancy for other architectures. It depends on the amount of
available hardware registers, kernel complexity, and also the
ratio between memory and ALU/SFU instructions. We show
that targeting both higher and lower occupancy may results
in a considerable speedup.

Table 25 Suggested algorithms

The table specifies the fastest algorithms to implement back-projection kernel with linear or nearest-neigh-
bor interpolation at each platform. Individual recommendations are given for the single-slice and multi-
slice reconstruction modes. The recommended number of slices is given in column S. The options for pre-
cise and approximate reconstructions are proposed. In precise mode, the obtained reconstruction is exactly
the same as one produced by the standard reconstruction method. In approximate mode, either a half-float
data representation is used to accelerate nearest-neighbor interpolation or the oversampling approach is
combined with nearest neighbor interpolation to substitute linear interpolation. The performance and
optimal configuration for the texture-based algorithm is listed in Table 13. The ALU-based algorithm
is described in Table 20 and its oversampling modification is given in Table 24. The hybrid approach is
defined in Table 23

GPU Mode Linear Nearest neighbor

S Precise Appr. S Precise Appr.

GT200 Single 1 TEX TEX 1 TEX
Fermi * 4 ALU Overs. 4 ALU
Kepler Single 1 TEX Overs. 1 ALU

Multi 2 TEX TEX 4 ALU
Mxwl+ Single 1 Hybrid Overs. 1 ALU

Multi 2 Hybrid Overs. 4 ALU TEX/half
VLIW Single 4 ALU Overs. 1 ALU

Multi 4 ALU Overs. 4 TEX
GCN * 4 ALU Overs. 4 ALU

Fig. 20 The figure evaluates the theoretical peak throughput of GPU
subsystems and the measured performance of standard and optimized
back-projection algorithms. The speed-up against NVIDIA GeForce
GTX295 is shown in the left part of the figure. The relative speed-up
between consecutive architectures is shown in the right part

1371Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

Different algorithms can be used to better target a varying
balance of subsystem performances in each GPU architec-
ture. We have also shown that it is viable to utilize multiple
algorithms in parallel if they are primarily aimed at the dif-
ferent hardware units. The optimal ratio between these algo-
rithms can be ensured on the NVIDIA platform allowing the
balanced usage of all GPU components. The recommended
algorithms for each platform are summarized in Table 25.
The nearest-neighbor interpolation performs significantly
faster on the majority of the considered platforms if the
ALU-based algorithm is used. Except on Kepler, the linear
interpolation is also accelerated if the ALU variant is used
either alone or in combination with the texture-based algo-
rithm. If the exact agreement with the standard algorithm
is not required, an additional speed-up can be achieved by
using the half-float data representation or by replacing the
linear interpolation with a combination of the oversampling
and the nearest-neighbor approach as explained in Sect. 7.2.
There is still a rapid progress in parallel hardware and new
architectures are announced yearly. To port the algorithms
to new devices, the algorithm configuration can be para-
metrized and a quick search in the parameters space be

executed to find optimal settings. This approach will not
deliver the optimal performance if new functional blocks are
introduced in the architecture, e.g. Tensor and Ray Tracing
units on the recent NVIDIA GPUs. However, it can address
the shifts in the operation balance.

Figure 20 illustrates the history of NVIDIA platform
from 2009 to 2016. While the performance of the stand-
ard algorithm has grown on the pair with the hardware
improvements, the optimized algorithms got an additional
boost from utilizing parallelism between GPU subsystems.
The speed-up of the optimized back-projection algorithms
significantly outperform the respective grow of the hard-
ware performance. Particularly, using new ALU-based
algorithm we boosted performance by 3–5 times in the
Fermi architecture. In the same time, the peak through-
put of the floating-point instruction has been only been
improved by 50%. The balance of operations has changed
on the Kepler architecture significantly. The throughput
of bit-mangling and type-conversion operators has been
even reduced on GTX680 if compared to GTX580. We still
were able to preserve the steady grow of the performance
by optimizing usage of the texture engine and re-balanc-
ing the load between SFUs and ALUs. Due to ability to
utilize the texture engine in parallel with ALUs, on Max-
well and Pascal architectures the algorithm performance
again increased above the improvements of the hardware.

NVIDIA Titan X is the newest of the evaluated GPUs.
Here, we were able to accelerate the code by 2.5 times
using linear interpolation and without loss of image
quality. The proposed algorithm is 3.5 times faster if the
nearest-neighbor interpolation is used. Even if the recon-
struction chain is only able to process a single-slice at a
time, the proposed hybrid approach is 2 times faster then
the standard algorithm. The achieved speed-up across all
platforms is presented in Fig. 21. Some architectures can
be accelerated as much as 7 times compared to the state-
of-the-art method. The high-speed reconstruction is of a
significant importance for imaging at synchrotron facilities
and allows to improve spatial and temporal resolutions of
the beam-line instrumentation. The back-projection algo-
rithm is also utilized in iterative reconstruction techniques
aiming for high-quality reconstruction. Therefore, the
faster implementation lowers the computational demands
for high-quality offline reconstruction as well. Further-
more, the general concept of balancing the load between
the computational units of the GPU is not limited the pre-
sented tomographic reconstruction but rather suggested for
any computational intense task.

Acknowledgements This work was partially supported by the Ger-
man-Russian BMBF funding program, grant numbers 05K10CKB and
05K10VKE. E. Ametova further acknowledges funding from the FWO-
SBO MetroFleX project (grant agreement S004217N) and the EPSRC

Fig. 21 The figure lists the performance improvements of the pro-
posed algorithms using the linear and nearest-neighbor interpolation
modes. The speed-up against the standard implementation is meas-
ured across all architectures. The black bars show the improvements
of a single slice reconstruction performance achieved using the new
texture-based kernel due to the optimized fetch locality and reduced
load on the constant memory. The blue bars show the increased
speed-up using the multi-slice reconstruction. The green bars indicate
if the alternative ALU-based kernel outperforms the texture based
approach and the achieved gains. The performance of the hybrid
approach is shown using the orange color. The last two bars show
additional speed-up with approximate methods which do not replicate
results of the standard method exactly

1372 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

grant EP/P02226X/1. The authors would like to thank to EXTREMA
COST Action MP1207 for providing the networking support.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Withers, P.J.: X-ray nanotomography. Mater. Today 10(12), 26–34
(2007). https ://doi.org/10.1016/S1369 -7021(07)70305 -X

 2. Mokso, R., Schwyn, D., Walker, S., Doube, M., Wicklein, M.,
Müller, T., Stampanoni, M., Taylor, G., Krapp, H.: Four-dimen-
sional in vivo x-ray microscopy with projection-guided gating.
Sci. Rep. 5, 8727 (2015). https ://doi.org/10.1038/srep0 8727

 3. Maire, E., Bourlot, C., Adrien, J., Mortensen, A., Mokso, R.: 20
HZ x-ray tomography during an in situ tensile test. Int. J. Fract.
(2016). https ://doi.org/10.1007/s1070 4-016-0077-y

 4. dos Santos Rolo, T., Ershov, A., van de Kamp, T., Baumbach, T.:
In vivo x-ray cine-tomography for tracking morphological dynam-
ics. Proc. Natl. Acad. Sci. 111(11), 3921–3926 (2014). https ://doi.
org/10.1073/pnas.13086 50111

 5. Marone, F., Studer, A., Billich, H., Sala, L., Stampanoni, M.:
Towards on-the-fly data post-processing for real-time tomographic
imaging at tomcat. Adv. Struct. Chem. Imaging 3(1), 1 (2017).
https ://doi.org/10.1186/s4067 9-016-0035-9

 6. Vogelgesang, M., Farago, T., Morgeneyer, T.F., Helfen, L., dos
Santos Rolo, T., Myagotin, A., Baumbach, T.: Real-time image-
content-based beamline control for smart 4D x-ray imaging.
J. Synchrotron Radiat. 23(5), 1254–1263 (2016). https ://doi.
org/10.1107/S1600 57751 60101 95

 7. Atwood, R.C., Bodey, A.J., Price, S.W.T., Basham, M., Drakopou-
los, M.: A high-throughput system for high-quality tomographic
reconstruction of large datasets at diamond light source. Philos.
Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. (2015). https ://doi.
org/10.1098/rsta.2014.0398

 8. Mirone, A., Brun, E., Coan, P.: A dictionary learning approach
with overlap for the low dose computed tomography reconstruc-
tion and its vectorial application to differential phase tomogra-
phy. PLOS One 9(12), 1–18 (2014). https ://doi.org/10.1371/journ
al.pone.01143 25

 9. Eyndhoven, G.V., Batenburg, K.J., Kazantsev, D., Nieuwenhove,
V.V., Lee, P.D., Dobson, K.J., Sijbers, J.: An iterative CT recon-
struction algorithm for fast fluid flow imaging. IEEE Trans. Image
Process. 24(11), 4446–4458 (2015). https ://doi.org/10.1109/
TIP.2015.24661 13

 10. Shkarin, A., Ametova, E., Chilingaryan, S., Dritschler, T., Kop-
mann, A., Vogelgesang, M., Shkarin, R., Tsapko, S.: An open
source GPU accelerated framework for flexible algebraic recon-
struction at synchrotron light sources. Fundam. Inform. 141(2–3),
259–274 (2015). https ://doi.org/10.3233/FI-2015-1275

 11. Marone, F., Stampanoni, M.: Regridding reconstruction algorithm
for real-time tomographic imaging. J. Synchrotron Radiat. 19,
1029–1037 (2012). https ://doi.org/10.1107/S0909 04951 20328 64

 12. Chilingaryan, S., Mirone, A., Hammersley, A., Ferrero, C., Helfen,
L., Kopmann, A., dos Santos Rolo, T., Vagovič, P.: A gpu-based
architecture for real-time data assessment at synchrotron experi-
ments. IEEE Trans. Nucl. Sci. 58(4), 1447–1455 (2011). https ://
doi.org/10.1109/TNS.2011.21416 86

 13. Mirone, A., Brun, E., Gouillart, E., Tafforeau, P., Kieffer, J.: The
PyHST2 hybrid distributed code for high speed tomographic
reconstruction with iterative reconstruction and a priori knowl-
edge capabilities. Nucl. Instrum. Methods Phys. Res. Sect. B
Beam Interact. Mater. Atoms 324, 41–48 (2014). https ://doi.
org/10.1016/j.nimb.2013.09.030

 14. Vogelgesang, M., Chilingaryan, S., dos Santos Rolo, T., Kopmann,
A.: Ufo: A scalable GPU-based image processing framework for
on-line monitoring. In: Proceedings of The 14th IEEE Conference
on High Performance Computing and Communication and the 9th
IEEE International Conference on Embedded Software and Sys-
tems (HPCC-ICESS), HPCC ’12, pp. 824–829. IEEE Computer
Society (2012)

 15. Vogelgesang, M., Rota, L., Ardila Perez, L.E., Caselle, M., Chilin-
garyan, S., Kopmann, A.: High-throughput data acquisition and
processing for real-time x-ray imaging. Proc. SPIE 9967, 996,715
(2016). https ://doi.org/10.1117/12.22376 11

 16. van Aarle, W., Palenstijn, W.J., Cant, J., Janssens, E., Bleichrodt,
F., Dabravolski, A., Beenhouwer, J.D., Batenburg, K.J., Sijbers,
J.: Fast and flexible x-ray tomography using the Astra toolbox.
Opt. Exp. 24(22), 25129–25147 (2016). https ://doi.org/10.1364/
OE.24.02512 9

 17. Palenstijn, W.J., Bédorf, J., Sijbers, J., Batenburg, K.J.: A distrib-
uted Astra toolbox. Adv. Struct. Chem. Imaging 2(1), 18 (2017).
https ://doi.org/10.1186/s4067 9-016-0032-z

 18. Gürsoy, D., De Carlo, F., Xiao, X., Jacobsen, C.: Tomopy: a
framework for the analysis of synchrotron tomographic data.
J. Synchrotron Radiat. 21(5), 1188–1193 (2014). https ://doi.
org/10.1107/S1600 57751 40139 39

 19. Zhang, Y., Peng, L., Li, B., Peir, J.K., Chen, J.: Performance and
power comparisons between Nvidia and ATI GPUs. Int. J. Com-
put. Sci. Inf. Technol. 6(6), 1 (2014)

 20. Chilingaryan, S., Kopmann, A., Mirone, A., dos Santos Rolo, T.,
Vogelgesang, M.: A GPU-based architecture for real-time data
assessment at synchrotron experiments. In: Proceedings of the
2011 Companion on High Performance Computing Networking,
Storage and Analysis Companion, SC ’11 Companion, pp. 51–52
(2011). https ://doi.org/10.1145/21486 00.21486 27

 21. Natterer, F., Wübbeling, F.: Mathematical Methods in Image
Reconstruction. Society for Industrial and Applied Mathematics,
Mathematical Modeling and Computation. SIAM, Philadelphia
(2001)

 22. Shkarin, R., Ametova, E., Chilingaryan, S., Dritschler, T., Kop-
mann, A., Mirone, A., Shkarin, A., Vogelgesang, M., Tsapko,
S.: Gpu-optimized direct Fourier method for on-line tomogra-
phy. Fundam. Inform. 141(2–3), 245–258 (2015). https ://doi.
org/10.3233/FI-2015-1274

 23. Andersson, F., Carlsson, M., Nikitin, V.V.: Fast algorithms and
efficient GPU implementations for the radon transform and
the back-projection operator represented as convolution opera-
tors. SIAM J. Imaging Sci. 9(2), 637–664 (2016). https ://doi.
org/10.1137/15M10 23762

 24. Treibig, J., Hager, G., Hofmann, H.G., Hornegger, J., Wellein,
G.: Pushing the limits for medical image reconstruction on recent
standard multicore processors. Int. J. High Perform. Comput.
Appl. 27(2), 162–177 (2013). https ://doi.org/10.1177/10943 42012
44242 4

 25. Zinsser, T., Keck, B.: Systematic performance optimization of
cone-beam back-projection on the Kepler architecture. In: Pro-
ceedings of the 12th Fully Three-Dimensional Image Reconstruc-
tion in Radiology and Nuclear Medicine, pp. 225–228 (2013)

 26. Papenhausen, E., Mueller, K.: Rapid rabbit: highly optimized GPU
accelerated cone-beam ct reconstruction. In: IEEE Nuclear Sci-
ence Symposium and Medical Imaging Conference (NSS/MIC)
(2013). https ://doi.org/10.1109/NSSMI C.2013.68291 26

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S1369-7021(07)70305-X
https://doi.org/10.1038/srep08727
https://doi.org/10.1007/s10704-016-0077-y
https://doi.org/10.1073/pnas.1308650111
https://doi.org/10.1073/pnas.1308650111
https://doi.org/10.1186/s40679-016-0035-9
https://doi.org/10.1107/S1600577516010195
https://doi.org/10.1107/S1600577516010195
https://doi.org/10.1098/rsta.2014.0398
https://doi.org/10.1098/rsta.2014.0398
https://doi.org/10.1371/journal.pone.0114325
https://doi.org/10.1371/journal.pone.0114325
https://doi.org/10.1109/TIP.2015.2466113
https://doi.org/10.1109/TIP.2015.2466113
https://doi.org/10.3233/FI-2015-1275
https://doi.org/10.1107/S0909049512032864
https://doi.org/10.1109/TNS.2011.2141686
https://doi.org/10.1109/TNS.2011.2141686
https://doi.org/10.1016/j.nimb.2013.09.030
https://doi.org/10.1016/j.nimb.2013.09.030
https://doi.org/10.1117/12.2237611
https://doi.org/10.1364/OE.24.025129
https://doi.org/10.1364/OE.24.025129
https://doi.org/10.1186/s40679-016-0032-z
https://doi.org/10.1107/S1600577514013939
https://doi.org/10.1107/S1600577514013939
https://doi.org/10.1145/2148600.2148627
https://doi.org/10.3233/FI-2015-1274
https://doi.org/10.3233/FI-2015-1274
https://doi.org/10.1137/15M1023762
https://doi.org/10.1137/15M1023762
https://doi.org/10.1177/1094342012442424
https://doi.org/10.1177/1094342012442424
https://doi.org/10.1109/NSSMIC.2013.6829126

1373Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

 27. Volkov, V.: Understanding latency hiding on GPUs. Ph.D. thesis,
EECS Department, University of California, Berkeley (2016). http://
www2.eecs.berke ley.edu/Pubs/TechR pts/2016/EECS-2016-143.html

 28. Mei, X., Chu, X.: Dissecting GPU memory hierarchy through
microbenchmarking. IEEE Trans. Parallel Distrib. Syst. 28(1),
72–86 (2017). https ://doi.org/10.1109/TPDS.2016.25495 23

 29. Zhang, X., Tan, G., Xue, S., Li, J., Zhou, K., Chen, M.: Under-
standing the GPU microarchitecture to achieve bare-metal
performance tuning. In: Proceedings of the 22nd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’17, pp. 31–43. ACM (2017). https ://doi.
org/10.1145/30187 43.30187 55

 30. Lim, R.V., Norris, B., Malony, A.D.: Autotuning GPU kernels via
static and predictive analysis. CoRR (2017). arxiv :1701.08547

 31. Chilingaryan, S., Ametova, E., Kopmann, A., Mirone, A.: Balanc-
ing load of GPU subsystems to accelerate image reconstruction
in parallel beam tomography. In: 30th International Symposium
on Computer Architecture and High Performance Computing
(SBAC-PAD), pp. 158–166 (2018). https ://doi.org/10.1109/
CAHPC .2018.86458 62

 32. Smith, R.: The Nvidia GEFORCE GTX 1080 & GTX 1070 found-
ers editions review: kicking off the finfet generation (2016). https
://www.anand tech.com/show/10325 /

 33. Shepp, L., Logan, B.: The Fourier reconstruction of a head sec-
tion. IEEE Trans. Nucl. Sci. (1974). https ://doi.org/10.1109/
TNS.1974.64992 35

 34. van de Kamp, T., Schwermann, A., dos Santos Rolo, T., Lösel,
P., Engler, T., Etter, W., Faragó, T., Göttlicher, J., Heuveline, V.,
Kopmann, A., Mähler, B., Mörs, T., Odar, J., Rust, J., Tan Jerome,
N., Vogelgesang, M., Baumbach, T., Krogmann, L.: Parasitoid
biology preserved in mineralized fossils. Nat. Commun. (2018).
https ://doi.org/10.1038/s4146 7-018-05654 -y

 35. Pco.dimax family. User Manual (2014) https ://www.pco.de/filea
dmin/user_uploa d/pco-manua ls/pco.dimax _CW3_manua l.pdf

 36. Cuda c programming guide. Manual (2017)
 37. Nvidia’s next generation Cuda compute architecture: Fermi. White

Paper (2009)
 38. Nvidia tesla v100 GPU architecture. White Paper (2017)
 39. Amd graphics core next (GCN) architecture. White Paper (2012)
 40. Ruetsch, G., Micikevicius, P., Scudiero, T.: Optimizing matrix

transpose in cuda. Manual (2014)
 41. Nvidia’s next generation cuda compute architecture: Kepler

gk110. White Paper (2012)
 42. Konstantinidis, E., Cotronis, Y.: A quantitative performance evalu-

ation of fast on-chip memories of gpus. In: 24th Euromicro Inter-
national Conference on Parallel, Distributed, and Network-Based
Processing (PDP), pp. 448–455 (2016). https ://doi.org/10.1109/
PDP.2016.56

 43. Doggett, M.: Texture caches. IEEE Micro 32(3), 136–141 (2012).
https ://doi.org/10.1109/MM.2012.44

 44. Konstantinidis, E., Cotronis, Y.: A quantitative roofline model for
GPU kernel performance estimation using micro-benchmarks and
hardware metric profiling. J. Parallel Distrib. Comput. 107, 37–56
(2017). https ://doi.org/10.1016/j.jpdc.2017.04.002

 45. Zhang, Y., Hu, Y., Li, B., Peng, L.: Performance and power analy-
sis of ATI GPU: a statistical approach. In: 6th IEEE International
Conference on Networking, Architecture and Storage (NAS), pp.
149–158 (2011)

 46. Developing a linux kernel module using RDMA for gpudirect.
Manual (2017)

 47. Sumner, B.: Opencl extension: Amd bus addressable memory.
Manual (2011). https ://www.khron os.org/regis try/OpenC L/exten
sions /amd/cl_amd_bus_addre ssabl e_memor y.txt

 48. Kraus, J.: An introduction to CUDA-aware MPI. Blog post (2013).
https ://devbl ogs.nvidi a.com/paral lelfo rall/intro ducti on-cuda-
aware -mpi/

 49. Amd accelerated parallel processing opencl programming guide.
Manual (2013)

 50. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: Nvidia
tesla: a unified graphics and computing architecture. Hot Chips
19, 39–55 (2008)

 51. Nvidia geforce gtx 680. White Paper (2012)
 52. Nvidia geforce gtx 980. White Paper (2014)
 53. Nvidia geforce gtx 1080. White Paper (2016)
 54. Anatomy of amd’s terascale graphics engine. White Paper (2008)
 55. Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering

and tomographic reconstruction using texture mapping hardware.
In: Proceedings of the of Symposium on Volume Visualization,
Tysons Corner, Virginia, USA, pp. 91–98 (1994)

 56. P754, I.T.: IEEE standard for binary floating-point arithmetic.
Institute of Electrical and Electronics Engineers, New York
(1985). http://ieeex plore .ieee.org/iel1/2355/1316/00030 711.pd.
Note: Standard 754–1985

 57. Writing optimal opencl code with intel opencl sdk: Performance
guide. Manual (2011)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Suren Chilingaryan is a data processing and performance expert at
Karlsruhe Institute of Technology. His research interests include data
management systems for large scientific experiments, high-perfor-
mance and heterogeneous computing, computer architectures, and
parallel algorithms. He graduated in mathematics from Moscow State
University and was awarded a doctoral degree in Computer Science
from Armenian National Academy of Sciences.

Evelina Ametova received a Master’s of Science degree in Engineering
Control from Tomsk Polytechnic University in 2012. For the following
2 years, she worked as a teaching assistant in the same university. Since
2014, Evelina has been pursuing a Ph.D. degree in computed tomog-
raphy at the Katholieke Universiteit Leuven. Her doctoral research is
on modeling and compensation of geometrical misalignments in cone-
beam X-ray computed tomography.

Andreas Kopmann is head of the Data Processing group at the Insti-
tute of Data Processing and Electronics of the Karlsruhe Institute
of Technology. The group covers a wide field of activities ranging
from slow control, data acquisition with dedicated hardware, high-
performance parallel computing to data management for scientific
experiments. Application fields are the large experiments in physical
fundamental research, like the Pierre Auger Observatory in Argen-
tina or the Karlsruhe Tritium Neutrino Experiment KATRIN. Since
2008 the group develops GPU-based online monitoring systems for
ultra-fast data processing at synchrotron light sources. Andreas Kop-
mann has studied electrical engineering at the University of Hanno-
ver and received a doctoral degree in 2000. He is member of several
international collaborations and member of the executive board of the
Helmholtz program “Detector technology and systems platform”. He is
principle investigator in the “Karlsruhe School of Elementary Particle
and Astroparticle Physics: Science and Technology (KSETA)” funded
by the German excellence initiative.

Alessando Mirone holds a Ph.D. in physics and works as computational
scientist in the data analysis unit of the European Synchrotron Radia-
tion Facility. He has a 30 years experience in optics, image processing,
ab-initio electronic calculations, thomography and data analysys in
general.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
https://doi.org/10.1109/TPDS.2016.2549523
https://doi.org/10.1145/3018743.3018755
https://doi.org/10.1145/3018743.3018755
http://arxiv.org/abs/1701.08547
https://doi.org/10.1109/CAHPC.2018.8645862
https://doi.org/10.1109/CAHPC.2018.8645862
https://www.anandtech.com/show/10325/
https://www.anandtech.com/show/10325/
https://doi.org/10.1109/TNS.1974.6499235
https://doi.org/10.1109/TNS.1974.6499235
https://doi.org/10.1038/s41467-018-05654-y
https://www.pco.de/fileadmin/user_upload/pco-manuals/pco.dimax_CW3_manual.pdf
https://www.pco.de/fileadmin/user_upload/pco-manuals/pco.dimax_CW3_manual.pdf
https://doi.org/10.1109/PDP.2016.56
https://doi.org/10.1109/PDP.2016.56
https://doi.org/10.1109/MM.2012.44
https://doi.org/10.1016/j.jpdc.2017.04.002
https://www.khronos.org/registry/OpenCL/extensions/amd/cl_amd_bus_addressable_memory.txt
https://www.khronos.org/registry/OpenCL/extensions/amd/cl_amd_bus_addressable_memory.txt
https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/
https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/
http://ieeexplore.ieee.org/iel1/2355/1316/00030711.pd

	Reviewing GPU architectures to build efficient back projection for parallel geometries
	Abstract
	1 Introduction
	2 Setup, methodology, and conventions
	2.1 Hardware platform
	2.2 Software setup
	2.3 Benchmarking strategy
	2.4 Quality evaluation
	2.5 Pseudo-code conventions

	3 Parallel architectures
	3.1 Hardware architecture
	3.2 Execution model
	3.3 Memory hierarchy
	3.4 Texture engine
	3.5 Task partitioning
	3.6 Code generation
	3.7 Scheduling
	3.8 Synchronization
	3.9 Communication
	3.10 Summary

	4 Tomographic reconstruction
	5 Back-projection based on texture engine
	5.1 Standard version
	5.2 Multi-slice reconstruction
	5.3 Using half-precision data representation
	5.4 Efficiency of the standard algorithm
	5.5 Optimizing locality of texture fetches
	5.6 Optimizing memory bandwidth
	5.7 Optimizing occupancy
	5.8 Summary

	6 Alternative algorithm based on ALUs
	6.1 The concept
	6.2 Base implementation
	6.3 Optimizing the thread mapping to avoid shared memory bank conflicts
	6.4 Advanced caching mode
	6.5 Modeling
	6.6 Rounding using floating-point arithmetic
	6.7 Half-float cache
	6.8 Additional caches
	6.9 Managing occupancy
	6.10 CPU and Xeon Phi

	7 Hybrid approaches
	7.1 Combined approach for Pascal architecture
	7.2 Oversampling

	8 Conclusion
	Acknowledgements
	References

