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Abstract
Back-Projection is the major algorithm in Computed Tomography to reconstruct images from a set of recorded projec-
tions. It is used for both fast analytical methods and high-quality iterative techniques. X-ray imaging facilities rely on 
Back-Projection to reconstruct internal structures in material samples and living organisms with high spatial and temporal 
resolution. Fast image reconstruction is also essential to track and control processes under study in real-time. In this article, 
we present efficient implementations of the Back-Projection algorithm for parallel hardware. We survey a range of parallel 
architectures presented by the major hardware vendors during the last 10 years. Similarities and differences between these 
architectures are analyzed and we highlight how specific features can be used to enhance the reconstruction performance. In 
particular, we build a performance model to find hardware hotspots and propose several optimizations to balance the load 
between texture engine, computational and special function units, as well as different types of memory maximizing the uti-
lization of all GPU subsystems in parallel. We further show that targeting architecture-specific features allows one to boost 
the performance 2–7 times compared to the current state-of-the-art algorithms used in standard reconstructions codes. The 
suggested load-balancing approach is not limited to the back-projection but can be used as a general optimization strategy 
for implementing parallel algorithms.

Keywords Parallel algorithms · Hardware architecture · GPU computing · Synchrotron tomography · Back-projection · 
CUDA · OpenCL

1 Introduction

X-ray tomography is a powerful tool to investigate materials 
and small animals at the micro- and nano-scale [1]. Infor-
mation about X-ray attenuation or/and phase changes in the 
sample is used to reconstruct its internal structure. Recent 

advances in X-ray optics and detector technology have paved 
the way for a variety of new X-ray imaging experiments aim-
ing to study dynamic processes in materials and to analyze 
small organisms in vivo. At the Swiss Light Source (SLS) 
scientists were able to take high quality 3D snapshots of 150 
Hz oscillations of a blowfly flight motor [2]. A temporal 
resolution of 20 ms was achieved during a stencil test per-
formed at SLS [3] and also in the analysis of morphological 
dynamics of fast-moving weevils at the ANKA synchrotron 
at KIT [4].

To achieve these results, the instrumentation used at 
imaging beamlines has recently undergone a major update. 
The installed streaming cameras are able to deliver up to 
hundreds of thousands of frames per second with a con-
tinuous data rate up to 8 GB/s [5]. Newly developed con-
trol systems at ANKA [6], SLS [5], and other synchrotron 
facilities use the acquired imaging information to track 
the processes under study and adjust the instrumentation 
accordingly. These control systems rely highly on the per-
formance of the integrated image processing frameworks. 
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Faster acquisition and a high level of automation is essential 
to study dynamic phenomena and at the same time enables 
experiments with significantly increased sample through-
put. For example, in 2015 Diamond Light Source (DLS) 
reported that typically about 3000 scans are recorded dur-
ing 5 days of operation at a single imaging beamline [7]. 
Consequently, the amount of data generated at imaging 
beamlines quickly grows and results in a steep rise of the 
required computing power. In order to achieve higher tem-
poral resolution and to prolong the duration of experiments, 
advanced methods are developed that incorporate a priori 
knowledge in the reconstruction procedure. These methods 
are able to produce high-quality images from undersampled 
and underexposed measurements, as demonstrated by [8, 
9]. Unfortunately these methods are computationally sig-
nificantly more demanding than traditional reconstruction 
algorithms and further increase the load on the computing 
infrastructure [10].

To tackle the performance challenge several recon-
struction frameworks have been developed and optimized 
to utilize the parallel capabilities of nowadays comput-
ing architectures. At SLS GridRec, a fast reconstruction 
approach optimized for conventional CPU technology, has 
been adopted [11]. The reconstruction is scheduled across 
a dedicated cluster and reconstructs a 3D image within 
a couple of minutes [5]. Other frameworks use GPUs to 
accelerate the computation and are able to achieve minute-
scale reconstructions at a single node equipped with multi-
ple GPU adapters. PyHST is developed at ESRF and uses 
the CUDA framework to offload image reconstruction to 
NVIDIA GPUs [12]. The second version of PyHST provides 
also a number of iterative reconstruction techniques [13]. 
The UFO parallel computing framework is used at ANKA 
synchrotron to realize in-vivo tomography and laminogra-
phy experiments [14, 15]. It constructs a data processing 
workflow by combining basic building blocks in a graph 
structure. OpenCL is used to execute the reconstruction 
at parallel accelerators with a primary focus on NVIDIA 
and AMD GPUs. ASTRA is a fast and flexible develop-
ment platform for tomographic algorithms with MATLAB 
and python interfaces [16, 17]. It is implemented in C++ 
and uses CUDA to offload computations to GPU. Several 
other frameworks are based on the ASTRA libraries to pro-
vide GPU-accelerated reconstruction, for instance the Savu 
framework at DLS [7] or TomoPy at the Advanced Photon 
Source (APS) [18]. Recent versions of TomoPy also support 
UFO and GridRec as backends. All of the GPU-accelerated 
frameworks are capable to distribute the computation to a 
GPU cluster as well.

While most of the nowadays imaging frameworks rely 
heavily on parallel hardware to speed-up the reconstruc-
tion, specific features of the GPU architecture are rarely 
considered. On other hand, the hardware architectures differ 

significantly [19]. Organization of memory and cache hierar-
chies, performance balance between different types of opera-
tions, and even the type of parallelism varies. A significant 
speed-up is possible if details of the specific architecture are 
taken into account as illustrated in [20]. Fast execution is 
especially important if the reconstruction is embedded in a 
control workflow. Minimal latency is essential to track faster 
processes and to improve the achieved spatial and temporal 
resolutions. Due to unavoidable communication overhead, it 
is not always possible to reduce the latencies by scaling the 
reconstruction cluster.

For online monitoring and control, normally fast analyti-
cal methods are used to reconstruct 3D images. There are 
two main approaches: Filtered Back Projection (FBP) and 
methods based on the Fourier Slice Theorem [21]. The later 
methods are asymptotically faster, but due to the involved 
interpolation in the Fourier domain are more sensitive to 
the quality of the available projections. For typical geom-
etries Fourier-based methods are several times faster using 
the same computing hardware [22] and should be preferred 
if the computing infrastructure is limited to general-purpose 
processors only [5]. A recent study suggests to implement 
back projection as convolution in log-polar coordinates in 
order to gain high reconstruction speed with interpolation in 
the image domain [23]. However, this new method has not 
yet been adopted in production environments. Still, Filtered 
Back Projection is the method of choice, largely due to it 
simplicity and robustness. Therefore, the efficiency of the 
FBP implementation is still crucial for the operated moni-
toring and control systems. Furthermore, methods used for 
low dose tomography normally consist out of sequences of 
forward and back projections. And, thus, a faster implemen-
tation of the back projection lowers also the computational 
demands for high-quality offline reconstruction and might 
reduce the required hardware investments.

While there are several articles aiming at optimization 
of Back Projection for general-purpose processors and Intel 
Xeon-Phi accelerators [24], up to our knowledge there are 
no publications considering the variety of GPU architec-
tures. A number of papers addresses specific GPU architec-
tures [25, 26]. Multiple papers perform a general analysis 
of a range of GPU architectures, reveal undisclosed details 
trough micro-benchmarking, and propose guidelines for per-
formance optimization [27–29]. This information is invalu-
able to understand factors limiting performance on a specific 
architecture and to find an alternative approach to achieve 
a better performance. Several papers propose methods to 
auto-tune computation kernels [30]. However, the tuning 
is limited to finding optimal configuration of pre-defined 
parameters like desired occupancy, dimensions of execution 
blocks, etc. For instance, there are no automated solutions 
to tune the balance between the texture engine and the com-
putational cores.
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In [31], we presented two highly-optimized back-pro-
jection algorithms for NVIDIA Pascal GPUs and a hybrid 
approach to balance the load between different GPU sub-
systems using both in parallel. While the algorithms can 
be used on different hardware, multiple modifications are 
required to address the differences in the architectures effi-
ciently. Furthermore, the proposed hybrid approach is only 
suitable for the NVIDIA GPUs of a few latest generations. A 
different scheme to balance load is required for AMD, Intel, 
and older NVIDIA GPUs. In this paper, we review a variety 
of parallel architectures presented in the last 10 years and 
establish a methodology to expand the original work to dif-
ferent parallel hardware. We discuss hardware differences in 
detail, build performance model, and demonstrate how these 
differences can be addressed to optimize the performance of 
the FBP algorithm. Particularly, we suggest modifications to 
adapt the developed algorithms for the architectures with on-
chip memory optimized for 64-bit access. To address further 
differences in memory subsystems, we propose several alter-
native caching methods. We introduce an approach to reduce 
the overall number of executed instructions for systems 
with a bottleneck in the instruction throughput. We discuss 
optimal blocking strategies in great detail and suggest how 
the code-generation can be tweaked on the NVIDIA plat-
form. We also propose two new methods to balance the load 
between different GPU subsystems. One targets NVIDIA 
Kepler architecture and another can be applied universally 
but with a minor penalty to the quality. The proposed perfor-
mance model allows us to estimate the speed also for future 
architectures and select the appropriate modification and 
parametrization of the algorithms. Up to our knowledge, we 
present the first comprehensive overview of the GPU archi-
tectures across multiple vendors and GPU generations. Fur-
thermore, using the back-projection algorithm as an exam-
ple, we also illustrate how specific hardware features can be 
addressed and estimate possible gains. So the contribution 
of this paper goes beyond the proposed back-projection algo-
rithm and also suggests optimization strategies suitable for 
other applications.

In this paper we focus on the optimizations of the back-
projection algorithm and only briefly mention the organi-
zation of data flow as it is already explained in literature 
[12, 15]. We also do not cover scaling issues since the 
proposed optimizations can be easily integrated in existing 
frameworks like ASTRA, PyHST, or UFO which provide 
multi-GPU and GPU-cluster support already. The article 
is organized as follows. The hardware setup, software 
configuration, and pseudo-code conventions are listed in 
Sect. 2. A short introduction to parallel architectures that 
is required to understand the proposed optimizations is 
given in Sect. 3. In this section we also highlight the dif-
ferences between the considered parallel architectures. The 

Filtered Back Projection algorithm and its state-of-the-art 
implementation are presented in Sect. 4. A number of opti-
mizations to this implementation are proposed in Sect. 5. 
An alternative implementation relaying on a different set 
of hardware resources is developed in Sect. 6. A hybrid 
approach combining both approaches to fully utilize all 
hardware resources is presented in Sect. 7. The achieved 
performance improvements are finally discussed in Sect. 8.

2  Setup, methodology, and conventions

2.1  Hardware platform

To evaluate the performance of the proposed methods, we 
have selected 9 AMD and NVIDIA GPUs with different 
micro-architectures. Table 1 summarizes the considered 
GPUs. These GPUs were assembled into the 3 GPU serv-
ers. The newer NVIDIA cards with Maxwell and Pascal 
architectures were installed in a Supermicro 7047GT based 
server specified in Table 2. The older NVIDIA cards and 
all AMD cards were installed in two identical systems 
based on the Supermicro 7046GT platform. The full speci-
fication is given in Table 3. Additionally, we have tested 
how the developed code is performing on an Intel Xeon 
Phi 5110P accelerator. The accelerator was installed in the 
first platform along with the newer NVIDIA cards.  

Table 1  List of selected GPU architectures

Vendor GPU Arch. Code Release

NVIDIA GeForce GTX 295 GT200 GT200 2009
NVIDIA GeForce GTX 580 Fermi GF110 2010
NVIDIA GeForce GTX 680 Kepler GK104 2012
NVIDIA GeForce GTX Titan Kepler GK110 2013
NVIDIA GeForce GTX 980 Maxwell GM204 2014
NVIDIA GeForce GTX Titan X Pascal GP102 2016
AMD Radeon HD-5970 VLIW5 Cypress 2009
AMD Radeon HD-7970 GCN1 Tahiti 2012
AMD Radeon R9-290 GCN2 Hawaii 2013

Table 2  Server for newer NVIDIA cards

Platform Supermicro 7047GT GPU Server
Motherboard Supermicro X9DRG-QF with Intel C602 chipset
Memory 256 GB DDR3-133 Memory
Processor Dual Intel Xeon E5-2640 (24 cores at 2.5 GHz)
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2.2  Software setup

All described systems were running OpenSuSE 13.1. The 
code for the NVIDIA cards was developed using the CUDA 
framework. As newer versions of the framework have 
dropped support for older GPUs, we have used CUDA 6.5 
for the NVIDIA GeForce GTX295 card and CUDA 8.0 for 
other NVIDIA GPUs. The AMD version of the code is based 
on OpenCL and was compiled using AMD APPSDK 3.0. 
Additionally, we have tested the performance of Xeon CPUs 
and a Xeon Phi accelerator using Intel SDK for OpenCL. 
Since the latest version of Intel OpenCL SDK does not sup-
port Xeon Phi processors any more, again we needed to use 
two different SDK versions. The newer one was used to 
evaluate the performance of the Xeon processors while the 
older one served to execute the developed methods on the 
Xeon Phi accelerator. All installed software components are 
summarized in Table 4.

2.3  Benchmarking strategy

In this article we are not aiming to precisely characterize 
the performance of the graphics cards, but rather validate 
the efficiency of the proposed optimizations. For this rea-
son we take a relatively lax approach to the performance 
measurements. In most tests, we use a data set consisting of 
2048 projections with dimensions of 2048 by 2048 pixels 
each. 512 slices with same dimensions are reconstructed 
and the median reconstruction time is used to estimate the 
performance.

Starting with the Kepler architecture, NVIDIA introduces 
the GPUBoost technology to adapt the clock speed accord-
ing to the current load and the processor temperature [32]. 
To avoid significant performance discrepancies, we run a 

heat-up procedure until the performance stabilizes. Further-
more, we verify that the actual hardware clock measured 
before start of measurements (but after the heat-up pro-
cedure) does not significantly differ from the clock meas-
ured after the measurements. Otherwise, we re-run the test. 
Finally, we exclude all I/O operations in the benchmarks. 
The reconstructions are executed using dummy data and the 
results are discarded without transferring them back to the 
system memory.

2.4  Quality evaluation

Some of the suggested optimizations alter the resulting 
reconstruction. To assess the effect on quality, we compare 
the obtained results with the standard reconstruction in 
such cases. The standard Shepp Logan Head Phantom with 
a resolution of 1024 × 1024 pixels is used for the evaluation 
[33]. We also illustrate the differences between standard and 
reduced quality methods using a cross-section slice from a 
real volume with a fossilized wasp from a recent experi-
ment conducted at ANKA synchrotron [34]. The projection 
images were recorded using a 12-bit pco.dimax camera [35]. 
More details about the setup of the imaging system are avail-
able in the referenced article. As the changes are typically 
small and are hardly visible in the 2D image, we show a 
profile along vertical line crossing most of the features in 
the slice, see Fig. 1.

2.5  Pseudo‑code conventions

To avoid long code listings we use pseudo-code to describe 
the algorithms. We use mixture of a mathematical and a 
C-style notation to keep it minimalistic and easy to fol-
low. C syntax is mostly adapted for operations, loops, and 
conditionals. We use ∕ to denote integer division and % for 
modulo operation. No floating point division is performed 
in any of algorithms. The division is always executed on 

Table 3  Servers for AMD and older NVIDIA cards

Platform Supermicro 7046GT GPU Server
Motherboard Supermicro X8DTG-QF with Intel 5520 chipset
Memory 96 GB DDR3-1066 Memory
Processor Dual Intel Xeon X5650 (12 cores at 2.67 GHz)

Table 4  Software components

Operating System OpenSuSE 13.1
System Configuration kernel 3.11.10, glibc 2.18, gcc 4.8.1
CUDA Platform CUDA SDK 8.0.61, driver 375.39
CUDA Platform (GT200) CUDA SDK 6.5.14, driver 340.102
AMD platform APP SDK 3.0.130.136, driver 15.12
Intel platform OpenCL SDK 2017 v. 7.0.0.2511
Intel platform (Xeon Phi) MPSS 3.5.1, OpenCL SDK 4.5.0.8

Fig. 1  Synthetic Shepp-Logan phantom (left) and a reconstructed 
cross-section slice of a fossilized wasp (right) are used for quality 
evaluation. All profile plots in the article are shown along the red ver-
tical lines
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positive integer arguments and produces integer number 
which is rounded towards zero. The standard naming 
scheme for variables is used across all presented algo-
rithms. We group related variables together. The same let-
ter is used to refer all variables of the group and the actual 
variable is specified using subscript. Furthermore, some 
algorithms use shared memory to cache the data stored 
in global or constant memory. In such cases, we keep the 
variable name, but add superscript indicating the memory 
domain. For instance, cS

s
 points to the sine of the projec-

tion angle stored in the shared memory. c is a group of 
variables storing the projection constants. cs refers specifi-
cally the sine of the projection angle and the superscript ⋅S 
indicates that the copy in shared memory is accessed. All 
variables used across the algorithms are listed in Tables 5, 
6, and 7. The superscripts used to indicate memory seg-
ment are specified in Table 8.

We use ⋅ symbol to denote all vector variables, i.e. 
float2, float4, etc. Furthermore, all proposed algorithms 
are capable to reconstruct 1, 2, or 4 slices in parallel. If 
more than 1 slice is reconstructed, the accumulator and a 
few other temporary variables use the floating-point vector 
format to store values for multiple slices. These variables 
are marked with ⋅̃ . All arithmetic operations in this case 
are performed in vector form and affect all slices. The vec-
tor multiplication is performed element wise as it would be 
in CUDA and OpenCL. We use the standard C notation to 
refer array indexes and components of the vector variables. 
The arrays are indexed from 0. For instance s̃[0].x refers 
to the first component of the accumulator. The assign-
ment between vector variable and scalars are shown using 
curly braces, like {x, y} = s̃[0] . The floating point constants 
are shown without C type specification. However, it is of 
utmost importance to qualify all floating-point constants 

Table 5  List of parameters used in code snippets

Var Type Description

np int Number of projections
nv int Number of slices reconstructed in parallel
nq int Number of pixels assigned per GPU thread
ns int The side of a pixel square reconstructed by a thread block
nt int2 Dimensions of thread block
sp int Size of the larger projection block, indicates the size of caches holding projection constants and hm values
sd int Size of data cache, specifies how many projection lines are cached
st int Number of threads assigned to cache a projection row, see Sect. 6.3 and Table 14
si int Iterations required to completely cache a projection row (determined based nt , �� , and the used caching 

optimizations as explained in Sect. 6.3)
va float2 The position of rotation axis
cc float[] Constant array storing cosine values of the projection angles
cs float[] Constant array storing sine values of the projection angles
�cs float2[] Constant array storing (cosine, sine) pairs for each projection angle
ca float[] Constant array storing coordinate of the rotational axis with applied per projection correction to compen-

sate for possible mechanical displacements
cm float[] Constant array storing coefficients required to quickly compute ��

Table 6  List of indexes used in code snippets

Var Type Description

mb int2 The index of a thread block within the computation grid. Referred as blockIdx in CUDA or get_group_id() in OpenCL
mt int2 The index of a thread with the thread block. Referred as threadIdx in CUDA or get_local_id() in OpenCL
mg int2 The index of a thread within the computation grid, i.e. �� ∗ �� +��

m�
∗

int2 The re-mapped index, the number is specified in superscript if multiple mappings are used
f∗
g

float2 The absolute coordinates of the reconstructed pixel according to the selected mapping, usually: � �
�
= ��

�
− ��

fb float2 The absolute coordinates of a pixel block (i.e. coordinates of the pixel processed by the first thread of the block)
mp int For algorithms processing multiple projections in parallel, it defines a projection index in a group
md int For algorithms caching the sinogram in shared memory, this is a mapping selecting offset in the cache
ml int Linear addressing of threads in the thread block ( �� .� ∗ �� .� +�� .� ). It is another mapping used for caching con-

stants.
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as single precision in the C code, i.e. using 0.5f in place 
of 0.5. Otherwise the double-precision arithmetic will be 
executed severely penalizing performance on majority of 
consumer-grade GPUs.

To perform thread synchronization and to access the 
texture engine, the algorithms rely on a few functions pro-
vided by CUDA SDK or defined in the OpenCL specifica-
tions. To preserve neutrality of notation, we use abbrevi-
ated keywords to reference this functions. This list of used 
abbreviations along with the corresponding CUDA and 
OpenCL functions are listed in Table 9. Actually, the syn-
tax of OpenCL and CUDA kernels is very closely related. 
Only a few language keywords are named differently. It is 
a trivial task to generate both CUDA and OpenCL kernels 
based on the provided pseudo-code.

We use integer division and modulo operations across 
the code listings. These operations are very slow on GPUs 
and actually should be performed as bit mangling operations 
instead. However, the optimizing compilers can replace them 
automatically by the faster bit-mangling instructions. So, 
we are free to use notation which is easier to read. There 
are a few other cases where the optimization is left to the 
compiler.

3  Parallel architectures

The architectures of nowadays GPUs are rather heterogene-
ous and includes multiple types of computational elements. 
The performance balance between these elements is shifting 
with each release of a new GPU architecture. To feed the fast 
computational units with data, a complex hierarchy of mem-
ories and caches is introduced. But the memories are very 
sensitive to the access patterns and the optimal patterns also 
differ between the hardware generations [36]. In this section 
we briefly explain the GPU architecture and elaborate dif-
ferences between the considered GPUs with a focus on the 
aspects important to implement back projection efficiently. 

Table 7  List of variables used in code snippets

Var Type Description

h float The required projection bin (including offset from the center)
hi int The position of the required projection bin in the cache
hf float The floating-point representation of ��
hl float The offset from the center of bin (i.e. coefficient for linear interpolation)
hb float The bin required by the first thread of the block
hm float[] The smallest bin required by a thread block in the selected projection row
hx float[][] The cache storing the value of �� + ��.� ∗ �� − �� for each column of pixels processed by a thread block (and for 

each of �� cached projections)
p∗ int Projection number (p) and projection iterators ( �� , ��)
q∗ int Pixel block iterators
d̃ float[][] The cache storing a subset of sinogram required to process �� projections for the current thread block
s̃ float[] Variable accumulating the impact of the projections. Defined as array if the thread is responsible for multiple pixels
r̃ float[][] The reconstructed slice

Table 8  Memory domains

Superscript Domain

⋅
G Variable in global GPU memory
⋅
C Variable in constant memory
⋅
S Variable in shared memory

Table 9  CUDA/OpenCL functions

Function Description

sync Denotes a synchronization point. The further execution is blocked until all threads of the block reach this point. It is implemented 
with __syncthreads() command in CUDA and barrier() with the CLK_LOCAL_MEM_FENCE type in OpenCL

fence Enforces ordering of loads and stores. Equivalent to __threadfence_block() in CUDA and mem_fence() in OpenCL
tex2d 2D fetch from the texture mapped to the sinogram. It is implemented with tex2D() function in CUDA and read_imagef () in OpenCL.
shfl ∗ A group of CUDA functions (__shfl, __shfl_up, __shfl_down, __shfl_xor) used to exchange data between the threads of a warp [36]. 

The vector types are not supported by CUDA functions. If shfl is applied to vector data, it is actually implemented as several calls 
to the corresponding function using all vector components one after another. There is no AMD counterpart of these functions.

floor Rounding towards negative infinity
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To simplify reading for a broader audience, we use the more 
common CUDA terminology across this paper.

3.1  Hardware architecture

The typical GPU consists of several semi-independent 
Streaming Multiprocessors (SM) which share global GPU 
memory and L2 cache [37]. Several Direct Memory Access 
(DMA) engines are included to move data to and from sys-
tem memory. Each SM includes a task scheduler, computing 
units, a large register file, a fast on-chip (shared) memory, 
and several different caches. There are a few types of com-
puting units. The number crunching capabilities are pro-
vided by a large number of Arithmetic Units (ALU) also 
called Core units by NVIDIA. ALUs are aimed on single-
precision floating point and integer arithmetic. Some GPUs 
also include specialized half precision and double precision 
units to perform operations with these types faster. There are 
also architecture-specific units. All NVIDIA devices include 
Special Function Units (SFU) which are used to quickly 
compute approximates of transcendent operations. The lat-
est Volta architecture includes Tensor units aimed on fast 
multiplication of small matrices to accelerate deep learn-
ing workloads [38]. AMD architectures adapt scalar units 
to track loop counters, etc [39]. The memory operations are 
executed by Load/Store (LD/ST) units. The memory is either 
accessed directly or Texture units are used to perform a fast 
linear interpolation between the neighboring data elements 
while loading the data.

The computing units are not operating independently, but 
grouped in multiple sets which are operating in a Single 
Instruction Multiple Data (SIMD) fashion. Each set is able 
to execute the same instruction on multiple data elements 
simultaneously. Several such sets are included in SM and, 
often, can be utilized in parallel. The SM scheduler employs 
data- and instruction-level parallelism to distribute the work-
load between all available sets of units. However, it is archi-
tecture depended which combination of instructions can be 
executed in parallel. The simplified and generalized scheme 
of GPU architecture is presented in Fig. 2 and is further 
explained in the next subsections.

3.2  Execution model

The GPU architectures rely on SIMT (Single Instruction 
Multiple Threads) processing model [36]. The problem is 
represented as a 3D grid of tasks or threads in CUDA ter-
minology. All threads are executing the same code which 
is called kernel. The actual work of a thread is defined by 
its index (x, y, z) within the grid. Typically, a mapping 
between a thread index and image coordinates is estab-
lished and each GPU thread processes the associated pixel 
or a group of pixels. Since memory access patterns matter, 
finding a suitable mapping has a very significant impact 
on the performance. In many practical applications, mul-
tiple mappings are used during the execution of a kernel. 
Particularly, all presented algorithms use 2 to 4 different 
mappings during the kernel execution.

The grid is split in multiple blocks of the same size. 
The blocks are assigned to a specific SM and are exe-
cuted on this SM exclusively. Consequently, the informa-
tion between threads of the same block can be exchanged 
using the fast shared memory local to SM. When a block 
is scheduled, all threads belonging to this block are made 
resident on the selected SM and all required hardware 
resources are allocated. A dedicated set of registers is 
assigned to each of the threads. However, not all threads 
of the block are executed simultaneously. The SM distrib-
utes resident threads between computational units in por-
tions of 32/64 threads which are called warps. All threads 
of a warp are always executed simultaneously using one 
of available sets of units. If the execution flow within the 
warp diverges, it is executed sequentially: first all threads 
of the first branch are executed while others are kept idle 
and, then, vice-versa. To achieve optimal performance it is 
important to keep all threads of a warp synchronized, but 
the execution of complete warps may diverge if necessary. 
Similarly, the memory access patterns and locality are 
extremely important within a warp, less important within a 
block, but rather irrelevant between different blocks. GPUs 
always assign threads with consecutive indexes to the same 

Fig. 2  Generalized scheme of GPU architecture. A typical GPU 
includes DMA engines, Global GPU memory, L2 cache, and multiple 
Streaming Multiprocessors (SM). The integrated DMA engines are 
primarily used to exchange data between GPU and system memory 
over PCIe bus, but also can be utilized to communicate with other 
devices at the PCIe bus (right). Each SM includes several types of 
caches and computational units (left)



1338 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

warp and the thread mappings are always constructed with 
these considerations in mind.

At each given moment, the SM executes a few warps 
while several others are idle, either waiting for memory 
transaction to complete or for a set of units to become avail-
able. This is one of the mechanisms used to hide latencies 
associated with long memory operations. While one warp is 
set aside waiting for the requested data, the computational 
units are kept busy executing other resident warps. As the 
registers are assigned to all threads permanently and are not 
saved/restored during scheduling, the switching of the run-
ning warp inflicts no penalty.

3.3  Memory hierarchy

Compared to a general-purpose processor the ratio between 
computational power and throughput of the memory subsys-
tem is significantly higher on GPUs. To feed the computa-
tion units with data, the GPU architectures rely on multiple 
types of implicit and explicit caches which are optimized for 
different use cases. Furthermore, the maximum bandwidth 
of GPU memory is only achieved if all threads of a warp 
are accessing neighboring locations in memory. For optimal 
performance some architectures may require even stricter 
access patterns.

There are 3 types of general-purpose memory available 
in the GPU. A large amount of global memory is accessible 
to all threads of the task grid. Much smaller, but signifi-
cantly faster shared memory is local to a thread block. The 
thread-specific local variables are normally hold in registers. 
If there is not enough register space, a part of variables may 
be offloaded to the local memory. The thread-specific, but 
dynamically addressed arrays are always stored in the local 
memory (i.e. if array addresses can’t be statically resolved 
during the compilation stage). In fact, the local memory is 
a special area of the global memory. But the data will be 
actually written and read to/from L1 or L2 cache unless an 
extreme amount of local memory is required. Even then, 
access to variables in the local memory inflicts a severe 
performance penalty compared to the variables kept in the 
registers and should be avoided if possible.

To reduce the load on the memory subsystem, GPUs try 
to coalesce the global memory accesses into as few transac-
tions as possible. This can only be realized if the threads of 
a warp are addressing adjacent locations in the memory. The 
memory controller aggregates the addresses requested by 
all threads of a warp and issues a minimal possible amount 
of 32- to 128-byte wide transactions. These transactions are 
subject to alignment requirements as well. It does not matter 
in which order the addresses are requested by the threads of 
a warp. The maximum bandwidth is achieved if as few as 
possible of such transactions are issued to satisfy the data 
request of the complete warp. This was different in older 

hardware when the stricter access patterns had to be fol-
lowed. If it is not possible to implement coalesced access 
strategy, the shared memory is often used as explicit cache 
to streamline accesses to the global memory [40].

The shared memory is composed out of multiple data 
banks. The banks are 32- or 64-bit wide and are organized 
in a such way that successive words are mapped to succes-
sive banks. The shared memory bank conflict occurs if the 
threads of a warp are accessing multiple memory locations 
belonging to the same bank. The conflicts causes warp seri-
alization and may inflict a significant penalty to the shared 
memory bandwidth. Furthermore, the achieved bandwidth 
depends on a bit-width of the accessed data. The Kepler 
GPUs are equipped with 64-bit shared memory and only 
deliver full bandwidth if 64-bit data is accessed. While the 
AMD Cypress and Tahiti GPUs are equipped with 32-bit 
shared memory, the performance is still considerably 
improved if 64-bit operations are performed. Increasing the 
data size beyond 64-bit has a negative impact on the per-
formance on some architectures. 128-bit loads from shared 
memory always cause bank conflicts on NVIDIA GT200, 
NVIDIA Fermi, and all AMD architectures. We tackle 
the differences between shared memory organization in 
Sects. 6.3 and 6.4.

Most of the GPU architectures provide both L1 and L2 
caches. However, the amount of the cache per compute ele-
ment is quite low. On NVIDIA Fermi and Kepler GPUs, 
both L1 cache and shared memory are provided using the 
same hardware unit and the ratio between the size of L1 
cache and the shared memory is configured at compila-
tion stage [37, 41]. Only buffers that are read-only during 
a complete execution of a kernel are usually cached in L1. 
This property is not always detected by the compiler and 
should be either hinted in the code or enforced using a spe-
cial CUDA intrinsic instruction [41]. There are two addi-
tional caches optimized for specific use-cases. The constant 
memory is used to store parameters which are broadcasted 
to all threads of the grid. For optimal performance 64-bit 
or 128-bit access is required [42]. The texture engine pro-
vides a cache optimized for spatial access. While the line of 
L1 cache is typically 128-byte long, the texture cache oper-
ates with lines of 32-bytes allowing to fetch the data from 
multiple rows of an image as required to perform bi-linear 
interpolation.

3.4  Texture engine

The texture engine associates a dimensional information 
with buffers in the global GPU memory [43]. By doing so, 
it is able to interpret the memory as a multi-dimensional 
object and perform implicit interpolation if a texel with frac-
tional coordinates is requested. Nearest-neighbor or linear 
interpolation modes are supported. The texture engines are 
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able to work with a variety of data types. Besides simple 
integer and floating-point numbers, they are also capable to 
interpolate and return the values encoded in standard vector 
types. The performance is defined by the number of texels 
processed per time unit and is called texture filter rate. Up 
to a threshold, the filter rate is independent from the actu-
ally used data type. The same number of texels is returned 
per second if either 8, 16, or 32-bits are used to encode the 
texel values. For the larger vector types the theoretical fil-
ter rate, however, is not actually reached. Depending on the 
GPU architecture, a maximum 32-, 64-, or 128-bit values are 
processed at a full speed.

To achieve maximum performance it is also necessary 
to ensure the spatial locality of the texture fetches. The 
locality is important at several levels. At a block level it 
results in a high level of texture cache utilization. A more 
dense access layout within a warp reduces the number of 
required transactions to the texture cache. While it is not 
documented, the distribution of the fetch locations between 
groups of 4 consecutive threads impacts performance sig-
nificantly if a bi-linear interpolation is performed. To verify 
it, we developed a small benchmark using the techniques 
proposed by Konstantinidis and Cotronis for gpumembench 
and mixbench suites [42, 44]. Figure 3 shows two different 
thread assignments to fetch 16 texels from a 4-by-4 pixel 
square. The fetched coordinates are always slightly shifted 
from the pixel centers to ensure that the bi-linear interpola-
tion is actually executed. There is a little difference if 32-bit 
data is accessed. For 64-bit data, however, the thread assign-
ments following Z-order curve reach almost 100% of the 
theoretical maximum while only 50% is achieved if simple 
linear layout is used. Section 5.5 discusses the effect of the 
optimized fetch locality on a performance of tomographic 
reconstruction.

We also used the developed benchmark to find the maxi-
mum size of fetched data which is still filtered at full speed. 
Our results show that all NVIDIA GPUs starting with Fermi 

benefit from the 64-bit texture fetches if requests are prop-
erly localized. It is also supported by the latest of the consid-
ered chips from AMD. However, the OpenCL kernel must 
be compiled with OpenCL 2.0 support enabled. It is done by 
passing -cl-std=CL2.0 flag to clBuildProgram() call. Other-
wise, the full performance is only achieved if the nearest-
neighbor interpolation is performed. This is always the case 
for older AMD devices. If the texture engine is configured 
to perform linear-interpolation on 64-bit data, only the half 
of throughput is delivered on these AMD architectures. On 
other hand, all AMD devices are able to deliver the full 
performance using the 128-bit data if the nearest-neighbor 
interpolation is utilized. The NVIDIA devices are limited 
by 64-bit in both cases.

3.5  Task partitioning

The number of resident threads directly affects the ability of 
the SM to hide memory latencies. Each architecture limits 
the maximum number of resident warps per SM. Since SM 
has only a limited amount of registers and shared memory, 
the actual number of resident warps could be bellow this 
limit. The ratio between the actual and the maximum num-
ber of resident warps is called occupancy and has a signifi-
cant impact on the performance. The complexity of the ker-
nel dictates how many registers is required per thread and, 
hence, restricts the maximum amount of resident threads on 
the SM. It is possible to target occupancy on NVIDIA plat-
form. If a higher occupancy is requested, the CUDA com-
piler either reduces the number of used registers in a price 
of repeating some computations or offloads part of the used 
variables in the local memory. Vice-versa, the compiler may 
perform more aggressive caching and pre-fetching if lower 
occupancy is targeted. Both approaches may significantly 
improve the performance under different conditions. The 
optimal occupancy depends on both, work-load and hard-
ware capabilities. On one hand, it should be high enough to 
ensure that the SM scheduler always has warps ready to exe-
cute. On other hand, prefetching may significantly improve 
performance of memory bound applications. Furthermore, 
offloading variables to local memory will not necessarily 
harm the performance if the local memory is fully backed by 
L1 cache. Consequently, more registers can be made avail-
able for prefetching also without decreasing occupancy. 
However, the shared memory available to applications is 
reduced on Fermi and Kepler platforms if a large amount of 
L1 cache is dedicated to the local memory. A very detailed 
study of the optimal occupancy under different workloads 
is performed in the Ph.D. thesis of Vasiliy Volkov [27]. We 
study the effect of occupancy tuning on the performance 
of the back projection kernel in Sects. 5.7 and 6.9. Both 
reduced and increased occupancy are found practically use-
ful in different circumstances.

Fig. 3  Two ways to exploit spatial locality while fetching 16 texels 
from a 4-by-4 pixel square. A simple linear mapping is used to assign 
a group of 16 threads to the square (left). Alternative mapping along 
Z-order curve improves the spatial locality withing groups of 4 con-
secutive threads (right)
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GPUs have varying limits on a number of threads allowed 
per block. To achieve a higher occupancy, multiple thread 
blocks can be scheduled on the same SM simultaneously. 
The maximum number of resident blocks is architecture 
dependent and is further restricted by the requested amount 
of shared memory. The required shared memory is not 
always proportional to the size of a thread block. The larger 
blocks may require less shared memory per thread. As the 
block is always made resident as a whole, some configura-
tions are better mapped to available resources while other 
leave part of the memory unused.

3.6  Code generation

Even the fast shared memory has a relatively high latency 
[28]. Consequently, GPU vendors provide several mecha-
nisms to hide this latency and preserve the high memory 
bandwidth. The thread is not stalled until the executed 
memory operation is finished. The GPU scheduler launches 
the operation, but proceeds issuing independent instructions 
from the execution flow of the thread until the requested 
data is actually required. If the next instruction in the flow 
depends on the result of the memory operation which is not 
completed yet, the SM puts the thread aside and schedules 
another resident thread as stipulated by SIMT execution 
model. For compute-bound applications, the optimizing 
compiler re-arranges instructions to interleave memory 
operations with independent arithmetic instructions and uses 
both described mechanisms to avoid performance penalties 
due to memory latencies [27].

If an application is memory bound, the compiler vice-
versa groups multiple load operations together to benefit 
from streaming. The latency, then, has to be hidden only 
a single time for all load operations which are streamed 
together. This mechanism is of a great importance to per-
form texture fetches as a texture cache hit reduces usage of 
memory bandwidth, but not the fetch latency [36]. Further-
more, several 32-bit loads from the consecutive addresses 
may be re-combined by a compiler in a single 64- or 128-bit 
memory instruction. It reduces the number of issued instruc-
tions and gives the warp scheduler an opportunity to increase 
the Instruction Level Parallelism (ILP) by launching addi-
tional instructions in the vacated execution slots. With the 
Kepler architecture, this scheme may even double the shared 
memory bandwidth by utilizing 64-bit memory banks more 
efficiently. Several papers show a significant performance 
improvement also on other architectures [29].

The described optimizations are performed automatically 
by the compilers from AMD and NVIDIA. The loops are 
unrolled and instructions are re-arranged as necessary to 
increase the hardware utilization. The loop unrolling not 
only allows the compiler to optimize the instruction flow, 
but also reduces the load on the ALUs. In particular, the 

computation of array indexes is replaced by static offsets at 
compilation stage. In some cases, however, it is possible to 
further improve the generated code by enforcing the desired 
unrolling factors and by targeting the occupancy. This is 
discussed in Sect. 6.9. Furthermore, the data layout may be 
adjusted in order to give compiler more options in optimiz-
ing the code flow. The algorithm described in Sect. 5.6 relies 
on a large number of independent operations to compensate 
the low occupancy. In Sect. 6.8 we optimize the data layout 
to enable the re-combination of memory instructions.

3.7  Scheduling

To provide high performance, the GPU architectures include 
multiple components operating independently. Texture 
fetches, memory operations, several types of arithmetic 
instructions are executed by different blocks of GPU in par-
allel. Hence, the kernel execution time is not determined as 
a sum of all operations, but rather is given by the slowest 
execution pipeline. One strategy to implement an efficient 
algorithm is to balance operations between available GPU 
blocks uniformly and minimize the time required to exe-
cute the slowest pipeline. Using this methodology we were 
able to gain significant performance improvements. Sec-
tion 6.6 discusses balancing of SFU and ALU operations to 
speed-up the linear interpolation on the Kepler architecture. 
Two different back-projection algorithms are combined in 
Sect. 7.1 to balance the load across all major GPU subsys-
tems. As result the proposed hybrid approach outperforms 
the fastest of the algorithms by 40% on Pascal and Maxwell 
architectures.

Each SM includes one or more warp schedulers which 
execute instructions of resident warps. Each scheduler is able 
to issue either a single instruction per-clock or at each clock 
to dual-issue two independent instructions from the same 
warp. On most architectures the number of warp schedul-
ers is synchronized with the number of independent ALU 
units. All available units are fully utilized if a single ALU 
instruction is scheduled by each warp scheduler at every 
clock cycle. The SM processor on Kepler, however, includes 
6 sets of ALUs, but only 4 warp schedulers [41]. To achieve 
100% utilization all SM schedulers are expected at each sec-
ond clock cycle to select two independent instructions from 
the execution flow and dispatch them to 2 different sets of 
ALU units. The VLIW architecture adopted by the older 
AMD GPUs requires 4 to 5 independent instructions in the 
flow for optimal performance [45]. The flow of independent 
instructions and dual-issue capabilities are also required to 
utilize multiple functional blocks of GPU in parallel.

Only a little official information is available about instruc-
tions which can be schedulled in parallel. The CUDA C 
Programming Guide states that SFUs are used to compute 
approximates of transcendent functions [36]. In fact, they 
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are also used to perform bit-mangling, type-conversions, and 
integer multiplication on the NVIDIA Kepler, Maxwell, and 
Pascal GPUs. We developed a micro-benchmark to verify if 
certain instructions can be dual-issued. The idea is to meas-
ure the throughput of each individual instruction and, then, 
compare it to throughput of their combination. The instruc-
tions are assumed to be executed by the same function unit 
if the combination runs slower than the slowest of the indi-
vidual instructions. In particular we found out that NVIDIA 
GPUs starting with Kepler execute rounding, type conver-
sion, and bit-shift operations in parallel with ALU instruc-
tions, but slow down the computation of sine and cosine 
approximates. Consequently, we assume that SFUs are used 
to execute these operations. On Maxwell and Pascal, the bit-
wise operations also slow down ALU instructions slightly. 
Both SFUs and ALUs are used in this case. However, the 
decrease is small and additional ALU-operations are still 
possible to execute in parallel. There is no parallelism of 
these operations on the AMD platform.

3.8  Synchronization

The GPU memory hierarchy and a few synchronization 
primitives are used to efficiently coordinate work between 
threads. The fast shared memory is used to exchange infor-
mation between threads of the same block. An even faster 
shuffle instruction is available on NVIDIA GPUs since the 
Kepler generation. It allows to exchange data stored in the 
registers of multiple threads belonging to the same warp 
[41]. Both CUDA and OpenCL provide a fast synchroniza-
tion instruction which ensures that all threads of a block 
have completed the assigned part of the work and reached 
the synchronization point. This allows to split execution of a 
kernel in multiple phases with different thread mappings. For 
example in the algorithm described in Sect. 6.2, the threads 
are first mapped to the elements of a cache and are used to 
prefetch data from global memory. After synchronization the 
threads are re-assigned to the pixels of output image and use 
the cached information to compute their intensities.

The synchronization may restrict the ability of the SM 
schedulers to benefit from the ILP parallelism if the groups 
of instructions aimed on different functional units are sepa-
rated by a synchronization primitive. Partial remedy is to 
allocate more resident blocks to SM by increasing occupancy 
or by using smaller blocks. Still, a well composed code usu-
ally results in better performance if it allows the compiler to 
re-arrange execution flow and dual-issue instructions.

3.9  Communication

Most GPUs include a pair of DMA engines and are able 
to perform data transfers over the PCIe bus in both direc-
tions in parallel with kernel executions. This, however, 

requires page-locked (non swappable) host memory. While 
OpenCL does not define how the page-locked memory can 
be obtained, in practice it can be done by allocating a host-
mapped GPU buffer. This is realized by calling clCreate-
Buffer with CL_MEM_ALLOC_HOST_PTR flag. While 
only the host buffer is required in this case, the command 
allocates also the GPU buffer. The memory overcommitting 
is, however, supported on NVIDIA platform. Consequently, 
only the host memory is actually reserved. The correspond-
ing GPU buffer is never accessed and, correspondingly, 
the GPU memory is not reserved. On the AMD platform, 
however, the memory is actually set aside for both buffers 
immediately. Consequently, the amount of GPU memory 
available to application is reduced. To enable parallel data 
transfer and computations, double buffering technique along 
with asynchronous CUDA/OpenCL API are typically used. 
The CUDA/OpenCL events are used for synchronization.

In addition to the DMA engines used for communication 
with the host memory, the professional series of GPUs also 
support a slave mode of DMA operation. In this mode the 
other devices on the PCIe bus are able to write data directly 
into the GPU memory. Starting with the Kepler micro-archi-
tecture, this feature is supported by the NVIDIA Tesla cards 
using the GPUDirect technology [46]. AMD provides the 
DirectGMA technology to enable the feature on the GCN-
based AMD FirePro cards [47]. The GPUDirect technology 
is already used in several MPI frameworks to speed-up com-
munication in Infiniband networks [48].

3.10  Summary

We summarize the properties of target GPUs in Table 10. 
Besides the hardware specification available in the vendor 
white papers, we present architecture-specific information 
obtained using micro-benchmarking and further investi-
gate the performance balance of different operations. Only 
characteristics important to implement fast back-projection 
kernel are included. For this reason, we only report through-
put of the floating-point, bit-mangling, and type-conversion 
instructions.

Compared to the GT200, the Fermi architecture signifi-
cantly improved the arithmetic capabilities, but the texture 
filter rate has not changed. Instead, the texture units got the 
ability to fetch 64-bit data at full speed. The Fermi GPUs also 
lost the capability to dual-issue instructions from the same 
warp and are the most restricted architecture of the considered 
ones concerning the ability to schedule instructions to differ-
ent execution pipelines in parallel. Consequently, the Fermi 
performance is likely improved if the number of the required 
instructions is reduced. One option is to organize the data 
in a way allowing wider 64/128-bit memory operations and 
texture fetches. The Kepler architecture massively improved 
the performance of the texture engine. But the throughput of 
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Table 10  List and specification of considered GPU architectures

NVIDIA GeForce [36] AMD Radeon [49]

GTX295a GTX580 GTX680 Titan GTX980 Titan X HD5970a HD7970 R9-290

Architecture GT200 Fermi Kepler Kepler Maxwell Pascal Cypress Tahiti Hawaii
Architecture Code Name GT200 GF110 GK104 GK110 GM204 GP104 VLIW5 GCN1 GCN2
Release year 2009 2010 2012 2013 2015 2016 2009 2012 2013
Reference [50] [37] [51] [41] [52] [53] [54] [39] [39]
Global memory

   Global memory (GB) 0.9 1.5 2 6 4 12 1 3 4
   Memory bandwidth (GB/s) 112 192 192 288 224 480 128 264 320
   L2 cache (KB) – 768 512 1536 208 3072 512 768 1024
   L2 bandwidth (GB/s) – 296 515 763 641 1351 371 710 970

Execution units
   Number of SM 30 16 8 14 16 28 20 32 40
   ALU reference clock (MHz) 1242 1544 1006 837 1126 1417 725 925 947
   ALU max turbo clock (Mhz) – – 1110 1202 1392 1911 – – –
   ALU benchmark clock (MHz)c 1242 1544 1006 993 1252 1759 725 925 947
   Warp schedulers (per SM) 1 2 4 4 4 4 1 5 5
   Max instructions per warp 2 1 2 2 2 2 5 1 1
   ALU units (per SM) 8 2 × 16 6 × 32 6 × 32 4 × 32 4 × 32 16 × 4 4 × 16 4 × 16
   SFU units (per SM) 2 4 32 32 32 32 16 – –
   Texture units (per SM) 2.66b 4 16 16 8 8 4 4 4
   ILP required for peak GFlops Yes No Yes Yes No No Yes No No

Hardware resources
   Warp size 32 32 32 32 32 32 64 64 64
   Max resident warps (per SM) 32 48 64 64 64 64 24 40 40
   Shared memory (KB/SM) 16 16–48 16–48 16–48 96 96 32 64 64
   Registers (KB/SM) 64 128 256 256 256 256 256 256 256
   Max 32-bit regs. per thread 128 63 63 255 255 255 248 256 256
   Regs. per thread at full occupancy 16 21 32 32 32 32 40 25 25

Shared and constant memory
   Shared memory banks 16 32 32 32 32 32 32 32 32
   Sh.mem bank width (bits) 32 32 64 64 32 32 32 32 32
   Sh.mem bank broadcasts Yes Yes Yes Yes Yes Yes No Yes Yes
   Speed-up using 64-bit loadsd – – 100% 100% – – 15%d 40% –
   Conflict-free loads (up to, bits) 32 64 128 128 128 128 64 64 64
   Sh.mem max bandwidth (GB/s) 1324 1581 2060 3559 2564 6304 1856 3789 4849
   C.mem. max bandwidth (GB/s)e 875 1511 1980 3120 4186 11500 928 7578 9697

Instruction throughput
   Units executing FP-insructions ALU,SFU ALU ALU ALU ALU ALU ALU,SFU ALU ALU
   Units executing bit-shiftsf ALU ALU SFU SFU ALU,SFU ALU,SFU SFU ALU ALU
   Units executing type-conversionsf ALU ALU SFU SFU SFU SFU SFU ALU ALU
   FP performance (GFlops)g 994h 1581 3090 5338 5128 12608 2320 3789 4849
   Bit-shift performance (G-ops) 331 395 258 444 1282 3152 232 1894 2424
   Type-mangling performance (G-ops) i 331 395 258 444 641 1576 232 1894 j 2424 j

Performane of texture engine
   Texture engine (GT/s) 51 49 129 222 160 394 58 118 152
   TE, 64-bit data, bi-linear (GT/s)f 25 49 123 204 156 398 26 55 113
   TE, 64-bit data, nearest (GT/s)f 25 50 132 212 156 400 52 103 131
   TE, 128-bit data, nearest (GT/s)f 12 25 70 114 79 200 49 116 147
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integer, bit-mangling, and type-conversion operations has actu-
ally slowed down compared to the Fermi devices. Further-
more, the ILP become a necessity for optimal performance. 
On Pascal, the amount and performance of the shared memory 
has doubled. While the amount of available registers has not 
changed, the generated code is typically requires less registers. 
Consequently, it is either possible to achieve higher occupancy 
or execute more sophisticated kernels at the same occupancy.

There is a few important differences between NVIDIA 
and AMD platforms. AMD provides less control over the 
code-generation. The NVIDIA compiler can be parametrized 
to use less registers for generated code. This option is not 
available for AMD. Neither of the considered AMD devices 
support the half-precision extension of the OpenCL specifi-
cation. While we can use the smaller data representation to 
reduce texture and shared memory bandwidth on NVIDIA 
platform, it is not possible to achieve it with AMD. On the 
other hand, the AMD devices are capable to perform full-
speed texture filtering also using 128-bit data if the nearest-
neighbor interpolation is selected. Furthermore, the ratio 
between the shared memory throughput and the perfor-
mance of the texture engine is 2 - 4 times higher on AMD 
devices. Consequently, it is more likely that caching of the 
fetched data in the shared memory will result in performance 
improvements. The organization of AMD Cypress GPUs 

differs from the other considered architectures significantly. 
It has very slow constant memory and relies on ILP paral-
lelism extensively. Five instructions has to be scheduled at 
each clock cycle for optimal performance. Vice-versa the 
GCN-based devices do not provide ILP. There is also no par-
allelism between floating-point and bit-mangling/type-con-
version instructions. The throughput of arithmetic operations 
is comparatively slow and is bottleneck for the proposed 
algorithms. There are also minor differences between two 
generation of GCN platform. The first generation of GCN 
chips performs better if 64-bit operations are performed on 
the shared memory. This is not required in the second gen-
eration of the architecture anymore. Starting with GCN2, the 
AMD devices are capable to perform 64-bit texture fetches at 
full pace also if bi-linear interpolation is employed.

To build an efficient implementation of the algorithm 
it is important to account for the described architectural 
differences. Across all architectures a good locality of the 
texture fetches has to be ensured and optimal access pat-
terns to global and shared memory has to be followed. It 
is necessary to adjust the algorithm flow to balance the 
load between different execution pipelines according to 
their hardware capabilities. Finally, also the right balance 
between ILP, streaming memory operations, and achieved 
occupancy has to be found.

The presented numbers are either taken from the referenced programming guide and specifications or computed based on the other presented 
values. All exceptions which are obtained using micro-benchmarking are indicated with footnotes.
aThe characteristics for a single GPU core are given
b On GT200 the texture units are not included in SM, but are part of Texture Clusters which includes several SM
cGPUBoost technology adjusts clock according to load and temperature. In this row we specify the approximate clock rate during the bench-
marks
dUsing 64-bit loads are only faster if two shared memory operations can’t be combined in a single VLIW instruction
e On NVIDIA platform the bandwidth of constant memory is obtained with benchmarking
fMeasured using micro-benchmarking
gMAD/FMA are counted as two operations
hGT200 is capable to launch 4 floating-point multiplications per SFU
iRounding operations and converting between 32-bit integer and floating-point types
j On GCN architectures, we have measured a 4-times higher type-mangling performance as compared to the values listed in the AMD specifica-
tion. The measured values are presented in the table

Table 10  (continued)

NVIDIA GeForce [36] AMD Radeon [49]

GTX295a GTX580 GTX680 Titan GTX980 Titan X HD5970a HD7970 R9-290

Performance ratios
   Constant to shared memories 1 1 1 1 2 2 0.5 2 2
   C.mem to texture (words/texels) 6.5 8 4 4 8 8 4 16 16
   Sh.mem to texture (words/texels) 6.5 8 4 4 4 4 8 8 8
   Type-conv to texture (Ops/texels) 6.5 8 2 2 4 4 4 16 16
   GFlops to texture (Ops/texels) 19.4 32 24 24 32 32 40 32 32
   GFlops to sh.mem (Ops/words) 3 4 6 6 8 8 5 4 4
   GFlops to type-conversion 3 4 12 12 8 8 10 2 2
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4  Tomographic reconstruction

At synchrotron imaging beamlines, information about X-ray 
attenuation or/and phase changes in the sample is used to 
reconstruct its internal structure. The objects are placed on 
a rotation stage in front of a pixel detector and rotated in 
equiangular steps. As the object rotates, the pixel detector 
registers a series of two-dimensional intensity images of 
the incident X-rays. Typically the X-rays are not detected 
directly, but converted to visible light using a scintillator 
placed between the sample and pixel detector. Then, the con-
ventional CCD cameras are used to record intensities which 
actually correspond to projections of the sample volume. 
Due to the rather large source-to-sample distance, imaging 
at synchrotron light sources is usually well described by a 
parallel-beam geometry. The beam direction is perpendicu-
lar to the rotation axis and to the lines of the pixel detector. 
Therefore, the 3D reconstruction problem can be split into a 
series of 2D reconstructions performed with cross-sectional 
slices. An origin of coordinate system coincides with center 
of sample rotation stage and rotation axis is anti-parallel 
to gravity. To reconstruct a slice, the projection values are 
“smeared” back over the 2D cross section along the direction 
of incidence and are accumulated over all projection angles. 
To compensate blurring effects, high-pass filtering of the 
projection data is performed prior to back projection [21].

The typical reconstruction data flow using parallel accel-
erators is represented on Fig. 4. The projections are loaded 
into the system memory either from a storage facility or 
directly from a camera and, then, transferred into the GPU 
memory before executing pre-processing or reconstruction 
steps. From cameras equipped with PCIe-interface it is also 
possible to transfer the projections directly into the GPU 
memory using GPUDirect or DirectGMA technologies. 
The later is supported by UFO framework [15]. The loaded 
projections are pre-processed with a chain of filters to com-
pensate the defects of optical system. Then, the projections 
are rearranged in order to group together the chunks of data 
required to reconstruct each slice. These chunks are called 
sinograms and are distributed between parallel accelerators 
available in the system in a round-robin fashion. Filtering 
and back-projection on each slice are performed on each 

GPU independently, the results are transferred back, and 
are either stored or passed further for online processing and 
visualization. To efficiently utilize the system resources, usu-
ally all described steps are pipelined. The output volume is 
divided into multiple subvolumes, each encompassing mul-
tiple slices. The data required to reconstruct each subvolume 
is loaded and send further trough the pipeline. While next 
portion of the data is loaded, the already loaded data is pre-
processed, assembled in sinograms, and reconstructed. The 
preprocessing is significantly less computational-intensive 
compared to the reconstruction and is often, but not always, 
performed on CPUs. OpenCL, OpenMP, or POSIX threads 
are used to utilize all CPU cores. The pre-processed sino-
grams are, then, distributed between GPUs for reconstruc-
tion. For each GPU a new data pipeline is started. While one 
sinogram is transferred into the GPU memory, the sinograms 
already residing in GPU memory are first filtered, then back 
projected to the resulting slice, and finally transferred back 
to the system memory. Event-based asynchronous API and 
double-buffering are utilized to execute data transfer in par-
allel with reconstruction. Basically, such approach allows to 
use all system resources including Disk/Network I/O, PCIe 
bus, CPUs, and GPUs in parallel.

A single row from each of the projections is required to 
reconstruct a slice of output 3D volume. These rows are 
grouped together in a sinogram. For the sake of simplic-
ity, we refer to these rows as projections while discussing 
reconstruction from sinograms. Each slice is reconstructed 
independently. First, each sinogram row is convolved with 
a high-pass filter to reduce blurring - an effect inherent to 
back-projection. The convolution is normally performed as 
multiplication in Fourier domain. The implementation is 
based on available FFT libraries. NVIDIA cuFFT is used 
on CUDA platform and either AMD clFFT or Apple oclFFT 
is utilized for OpenCL. For optimal FFT performance, mul-
tiple sinogram rows are converted to and from FFT domain 
together using batched transformation mode. After filtering, 
the buffer with filtered sinograms is either bind to texture 
on CUDA platform or copied into the texture if OpenCL is 
used. The pixel-driven approach is used to compute back-
projection. For each pixel (x, y) of the resulting slice, the 
impact of all projections is summed. This is done by com-
puting the positions rp where the corresponding back pro-
jection rays are originated and interpolating the values of 
projection bins around this position.

If � is an angle between consecutive projections, the posi-
tions are computed as follows:

As computation of trigonometric function is relatively 
slow on all GPU architectures, the values of cos(p�) and 
sin(p�) are normally pre-computed on CPU for all pro-
jections, transferred to GPU constant memory, and, then, 

(1)rp(x, y) = x ⋅ cos(p�) − y ⋅ sin(p�)

Fig. 4  The data flow in image reconstruction framework. The data 
is split in blocks and processed using pipelined architecture to effi-
ciently use all system resources
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re-used for each slice. Assuming this optimization, the back 
projection performance is basically determined by how fast 
the interpolation could be made. Two interpolation modes 
are generally used. The nearest neighbor interpolation is 
faster and better at preserving the edges while the linear 
interpolation reconstructs the texture better. While more 
sophisticated interpolation algorithms can be used as well, 
they are significantly slower and are rarely if ever used. All 
reviewed reconstruction frameworks rely on GPU texture 
engine to perform interpolation. This technique was first 
proposed in the beginning of the nineties for the SGI Reali-
tyEngine [55].

5  Back‑projection based on texture engine

The standard implementation described in previous section 
performs fairly good. The compilers included in the CUDA 
Framework and AMD APPSDK are optimize the execution 
flow automatically. The loops are unrolled and the opera-
tions are re-arranged to allow streaming texture loads as 
explained in the Sect. 3.6. Still, the default implementation 
does not utilize all capabilities of texture engine and sig-
nificant improvement can be achieved on all architectures.

5.1  Standard version

First, we will detail how the standard implementation works. 
Each GPU thread is responsible for a single pixel of output 
slice and loops over all projections to sum the contribution 
from each one. At each iteration, a projection is performed 
to find a coordinate where the ray passing through the recon-
structed image pixel hits the detector. The value at the cor-
responding position in the sinogram row is fetched using 
the texture engine and summed up with the contributions 
from other projections. The texture engine is configured to 
perform either nearest-neighbor or linear interpolation as 
desired. The projection is computed according to Eq. 1. To 
align the coordinate system with rotational axis, the position 
of the rotational axis is first subtracted from the pixel coordi-
nates and, then, added to the computed detector coordinate 
to find the required position in the sinogram. To compensate 
for possible distortions of imaging system during the experi-
ment, the rotational center is not constant, but may include 
per-projection corrections. Sine and cosine of each projec-
tion angle as well as the corrected position of the rotation 
axis are read from a buffer in the constant memory which is 
generated during the initialization phase. The computation 
grid is split in square blocks of 16-by-16 threads. It results 
in optimal occupancy across all considered platforms. The 
corresponding pseudo-code is presented in Algorithm 1. 

Input: Texture and the projection constants cC∗ .
Dimensions (n∗) and parameters (v∗) as specified in
Table 2.5. The indexes (m∗) and other used
variables are described in Table 2.6 and 2.7

Output: Reconstructed slice r̃G

begin
r̃ = 0
fg = mg − va

for (p = 0; p < np; p += 1)
h = cCa [p] + fg.x ∗ cCc [p] − fg.y ∗ cCs [p]
r̃ += tex2d(h + 0.5, p + 0.5)

end
r̃G[mg.y,mg.x] = r̃

end

Algorithm 1: Standard implementation of the back-
projection kernel

The CUDA platform supports two slightly different 
approaches to manage textures: the texture reference API 
and the texture object API [36]. The texture reference API is 
universal and is supported by all devices. The texture object 
API is only supported since Kepler architecture. While the 
reference API can be used on all devices, as we found out 
the object API outperforms it on the devices with compute 
compatibility 3.5 and later. Therefore, we use the reference 
API for GT200, Fermi, and the first generation of Kepler 
devices and the object API for all newer architectures.

5.2  Multi‑slice reconstruction

The texture engines integrated in all recent generations 
of GPUs are capable filter 8-byte data at the full pace, see 
Sect. 3.4. The standard reconstruction algorithm can ben-
efit from this feature only if changed to double-precision 
for better accuracy. But this have a little use in practice. In 
parallel tomography, however, exactly the same operations 
are performed for all the reconstructed slices. Therefore, it 
is possible to reconstruct multiple slices in parallel if the 
back projection operator is applied to a compound sinogram 
which encodes bins from the several individual sinograms 
as vector data. Particularly, it is possible to construct such 
sinogram using float2 vector type and interleave values from 
one sinogram as x components and from another as y, see 
Fig. 5. With float2-typed texture mapped on this interleaved 
sinogram, it is possible to fully utilize the bandwidth of the 
texture engine and reconstruct two slices in parallel. The 
interleaving is done as an additional data preparation step 
between filtering and back projection steps. The back pro-
jection kernel is, then, adjusted to use the float2 type and 
writes the x component of the result into the first output slice 
and the y component into the second. There is a consider-
able speed-up on all relevant architectures as can be seen 
on Fig. 6.
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5.3  Using half‑precision data representation

Since the NVIDIA texture engine is currently limited to 
8-byte vectors, the proposed approach can’t be scaled to 4 
slices if the single-precision input is used. However, CUDA 
supports half-precision data type which encodes each float-
ing-point number using 16 bits only. While reduced preci-
sion might affect the quality of reconstruction, the majority 
of cameras has only a dynamic range of 16 bits or bellow. 
High-speed cameras actually used for time-resolved syn-
chrotron tomography have even a lower resolution of 10-12 
bits only. Since the higher frequencies in a sinogram are 
amplified during the filtering step, it is impossible to repre-
sent the filtered sinograms by integer numbers without loss 
of precision. However, using a half-precision floating-point 
representation to store the input data should have a limited 
impact on the resulting image quality if all further arithmetic 
operations are performed in single-precision. Unfortunately, 
the half-precision textures are not supported in the latest 
available version of CUDA yet (CUDA 8.0). While one can 
store the half-precision numbers in the GPU memory, it is 
impossible to map the corresponding texture. Still, it is pos-
sible to speed-up the reconstruction if the nearest-neighbor 
interpolation mode is selected. After filtering, the sinograms 
are down-sampled to the half-precision format and inter-
leaved. The texture-mapping is created using the float2 data 
type. Upon request the texture engine returns the nearest 
value without performing any operations on it. Therefore, 
the appropriate data is returned even if an incompatible for-
mat is configured. It is important that the data size is correct. 
To avoid further penalty to the precision, the half-precision 
numbers are immediately casted to single-precision using 
__half22float2 instruction and all further operations are per-
formed in single-precision as usual.

The Fig. 6 indicates a significant speed-up on all NVIDIA 
architectures except Kepler. As can be seen from Table 10, 
the type casting is very slow on Kepler and caps the per-
formance gains. The proposed method is also not viable 
on AMD platform. Neither of the considered AMD GPUs 
support half-precision extension of OpenCL specification. 
Without this extension, no hardware instruction is available 
to convert between half-precision and single-precision. 
While such conversion can be performed using several bit 
mangling operations, it would cap the possible performance 
gain as well.

The penalty to the quality of the reconstruction induced 
by reduced precision is evaluated in Figs. 7 and 8. It is 
negligible for both synthetic Shepp Logan phantom and 
the selected dataset with the measured data. However, the 
behavior for different real-world measurements may vary, 
especially if projections are obtained using a camera with 

Fig. 5  Interleaving two sinograms to allow utilization of full 8-byte 
filtering bandwidth on post Fermi NVIDIA GPUs

Fig. 6  The figure evaluates efficiency of optimizations proposed for 
texture-based back-projection kernel. The measured throughput is 
compared to the maximum filter rate of a texture engine and the per-
formance is reported as a percent of achieved utilization. The results 
are reported also for processing multiple slices in parallel. The near-
est-neighbour interpolation is used to measure performance if 4 slices 
are reconstructed in parallel. On NVIDIA platform the data is also 
stored in the half float data representation in this case. For single- and 
dual-slice reconstruction, the performance is measured for bi-linear 
interpolation mode and the sinogram is stored in the single-precision 
floating point format on all platforms. The blue bars show perfor-
mance of the standard Algorithm 1 just modified to process multiple 
slices in parallel. The green bars show improvements due to a better 
fetch locality. The red bars show the maximum performance achieved 
by using Algorithm 3 with optimal combination of tweaks explained 
through Sect.  5. Table  13 summarizes the architecture-specific 
parameters used at each GPU. The utilization is reported according to 
the supported filter rate, not the bandwidth. While the lower utiliza-
tion is achieved for multi-slices reconstruction modes, the actual per-
formance is higher as 2-/4-slices are processed using a single texture 
access
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high dynamic range. As the optimization proposed in this 
subsection changes the reconstruction results, it is impor-
tant to verify that the achieved quality is still satisfactory 
for the considered application.

5.4  Efficiency of the standard algorithm

The Fig. 6 evaluates efficiency of texture engine utilization. 
While performance in a single-slice processing mode is 
close to theoretical maximum on a majority of the consid-
ered architectures, the efficiency drops significantly if multi-
ple slices are reconstructed in parallel. The AMD cards and 
the cards based on the NVIDIA Kepler architecture show 
sub-optimal performance also in a single-slice reconstruc-
tion mode.

As was discussed in Sect. 3.7, GPU architectures include 
multiple functional blocks operating independently. The per-
formance of the GPU application is typically restricted by 
the slowest and/or most loaded of these blocks. Secondly, 
complex algorithms require a large amount of hardware 
resources like registers and shared memory. Large footprint 
on resources may constrain parallelism and, consequently, 
limit an GPU ability to hide memory latencies and sched-
ule load across all available functional units. The discussed 
algorithm relies on:

• Texture engine to fetch and interpolate data
• ALUs to find the ray incidence point
• Constant memory to load projection constants
• The SFU units are used for type conversions and integer 

multiplication on the recent NVIDIA devices. The major 
load is from conversion between half- and single-preci-
sion formats in 4-slice reconstruction mode. The SFUs 
are also used for addressing constant memory arrays and 
to convert a loop index to the texture-coordinate along 
the projection axis.

The standard algorithm has a small register footprint and 
all GPUs provide enough computing power to find inci-
dence points. The performance of the texture engine, how-
ever, is sub-optimal across all architectures if multi-slice 
reconstruction is performed. The reason is the bad locality 
of the texture fetches. The AMD GPUs are also restricted 
by the performance of the texture cache if only a single-
slice is reconstructed. On top of that, the Kepler and AMD 
VLIW systems have comparatively slow constant memory 
which also bounds the performance bellow the theoretical 
throughput. Finally, the low SFU performance on the Kepler 
GPUs restricts the reconstruction if half-float format is used 
to store the sinograms. More information about GPU capa-
bilities and the relative performance of GPU components is 
given in Table 10.

Fig. 7  Comparison of two reconstructions of the Shepp Logan Head 
Phantom using a single-precision (red) or half-precision (green) 
input. A profile (top) and absolute difference between reconstructions 
(bottom) are shown along the line crossing maximum of features on 
the phantom. Due to very small differences between reconstructions, 
the red and green lines completely overlap in the top plot

Fig. 8  Comparison of two reconstructions of the fossilized wasp data-
set using a single-precision (red) or half-precision (green) input. A 
profile (top) and absolute difference between reconstructions (bottom) 
are shown along the selected line crossing multiple features. Due to 
very small differences between reconstructions, the red and green 
lines completely overlap in the top plot
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5.5  Optimizing locality of texture fetches

The standard algorithm maps each GPU thread to a single 
pixel of output slice. The default mapping is linear: the 
thread with coordinates (x, y) in a computational grid is 
used to reconstruct the pixel with coordinates (x, y) in a 
slice. Since every thread in a wrap reconstructs consecu-
tive pixel along x axis, a large range of sinogram bins is 
always accessed. Up to 16 different locations is fetched 
by a warp if 16-by-16 thread blocks are utilized. As it was 
discussed in the Sect. 3.4, the locality of fetches within a 
block, a warp, and also within a group of 4 consecutive 
threads is important to keep the texture engine running at 
full speed.

To improve the locality of the texture fetches, a new 
thread-to-pixel mapping is proposed. The thread blocks 
assignments are kept exactly the same as in the stand-
ard version. I.e. each block of 256 threads is responsible 
for an output area of 16-by-16 pixels. However, this area 
is further subdivided into 4-by-4 pixel squares. Within 
each square, the threads are mapped along Z-order curve 
as illustrated in Fig. 10, left. Then, a group of 4 threads 
fetches positions in a sinogram row which are maximum 
3 bins apart. And only up to 5 elements are required to 
perform corresponding linear interpolations. The data 
required for 16 threads is limited to 8 bins only. Table 11 
shows the effect of remapping for the 1- and 2-slice recon-
struction on NVIDIA Titan X GPU. According to Fig. 6 a 
significant speed-up is also achieved on other architectures 
unless the performance is also capped by other factors.

The pseudo-code to compute the new thread indexes is 
given in Algorithm 2. The only required modification in 
Algorithm 1 is to use the updated indexes m′

t
 in place of 

ones reported by CUDA/OpenCL. 

Input: mt is the original mapping as reported by
CUDA/OpenCL

Output: m 1
t is a new mapping proposed in section 5.5 to

improve locality of the texture fetches. mp and

m 2
t define an alternative mapping allowing also

to reduce the load on constant memory as
explained in section 5.6.

begin
/* Each thread is responsible for one of 4 pixels

laying within a small 2x2 pixel square which is
in its own right is one of 4 squares composing
the larger 4x4 pixel block. Here we determine the
sequential number of pixel in small square, the
sequential number of the small square in the
larger pixel block, and the sequential number of
these block. */

blockn = mt.y
squaren = mt.x / 4
pixeln = mt.x % 4
/* Converting the sequential number to x,y

coordinates. */
block = {blockn % 4, blockn / 4}
square = {squaren % 2, squaren / 2}
pixel = {pixeln % 2, pixeln / 2}
/* Compute the actual pixel offset for the first

mapping */

m 1
t = 4 ∗ block + 2 ∗ square + pixel

/* Compute the projection and pixel offset for the
second mapping */

m 2
t = 2 ∗ square + pixel

m
2
t .x += 4 ∗ block.x

mp = block.y

end

Algorithm 2: Optimizing thread mapping for the better
cache locality and reduced load on constant memory

5.6  Optimizing memory bandwidth

Even though the new thread mapping gives a significant 
speed-up on a majority of considered architectures, the per-
formance on Kepler and AMD VLIW GPUs is still bound 
by the slow constant memory. To process a projection, GPU 
threads load several geometric constants to locate point of 
incidence as defined in Eq. 1. These constants can be re-used 
multiple times if each GPU thread would reconstruct several 
pixels. Since pixels are reconstructed independently, it will 
also increase the number of independent instructions in the 
execution flow and improve a scheduler ability to hide mem-
ory latencies and to issue multiple instructions per clock. 
There are two approaches how to adapt thread-to-pixel map-
ping. Either the number of threads in a computational grid 
is reduced proportionally or a new mapping scheme is con-
structed in a way that the same amount of threads is running 
but each thread contributes to multiple resulting pixels. The 
later can be achieved by processing several projections in 
parallel. Then, each thread is responsible for a group of pix-
els but loops over a subset of all projections only. Another 
thread would contribute to the same group of pixels but from 
a different subset of projections.

Table 11  Queries to texture cache with standard and optimized map-
ping on NVIDIA GeForce Titan X (Pascal)

The table compares efficiency of the texture fetches using standard 
linear mapping scheme and the new scheme with improved locality. 
The measurements obtained using NVIDIA profiler for the 1- and 
2-slice reconstruction modes. The table lists:
aNumber of 32-byte queries issued to texture cache per fetch
bHit rate of the texture cache,
c L2 cache hit rate
dAchieved reconstruction performance in giga-updates per second

Slices Approach Queriesa Tex. hitsb L2 hitsc Perf.d

1 Standard 0.43 96.0% 89.0% 381 GU/s
Remapped 0.39 95.5% 89.4% 376 GU/s

2 Standard 0.61 91.5% 88.6% 534 GU/s
Remapped 0.53 93.8% 88.3% 724 GU/s
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Both methods perform similarly if properly optimized for 
the target GPU. Using the second approach, however, the 
dimensions of computational grid stay unchanged. Conse-
quently, it has advantage for region of interest (ROI) and 
small-scale reconstructions. For this reason, we focus on this 
method and elaborate how it is implemented and tuned to 
run efficiently across platforms. To preserve good locality of 
texture fetches, the mapping described in previous section is 
adapted with small changes. The thread blocks assignments 
are kept the same. Each block is responsible for an output 
area of 16-by-16 pixels and this area is further subdivided 
into 4-by-4 pixel squares. In contrast to original mapping, 
however, 64 threads are assigned per square. Each thread is 
responsible to compute a contribution to the pixel value from 
a quarter of all available projections. Hence, each thread 
processes 4 pixels and each pixel is reconstructed using 4 

threads. To avoid costly atomic operations, the contribu-
tions of the projection subsets are summed independently. 
Then, the threads are re-assigned to perform reduction in 
the shared memory and compute the final value of a pixel. 
To preserve a good spatial locality of the texture fetches, 4 
neighboring projections are processed in parallel and the 
threads step over 4 projections at each loop iteration.

There are 256 threads in a block and 64 threads are 
assigned to reconstruct each 4-by-4 pixel square. Therefore, 
4 such squares are processed in parallel and a complete set of 
16 squares requires 4 steps of a loop. Figure 9 shows several 
possible sequences to serialize processing. The first mapping 
is sparse and results in a reduced cache hit rate as compared 
to the other options. Since only a single pixel coordinate has 
to be incremented in a pixel loop, the third option requires 
less registers compared to the second. While the second 
mapping has a better access locality within the 64-thread 
warps of the AMD platform, it does not affect performance 
in practice. On other hand, the register usage is very high 
in multi-slice reconstruction modes and the extra registers 
cause reduced occupancy or the spillage of registers into the 
local memory. Therefore, the third approach is preferred.

A request to multiple locations in the constant memory 
by a warp is serialized on NVIDIA platform. To avoid such 
serialization, all threads of a warp are always assigned to the 
same projection. The following mapping scheme is adopted. 
The lowest 4 bits of the thread number in a block define 
the mapping within a 4-by-4 pixel square. A group of 16 
threads follows Z-curve as explained in the Sect. 5.5. Next 
2 bits define a square and the top 2 bits define the processed 
projection. Figure 10 illustrates the proposed mapping and 
Algorithm 2 provides the corresponding pseudo-code.

The pseudo-code for the complete approach is presented 
in Algorithm 3. There are two distinct processing steps. First 
the partial sums are computed in an 4-element array. It is 
declared as a local variable and both NVIDIA and AMD 
compilers are able to back it with registers because of the 
fixed size. The outer loop starts from the first projection 
assigned to a thread and steps over the projections which 
are processed in parallel. The large loop-unrolling factor 
requested with pragma preprocessor directive has a posi-
tive impact on performance, especially on Kepler architec-
ture. At each iteration constants are loaded and inner loop 
is executed to process 4 pixels the thread is responsible for. 
After completion of all projections, the reduction loop is 
executed. The partial sums are written into shared memory 
and reduction is performed. To avoid non-coalesced global 
memory writes, first all results are stored in a shared mem-
ory buffer r̃S and, then, written in the coalesced manner. The 
synchronization is needed when switching different map-
ping modes. Since each reduction is performed by a single 
warp only, it is sufficient to prevent compiler from reorder-
ing read and write operations in-between of reduction steps 

Fig. 9  The figure illustrates several ways to assign a block of GPU 
threads to an area of 16-by-16 pixels. Since 4 projections are pro-
cessed at once, only 64 threads are available for entire area and it take 
4 steps to process it completely. For each possible scheme in gray are 
shown all pixels which are processed during the first step in paral-
lel. The first mapping (left) is sparse and results in increased cache 
misses. The second mapping (center) requires more registers and may 
cause reduced occupancy. So, the third mapping (right) is preferred

Fig. 10  Mapping of a block with 256 threads to reconstruct a square 
of 16-by-16 pixels along 4 projections. 4 steps are required to process 
all pixels. A group of 64 consecutive threads is responsible to pro-
cess a rectangular area of 16 by 4 pixels (middle). 4 projections are 
processed in parallel using 4 such groups (right). Each 4-by-4 pixel 
square is reconstructed by 16 threads arranged along Z-order curve 
(left). For each output pixel or block of pixels, the assigned range of 
threads is shown in the figure
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using fence operation. Alternatively, the shuffle operation 
may be utilized to perform reduction on Kepler and newer 
NVIDIA architectures. Then, neither fence nor if-condition 
are required. The reduction loop using the shuffle instruction 
is shown in Algorithm 4.

for(j = 0; j < 2; j++) {
i = 2 >> j;
...

}

Input: Texture and the projection constants cC∗ .
Dimensions (n∗) and parameters (v∗) as specified in
Table 2.5. The indexes (m∗) and other used
variables are described in Table 2.6 and 2.7.
Mappings m 2

t and mp are computed as explained
in Algorithm 2.

Shared: s̃S [64][4], r̃S [16][16]
Output: Reconstructed slice r̃G

begin
/* Computing pixel coordinates using the new mapping

*/

m 2
g = mb ∗ nt + m 2

t

f ′g = m 2
g − va

/* Computing partial sums */
s̃[4] = {0}
for (p = mp; p < np; p += 4)

cs = cCs [p].y
h = cCa [p] + f ′

g.x ∗ cCc [p] − f ′
g.y ∗ cCs [p] + 0.5

for (q = 0; q < 4; q += 1)
s̃[q] += tex2d(h, p + 0.5)
h −= 4 ∗ cs

end
end
/* Reduction */

m 3
t = {mt.x % 4, 4 ∗ mt.y + mt.x / 4}

for (q = 0; q < 4; q += 1)
/* Moving partial sums to shared memory */

s̃S [nt.x ∗ m
2
t .y + m

2
t .x][mp] = s̃[q]

sync
/* Performing reduction */
for (i = 2; i ≥ 1; i /= 2)

if m
3
t .x < i then

s̃S [m 3
t .y][m 3

t .x] += s̃S [m 3
t .y][m 3

t .x+ i]

end
fence

end
/* To coalesce global memory writes, results are

grouped in shared memory */

if m
3
t .x == 0 then

r̃S [4∗q+m
3
t .y/16][m 3

t .y%16] = s̃S [m 3
t .y][0]

end
sync

end
r̃G[mg.y][mg.x] = r̃S [mt.y][mt.x]

end

On GTX295 using CUDA6, there are a few glitches 
significantly affecting performance. The fence instruction 
prevents unrolling of the reduction loop. Consequently, 
the array with partial sums is referenced indirectly using 
the loop index. This forces the compiler to allocate 
array in the local memory instead of using registers and 
causes enormous penalty to the performance. Therefore, 

a standard __syncthreads is used instead. The loop is also 
not unrolled if the inner reduction loop is implemented 
directly as written in Algorithm 3. The following formula-
tion causes no issues: 

for (q = 0; q < 4; q += 1)
/* Moving partial sums to shared memory */

s̃S [nt.x ∗ m
2
t .y + m

2
t .x][mp] = s̃[q]

sync
/* Performing reduction */

r̃ = s̃S [m 2
t .y][m 2

t .x]
for (i = 2; i ≥ 1; i /= 2)

r̃ += shfl xor(r̃, i, 4)
end
/* To coalesce global memory writes, the results are

grouped in shared memory */

if m
3
t .x == 0 then

r̃S [4 ∗ q + m
3
t .y / 16][m 3

t .y % 16] = r̃
end

sync
end

Algorithm 4: The reduction loop of Algorithm 3 using
shuffle instruction

The GPU constant memory is optimized with 
the  assumption that always the same constants are 
accessed by all threads of a computational grid. Since the 
new algorithm goes over several projections in parallel, 
this assumption is not valid any more. While the proposed 
mapping avoids major penalty due to warp serialization, 
slow constant memory is still a bottleneck on older AMD 
devices. To avoid performance penalty, faster and larger 
shared memory is used instead in this case. The projec-
tion constants are initially stored in global GPU memory 
and, then, are cached in shared memory. The Algorithm 5 
contains alternative implementation of the accumulation 
step for Algorithm 3. Shared memory is additionally con-
figured to store constants for up to 256 projections. In fact, 
the same shared memory buffer may be used in the both 
steps of algorithm, first for caching constants and later 
for a data exchange while performing reduction. An outer 
loop processing blocks of 256 projections is introduced. 
At each iteration of the loop, the threads of a block are, 
first, used to read the constants from global memory and 
fill the cache. To allow 64-bit loads, we use a float2 vari-
able to store values of both trigonometric functions. After 
synchronization, the inner projection loop is started to 
compute partial sums. The inner loop is implemented as in 
Algorithm 3 with only difference that constants are loaded 
from shared memory. This method, however, cannot be 
used across all platforms. While majority of NVIDIA 
GPUs showed similar performance for both implemen-
tations, Kepler-based GPUs perform better if constant 
memory is utilized.
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Input: Similar to Algorithm 3, but projection constants
cG∗ are provided in global GPU memory

Shared: cS
cs[sp], c

S
a [sp]

for (pb = 0; pb < np; pb += sp)
/* Caching projection constants in shared memory */
ml = mt.y ∗ nt.x + mt.x

cS
cs[ml] = {cGc [pb + ml], cGs [pb + ml]}

cSa [ml] = cGa [pb + ml]
sync

/* Computing partial sums */
for (p = mp; p < min(sp, np − pb); p += 4)

cs = cScs[p].y
h = cSa [p] + f ′

g.x ∗ cScs[p].x − f ′
g.y ∗ cScs[p].y + 0.5

for (q = 0; q < 4; q += 1)
s̃[q] += tex2d(h, pb + p + 0.5)
h −= 4 ∗ cs

end
end

sync
end

Algorithm 5: The main loop of Algorithm 3 modified to
cache geometrical constants in the shared memory

5.7  Optimizing occupancy

Similarly to the standard algorithm, the optimized version 
can be easily adapted to process 2- and 4-slices in paral-
lel. Only accumulators and intermediate buffers have to be 
declared with the appropriate vector type. However, the 
usage of hardware resources grows significantly if multi-
ple slices are processed in parallel. In a 4-slice mode, 16 
registers (32-bit each) are required only to accumulate the 
partial sums. The large register footprint reduces occupancy 
and may result in a sub-optimal performance unless treated 
properly.

The register allocation is completely out of developer 
control on AMD platform. NVIDIA allows to target the 
desired number of blocks executed by each SM in parallel. 
It is done using __launch_bounds__ keyword. The CUDA 
optimizer, then, changes the code generation algorithm to 
meet the target. It prevents data pre-fetching and also may 
result in an increased computational load and/or in a more 
intensive usage of L1 caches as a part of local variables is 
offloaded to local memory. On Fermi and Kepler architec-
tures, 64 KB of on-chip memory is split between L1-cache 
and shared memory according to the user-specified con-
figuration. By default 48 KB is assigned to shared memory 
and only 16 KB is left for L1 cache. If the shared memory 
consumption is low enough, it is possible to re-balance this 
ratio and achieve a high occupancy on one hand and ensure 

that there is enough L1 cache to back all the required local 
memory on the other.

The Table 12 summarizes resource consumption, theoret-
ical occupancy, and achieved performance on the NVIDIA 
GTX Titan with and without resource restriction. The results 
show that improved occupancy may bring a considerable 
speed-up also if significant number of variables has to be 
offloaded to local memory, provided it is backed by L1 
cache. Without restriction the generated code requires 38 
registers if 2-slice reconstruction mode is enabled. This lim-
its the number of resident threads to 1724 or 6 blocks and 
results in 75% occupancy. The performance is improved by 
15% if CUDA compiler is instructed to allow execution of 8 
blocks, i.e. running at full occupancy. To fulfill this require-
ment the compiler puts 6 variables in the local memory. 
However, 16 KB of L1 cache is not enough to assure backing 
of the required local memory for 8 resident blocks. On other 
hand, only 4 KB of shared memory is required per block 
for temporary buffers or 32 KB for all 8 blocks. Therefore, 
the ratio between L1 cache and shared memory is shifted 
to allow 32 KB of L1 cache. This is done using cudaFunc-
SetCacheConfig command with cudaFuncCachePrefer 
argument to specify preference for L1 cache. The recom-
mended restrictions for other architectures are summarized 
in Table 13

Both shared and constant memories are comparatively 
slow on Kepler with respect to the performance of the tex-
ture engine, see Table 10. Furthermore, 64-bit access is 
required to fully utilize the available bandwidth of shared 
memory. This is given in the multi-slice reconstruction 
mode. However, 64-bit operation should be also enabled in 
CUDA using cudaDeviceSetSharedMemConfig command 
with cudaSharedMemBankSizeEightByte argument. The 
constant memory also performs better if 64- or 128-bit wide 
access is performed. A speed-up is achieved if all projection 
constants are grouped together and stored as a single float4 
vector. Even if only 3 components of the vector are actually 
required (i.e. one quarter of bandwidth is actually wasted), 
the performance is considerably better.

5.8  Summary

We have introduced a new cache-aware algorithm which is 
able to reconstruct up to 4 slices in parallel. Several modi-
fications are proposed to improve performance on specific 
GPU architectures. The optimal configuration and the cor-
responding performance are summarized in Table 13. The 
achieved efficiency is further analyzed on Fig. 6. For a 
single slice reconstruction mode, the performance is above 
90% of the theoretical maximum across all considered 
platforms. Depending on the architecture, it corresponds 
to a speed-up of up to 90% as compared to the origi-
nal algorithm. Using the multi-slice reconstruction and 

Table 12  Occupancy and performance of NVIDIA GeForce GTX 
Titan (Kepler) using 2-slice reconstruction mode

Restricted Registers Local Mem. Occupancy (%) Performance

No 38 – 75 320 GU/s
Yes 32 24 bytes 100 368 GU/s
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half-float data representation, it is possible to quadruple 
performance on Fermi and the latest AMD and NVIDIA 
architectures. Efficiency of about 80-90% is achieved if the 
optimized reconstruction kernel is utilized. The efficiency 
of Kepler GPUs is restricted due to comparatively slow 
on-chip memory and low performance of SFU units which 
are used to perform type mangling operations. Neverthe-
less, 2 to 3 times speed-up over the standard single-slice 
algorithm is achieved due to the proposed optimizations.

6  Alternative algorithm based on ALUs

While it is possible to reach a very high reconstruction speed 
by processing multiple slices in parallel, this option is not 
available on all GPUs. Furthermore, the ability to re-combine 
slices for parallel reconstruction may be limited due to archi-
tecture of data processing pipeline or by the latency require-
ments. According to specifications, the majority of GPUs are 
able to perform over 32 floating-point operations during a sin-
gle texture fetch, see Table 10. Only 9 floating-point opera-
tions are required to perform a single update of back projection 

algorithm [55]. Therefore, an alternative implementation using 
the algebraic units to perform interpolation may outperform 
the texture-based kernel by 3-times if executed on a single 
slice. The challenge is to feed the data into the floating-point 
units at the required rate. The L1 cache integrated in SM is 
small with low associativity and, consequently, is susceptible 
of cache poisoning. As result, the loads from global memory 
limit performance severely. In this section we present a back 
projection algorithm based on ALU to perform interpolation 
and using shared-memory as an explicit cache. First, we will 
explain the concept and present a base version of the algo-
rithm. Then, we build a simplified performance model and 
analyze that limits the performance on each of the hardware 
platforms. Finally, multiple adjustments are discussed to 
slightly shift balance between memory operations and differ-
ent types of computations and to address the capabilities of a 
specific architecture better.

6.1  The concept

The proposed approach is illustrated on Fig. 11. To avoid 
the penalties associated with global memory loads, shared 
memory is used to cache all bins required for reconstruction 
by a block of threads. To reserve a large enough buffer for 
the cache, it is necessary to find an upper bound of bins (b) 
required to reconstruct a rectangular block of pixels (S) with 
dimensions n by m. It is defined as

where rp(x, y) is the incident offset in a projection row which 
is computed as defined in Eq. 1. If ( x0 , y0 ) is the coordinates 
of maximum of rp and ( x1 , y1)—of minimum, the equation 
can be reformulated as

or

where � is some angle. Then, bp can be estimated as:

It is independent of processed projection and is minimal 
if the area S is square. In this case the value of b does not 
exceed n ⋅

√

2 . For practical purposes we assume that 3
2
n 

bins are required per projection to reconstruct a full pixel 
square with side n. To perform caching, it is necessary to 
find the minimal required bin ( hm ) for each projection. 

bp = max
(x,y)∈S

rp(x, y) − min
(x,y)∈S

rp(x, y)

bp = (x0 − x1) ⋅ cos(p�) − (y0 − y1) ⋅ sin(p�)

bp =

√

(x0 − x1)
2 + (y0 − y1)

2
⋅ cos(� + �)

bp ≤
√

(n)2 + (m)2 ⋅ cos(� + �)

Table 13  Performance and configuration of cache-aware texture-
based back-projection kernel

The table summarizes the performance and optimal configuration for 
the texture-based back-projection kernel. Information is provided for 
all supported slice-modes

Configuration

GPU nv Perf. Occupancy L1/ShMem Cache

GTX295 1 49 GU/s 75% – –
GTX580 1 49 GU/s 50% 16/48 –

2 97 GU/s 50% 16/48 –
4 172 GU/s 50% 16/48 –

GTX680 1 118 GU/s 100% 16/48 –
2 232 GU/s 100% 32/32 –

Titan 1 200 GU/s 100% 16/48 –
2 362 GU/s 100% 32/32 –

GTX980 1 155 GU/s 100% – –
2 304 GU/s 100% – –
4 555 GU/s 75% – –

Titan X 1 389 GU/s 100% – –
2 726 GU/s 100% – –
4 1396 GU/s 75% – –

HD5970 1 56 GU/s – – 256
HD7970 1 115 GU/s – – 256
R9-290 1 146 GU/s – – 256
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Then, the reconstruction is performed in two stages. First, 
the required bins are cached for a set of projections. After-
wards, the reconstruction is performed using the data in the 
cache. To perform caching, the threads of a block are split 
in several groups. Each group is responsible to cache bins 
for a single projection. A subset of a sinogram row consist-
ing of 3

2
n bins is extracted starting at an offset equal to the 

hm . Based on a thread index in a group, the offset in a sino-
gram is computed and the corresponding bin is cached in a 
shared memory array. If necessary, a few bins with a stride 
equal to a number of threads in a group are cached by the 
same thread. The threads of a block are, then, re-assigned 
to match the output pixels and process the contributions 
from the cached projections in a loop. As usual, the threads 
determine a position where the ray passing through the 
reconstructed pixel hits the detector row. The correspond-
ing bin in a sinogram is computed by each thread and an 
offset from the hm value is found. Typically the offset is not 
integer and falls in between of two cached values. Depend-
ing on the configured interpolation mode either the offset is 
rounded to the nearest integer and a single value is loaded 
from shared memory or both neighboring values are loaded 
and the linear interpolation is performed to compute the 
impact of a projection.

Both steps depend on the hm to perform caching and 
to locate the required value in the cache. This operation 
is costly and would add significantly to computation bal-
ance if executed by each thread and for each projection. 
To reduce amount of required operations, the hm values 
are cached in the shared memory during the first stage of 
algorithm and, then, re-used in the second. Furthermore, 
the minimal bin is always accessed while reconstructing 
one of the corners of the pixel square. The actual corner 
is only depending on the projection angle and is the same 
across all squares of the reconstructed slice. Therefore, 
a single value is required for each projection to compute 
minimal bin. This value ( cm ) can be defined as the differ-
ence between the position accessed to compute a top-left 
pixel of a square and the minimal position accessed across 
this square. Then, it is computed as:

Using cm , the minimal required bin ( hm ) is computed as: 
hm = floor(hb + cm) , where hb is the bin accessed by the first 
thread of a block. It is computed based on a index of a thread 
block in the computational grid as described in Table 7. The 
cm is computed during the initialization stage and is stored 
along with other projection constants in the GPU constant 
memory.

cm = n ⋅max(0, cos(�p),− sin(�p), cos(�p) − sin(�p))

Multiple auxiliary operations are required to perform 
reconstruction. The sinogram values are fetched from the 
cache, interpolated, and summed up. On top of that, the 
hm is computed for each projection, the selected parts of 
sinogram are cached, and the corresponding positions in 
the projection cache are determined for each pixel. These 
operations add an additional load on GPU and signifi-
cantly reduce the performance. While it is impossible to 
eliminate the auxiliary operations entirely, there are two 
major ways to scale down their proportion. Either several 
slices are reconstructed in parallel or a larger pixel area is 
assigned to a thread block for reconstruction. First option 
allows to reduce proportion of computations needed to 
determine which data is cached for each projection and 
to find the required offset in the shared memory array. 
Since the reconstruction is not bound by a performance 
of the texture engine any more, there is no restriction on 
a number of slices processed in parallel. It is possible to 
reconstruct 4 or more slices together provided there is 
enough hardware resources to handle the data. Proportion-
ally less data have to be cached if a larger area is assigned 
to a thread block. Consequently, the load on global and 
shared memories is reduced. This is achieved either by 
increasing a number of threads in a block or by assigning 
multiple output pixels to each thread. Since the constants 

Fig. 11  The figure illustrates reconstruction process relaying on 
the shared memory cache and the algebraic units to perform back-
projection. To reconstruct 32 × 32 square, a thread block caches 
48 bins from each projection row. The projections are processed in 
groups moderated by the size of available shared memory. At first, 
the required subset of bins in each projection is determined (left). 
The selected subsets along with their offsets in the projection rows 
are cached in the shared memory (center). Then, the reconstruction is 
performed and projections are processed in a loop one after another 
(right). Each thread is responsible for several pixels of output slice. 
For each pixel the required position in the sinogram is computed. The 
cache offset for the considered projection row is subtracted from this 
position and the offset in the cache is determined (bottom). As the 
offset is typically not integer, two array elements are loaded from the 
cache and interpolation is performed
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can be stored in the registers and re-used to process mul-
tiple pixels, the load on constant memory is reduced in 
the last case as well. So, the first option cuts down the 
amount of computations significantly. The second method 
cuts down computations to lesser extent, but also reduces 
an utilization of shared memory slightly. Both ways, how-
ever, increase the use of hardware resources significantly. 
More shared memory and more registers are required. The 
optimal compromise between these options has to be found 
for each targeted platform. Furthermore, there are multiple 
ways to implement the described operations. Each variant 
will put more load on one GPU subsystem or another. The 
additional shared-memory caches can be utilized to shift 
the balance between computations and memory opera-
tions. In the next subsection we present a base implemen-
tation and will target the specific architectures across the 
rest of the section.

6.2  Base implementation

Processing only a single pixel per thread is sub-optimal 
across all targeted platforms. The optimal load is between 
4 and 16 pixels depending on the available hardware 
resources. Since square areas are most efficient to cache, 
we target areas of either 32-by-32 or 64-by-64 pixels per a 
thread block. While intermediate sizes can be used as well, 
for power of two sizes it is easy to design thread mappings 
suitable for both caching and accumulation stages of the 
reconstruction process. For sake of simplicity, in Algo-
rithm 6 we present a simple version processing 4 pixels 
per a thread. A block of 256 threads is used to reconstruct 
a square of 32-by-32 pixels. The maximum number of bins 
accessed per projection, then, is equal to 32 ⋅

√

2 or 46. 
If the linear interpolation is used, up to 47 elements in a 
sinogram array are actually accessed for each projection. 
Therefore, 16 threads cache all required values in 3 steps. 
To avoid conditionals all 48 values are always cached. This 
ratio keeps if 64-by-64 area is reconstructed. The 96 val-
ues has to be cached. The number of projections processed 
in parallel is limited by the available shared memory and 
the size of a single projection row in the cache. A group of 
16 projections may be cached at once if only a single slice 
is reconstructed. For 4-slice mode or if a 64-by-64 area is 
reconstructed, only 8 projections are typically processed in 
parallel. Reducing this number further may have negative 
impact on the performance as many threads would need 
to wait at the synchronization point reducing the effective 
occupancy. 

Input: Texture and the projection constants cC∗ .
Dimensions (n∗), cache sizes (s∗), and parameters
(v∗) as specified in Table 2.5. The used variables are
described in Table 2.6 and 2.7.

Assume: ns = 32, nq = 4, st = 16, si = 3
Shared: d̃S [sd][ 32 ∗ ns], h̃S

m[sd]
Output: Reconstructed slice r̃G

begin
/* Simplified mapping */
{md,mp} = mt

m′
t = {nt ∗ (mt.y % 2) + mt.x,mt.y / 2}

m′
g = {ns ∗ mb.x + m′

t.x, ns ∗ mb.y + m′
t.y}

/* Set accumulators to 0 and run projection loop */
s̃[nq ] = {0}
for (pb = 0; pb < np; pb += sd)

if mp < sd then
/* Compute the minimal required bin */
p = pb + mp

hb = cCa [p] + fb.x ∗ cCc [p] − fb.y ∗ cCs [p]
hm = floor(hb + cCm[p])
/* Cache it in the shared memory */
if md == 0 then

hS
m[mp] = cCa [p] − hm

end
/* Cache the data in the shared memory */
for (i = 0; i < si; i += 1)

h = i ∗ st + md

d̃S [mp][h] = tex2d(hm +h+0.5, p+0.5)
end

end
sync

for (pi = 0; pi < sd; pi += 1)
p = pb + pi

cs = cCs [p]
h = hS

m[pi] + f ′
g.x ∗ cCc [p] − f ′

g.y ∗ cCs [p]
for (q = 0; q < nq; q += 1)

/* Compute the offset in cache */
hi = floor(h)
hl = h − hi

/* Iterpolate */

d̃1 = d̃S [pi][hi]
d̃2 = d̃S [pi][hi + 1] − d̃1

s̃[q] += d̃1 + hl ∗ d̃2
/* Move to the next position */
h −= (ns / nq) ∗ cs

end
end

sync
end
/* Save the results to global memory */
for (q = 0; q < nq; q += 1)

r̃G[m′
g.y + 8 ∗ q][m′

g.x] = r̃[q]
end

end

Algorithm 6: ALU-based implementation of the back-
projection kernel

As was already explained, the hm is computed during the 
caching stage and also stored in shared memory. Instead 
of repeated computation, the value is loaded from shared 
memory during the reconstruction stage. To find the required 
offset in the cache, a difference between the position in a 
sinogram row (h) and hm is computed. The equation for h 
includes the projection-corrected position of the rotational 
axis ( ca ) which is constant for all pixels. It can be integrated 
into the hm already during the caching step of the algorithm. 
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So the value of ca − hm is stored in shared memory instead 
of hm . Then, only the pixel-dependent part of the projection 
equation is computed inside of the main loop.

Since no interpolation is required while the data are read 
from global memory, it is possible to access the sinograms 
directly rather than using texture fetches. The loads are 
always coalesced and thread blocks read each value only 
once. However, NVIDIA relays on the same LD units to 
perform the shared and global memory operations. Hence, 
either a shared memory or a global memory instruction will 
be executed by SM at each clock. On other hand, texture 
loads are performed using the specialized units on all archi-
tectures. Therefore, it is possible to load data from global 
and shared memory simultaneously if global memory is 
accessed using the texture engine. It makes the texture 
engine a preferred option to get the data in the shared mem-
ory cache. To avoid unnecessary interpolations, the texture 
engine is configured to use nearest neighbor interpolation.

6.3  Optimizing the thread mapping to avoid shared 
memory bank conflicts

Like for the texture-based reconstruction kernel, the thread-
to-pixel mapping is important to achieve a good perfor-
mance. The main goal is to reduce shared memory trans-
actions and avoid shared memory bank conflicts during 
the both stages of reconstruction. On all architectures, the 
warps need to avoid accessing multiple rows of the same 
shared memory bank in a single instruction. While the warp 
consists of 64 threads on the AMD platform, maximum 
32 shared memory banks are supported on the reviewed 
GPUs. To prevent bank conflicts, it is only necessary to 
avoid accessing the same bank across a group of 32 threads 
[49]. Therefore, there is no need to tackle the larger warp 
size on AMD while discussing the shared memory access. 
Furthermore, there are several architecture specific restric-
tions. The Fermi and AMD devices are not capable to handle 
128-bit data efficiently [36, 49]. Using 64-bit wide opera-
tions is extremely important on the Kepler architecture to 
utilize the full performance of shared memory. Only half 
of the bandwidth is available if 32-bit access is performed. 
While not as significant as on the Kepler architecture, 64-bit 
loads are about 20% faster on AMD Cypress and Tahiti [49].

No changes are required to benefit from the 64-bit shared 
memory in the multi-slice reconstruction modes. A 64-bit 
access can be easily facilitated in the caching step of the 
algorithm also if a single-slice reconstruction is performed. 
Each thread is made responsible to cache 2 bins at once. 
First, 2 texture fetches are performed to extract values of 
the neighboring bins. Then, both values are assembled in a 
64-bit float2 vector and are written into the shared memory 
using a single operation, see Algorithm 7. This approach, 
however, reduces the locality of texture fetches. Since hm 

may have an odd value, switching to float2 textures is not 
an option. However the load on the texture engine is quite 
low and in contrast to shared memory has little impact on 
overall reconstruction speed. This optimization is relevant 
on NVIDIA Kepler and both older AMD GPUs. 

for (i = 0; i < si; i += 1)
h = 2 ∗ (i ∗ st + md)
d1 = tex2d(hm + h + 0.5, p + 0.5)
d2 = tex2d(hm + h + 1.5, p + 0.5)
*(float2)(&d̃S [mp][h]) = (float2){d1, d2}

end

Algorithm 7: The caching stage of Algorithm 6 optimized
for architectures with 64-bit shared memory

Only the half of the available shared memory banks are 
utilized on the NVIDIA Fermi and all AMD GPUs if 128-bit 
data is accessed. To circumvent the problem, it is possible 
to split the float4 vectors in two parts, store them in the two 
buffers in shared memory separately, and re-combine back 
before performing interpolation, see Algorithm 8. 

begin
for (i = 0; i < si; i += 1)

h = i ∗ st + md

d̃ = tex2d(hm + h + 0.5, p + 0.5)
dS

1 [mp][h] = (float2){d.x, d.y}
dS

2 [mp][h] = (float2){d.z, d.w}
end
...

d̃1 = (float4){dS
1 [pi][hi],dS

2 [pi][hi]}
d̃2 = (float4){dS

1 [pi][hi + 1],dS
2 [pi][hi + 1]}

d̃2 = d̃2 − d̃1

...
end

Algorithm 8: Modification of Algorithm 6 to split the 4-
slice cache as required on Fermi and AMD architectures

In the first stage of algorithm, the number of threads 
assigned to cache each projection is adjusted to optimize 
access to the shared memory. If a large 64-by-64 area is 
reconstructed, a full warp of 32 threads can be assigned for 
each projection row avoiding any possible bank conflicts. 
Unfortunately, it is not completely optimal on the Kepler 
architecture as, then, it is impossible to re-combine two bins 
into a single 64-bit wide write as explained above. It is also 
not possible to assign 32 threads per row for a smaller 32-by-
32 area because only 48 bins has to be cached per projection 
in this case. And it is a bad idea to keep the half of threads 
idling. Therefore, several projection rows are processed 
by each warp in the described cases. This potentially may 
cause bank conflicts. If only a single slice is reconstructed, 
however, the banks are shifted from one projection row to 
another as illustrated on Fig. 12. The caching is performed 
without bank conflicts if either 16 threads are assigned per 
projection row on the platforms with 32-bit shared mem-
ory or 8/16 threads are used on the Kepler devices. Only 8 
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threads are used to allow bin re-combination if a small area 
is reconstructed. 16 threads per projection are optimal on 
all platforms if multiple slices are reconstructed. The 64-bit 
banks storing float2-sinogram are shifted across projection 
rows exactly the same way as 32-bit banks do if a simple 
float-sinogram is reconstructed. And on platforms with 
32-bit shared memory it is enough to prevent bank conflicts 
within a group of 16 threads while dealing with 64-/128-bit 
data. The optimal settings for each reconstruction mode are 
summarized in Table 14.

According to the documentation it does not matter how 
the threads of a half warp are accessing shared memory. 
In practice, however, we found that on recent NVIDIA 
devices the performance of 64- and 128-bit loads is 
slightly improved if only 1-2 different memory locations 
are accessed by groups of 4 consecutive threads. The local-
ity of shared memory loads is improved if each half-warp 
is mapped to a square consisting of 4-by-4 pixels and the 
threads are arranged along Z-order curve similarly to the 
texture fetches. All 256 threads of a block are mapped to 
16 such squares. For the reasons explained in Sect. 5.6, the 
squares are arranged linearly along x-axis. Two rows of 4 × 
4 squares are processed in parallel if a small 32-by-32 area 
is reconstructed. A single row is covered for the bigger area 
or if only 128 threads are assigned per a block. The remain-
ing rows are processed over 4-16 steps. The threads accu-
mulate the sums for each pixel in a register-bound array 
and dump it to global memory once the processing of all 
projections is completed. The complete mapping scheme is 
illustrated on Fig. 13. The performance of NVIDIA Titan 
X is increased by 3% if the described mapping is utilized.

6.4  Advanced caching mode

For linear interpolation two neighboring bins are always 
loaded, but it is impossible to perform 64-bit load due to 

the alignment requirements. Consequently, only a half of 
the available bandwidth is used on the Kepler architec-
ture in the single-slice processing mode. To allow 64-bit 
access, both values required to perform linear interpola-
tion are stored as float2 vector in the corresponding bin 
of the cache. The size of cache is doubled, but also the 
achieved bandwidth is increased by factor of two on the 
Kepler platform and is considerably improved on the AMD 
devices which are optimized for 64-bit loads. The required 
amount of shared memory is still adequately low and does 
not limit occupancy if the single-slice reconstruction is 

Fig. 12  The figure illustrates how the warps are assigned to cache 
a subset of a sinogram on the systems with 32-bit and 64-bit shared 
memory. For each projection 48 bins which are required to recon-
struct area of 32-by-32 pixels are cached. The shared memory banks 
used to back each group of 16 bins are specified considering that 
32-bit data format is used

Fig. 13  The assignment of block threads to pixels as proposed for 
ALU-based reconstruction

Table 14  The optimal parameters to prevent shared memory bank 
conflicts in ALU-based reconstruction kernel

For each considered configuration, the number of threads per pro-
jection row and the required optimizations are specified. The dou-
ble-buffer optimization splits the shared memory cache in 2 parts 
to prevent bank conflicts on the NVIDIA Fermi and all considered 
AMD architectures. The write64 optimization combines two writes to 
shared memory to use full bandwidth of Kepler GPUs

Area nv Platform Threads Optimizations

Standard caching mode (see Sect. 6.3)
32 × 32 1 32-bit 16 -

64-bit 8 write64
2 32-bit 16 –

64-bit 16 –
4 AMD and Fermi 16 double-buffer

Kepler+ 16 –
64 × 64 1 32-bit 32 –

64-bit 16 write64
2 32-bit 32 –

64-bit 32 –
4 AMD and Fermi 32 double-buffer

Kepler+ 32 –

Advanced caching mode (see Sect. 6.4)
32 × 32 1 All 16 –
64 × 64 1 All 32 –



1357Journal of Real-Time Image Processing (2020) 17:1331–1373 

1 3

performed. Furthermore, one floating-point operation is 
eliminated in the interpolation step of algorithm if the sec-
ond component of cached vector actually stores the differ-
ence between the values of consecutive bins in a sinogram 
as shown on Fig. 14.

The caching procedure is modified as shown in Algo-
rithm 9. To reduce required inter-thread communication, 
each thread caches several consecutive bins. The commu-
nication is, then, only required to compute the second part 
of the last bin which is assigned to a thread. The shuffle 
instruction is used on Kepler and the newer NVIDIA archi-
tectures. A read from shared memory is performed on the 
NVIDIA Fermi and all AMD GPUs after the fence-style 
synchronization. In this case the shared memory cache is 
also padded by one extra column to allow an unconditional 
read by the last thread in a group assigned to a projection 
row. 

begin
h = si ∗ md

d1 = tex2d(hm + h + 0.5, p + 0.5)
d = d1
for (i = 0; i < (si − 1); i += 1)

dn = tex2d(hm + i + 1.5, p + 0.5)
dS [mp][h + i] = (float2){d, dn − d}
d = dn

end
d1 =shfl down (d1, 1, st)
dS [mp][h + (si − 1)] = (float2){d, d1 − d}

end

Algorithm 9: Advanced Caching Mode for Algorithm 6

In case of a 32-by-32 pixel area, 16 threads per projec-
tion row are used on all platforms independent of the width 
of a shared memory bank. The banks are shifted between 
projection rows on the 64-bit platforms as explained in 
Sect. 6.3. And for 32-bit architectures it is enough to avoid 
bank conflicts within a half-warp only. Furthermore, there 
is also no bank conflicts between the threads of a half-
warp as the stride is not a multiple of 4, see illustration 
in Fig. 15. A full warp is used per row if a thread block is 
assigned to process larger 64-by-64 pixel area. The same 
number of steps is, then, required to process the complete 

projection row and, consequently, shared memory is 
accessed with the same stride without bank conflicts.

6.5  Modeling

The proposed method is relatively complex and utilizes 
multiple GPU subsystems. There are many ways to tune 
the proposed algorithm to address the capabilities of a 
targeted architecture better. It is important to understand 
the limiting factors in each case. Here, we try to build a 
simplified performance model. First, we identify several 
distinct operations required to perform back projection:

1. The projection constants are loaded from memory. And 
the minimal required bin is computed to decide which 
data have to be cached.

2. The sinogram subsets are fetched from the texture and 
cached in shared memory.

3. For each reconstructed pixel, the corresponding position 
in a sinogram is determined.

4. The offset in the shared memory array is computed.
5. Depending on the requested interpolation type, one or 

two values are fetched and the contribution of a projec-
tion is added to the accumulator.

These operations rely on several hardware components:

• Constant memory is used to retrieve projection con-
stants.

• Texture Engine is used to retrieve the sinogram values.
• Shared memory is used while caching the data and 

retrieving the cached values to perform interpolation.
• ALUs are used for general-purpose computations, par-

ticularly to perform projection and interpolation.

Fig. 14  Advanced Caching Mode. Two values are cached for each bin 
of a sinogram. The second value stores the difference between neigh-
boring bins to allow faster interpolation. The shuffle instruction is 
used to get values from the bins cached by a different GPU thread

Fig. 15  The figure illustrates how the shared memory banks are 
accessed if advanced caching mode is used, see Sect.  6.4. The pre-
sented layout is employed to reconstruct area of 32 × 32 pixels. The 
grayed boxes indicate the banks accessed by a warp during the first 
caching pass. Two values are cached for each bin and, consequently, 
each bin spans over two memory banks on the platforms with 32-bit 
shared memory. On these platform it is also only necessary to avoid 
conflicts within a half-warp. So, the accesses for second half-warp are 
not shown
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• SFUs are used on Kepler, Maxwell, and Pascal archi-
tectures to perform rounding operations, to convert data 
between floating point and integer representation, and to 
perform bit-shifts. These instructions are used to com-
pute offsets in the cache and to perform interpolations. 
While the bit-shifts are not used directly in pseudo-code, 
they are implicitly utilized to resolve addresses in the 
constant and shared memory arrays.

Each of these components may limit the performance if 
its resource is exceeded. Furthermore, there is also a limit on 
a number of instructions which SM is able to schedule per 
a clock cycle. Particularly, the warp scheduler on Fermi is 
limited to a single instruction per clock. If a memory instruc-
tion is launched, the half of ALUs are kept idle. To estimate 
the performance we assess the number of required opera-
tions according to the presented pseudo-code. We assume 
that the performance is either capped by the slowest of the 
components or by a total number of instructions. It is a very 
rough estimate. The developed kernels are resource inten-
sive and are executed at a significantly reduced occupancy. 
It is difficult to predict how the compiler will generate the 
code to manage the available resources. Furthermore, some 
variables are moved to the slower local memory. The local 
memory is backed by L1 cache which shares the hardware 
with shared memory on the Fermi and Kepler based GPUs. 
Consequently, the operations with such variables are not 
only increasing latency, but also may penalize the shared 
memory performance. Nevertheless, the obtained estimates 
allow us to choose the required optimization strategy for 
each architecture.

Instructions required to perform a single update on a pixel 
value are summarized bellow for the reconstruction using 
the linear interpolation. Rounding/type-conversions (TC) 
and bit-shift (BS) operations are counted separately because 
they are scheduled differently on Maxwell/Pascal and Kepler 
GPUs. For each operation the normalization coefficient, i.e. 
the number of updates performed per the specified number 
of instructions, is indicated. Fused-Multiply-Add (FMA) is 
counted as a single instruction.

1. Computing and caching of hm (per nt ∗ nq ∗ nv updates)

• Constant Memory (128-bit): st
• Shared Memory (32-bit): st (because a full warp is 

executed anyway)
• FP: 4st (to compute hb and hS

m
)

• TC: st (rounding)
• BS: 2st (resolving addresses in constant and shared-

memory arrays)

2. Caching (per nt ∗ nq ∗ nv updates)

• Texture Fetches: 3
2

√

nt ∗ nq

• Shared Memory (type-dependent, but always 
64-bit in Advanced Caching Mode): 3

2

√

nt ∗ nq
• FP: 4st (3 if Advanced Caching Mode is not used)
• TC: st (integer to float conversion of projection 

number to perform texture fetch)
• BS: 2st (resolving addresses in the shared-memory 

array)

3. Setting inner-projection loop and evaluating required 
position in sinogram (per nq ∗ nv updates):

• Constant Memory (64-bit): 1 (only cosine and 
sine of the angle are required here)

• Shared Memory (32-bit): 0.25–1 (offsets for 4 
projections can be loaded at once using a single 
128-bit load if the loop is unrolled)

• TC: 2–3 (computing h, updating loop index unless 
unrolled)

• BS: 1–3 (resolving addresses in the constant array 
and also in both shared memory caches unless the 
loop is fully unrolled)

4. Computing an offset in the cache and the coefficient for 
linear interpolation (per nv):

• FP: 2 (update to the next offset; computation of 
interpolation coefficient unless nearest neighbor 
mode is selected)

• TC: 2 (rounding and float-to-integer type conver-
sion; only a single operation is required if nearest 
neighbor interpolation is performed)

• BS: 1 (resolving the address in the shared memory 
array)

5. Linear Interpolation (for each update):

• Shared Memory (type dependent): 1 (2 if 
Advanced Caching Mode is not used)

• FP: 2 (interpolation and update; 3 operations if 
Advanced Caching Mode is not used and only 1 if 
nearest neighbor interpolation is performed)

Further, a single-slice reconstruction ( nv = 1 ) using 
advanced caching mode is evaluated. Blocks of 256 
threads ( nt = 256 ) are assigned to process a 32-by-32 pixel 
square ( nq = 4 ). For sake of simplicity we assume that 16 
threads are used to cache a single projection row and that 
the inner projection loop is fully unrolled. We skip the 
texture fetches as load is very low and certainly is not a 
limiting factor here. Then, the following number of opera-
tions is estimated per a single update:

• Constant Memory: 2.3 bytes (0.3 instructions)
• Shared Memory: 8.7 bytes (1.1 instructions)
• FP: 4.6 (counting FMA as a single operation)
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• TC: 2.0
• BS: 1.3
• Instructions: 8.2

To verify these estimates, the prototype implementation 
was executed under CUDA profiler. The number of esti-
mated and measured operations is compared in Table 15. 
There is a difference, but the error is within 10%.

Table 16 evaluates the maximum performance according 
to each execution unit. The throughput is taken from Table 10 
and the load is computed according to the list above using the 
following assumptions which are explained in the Sect. 3.7. 
NVIDIA Maxwell and Pascal are not restricted to the SFU to 
perform bit-shifts, but are able to use also ALU units. On this 
devices we do not include the integer multiplications in the 
SFU balance. On NVIDIA Kepler we do. SFUs are either not 
available or not used on AMD GCN and NVIDIA Fermi. So, 
all types of operations are counted together in the ALU balance.

As can be seen, the performance bottleneck is architecture 
dependent. The AMD VLIW and NVIDIA Kepler GPUs 
are bound by ability to perform rounding operations and to 
convert variables between integer and floatint-point repre-
sentation. While not limiting performance in the modeled 
configuration, this still sets a quite low threshold on Maxwell 
and Pascal GPUs. However, the main limiting factor on these 
architectures is the shared memory bandwidth. The Fermi 
GPU is only capable to dispatch a single instruction per 
warp and, consequently, bound by the instruction through-
put. Finally, AMD GCN based devices are restricted by the 
performance of algebraic units.

6.6  Rounding using floating‑point arithmetic

The Kepler performance is severely limited because due 
to rounding and type conversion operations. The reason is 
the slow performance of SFU units on the Kepler platform. 
Total 3 SFU operations are required to compute offset in 
shared memory and to perform linear interpolation. 

float hf = floor(h);
int hi = (int)hf ;
float d = dS [hi];

Each of the listed instructions uses SFU. The first instruc-
tion performs rounding and the second converts floating-
point number to integer. The last operation involves a bit-
shift to resolve the address of an array element. The array 
index is multiplied by the size of a data type, but the bit shift 
is actually performed in place of multiplication because the 
data size is always power of two. Instead, it is possible to 
perform multiplication using the floating point numbers and 
operate with pointers directly, like: 

float hf = floor(h);
int hi = (int)(4.f ∗ hf );
float d = ∗(float∗)((void∗)dS + hi);

Then, one of the 3 SFU instructions is replaced with 2 
floating-point operations. However, it is possible to elimi-
nate the SFU instructions entirely. Since the offsets are 
always small positive numbers, rounding and type-conver-
sion operations can be implemented using the floating-point 
arithmetic only. IEEE754 specification defines the format 

Table 15  Estimated and measured number of different operations 
required to perform back-projection using linear interpolation

a A sum of integer and floating-point instructions is given
The table gives the number of operations required to perform back-
projection of a single slice using linear-interpolation, processing 4 
pixels per GPU thread, and with the advanced caching mode ena-
bled. The measured values are obtained on NVIDIA GeForce Titan 
X (Pascal) using nvprof. The SFU usage is represented by value of 
inst_bit_convert metric. It is impossible to separate the number of 
integer multiplications from other instructions executed on ALU. 
Therefore, a common number is given based on the sum of inst_fp_32 
and inst_integer metrics. The shared memory operations are given 
as a sum of counts for shared_store and shared_load events. To esti-
mate the number of constant memory operations, from the number of 
executed load/store instructions obtained using ldst_executed metric 
we have subtracted all other memory operations which are reported 
as shared_store, shared_load, and global_store events and all texture 
transactions which are counted in tex_cache_transactions metric

SFU Int FP Shared Constant

Estimated 2.03125 1.3125 4.625 1.125 0.265625
Measured 2.032125 5.87a 1.265625 0.297875

Table 16  Performance estimates according to model

The table gives the estimates for maximum performance of back-pro-
jection kernel and reports the performance bottleneck for each con-
sidered GPU. The numbers are given in giga-updates per second. The 
performance limit for each execution unit is evaluated separately and 
the minimum throughput bounding the kernel performance is high-
lighted in bold. The estimation is made for a kernel configured to run 
linear-interpolation and process 4 pixels per GPU thread and running 
in the single slice reconstruction mode with advanced caching enabled

GPU Mem ALU SFU OPS Limit

GTX580 145 99 – 97 Instructions
GTX680 188 334 77 252 SFU
Titan 325 577 133 436 SFU
GTX980 234 432 315 628 Memory
Titan X 576 1062 776 1545 Memory
HD5970 169 145 114 114 SFU
HD7970 346 238 – 1160 ALU
R9-290 443 304 – 1485 ALU



1360 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

of a single-precision floating point number [56]. It is illus-
trated on Fig. 16. For positive numbers, the representation 
is defined as:

Consequently all fractional components are eliminated if 223 
is added to a number.

The rounded number is obtained if 223 is subtracted back 
afterwards. To compute floor() it is necessary to subtract 0.5 
before these operations. I.e. the following implementation 
is suggested: 

float e23 = exp2(23.f);
float h′ = h − 0.499999f ;
float htmp = h′ + e23;
float hf = htmp − e23;

The proposed method replaces a single SFU-based round-
ing instruction with 3 floating-point operations. The e23 con-
stant is computed only once in the beginning of a kernel and 
does not add much to the computation balance. It is further 
possible to make a float-to-integer conversion using a simple 
integer subtraction which is performed by ALU. The small 
integer numbers are fully encoded by the fraction portion of 
an IEEE 754 number. There are still some significant bits 
representing exponent, but they can be easily eliminated as 
illustrated on Fig. 16. 

int hi = __float_as_int(htmp) - 0x4B000001;

The __float_as_int is a simple cast (re-interpretation) of a 
floating point number as an integer. Using the pointer arith-
metic notation, it is equivalent to ∗ (int ∗)&htmp . Still there 
is an index computation left. It is often reasonable to keep 
some load on SFUs as well. If indexing is left unchanged, 
the d[__float_as_int(htmp − 0 × 4B000001)] is replaced with 
a single iSCADD operation combining multiplication and 
integer subtraction. It is executed on SFU in a single clock 
cycle. Consequently, 2 SFU instructions are replaced with 3 
floating point operations and a single SFU instruction is left. 
The other option is to eliminate SFU instructions entirely. 
It is possible with 

htmp = 4 * htmp - (4 - 1) * e23;

void *addr = (void*)dS + __float_as_int(htmp);
float d = *( float *)( addr);

 In this case 3 SFU instructions are replaced with 5 float-
ing-point operations. The method to use depends on the 

(2)f = 2e−127 ⋅

(

1 +
∑

fi ⋅ 2
i−23

)

(3)f + 223 = 223 ⋅

(

1 +
∑

fi ⋅ 2
i−23

)

expected operation balance. It can be estimated using the 
performance model which was proposed in Sect. 6.5. Either 
way the result is exact and there is no penalty to quality.

To perform nearest-neighbor interpolation, 2 SFU 
instructions are required on Kepler. One instruction can be 
easily replaced with floating-point operation by performing 
multiplication before type conversion as explained above. 
Otherwise, the SFU instructions are completely replaced 
with 3 floating-point operations.

The performance along with a number of instructions 
issued per update is shown in Table 17 for NVIDIA GTX 
Titan. The speed-up of 20% is achieved if rounding is 
implemented using floating point instructions, but index 
computation is left on SFU. The complete elimination 
of SFU instructions puts unnecessary load on ALUs and 
keeps SFU units idle. This method has a little impact on 
the VLIW architecture. While the performance is limited 
by the throughput of integer instructions, the difference 
between performance of floating-point and special units is 
not as high as on Kepler. Consequently, the performance is 
limited approximately at the same level.

Fig. 16  IEEE 754 representation of single-precision floating-point 
number (top) and an example how to get the standard integer repre-
sentation in fraction part by adding 223 (bottom)

Table 17  Different interpolation modes on Titan (Kepler) GPU

The table compares performance of 3 different rounding modes 
described in Sect. 6.6. The performance is measured on the Kepler-
based Titan GPU and the number of issued instructions is obtained 
using NVIDIA profiler. The number of floating point and integer 
operations is reported by inst_fp_32 and inst_integer metrics corre-
spondingly. The integer counter includes both additions/subtractions 
executed on ALU and iSCADD operations executed on SFU. Con-
sequently, the number of integer operations is constant because the 
iSCADD instruction is just replaced with integer addition. The bit-
convert instructions are reported as inst_bit_convert and actually rep-
resent the rounding and type-mangling operations

Instructions

Method Performance FP Integer Bit-convert

Stanard 165 GU/s 4.5 1.4 2.03
FP round 197 GU/s 7.5 1.4 0.03
FP round and index 182 GU/s 8.5 1.4 0.03
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6.7  Half‑float cache

Like in the texture-based reconstruction algorithm, the half-
float representation may be used to speed-up reconstruction. 
While the texture engine is not a performance-limiting factor 
here, the bottleneck in shared memory is lifted on the Max-
well and Pascal architectures if half-float values are cached 
in shared memory. The values are converted to a single-
precision format just before computing interpolation. Since 
the texture units are always used in the nearest neighbor 
mode, it possible to use the half-float data representation 
also to speed-up reconstruction performing linear interpo-
lations. About 10% performance increase is measured on 
Pascal and Maxwell if 4 slices are reconstructed in parallel 
and the linear interpolation is performed. High load on SFU 
units to convert between half and floating-point representa-
tion prevents larger speed-ups. It is also the reason why no 
performance improvements are reported on other platforms. 
On professional series of Tesla cards with Pascal architec-
ture it could be possible to achieve higher performance by 
keeping the computations in half-precision all way through 
the end. The results, however, are expected to suffer from 
additional performance degradation. In any case this is not 
feasible on Titan X because of significantly lower through-
put of high-float arithmetic.

6.8  Additional caches

The Fermi performance is limited by the throughput of ALU 
units and also by a number of instructions it is able to dis-
patch per clock cycle. Using the advanced caching mode, 
the interpolation footprint is reduced by a single instruction. 
Advanced caching is used across multiple platforms in the 
single-slice reconstruction mode. On Fermi, however, it also 
improves performance if multi slices are reconstructed in 
parallel. The vectors fetched from the texture engine are split 
into the components and are cached using 2 or 4 independent 
caches. Furthermore, there is an additional option to slightly 
reduce the number of operations. Two FMA instructions are 
required to find the required offset in the cache.

This computation is performed once per each pixel the 
thread is responsible for. If 16 pixels are assigned to each 
thread, the impact is negligible in the overall computational 
balance. Fermi is, however, limited by the amount of avail-
able registers and unlike newer architectures is restricted to 
process only 4 pixels per thread. Therefore, it is relevant to 
reduce the number of instructions required to compute h. 
When hS

m
 value is cached, only a single thread in every 16 

is actually used to perform the caching. Instead the cached 

h = hS
m
[p] + f �

g
.x ∗ cC

c
[p] − f �

g
.y ∗ cC

s
[p]

value may include the x component as well and utilize all 
threads with a minimal extra load. I.e. the following value 
is cached in shared memory instead of hS

m
:

Then, 32 values are cached per projection row, but only one 
FMA is used to compute the offset:

The amount of required shared memory is significantly 
increased, but there is no additional memory traffic. A warp 
is either loading the same value which is broadcasted from a 
single shared memory bank or up to 32 values are loaded and 
all banks are utilized. Furthermore, the cosine of a projec-
tion angle is not loaded any more from the constant memory. 
Extra instructions, however, are dispatched unless special 
care is taken. As was mentioned in Sect. 6.5, the 64- or 128-
bit loads are performed to load hS

m
 if the projection loop is 

unrolled. This is possible because the values for consecutive 
projections are stored next to each other. Technically it is 
possible to organize the new cache to keep such arrange-
ment, but there is a better option which is independent of 
loop-unrolling. The threads of the block are assigned to 
process a 16-by-16 pixel square at each step instead of the 
mapping proposed in Fig. 13. In Sect. 5.6 the linear mapping 
scheme is reasoned by ability to maintain only a single index 
because, then, each thread needs to increment an y-coordi-
nate only. This is given using the new caching scheme as the 
x component is already included in the value loaded from 
the cache. Each thread processes 4 pixels with coordinates 
(x, y), (x + 16, y) , (x, y + 16) , and (x + 16, y + 16) . It loads 
hS
x
[pi][x] and hS

x
[pi][x + 16] using a single 64-bit instruction 

and only need to increment the y-coordinate. The utilization 
of the shared memory bandwidth is increased as each thread 
needs to load 64 bits per projection instead of 32. But the 
total memory bandwidth is still exactly the same as in the 
base implementation due to reduced requests to constant 
memory. About 5% speed-up is achieved on the NVIDIA 
Fermi and AMD Tahiti architectures.

Few other values can be cached to slightly shift the bal-
ance of operations. In some cases, it is beneficial to cache 
also trigonometric constants in shared memory. This is 
slightly improves the performance across NVIDIA archi-
tectures. The hm value is normally computed multiple times 
by all threads responsible to cache a specific projection row. 
The extra load is not very high, but can be avoided for a 
price of several additional registers required to introduce a 
third stage in the reconstruction process. At first, threads of 
a block are assigned to compute hm values for 256 projec-
tions and cache it in shared memory. Then, the values are 
just loaded at each loop iteration. It was found useful on 

hS
x
[mp][mt.x] = cC

a
[p] + fg.x ∗ c

C
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the AMD VLIW architecture. Vice-versa the caching of hm 
can be disabled altogether on the systems with fast ALUs, 
but slow shared memory. The suggested cache settings are 
summarized in Table 18.

6.9  Managing occupancy

The number of pixels processed per block and per thread 
is one of the main parameters affecting the performance. 
The optimal configuration depends on the available GPU 
resources, but also on the size of the reconstructed image. 
The number of executed blocks could be insufficient to load 
GPU evenly if large pixel blocks are used in conjunction 
with a small image. However, the texture-based approach is 
expected to perform better for small images in any case. To 
summarize the performance and optimal configuration we 
assume that the sufficiently large image is reconstructed and 
focus on the hardware capabilities only. Depending on the 
available GPU resources 4, 8, or 16 pixels are assigned per 
thread. In the last case each thread block is responsible to 
reconstruct an area of 64 × 64 pixels. Otherwise, only 32 × 
32 pixels are processed. The block of 128 threads is used to 
allow processing of 8 pixels per thread.

If a number of concurrently processed slices is given, 
there are still multiple factors affecting the performance. The 
optimal implementation of the proposed algorithm should 
ensure that:

• The full occupancy is achieved to hide latencies effi-
ciently.

• A large reconstruction area is assigned to each thread 
block to reduce amount of caching operations per recon-
structed pixel.

• As many pixels as possible are assigned to each GPU 
thread. It allows to reduce a proportion of the auxiliary 
operations required to compute offsets in the cache and 

also ensures that a large amount of independent instruc-
tions is in execution flow as required by the architectures 
relaying on the instruction level parallelism (ILP).

• The number of threads assigned to cache each projection 
row is in accordance with the requirements specified in 
Table 14. Then, no shared memory bank conflicts occur 
and the shared memory writes are executed optimally.

• The number of projections cached at each step is enough 
to utilize all threads in the block. Otherwise, the threads 
idling at the synchronization point reduce the efficiently 
achieved occupation.

• The projection loop is completely unrolled to provide 
additional ILP parallelism and ensure that multiple 
32-bit memory operations can be combined into a single 
64-/128-bit instruction.

• The generated code is able to issue multiple load opera-
tions in a streaming fashion as explained in Sect. 3.6. It 
allows to reduce penalty inflicted by the memory access 
latencies if other mechanism fail to hide them entirely.

• All appropriate optimizations discussed through this sec-
tion are implemented.

Due to hardware limitations it is impossible to achieve 
all these goals simultaneously. The number of required reg-
isters is steeply increased with a number of pixels assigned 
per thread and restricts the achieved occupancy. Using the 
multi-slice reconstruction mode, either a high occupancy 
or a high number of pixels per thread is possible to achieve. 
The amount of available shared memory restricts how many 
projections could be cached at the desired occupancy level. 
If this restriction is low, the high effective occupancy is still 
possible to achieve in the caching stage if more threads are 
used to cache each projection or smaller 128-thread blocks 
are in use. The first option is only available if 16 pixels are 
reconstructed per thread. Consequently, a high number of 
registers is required in both cases. Furthermore, the num-
ber of threads assigned per projection is in turn restricted if 
shared memory is optimized for 64-bit writes. Most of the 
proposed optimizations increase the usage of registers or/
and shared memory. The use of additional caches could have 
a negative general impact if the increased shared memory 
footprint results in a lower number of cached projections or 
reduces the achieved occupancy. The streaming loads cause 
a significant increase of consumed registers and definitively 
reduce the occupancy. Hints to compiler reducing the unroll-
ing of inner projection loop are used to prevent this. Further-
more, the desired occupancy can be targeted on NVIDIA 
platform. Forcing the higher occupancy may result in addi-
tional computational load may and cause the compiler to 
back part of the local variables with slower local memory 
instead of registers. Vice-versa under low occupancy, the 
compiler may be able to increase ILP parallelism and per-
form stream-loading more efficiently.

Table 18  Suggested cache settings for ALU-based reconstruction ker-
nel

Caches

GPU nv d̃ hm∕hx cs sp

Fermi 1, 2 Adv. hx cs –
4 Adv. hm cs –

Kepler and later 1 Adv. hm cs –
2, 4 Std. hm – –

VLIW 1 Adv. hm – 256
2, 4 Std. hm – 256

GCN 1 Adv. hx – 256
2, 4 Std. hx – 256

GCN2 1 Adv. hm – –
2, 4 Std. hm – –
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The importance of the described aspects differs between 
architectures and an optimal compromise has to be found 
for each targeted platform. We found out that targeting 50% 
occupancy is optimal across majority of architectures. On 
the platforms with a larger register bank, the occupancy 
above 50% is achieved by default. If 50% is targeted, more 
registers are available for data streaming which has often 
a positive impact on the performance. Vice-versa, on the 
systems with a small register bank the default occupancy is 
typically low and restricting the amount of used registers to 
ensure 50% occupancy results in a faster code. We also have 
found that it is important to keep at least 50% of threads busy 
in the caching stage. Above this threshold the under-utiliza-
tion has an impact, but relatively insignificant. Therefore, to 
cope with shortage of shared memory, the number of cached 
projections is decreased in steps of 4.

The Maxwell and Pascal GPUs have a large amount of 
both shared memory and registers, but are bound by the 
shared memory bandwidth. An area of 64-by-64 pixels are 
processed by each thread block on these platforms in order 
to reduce amount of shared memory writes. In the linear 
interpolation mode the amount of shared memory operations 
is well balanced with ALU throughput. The streaming of 
memory reads is not required if the shared memory loads are 
interleaved with ALU- and SFU-bound interpolation instruc-
tions. Thus, the 100% occupancy is targeted and a speed-up 
of 15% is measured. This is not the case in the nearest neigh-
bor interpolation mode. The shared memory bandwidth is 
the bottleneck in this case and the performance is improved 
if multiple shared memory loads are streamed together. 
Consequently, significantly more registers are required. By 
default the CUDA compiler does not utilize the streaming 
capabilities fully, but runs at 62% occupancy. Requesting 
occupancy to 50% allows to stream more loads together and 
improves performance by 7%. The impact of occupancy on 
the performance for both linear and nearest-neighbor inter-
polation modes are reviewed Table 19.

The Kepler GPUs has the same amount of registers as 
Maxwell and Pascal. However, a more aggressive unrolling 
is required and is performed by the CUDA compiler to ensure 
the wide memory accesses and to enable the longer flow of 
independent instructions. The ILP parallelism is required to 
allow 4 warp scheduler to utilize all 6 ALU blocks integrated 
in the Kepler SM. Consequently, an increased number of reg-
isters is used to execute the same code. For instance, the 
reconstruction based on the linear interpolation as discussed 
in the previous paragraph would use 55 registers if compiled 
for the Kepler architecture (compute capability 3.5) instead of 
only 40 registers which are required if Pascal architecture is 
targeted. The performance at 100% occupancy is sub-optimal 
if linear interpolation is performed. On other hand, the 64 
registers available at 50% occupancy are not enough to enable 
efficient streaming of the shared memory loads. Therefore, 

a small pixel area of 32-by-32 pixels is reconstructed per 
block and the block is reduced to 128 threads only. The last 
point is important to keep a high level of ILP and also to 
achieve a full thread utilization in the caching stage as the 
number of cached projections is limited due to low amount 
of available shared memory. Using nearest neighbor interpo-
lation, there is enough registers to organize stream-loading 
at 50% occupancy also for the larger pixel area. The Fermi 
architecture includes only a half of the Kepler registers and 
is bound to 32-by-32 pixel area in all interpolation modes. 
While the amount of the shared memory is the same as on 
Kepler, fewer blocks are required to achieve full occupancy 
here. Consequently, it is possible to cache more projections 
at 50% occupancy. On GT200 the amount of registers is even 
lower and it is not suitable to implement the proposed scheme 
with sufficiently high performance.

While there is no option to instruct compiler on the 
desired occupancy on the AMD GCN devices, the used 
caches are aimed to ensure that at least 50% occupancy can 
be achieved. The VLIW architecture needs to issue 4–5 inde-
pendent instructions at each clock. Therefore, it is important 
to ensure a very large ILP parallelism even in price of sig-
nificantly reduced occupancy. The larger area is assigned to 
a thread block for a single-slice reconstruction and a smaller 
thread block is used to process 8 pixels per thread in all 
other cases. The algorithm is running at about 35% of the 
maximum occupancy.

Table 20 summarizes the proposed configuration and 
gives the measured performance. If only a single slice is 
available for reconstruction, the new algorithm outperforms 
the texture-based version across all considered architec-
tures. The maximum speed is better on Fermi and on all 
AMD architectures if the linear interpolation is performed. 
Using the nearest-neighbor interpolation the performance 
is improved on Kepler GPUs and also across all target 

Table 19  The effect of occupancy-targeting on the performance for 
NVIDIA Titan X GPU

The best performance is highlighted in bold
A single slice reconstruction is executed with the settings configured 
according to Table 20 with the only exception of occupancy which is 
set as specified in the Target column

Target Registers Local memory Occupancy Performance

Linear interpolation mode
– 40 – 75% 565 GU/s
50% 64 – 50% 570 GU/s
100% 32 8 bytes 100% 620 GU/s

Nearest neighbour interpolation mode
– 48 – 62% 1082 GU/s
50% 64 – 50% 1158 GU/s
100% 32 40 bytes 100% 954 GU/s



1364 Journal of Real-Time Image Processing (2020) 17:1331–1373

1 3

architectures in the case if the quality is not compromised 
by a half-float data representation.

The GPU-specific tuning has a major positive effect on 
the performance. However, new architectures are announced 
yearly. A throughout study would be required to adjust 

parameters accordingly. Furthermore, the generated code 
varies significantly for the devices of different compute capa-
bilities even within the same architecture family. While we 
had not studied it in detail, there are also differences depend-
ing on the CUDA version. To avoid manual work, the actual 

Table 20  Performance and 
configuration of ALU-based 
back-projection kernel

The table summarizes the performance and optimal configuration for the ALU-based back-projection ker-
nel. The performance is reported for the linear and nearest neighbor interpolation modes. The configuration 
specifies: nq —a number of pixels per thread, sd —a number of cached projections, U—unrolling hint for 
inner projection loop, R—the units to perform rounding and type conversions (index is always computed 
using SFU), O—the desired occupancy. The caches are configured as specified in Table 18. The number of 
threads to cache a projection row is determined according to guidelines in Table 14.
aThe configuration and performance are specified for half-float data representation. The half-float values 
are also cached in the shared memory.
bBecause of the reduced shared memory requirements, 16 projections are cached in the nearest neighbor 
interpolation mode.
c A larger 64 × 64 area is reconstructed if nearest neighbour interpolation is performed. The 16 pixels are 
assigned to each GPU thread.
dEach GPU thread caches 2 values at once to enable 64-bit writes if nearest neighbor interpolation is used. 
Consequently, only 16 threads are used per projection row and 16 projections are cached to utilize all 
threads.
eThe 50% occupancy is targeted in nearest-neighbor interpolation mode.
fSince 64 × 64 blocks are assigned to the thread block in the nearest-neighbor interpolation mode, the 32 
threads are used per projection row and only 8 projections are cached

Perf. (GU/s) Configuration

GPU nv Lin NN nq sd U R O

GTX580 1 80 120 4 16 – SFU 75%
2 113 188 4 16 – SFU 50%
4 142 247 4 8b – SFU 50%

GTX680 1 123 195 8c 8d 4 ALU 50%
2 160 290 8 8 2 ALU 50%
4 165 306 4 8 2 SFU 50%

Titan 1 195 268 8c 8d 4 ALU 50%
2 237 429 8 8 2 ALU 50%
4 278 471 4 8 2 SFU 50%

GTX980 1 218 452 16 8 – SFU 100%e

2 269 510 16 8 – SFU 50%
4a 292 567 4 16 – ALU 50%

Titan X 1 606 1161 16 8 – SFU 100%e

2 692 1328 16 8 – SFU 50%
4a 743 1405 4 16 – ALU 50%

HD5970 1 63 116 16 8c – – –
2 71 146 8 16 – – –
4 73 160 8 8 – – –

HD7970 1 178 290 16 8c – – –
2 221 430 4c 16f - – –
4 233 450 4 8 – – –

R9-290 1 219 341 16 8 – – –
2 298 582 4c 16f – – –
4 383 635 4 16 – – –
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configuration can be parametrized and a quick search in the 
parameters space executed to find the optimal settings. The 
parameters may include numeric options like the targeted 
occupancy, number of cached projections, unrolling factor, 
etc. But also switching on and off specific optimizations and 
caches is feasible. Automated approach would not deliver the 
optimal performance if the new functional blocks are intro-
duced like Tensor Units on a recently announced NVIDIA 
Volta architecture. However, it can address the shifts in the 
operation balance.

6.10  CPU and Xeon Phi

While we are not aiming on the CPU-based architec-
tures, the OpenCL code developed for AMD platform is 
easy to modify to run also on general-purpose processors 
and we have evaluated CPU performance for the sake of 
completeness. The texture-engine is not provided by the 
general-purpose processors. While the recent versions of 
OpenCL frameworks emulate the missing functionality, 
better performance is achieved by targeting the algebraic 
units of CPU directly. We adapted both standard and the 
ALU-based algorithms to load data directly from system 
memory instead of fetching it using texture engine. The 
standard algorithm is additionally modified to perform lin-
ear interpolation explicitly. The main difference between 
two methods is that the ALU algorithm caches data in 
shared memory while the adapted standard method loads 
data directly from system memory relaying on CPU caches. 
In fact, however, there is no a special hardware compo-
nent backing shared memory. The appropriate blocking is 
enough to utilize CPU caches and the intermediate caching 
step is not necessarily required. On other hand, the amount 
of required computations is reduced if the second term for 
linear interpolation and a few other intermediate values are 
pre-computed and cached in shared memory as proposed 
in Sects. 6.4 and 6.8. In either case, the performance is 
improved if multiple slices are reconstructed in parallel and 

a larger pixel area is assigned to a thread block. Actually, 
on newer systems supporting 256-bit AVX instructions it 
makes sense to scale up processing to at least 8 slices in 
parallel. Allocating a larger amount of pixels per block is 
relevant to use the cache efficiently. The optimal number is 
determined by the size of L2 cache available per CPU core.

To evaluate performance we used a server equipped with 
two Intel Xeon X5650 processors (6 cores, 2.66 - 3.06 GHz, 
12 MB L2 cache, 128-bit SSE4.2 instructions) and the Intel 
Xeon Phi 5110P accelerator (60 cores, 1.05 GHz, 30 MB 
L2 cache, 512-bit IMCI instructions). There are two major 
OpenCL frameworks supporting general-purpose proces-
sors. AMD and Intel deliver their own SDKs, but the proces-
sors by both vendors are supported in either case. The AMD 
framework is not capable to run ALU algorithm efficiently 
without further adaption. A faster reconstruction is possible 
if the simpler standard algorithm is used instead. Still, it is 
significantly slower compared to the performance delivered 
by the Intel SDK running the same OpenCL code on the 
same hardware. The speed is even faster if Intel is running 
the ALU variant with advanced caching mode and hx cach-
ing enabled. The best performance is measured in a 4-slice 
reconstruction mode and with 64 × 64 regions assigned per 
a thread block. To evaluate performance we compared the 
reconstruction speed against the CPU-version of PyHST 
[12]. It implements multi-thread and cache-aware recon-
struction, but does not perform implicit vectorization. Each 
thread processes a subset of all slices. The compound sino-
grams for simultaneous reconstruction of several slices are 
not supported. The performance is summarized in Table 21. 
PyHST outperforms the OpenCL prototype if it is executed 
in the single-slice mode, but it is slower if multiple slices are 
reconstructed at once. The performance of 33 GU/s is meas-
ured if a newer server with dual Xeon E5-2680 v.3 (12 cores, 
2.50–3.30 GHz, 30 MB L2 Cache, 256-bit AVX2 instruc-
tions) is used. Even then the achieved reconstruction speed 
is inferior to the performance delivered by the slowest of 
considered GPUs. As Xeon Phi line is discontinued, the lat-
est versions of Intel OpenCL SDK does not support of Xeon 
Phi processors any more. For this reason we had to resort 
to much older version from 2014. This version perform sig-
nificantly worse on general-purpose CPUs. The delivered 
performance is on pair with SDK from AMD. Consequently, 
the measured performance is barely above the speed of a pair 
of old Xeon processors.

There is a significant architectural difference between CPU 
and GPU platforms which is not considered in our imple-
mentation. When a thread block is scheduled to SM, the SM 
permanently assigns registers to all threads of the block and 
can switch executed threads without significant penalty. It is 
not the case for general-purpose processors. The used registers 
has to be saved and restored as block execution progresses and 
a processing of a new thread is started by the CPU core [57]. 

Table 21  Performance using general-purpose processors

PyHST is implemented using traditional threaded code and is not 
relaying on either on AMD or Intel OpenCL platform

2x Xeon X5650 Xeon Phi 5110P

Method nv AMD Intel Intel

PyHST 12 9.3 GU/s –
Standard 1 1.2 GU/s 3.6 GU/s 16.2 GU/s

4 4.2 GU/s 10.2 GU/s 12.1 GU/s
Synchronized 1 0.9 GU/s 3.9 GU/s

4 3.2 GU/s 10.6 GU/s
ALU algorithm 1 0.9 GU/s 6.1 GU/s 2.7 GU/s

4 3.7 GU/s 14.1 GU/s 0.2 GU/s
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To avoid an associated performance penalty, the threads on 
CPU platform are usually execute a large amount instructions 
before switching. Particularly, for the proposed back-projec-
tion algorithm this means that a thread will process multiple 
projections before giving a way to other threads of a block. 
Consequently, the data cached from the first projection of a 
block is already evicted from the L1 cache when the next 
thread is started. While it can be prevented by synchronizing 
block threads at each projection iteration, the performance 
will be penalized just other way due to expensive context 
switches. This penalty is actually playing a significant role in 
the performance difference between AMD and Intel SDKs. 
Using Intel SDK, the performance of the standard algorithm 
is slightly improved if the synchronization is performed before 
moving to a next projection. On AMD, this penalizes perfor-
mance even more as it is shown in Table 21. The higher per-
formance probably can be achieved if a way can be found to 
reduce the number of context switches without penalizing L1 
cache hit rate significantly. However, it is much simpler to tar-
get general-purpose architectures using a simple C code. No 
context switches are required if CPU cores are made responsi-
ble for different subsets of slices. And both L1 and L2 caches 
can be targeted with the appropriate blocking directly.

7  Hybrid approaches

We have proposed two algorithms to perform back-projec-
tion. One relays on the texture engine and is bound to its 
performance. The second is using shared memory and ALUs 
with only a small load on the texture engine. In this section 
we propose two methods to balance the load across all hard-
ware components.

7.1  Combined approach for Pascal architecture

On Maxwell and Pascal architectures shared memory and 
SFU performance are the main limiting factor for the ALU-
based algorithm. Both of these resources are very lightly 
utilized by the texture-based kernel. Therefore, it is possible 
to run the texture-based kernel for one part of the blocks 
and ALU-based kernel for another. NVIDIA allows to detect 
which SM executes the block. Consequently, it is possible 
to ensure that the desired ratio between texture- and ALU-
based kernels is achieved.

An array is statically defined in the global memory space. 
The first thread of a block is resolving the SM number using 
get_smid() instruction and increments the corresponding cell 
of the array using an atomic operation. The block number 
within a cell is obtained and depending on the requested 
ratio one of the two algorithms is executed. The code snippet 
is shown bellow. 

else reconstruct_alu (...);
}

__device__ uint smblocks [128] = {0};
__global__ static void reconstruct_hybrid () {

__shared__ uint block;
if (( threadIdx.x == 0)&&( threadIdx.y == 0)) {

uint smid = get_smid ();
block = atomicAdd (& smblocks[smid], 1);

}
__syncthreads ();
if (block &1) reconstruct_tex (...);

In Sect. 5.6 we proposed an advanced thread mapping 
scheme for the texture-based kernel. The intention was to 
keep pixel-to-block assignments minimal and preserve the 
performance also for small images. The ALU kernel, how-
ever, aims for larger image sizes and works with 32-by-32 
area at minimum. Therefore, an alternative simpler map-
ping is utilized for the texture-based kernel if it is executed 
as part of the hybrid approach. The block-to-pixel assign-
ments are kept in sync with the ALU-based kernel. At each 
step a standard region of 16-by-16 pixels is processed. The 
thread to pixel assignments follow the mapping described 
in Sect. 5.5. Each thread is responsible for 4 to 16 pixels 
and processes them in a loop. The same texture is used to 
perform linear interpolation in blocks running the texture-
based algorithm and to cache data if the blocks execute the 
ALU-based reconstruction. The performance and utilization 
of GPU subsystems using the different reconstruction modes 
is reviewed in Table 22.

In 2-slice reconstruction mode, the performance of the 
texture-based and ALU-based kernels is very close. There-
fore, half of the blocks run the ALU-based reconstruc-
tion and the other half uses the texture engine. The hybrid 
approach outperforms the optimized texture-based method 
by 30% in this case. The ALU-based reconstruction is signif-
icantly faster if only a single slice is reconstructed. The SM 
on Pascal and Maxwell runs up to 8 blocks with 256 threads 
each. The ALU reconstruction is executed for 5 blocks and 
the texture based reconstruction is performed for other 3. It 

Table 22  Utilization of functional units in hybrid reconstruction 
mode

Utilization of NVIDIA GeForce Titan X (Pascal) subsystems with 
Texture-based, ALU-based, Hybrid, and Oversampling reconstruction 
algorithms. Two slices are reconstructed in parallel according to the 
configuration given in Tables 13 and 20. The utilization is obtained 
using nvprof based on the following metrics: tex_fu_utilization, 
shared_utilization, single_precision_fu_utilization, special_fu_utili-
zation

Method Texture Shared ALU SFU Perf.

Texture 100% 20% 40% 10% 726 GU/s
ALU 10% 90% 60% 50% 693 GU/s
Hybrid 70% 70% 70% 40% 995 GU/s
Overs. 20% 90% 50% 40% 1107 GU/s
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is possible to secure 20% higher throughput over the plain 
ALU-based reconstruction. Too many registers are required 
if 4-slices are reconstructed in parallel. Consequently, a low 
occupancy penalizes the performance of the texture-based 
kernel significantly.

While it is possible to use the described approach using 
the nearest-neighbor interpolation, in practice there is a 
little speed-up. The ALU kernel outperforms the texture-
based kernel significantly unless 4-slice reconstruction is 
performed using the half-float data. Consequently, there is 
a little effect if they are executed in parallel. The proposed 
method is only suitable for Maxwell and Pascal architec-
tures. All other devices are bound by the performance of 
the ALU units. While the Kepler architecture has a very 
high ALU performance, ALUs are also utilized to perform 
rounding operations to overcome the slow SFU performance. 
Since the texure-based kernel also uses ALUs intensively, no 
performance gains are measured. The used configuration and 
the achieved performance on Maxwell and Pascal platforms 
are presented in Table 23.

7.2  Oversampling

There is an alternative approach to improve the utilization of 
the texture engine using the ALU-based reconstruction. The 
idea is to sample several values for each bin of a sinogram 
and use the nearest-neighbor instead of linear interpolation, 
see Fig. 17. While more shared memory is required, the 
number of computations and memory transactions is reduced 
in this case. A significant speed-up is achieved compared to 
linear interpolation if 4 values are sampled for each bin at 
offsets .00, .25, .50, and .75. Figures 18 and 19 compare the 
described approach against the reconstructions performed 
using the nearest neighbor and linear interpolation. In both 
cases the reconstruction in oversampling mode is more simi-
lar to the results obtained using the linear interpolation.

Implementation-wise a few modifications are required 
for the optimal performance. The amount of used shared 
memory is quadrupled. To achieve reasonable occupancy the 
number of cached projections has to be reduced. Typically 
only 4–8 projections are processed in parallel. The amount 
of available shared memory on Kepler still does not allow 
to reach 50% occupancy if multiple slices are reconstructed. 
The performance is significantly penalized if only 2 projec-
tions are cached per iteration of the projection loop. There-
fore, the Kepler GPUs are running with occupancy under 
50%. On the Kepler-based Titan card the actual occupancy 
allowed by shared memory is hinted and 72 registers are 
used per thread. The GeForce GTX680 is restricted to 63 
registers per thread and hinting occupancy bellow 50% is 
not useful as extra registers can’t be assigned.

To avoid idling at synchronization point, 32 to 64 threads 
are used to cache each projection row. The texture engine 
is expected to perform linear interpolation to deliver data 
at fractional offsets. Consequently, the half-float data rep-
resentation can’t be used together with the oversampling. 
If the caching of hx is enabled as explained in Sect. 6.8, the 
first 16 threads of each warp are assigned to cache the first 
component of hx vector and the second half-warp stores the 
second half of the value. It allows to cache all required data 
using a single 32-bit instruction and reduces the required 
shared memory bandwidth.

The data locality is significantly worse if the oversam-
pling approach is used. Up to 4 times more values are 
accessed by each warp. Consequently, there is a high pos-
sibility of shared memory bank conflicts. To reduce the 
amount of conflicts, the data vectors are split if multiple 
slices are reconstructed in parallel. The vector components 
used to represent each sinogram are extracted after texture 
fetch and are stored into the 2–4 separate caches. On the 
systems with 32-bit shared memory, a dedicated buffer is 
allocated for each sinogram component. On the platforms 

Table 23  Performance and 
configuration of hybrid back-
projection kernel

The table summarizes the performance and optimal configuration for the hybrid back-projection kernel. 
Both texture engine and ALUs are used to perform interpolation. The configuration specifies: T/A—is a 
ratio between the blocks executing Texture-based reconstruction and the blocks running ALU-based algo-
rithm, nq —a number of pixels per thread, sd —a number of cached projections, U—unrolling hint for inner 
projection loop, R—the units to perform rounding and type conversions (index is always computed using 
SFU), O—the requested occupancy. The caches are configured as specified in Table 18. The number of 
threads to cache a projection row is determined according to guidelines in Table 14

Configuration

GPU nv Perf T/A nq sd U R O

GTX980 1 266 GU/s 3/5 16 8 – SFU 100%
2 389 GU/s 1/1 4 16 – SFU 100%

Titan 1 734 GU/s 3/5 16 8 – SFU 100%
2 995 GU/s 1/1 4 16 – SFU 100%
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preferring 64-bit over 32-bit loads, the data is split only if 
4-slice reconstruction is performed. Two buffers are used 
in this case, each storing the sinogram components for a 
pair of reconstructed slices. During the accumulation step, 
the values are extracted from all caches using the same 
index and re-combined into the appropriate vector again. 
To allow 64-bit writes also during a single-slice recon-
struction, on Kepler platform the re-combination of shared 
memory writes is performed as explained in Sect. 6.3. The 
used configuration and achieved performance are summa-
rized in the Table 24.

8  Conclusion

We have surveyed a range of GPU architectures presented 
by the major hardware vendors in the last 10 years. Table 10 
lists architecture details and summarizes rather considerable 
shifts of the performance balance between different hard-
ware pipelines. The throughput ratio between the floating 
point and type-conversion instructions has fluctuated 8-fold. 
The type-conversions are executed at a half rate of the peak 
floating-point performance on AMD GCN GPUs, but only 
a single type-conversion instruction can be executed per 12 
floating-point operations on NVIDIA Kepler GPUs (consid-
ering the peak rates). On the other hand, the type-conversion 
instructions can be executed in parallel with floating-point 
operations on NVIDIA Kepler, but not on AMD GCN. The 
ratio between the theoretical throughput of floating-point 
instructions and the shared memory bandwidth has changed 
2.6 times across the reviewed architectures. A 2-fold change 
is reported between the throughput of floating point opera-
tions and the filtering rate of the texture engine. Further-
more, we found that even more considerable architectural 
changes have been introduced in some products. AMD has 
replaced the VLIW architecture by GCN effectively mov-
ing from the instruction level parallelism to a SIMT-only 
model. On NVIDIA platforms, execution of bit mangling 
and type conversion operations was shifted between ALU 
and SFU units. In recent architectures half-float and Tensor 
Units have been introduced to accelerate machine learning 
algorithms. The study demonstrates that these changes are 

Fig. 17  The figure illustrates the oversampling reconstruction 
approach. To reconstruct a 32 × 32 pixel square, a thread block 
caches 192 values per projection (left). The values are fetched from 
48 bins at uniform intervals using the texture engine. Then, the recon-
struction is performed and projections are processed in a loop one 
after another (right). To determine required position in the cache, the 
offset from the first bin of the cache is multiplied by 4 and the result 
is rounded to the nearest integer. The value at this position is loaded 
from the array and used to update pixel value

Fig. 18  Comparison of the reconstructions performed using nearest 
neighbor (NN) and linear interpolation with the hybrid oversampling 
approach (overs). The profile plot along the selected line is shown in 
the top part of the figure for the phantom and all reconstruction meth-
ods. The absolute difference from precise phantom image is shown 
along the same line in the bottom part

Fig. 19  Comparison of the reconstructions performed using nearest 
neighbor (NN) and linear interpolation with the hybrid oversampling 
approach. The profile plot along the selected line is shown in the top 
part of the figure for the fossilized wasp dataset and all reconstruction 
methods. The absolute difference from the reconstruction performed 
using linear interpolation is shown along the same line in the bottom 
part
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highly relevant to the performance of developed algorithms 
and a significant speed-up is possible if low-level details of 
the GPU architecture are taken into the consideration. In 
addition to GPU architectures, we also reviewed the Intel 
Xeon-Phi technology in Sect.  6.10. We show that the 
OpenCL algorithms developed for GPUs are barely suited 
for this architecture due to the different scheduling model. 
The standard threaded code is easier to implement and better 
fitting for general-purpose CPUs and Intel accelerators based 
on Xeon Phi technology.

We present two algorithms to perform fast back-projec-
tion on the variety of GPU architectures. The first utilizes 
the texture engine for interpolation. The second algorithm 
relies on ALU units and shared memory. Furthermore, we 
proposed two hybrid approaches to combine these methods 

and achieved an even higher performance by balancing the 
load across the GPU subsystems. In Sect. 5.2 we show that 
a higher utilization of the texture engine can be achieved if 
the data is re-arranged in larger vector types. Such vectors 
are streamed by the texture engine at the same rate as sim-
ple floating-point numbers provided that the high locality of 
the texture fetches can be ensured across half-wraps and also 
within groups of 4-consecutive threads. On some architec-
tures we can further double the performance by switching to 
a half-precision data representation at a price of some penalty 
to the image quality. The only requirement is the ability of the 
hardware to perform high-speed transformation between half- 
and single-precision formats of floating point numbers. Even 
if half-precision floating point numbers are not directly sup-
ported by the texture engine, in Sect. 5.3 we demonstrated that 

Table 24  Performance and 
configuration of ALU-based 
back-projection kernel 
performing oversampling-based 
interpolation

The table summarizes the performance and optimal configuration for the ALU-based back-projection ker-
nel if oversampling and nearest neighbor interpolation are used to update values of reconstructed pixels. 
The configuration specifies: nq —a number of pixels per thread, C—a number of separate arrays used to 
cache singoram (either a dedicated array is used to store each component of sinogram vector or two com-
ponents are stored together to allow 64-bit writes), st∕sd —a number of threads used to cache projection 
row and a number cached projections, U—unrolling hint for inner projection loop, R—the units to perform 
rounding and type conversions (index is always computed using SFU), O—the desired occupancy. The 
caches are configured as specified in Table 18
a Each GPU thread caches 2 values at once to enable 64-bit writes
b The use of SFU is also avoided while resolving array addresses, see Sect. 6.6

Configuration

GPU nv Perf nq C st∕sd U R O

GTX580 1 80 GU/s 4 1 32 / 8 – SFU 75%
2 116 GU/s 4 2 32 / 8 – SFU 50%
4 142 GU/s 4 4 64 / 4 2 SFU 50%

GTX680 1 123 GU/s 16 1 32 / 4 a 4 ALUb 50%
2 160 GU/s 8 1 32 / 4 2 ALU 50%
4 165 GU/s 4 2 64 / 4 2 SFU 50%

Titan 1 195 GU/s 16 1 32 / 4 a 4 ALUb 50%
2 237 GU/s 8 1 32 / 4 2 ALU 43%
4 279 GU/s 4 2 64 / 4 2 SFU 37%

GTX980 1 218 GU/s 16 1 32 / 8 – SFU 50%
2 269 GU/s 16 2 64 / 4 – SFU 50%
4 292 GU/s 4 4 64 / 4 2 SFU 50%

Titan X 1 606 GU/s 16 1 32 / 8 – SFU 50%
2 693 GU/s 16 2 64 / 4 – SFU 50%
4 743 GU/s 4 4 64 / 4 2 SFU 50%

HD5970 1 63 GU/s 16 1 32 / 8 a – – –
2 71 GU/s 8 1 32 / 4 – – –
4 73 GU/s 8 2 32 / 4 2 – –

HD7970 1 178 GU/s 16 1 32 / 8 a – – –
2 222 GU/s 4 1 32 / 8 – – –
4 233 GU/s 4 2 64 / 4 2 – –

R9-290 1 219 GU/s 16 1 32 / 8 – – –
2 298 GU/s 4 2 32 / 8 – – –
4 384 GU/s 4 4 64 / 4 2 – –
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they still can be efficiently utilized by binding a texture with 
the forged data type. To reach the maximal theoretical rate of 
the texture engine, the performance bottleneck caused by the 
low throughput of constant memory and SFU units is resolved 
by re-assigning work between GPU threads as explained in 
Sect. 5.6. While this approach results in a lower occupancy 
on the AMD platform, the resulting performance is consider-
ably improved especially on AMD VLIW-based GPUs. On 
the NVIDIA platform we are able to enforce 100% occupancy 
instead, see Sect. 5.7. Consequently, a relatively large amount 
of local memory is used, but it is completely backed by the 
L1 cache and the performance is improved significantly on 
most NVIDIA architectures as well. As can be seen from 
Fig. 6, a high utilization of the texture engine is achieved 
across all hardware platforms. The algorithm is highly port-
able, and only a minor adjustment of the algorithm parameters 
is required to adapt it to a specific hardware. In contrast, the 
ALU-based algorithm requires significant modifications for 
some of the considered architectures. As we have shown in 
Sect. 6.5, different functional blocks may limit the algorithm 
performance depending on the underlying hardware. Conse-
quently, we were able to significantly boost its performance by 
re-balancing the load of these functional blocks. For the Max-
well and Pascal micro-architectures, we run both algorithms 
in parallel efficiently redistributing the load between tex-
ture engine, shared memory, and ALUs. This approach is 
explained in Sect. 7.1. Because of the slow throughput of 
Keplers SFU units, in Sect. 6.6 we proposed an alternative 
method to perform rounding and type-conversion operations 
using ALUs instead of SFUs. Consequently, part of SFU load 
is shifted to ALUs and a higher performance is achieved. In 

Sect. 6.8, we introduce additional caches for the Fermi archi-
tecture to reduce the total number of issued instructions. For 
the AMD VLIW architecture, we significantly increase an 
amount of work per GPU thread. Consequently, the kernel 
runs at a very low occupancy but utilizes the instruction level 
parallelism better. In Sect. 6.9 we also discuss the optimal 
occupancy for other architectures. It depends on the amount of 
available hardware registers, kernel complexity, and also the 
ratio between memory and ALU/SFU instructions. We show 
that targeting both higher and lower occupancy may results 
in a considerable speedup.

Table 25  Suggested algorithms

The table specifies the fastest algorithms to implement back-projection kernel with linear or nearest-neigh-
bor interpolation at each platform. Individual recommendations are given for the single-slice and multi-
slice reconstruction modes. The recommended number of slices is given in column S. The options for pre-
cise and approximate reconstructions are proposed. In precise mode, the obtained reconstruction is exactly 
the same as one produced by the standard reconstruction method. In approximate mode, either a half-float 
data representation is used to accelerate nearest-neighbor interpolation or the oversampling approach is 
combined with nearest neighbor interpolation to substitute linear interpolation. The performance and 
optimal configuration for the texture-based algorithm is listed in Table  13. The ALU-based algorithm 
is described in Table 20 and its oversampling modification is given in Table 24. The hybrid approach is 
defined in Table 23

GPU Mode Linear Nearest neighbor

S Precise Appr. S Precise Appr.

GT200 Single 1 TEX TEX 1 TEX
Fermi * 4 ALU Overs. 4 ALU
Kepler Single 1 TEX Overs. 1 ALU

Multi 2 TEX TEX 4 ALU
Mxwl+ Single 1 Hybrid Overs. 1 ALU

Multi 2 Hybrid Overs. 4 ALU TEX/half
VLIW Single 4 ALU Overs. 1 ALU

Multi 4 ALU Overs. 4 TEX
GCN * 4 ALU Overs. 4 ALU

Fig. 20  The figure evaluates the theoretical peak throughput of GPU 
subsystems and the measured performance of standard and optimized 
back-projection algorithms. The speed-up against NVIDIA GeForce 
GTX295 is shown in the left part of the figure. The relative speed-up 
between consecutive architectures is shown in the right part
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Different algorithms can be used to better target a varying 
balance of subsystem performances in each GPU architec-
ture. We have also shown that it is viable to utilize multiple 
algorithms in parallel if they are primarily aimed at the dif-
ferent hardware units. The optimal ratio between these algo-
rithms can be ensured on the NVIDIA platform allowing the 
balanced usage of all GPU components. The recommended 
algorithms for each platform are summarized in Table 25. 
The nearest-neighbor interpolation performs significantly 
faster on the majority of the considered platforms if the 
ALU-based algorithm is used. Except on Kepler, the linear 
interpolation is also accelerated if the ALU variant is used 
either alone or in combination with the texture-based algo-
rithm. If the exact agreement with the standard algorithm 
is not required, an additional speed-up can be achieved by 
using the half-float data representation or by replacing the 
linear interpolation with a combination of the oversampling 
and the nearest-neighbor approach as explained in Sect. 7.2. 
There is still a rapid progress in parallel hardware and new 
architectures are announced yearly. To port the algorithms 
to new devices, the algorithm configuration can be para-
metrized and a quick search in the parameters space be 

executed to find optimal settings. This approach will not 
deliver the optimal performance if new functional blocks are 
introduced in the architecture, e.g. Tensor and Ray Tracing 
units on the recent NVIDIA GPUs. However, it can address 
the shifts in the operation balance.

Figure 20 illustrates the history of NVIDIA platform 
from 2009 to 2016. While the performance of the stand-
ard algorithm has grown on the pair with the hardware 
improvements, the optimized algorithms got an additional 
boost from utilizing parallelism between GPU subsystems. 
The speed-up of the optimized back-projection algorithms 
significantly outperform the respective grow of the hard-
ware performance. Particularly, using new ALU-based 
algorithm we boosted performance by 3–5 times in the 
Fermi architecture. In the same time, the peak through-
put of the floating-point instruction has been only been 
improved by 50%. The balance of operations has changed 
on the Kepler architecture significantly. The throughput 
of bit-mangling and type-conversion operators has been 
even reduced on GTX680 if compared to GTX580. We still 
were able to preserve the steady grow of the performance 
by optimizing usage of the texture engine and re-balanc-
ing the load between SFUs and ALUs. Due to ability to 
utilize the texture engine in parallel with ALUs, on Max-
well and Pascal architectures the algorithm performance 
again increased above the improvements of the hardware.

NVIDIA Titan X is the newest of the evaluated GPUs. 
Here, we were able to accelerate the code by 2.5 times 
using linear interpolation and  without loss of image 
quality. The proposed algorithm is 3.5 times faster if the 
nearest-neighbor interpolation is used. Even if the recon-
struction chain is only able to process a single-slice at a 
time, the proposed hybrid approach is 2 times faster then 
the standard algorithm. The achieved speed-up across all 
platforms is presented in Fig. 21. Some architectures can 
be accelerated as much as 7 times compared to the state-
of-the-art method. The high-speed reconstruction is of a 
significant importance for imaging at synchrotron facilities 
and allows to improve spatial and temporal resolutions of 
the beam-line instrumentation. The back-projection algo-
rithm is also utilized in iterative reconstruction techniques 
aiming for high-quality reconstruction. Therefore, the 
faster implementation lowers the computational demands 
for high-quality offline reconstruction as well. Further-
more, the general concept of balancing the load between 
the computational units of the GPU is not limited the pre-
sented tomographic reconstruction but rather suggested for 
any computational intense task.
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