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Abstract

A considerable number of surface texture investigations is based on pin-on-
disc tribometers. This work shows that a crucial role in the reproducibility of
the results, e.g. Stribeck curves, is played by the geometry of the pin surface.
The investigation is based on an elastohydrodynamic model of a pin-on-disc
tribometer which is validated with experimental data. Characteristic rough-
ness and pin shapes are introduced in this model to evaluate the sensitivity
of the Stribeck curve to these operating conditions. The obtained signifi-
cant variations in the friction coefficient indicate that studies which aim at
quantifying the influence of surface textures in the mixed lubrication regime
need to provide information about the pin geometry in order to enable a
meaningful comparison among literature data.
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1. Introduction

Since 20% of the world’s total energy consumption goes to overcome fric-
tion [1], research on drag reduction bears great potential in energy saving.
One of these technologies is the introduction of surface textures in lubricated
contacts. Surface textures in the shape of dimples can cause an additional
pressure build-up within the lubrication flow, which leads to a thicker fluid
film and less friction [2]. This positive effect is highly sensitive to the con-
tact’s operating condition and the robust and versatile design is a subject of
intensive research [3, 4]. Due to the high sensitivity of the texture param-
eters, the operating conditions during their investigations must be known
and controlled. A widely used way to investigate surface textures under such
isolated conditions is the pin-on-disc tribometer [5]. The knowledge of all
operating parameters in this experiment allows its numerical representation,
while the experimental results enable the meaningful validation of the cre-
ated digital twin. Among others, such studies were previously carried out in
the context of a thrust bearing [6] or a piston-ring-liner contact [7]. In the
case of a pin-on-disc tribometer, setting up a digital twin based on previ-
ously published experimental data proves to be difficult because important
information, such as the measurement of the pin curvature, is often missing
[8, 9, 10, 11, 12, 13]. For the present study additional data of the pin ge-
ometry employed in the experiments of Braun et al. [8] is used in order to
determine the sensitivity of numerical predictions on this quantity. In con-
sequence, a suggestion of the surface parameters that should be published
along with experimental results can be made.

The paper is structured as follows. The reference pin-on-disc tribometer
is introduced in section 2 before the setup of the corresponding numerical
model is explained in section 3. This model is based on a two-scale approach
in which the roughness scale is considered through precalculated contact
pressure and homogenization factors [14] while the modelling of the elas-
tohydrodynamic lubrication (EHL) is performed through the homogenized
Reynolds equation including mass-conserving cavitation [5, 15, 16] and the
boundary element method [17]. In section 4, the implemented model is used
to quantify the influence of the pin geometry on the Stribeck curve.
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2. Reference Tribometer set-up

A schematic setup of the Plint TE-92 HS tribometer from Phoenix Tri-
bology (Kingsclere, UK) that was used for the experiments of Braun et al.
[8] is depicted in Figure 1. It shows the rotating disc that is pressed with the
normal force FN against the pin. The pin is placed on a self alingning pin
holder and the contact of pin and disc is constantly fed with oil. The setup
is heated to keep the oil temperature at 100◦C. At this temperature, the ad-
ditive free poly-alpha-olefin (PAO), Klüber Lubrication (Munich, Germany)
has a dynamic viscosity of approximately µl = 0.0031Pa·s. The pin with
a diameter of 8mm consists of normalized steel C85 (Stahlbecker, Heusen-
stamm, Germany) with a Young’s modulus of approximately E = 206GPa
and a hardness of 400HV. The disc with a diameter of 70mm is made out
of hardened and tempered (190◦C) steel 100Cr6 (AISI 5210, Eisen Schmitt,
Karlsruhe, Germany) with a hardness of 800HV.

Figure 1: Schematic set-up of the pin-on-disc tribometer as presented in [8].

During the experiments, the friction force FT acting on the pin surface is
measured to determine the friction coefficient Cf [18]:

Cf =
FT
FN

. (1)

The Stribeck curve is measured for different disc velocites U by approx-
imating them as U = Ω · rs, where Ω is the angular velocity of the disc and
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rs = 30mm is the distance from the pin center to the rotation center of the
disc. Consequently, this approximation neglects velocity gradient effects [19].

In order to numerically reproduce the experimental Stribeck curve, the
forces FN and FT on the pin surface A must be computed. This is performed
by superposition of the hydrodynamic, ambient and contact pressures, phd,
pa and pc, and the corresponding shear stresses, τhd and τc [5]:

FN =

∫
A

ptotdA =

∫
A

(phd − pa + pc) dA, (2)

FT =

∫
A

τtotdA =

∫
A

(τhd + τc) dA. (3)

Realistic values for these two quantities need to be determined in order to
study the influence of pin surface geometry and pin roughness in the digi-
tal twin of the experiment. Unfortunately, this geometrical information is
typically not provided in literature.

As reference for the present study we complement the results of Braun et
al. [8] with additional measurement data that are accessible. The additional
data consist of a macroscopic and microscopic surface measurement of the pin
from the experiments and was provided by the Institute of Applied Materials
- Computational Materials Science at the Karlsruhe Institute of Technology
where the original experiments were conducted. The data is also published
in the supplements of the present work. For the macroscopic pin profile,
a surface measurement along the centerline of an unused pin is considered
and extrapolated. The result is presented in Figure 2 where rounding of the
pin surface is clearly visible. This macroscopic surface geometry originates
from the polishing step during manufacturing. It should be noted that this
pin surface has not yet been subjected to wear and running in effects which
are likely to generate geometrical changes. Therefore, the available surface
geometry can only serve as a rough estimate of the maximum gap height
variations across the pin.

In contrast to the macroscopic pin geometry, information about the pin
roughness is available for used pins. The roughness profile on a run-in pin
was measured with an optical 3D-profilometer of the type PLu from SensoFar
(Barcelona, Spain) in an interferometric measuring mode with a ten times
magnifying lens. The roughness profile is shown in Figure 3 with the mean
plane set to 0µm. The center-line average is Ra = 0.107µm, the standard
deviation σ = 0.143µm, the skewness Sk = −1.26, the kurtosis Ku = 4.50,
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the maximum of Rp = 0.287µm and the minimum of Rv = −0.656µm, where
these values were calculated according to Bhushan [20].

Figure 2: Macroscopic pin profile with
curvature due to the polishing proce-
dure. Note that the x3-axis is more
than 1000 times magnified in order to
outline the curvature of the pin.

Figure 3: Representative roughness
patch with grooves due to manufactur-
ing and wear.

3. Numerical approach

3.1. Fluid mechanics

Based on the model of Wolozynski et al. [16] in the implementation of
Codrignani et al. [5], the hydrodynamic pressure distribution phd in the gap
of height h between pin and disc is described by the Reynolds equation con-
sidering a mass-conserving cavitation algorithm and the cavitation condition:

∇ ·
(
h3∇phd − 6hµl

(
U
0

)
(1− θ)

)
= 0, (4)

(phd − pcav) θ = 0. (5)

The cavitation pressure is estimated to pcav = 0.08MPa following [21].
The cavity fraction θ = 1 − ρ

ρl
describes the amount of cavitated lubricant,

where ρl is the density of the liquid lubricant and ρ is the density of the
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mixture phase. This equation system is discretized with the finite-volume-
method and solved using the Dirichlet boundary condition of ambient pres-
sure pa = 101325Pa and no cavitation at the domain boundaries. The corre-
sponding hydrodynamic shear stress τhd on the pin surface is determined as
[7]:

τhd = −h
2

∂phd
∂x1

+
µlU

h
(1− θ). (6)

A two-scale approach is employed in order to consider the impact of
roughness on the macroscopic pressure distribution while keeping the com-
putational effort reasonable. This is achieved by evaluating the roughness
effects on the microscopic scale during a preprocessing step and introducing
the result as an averaged quantity in the subsequent macroscopic simulation.
The macroscopic and microscopic effects are distinguished by decomposing
the gap height h between pin and disc into a macroscopic gap coordinate h0
and its microscopic variation hr due to the roughness profile. The reference
level of hr corresponds to the mean plane of the undeformed roughness of
the pin [22]:

h = h0 + hr. (7)

In contrast to the pin, the disc is assumed to be perfectly flat. On the
macroscopic scale of the pin, the gap coordinate h0 is a combination of the
rigid body displacement of pin and disc h0,ri, the gap height variation due
to the rigid pin geometry h0,g (e.g. surface curvature) and its macroscopic
elastic deformation h0,el[23]:

h0 = h0,ri + h0,g + h0,el. (8)

The rigid body displacement of pin and disc h0,ri is adjusted through an
iterative scheme until the load balance equation (2) is satisfied. For a value
of h0 ≤ Rp = 0.287µm, surface contact between the disc and the roughness
profile occurs. Since surface contact changes the roughness profile, h0 is
not an adequate description of the mean gap height during surface contact.
Therefore, the meltdown gap height hm is introduced as the distance of the
disc to the mean plane of the deformed roughness profile on top of the pin.
It is equal to h0 for h0 > Rp but differs during surface contact. In order to
determine the deformed roughness profile and meltdown gap height on the
microscopic scale, it is assumed that the surface contact of disc and roughness
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profile simply cuts off roughness asperities. In addition a remaining gap
height of ε = 10−8m is enforced during surface contact to improve numerical
stability [24]. In consequence hm tends towards ε for strong surface variations.
This is schematically displayed in Figure 4 and the resulting meltdown gap
height as a function of the gap coordinate h0 is shown in Figure 5. Note that
h0 can assume negative values, indicating that severe roughness deformation
beyond the undeformed roughness mean plane has occured.

h0 Rp

h0 hm

ε

h0 > Rp:

h0 < Rp:

hm

Figure 4: Schematic comparison of gap
coordinate h0 and meltdown gap height
hm with and without surface contact.

h0 = Rp

Figure 5: Meltdown gap height hm as
a function of the gap coordinate h0

during surface contact for the specific
roughness shown in Figure 3.

In the present approach, the dependency between hm and h0 is determined
in a preprocessing step. This relationship depends only on details of the
roughness geometry that is shown in Figure 3 and is determined for a number
of imposed h0 in the range between Rv and Rp. Afterwards, the Reynolds
equation (4) is solved as follows. The gap coordinate h0 is determined at
each position ~x according to equation (8), thus representing the macroscopic
geometry. Then, the roughness effects are considered through a replacement
of h0 by the previously calculated hm as shown in Figure 5. The gap height
that enters the Reynolds equation (4) is thus described by:

h = hm(h0(~x)). (9)

While using equation (9) as a description of the gap height in the Reynolds
equation (4) only allows to take the average gap height over a roughness
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profile into account, the homogenization of the Reynolds equation enables the
consideration of the roughness’s general shape and orientation [15]. Similar
to the decomposition introduced by [24], this approach splits the gap height h
into the meltdown gap height hm and the corresponding deformed roughness
gap height hr,def , which depend on macroscopic coordinates ~x and roughness

coordinates ~ξ:

h = h(~x, ~ξ) = hm(h0(~x)) + hr,def (h0(~x), ~ξ). (10)

It is assumed that hr,def is periodic over the representative roughness domain
A~ξ with the lengths Y1 and Y2 and that these lengths are significantly smaller
than any characteristic length in the macroscopic coordinates ~x. In this
case, certain terms can be neglected when equation (10) is substituted into
the Reynolds equation (4), which is after an asymptotic expansion of the
hydrodynamic pressure phd averaged over the periodic domain A~ξ. The result
is the homogenized Reynolds equation and the analogously derived expression
for the homogenized shear stress in dependence of the homogenization factors
A, ~b, ~c and d [15, 24]:

∇ ·
(
A∇phd +~b (1− θ)

)
= 0, (11)

τhd = ~c · ∇phd + d (1− θ) . (12)

Summarizing, the homogenization approach for the representation of the
microscale roughness is as follows: during the preprocessing, the local prob-
lems summarized in Appendix A are solved for various imposed gap co-
ordinates h0 and the employed roughness profile under consideration of a
minimum remaining gap height of ε = 10−8m between the deformed rough-
ness profile and the disc. From their solutions, the homogenization factors
are computed as a function of the gap coordinate. This dependency of the
normalized homogenization factors is displayed in Figure 6. Since the ho-
mogenization factors are normalized with the meltdown gap height hm, the
homogenization method coincides with the concept of a hydrodynamically
smooth surface along the deformed roughness mean plane as long as the
normalization of A11, A22, b1 is equal to 1 and A12, A21, b2 are equal to 0.
Otherwise, the flow factors of both methods differ from each other, which
becomes visible for values below h0 = 1µm.

While the microscale is represented through the homogenization approach
described above, the macroscopic pin geometry is taken into account through
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the assignment of a gap coordinate h0 to each coordinate ~x through equa-
tion (8). This allows solving the homogenized Reynolds equation on the
macroscopic scale during the main processing.

Figure 6: Normalized homogenization factors as function of the gap coordinate h0 for the
specific roughness shown in Figure 3.

3.2. Contact mechanics

In analogy to the homogenization factors, the contact pressures and shear
stresses are determined during the preprocessing as a function of the gap co-
ordinate h0 and the employed roughness profile. For each imposed h0, the
real area of contact Ac(h0) between the roughness profile and the smooth disc
is determined. Note that at this point, the earlier considered minimum re-
maining gap height of ε = 10−8m is not necessary for any numerical stability
and therefore not employed. Tabor [25] states that the contact of two rough
bodies does not actually occur on their whole macroscopic surface, but only
on a small fraction of it called the real area of contact. This area is described
by the contact of the surface asperities which are almost immediately plasti-
cally deformed until the real area of contact is large enough to support the
whole contact load. Since almost the entire real area of contact is plastically
deformed, the occurring contact pressures can be linked to the material’s
yield strength σY . If it is further assumed that the asperities are of a small
height and there is no relative movement between the surfaces, the contact
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pressure pc in a macroscopic discretization cell of area Atot is described as
[25]:

pc = 3σY ·
Ac(h0)

Atot
. (13)

Nonetheless, first subsurface plastic deformation already occurs at a sur-
face pressure of 1.1σY [25]. However, an exact prediction about the extension
of this plastically deformed subsurface volume cannot easily be made and
subsurface plastic deformation is therefore omitted for the sake of a simple
contact model. The precalculated contact pressure in dependence of the gap
coordinate is visualized in Figure 7. Bowden and Tabor [26] also give an
expression for the shear stress τc in the contact surface of two metals with-
out a normal load. They explain that the metals form welded bridges which
have to be sheared off by relative motion. By applying the Mises criterion
of equivalent stress, the shear stress can be calculated as a function of the
material’s yield strength [26]:

τc =
σY√

3
· Ac(h0)
Atot

(14)

Assuming ideal elastic-plastic material properties, the yield strength can
be approximated from the Vickers hardness as described in Appendix B. It is
important to mention that equation (13) assumes no shear load while equa-
tion (14) assumes no normal load. If both are present, contact and shear
stresses are actually lower than those given by the equations [26]. How-
ever, these equations are used in the employed model since they excel in
computation efficiency and the resulting friction coefficient in the boundary
lubrication regime reflects experimental data reasonably well.
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Figure 7: Contact pressure as a function of the gap coordinate. The value of h0 = 0
corresponds to the roughness meltdown plane for the specific roughness shown in Figure
3.

3.3. Elastohydrodynamic deformation

The sum ptot= phd + pc of the hydrodynamic and contact pressure fields
elastically deforms the pin on the macroscopic scale, thereby changing the
initial gap height distribution. To take this into account, the elastic defor-
mation h0,el of the pin surface A is described by the elastic half-space model
[17]:

h0,el(x1, x2) =
(1− ν2)
πE

∫∫
A

ptot(x
′
1, x
′
2)√

(x1 − x′1)
2 + (x2 − x′2)

2
dx′1dx

′
2, (15)

where ν is Poisson’s ratio and E is Young’s modulus. When the surface
A is discretized with the boundary element method (BEM) into rectangles,
equation (15) can be expressed in dependency of a Kernel function K [17, 27]:

h0,el(x1, x2) =
∑
x′1

∑
x′2

K(x1 − x′1, x2 − x′2) · ptot(x′1, x′2). (16)

The computation of the elastic deformation due to a pressure field is
accelerated by using the Fourier transformation F [17]:

h0,el = F−1 (F (K) · F (ptot)) . (17)

11



On the downside, at this point the discretized domain has to be increased
and padded with zeros to perform a linear convolution instead of a circular
one, which increases the computational costs of the convolution. After its
calculation, the domain is resized to its old range. The resulting gap coordi-
nate h0 is then computed as the superposition of the rigid body displacement
of pin and disc h0,ri, the gap height variation due to the rigid pin geometry
h0,g and its macroscopic elastic deformation h0,el:

h0(ptot) = h0,ri + h0,g + h0,el(ptot). (18)

Since h0 depends on the total pressure profile ptot, which also depends on the
gap coordinate h0, finding the equilibrium requires an iterative procedure.
At first, for an initial pressure profile p

(i)
tot, the elastic displacement and its

resulting pressure distribution ptot,II are computed. Then, the residuum rel
of the two pressure fields is calculated and the pressure field for the next
iteration step p

(i+1)
tot is determined by underrelaxation as long as rel is higher

than a threshold of tol = 10−5:

rel =
1

Np

∫
Np

|ptot,II − p(i)tot|
pa

dn, (19)

p
(i+1)
tot = p

(i)
tot + α(ptot,II − p(i)tot). (20)

where Np is the total number of the discretization points n above the
pin, pa is the ambient pressure and α is the underrelaxation factor. It is set
to α = 0.5 in the hydrodynamic and α = 0.05 in the mixed and boundary
lubrication regime to achieve a good trade-off between convergence speed
and stability.

Lastly, it is important to mention that the pin geometry does not fully
correspond to the half-space theory since it is loaded with pressure on all of its
surface and does not have infinite extensions in any direction. This is shown
in Figure 8, where the elastic pin deformation based on the BEM and caused
by the pressure distribution obtained at U = 0.8m/s is displayed along the
pin center line. This velocity was used because it marks the transition of
the purely EHL to the mixed lubrication regime as explained later in section
4.1 and therefore represents a critical operating condition. A comparison
is carried out between a finite element method (FEM) calculation and the
previously shown BEM model by applying the same pressure distribution ptot
to both models (Figure 8). The FEM computation was carried out with the
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software ANSYS Mechanical 2019 R3. The pin geometry was approximated
as a cylinder of 2.5mm height and a radius of 4mm. Figure 9 shows the pin
deformation in x3-direction which is induced by ptot at U = 0.8 m/s. At
the sides of the pin, ambient pressure was defined, while its bottom side was
assigned as a fixed support boundary condition. The deformation difference
between the FEM and the BEM model can be decomposed in an offset and
small shape difference. This suggests that a correction of the elastic half-
space formula hel,c can be introduced in the following form:

h0,el,c = a+ b · h0,el. (21)

Figure 8: Elastic deforma-
tions along the pin center
line as a function of the
x1-coordinate.

Figure 9: Elastic deformation in x3-direction com-
puted with FEM.

The correction constants a and b are determined by a least squares strat-
egy so that hel,c fits the FEM results along the pin center line as close as
possible. They come out as a = −45.157nm and b = 0.7398. The resulting
corrected elastic deformation hel,c is also shown in Figure 8. As displayed in
Figure 10, the Stribeck curves based on the uncorrected and corrected half-
space formulas only differ slightly. The reason is that the difference in both
elastic displacements is mainly due to the offset implied by the correction
constant a. At the same time, in both cases the rigid body displacement
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h0,ri in equation (18) is adjusted until the load balance equation (2) is satis-
fied. Since h0,ri is also a simple offset, it cancels a out. The result is that in
the end, both cases have different rigid body displacements h0,ri and elastic
deformations but nearly the same distribution of h0. The only difference in
the gap height coordinate h0 is due to correction factor b, which is close to
1. This shows that even though the pin geometry does not correspond to
a half-space, the elastic deformations can still be computed based on that
assumption without introducing large errors.

Figure 10: Stribeck curves based on the original BEM model and its corrected version.

4. Results

A digital twin of a pin-on-disc tribometer should eventually allow the
prediction of Stribeck curves. While exact agreement with experimental
data is challenging [5], the present model can be used to indicate poten-
tial sensitivities of the Stribeck curve to the macroscopic pin geometry and
the microscopic surface roughness. Therefore, different roughness represen-
tations on the measured macroscopic pin geometry as well as variations of
the macroscopic geometry are considered in the following.

The parameters used for the simulations are summarized in Table 1. In
order to have a stationary numerical problem, the disc is assumed to be
perfectly flat. Furthermore, the disc is considered as rigid in order to isolate
EHL effects of the pin geometry.
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Parameter Value Unit Description
E 206 · 109 Pa Young’s modulus
FN 150 N tribometer load force
Np 1012 − number of pin discretization cells
Nr 3712 − number of roughness discretization cells
pa 101325 Pa ambient pressure
pcav 80000 Pa cavitation pressure
U 0.01...5 m/s disc velocity
tol 10−5 − relative error tolerance
µl 0.0030758 Pa · s dynamic viscosity of uncavitated lubricant
ν 0.321 − Poisson’s ratio
σY 1200 · 106 Pa yield strength

Table 1: Numerical parameters.

4.1. Influence of the roughness on the Stribeck curve

In section 3.1, two approaches of considering the surface roughness in the
Reynolds equation were presented and will be compared in the following to
investigate the roughness influence on the Stribeck curve. The first approach
is simply using the meltdown gap height in the Reynolds equation. The sec-
ond method consists of using the homogenized Reynolds equation. While
the homogenization method allows the consideration of averaged roughness
effects, it also increases the computational costs compared to just using the
meltdown height gap in the Reynolds equation. The reason is a less sparse
system matrix because of the off-diagonal homogenization factors in Matrix
A and the additional interpolation of the homogenization factors. Based on
the measured pin and roughness profiles shown in the Figures 2 and 3, the
Stribeck curves are computed with both roughness methods and the obtained
results are displayed Figure 11. Note that both methods use the roughness
profile for the computation of the contact mechanics as described in section
3.2. Their difference is only in the consideration of roughness effects on the
hydrodynamics and it can be seen that almost identical results are obtained.
However, the computation using the homogenized Reynolds equation took
about 3 times longer than the other one. Since roughness effects on the hy-
drodynamics are apparently negligible for the presently considered roughness
profile, only the more efficient concept of the meltdown gap height is used in
the following.
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Nonetheless, it should be noted that the roughness profile is important
for determining the onset of the contact pressure contribution which in turn
strongly influences the transition from the purely EHL to the mixed lubrica-
tion regime. If the gap coordinate h0 at any point ~x above the pin becomes
less than the value of the highest roughness asperity Rp, surface contact oc-
curs through the contribution of the contact mechanics. Thus, the transition
point of the purely EHL to the mixed lubrication regime can be defined as
the critical disc velocity Uc at which the minimum gap coordinate above the
pin min (h0 (~x)) is equal to Rp. This is visualized in Figure 12 with the
results of the meltdown gap height method.

Figure 11: Stribeck curves using melt-
down gap height and homogenization.

Uc

mixed
lubrication

purely
EHL

Figure 12: Minimum gap coordinate
above the tribometer pin compared to
Rp as a function of the disc velocity.

4.2. Influence of the pin shape on the Stribeck curve

To investigate the influence of macroscopic gap height variations, the
pin profile is approximated by two parabolas. One parabola is designed
to closely fit the measured pin profile in the center while the other one is
chosen (within a parameter study) such that it captures the experimentally
determined transition point from EHL to mixed lubrication in the Stribeck
curve. The corresponding pin profiles and computed Stribeck curves are
depicted in Figures 13 and 14.

The predicted friction coefficient is in very good agreement with the ex-
perimental data [8] in the boundary regime while there is a difference by
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about one order magnitude in the EHL regime. This difference might be
related to the neglected temperature and pressure dependence of the fluid
viscosity and density on the numerical side or the low signal-to-noise-ratio of
the experiment in this regime. Nonetheless, the offset indicates that the hy-
drodynamic model is not complete yet and must be improved in future work.
Still, the model is able to indicate important sensitivities of the Reynolds
equation to changes in the pin geometry. While the numerical predictions
for different macroscopic pin geometries almost coincide in the EHL regime,
the transition points from the purely EHL to the mixed lubrication regime
and the corresponding friction coefficients show a clear dependence on the
pin geometries. This dependence is further investigated in the following.

The parabola center height lc is defined as the difference of the parabola
profile height in the center of the pin to the profile height at the pin’s rim. The
pin parabola with a center height of lc = 2µm is taken as a reference profile
because it fits the experimental data closely. Further simulations are carried
out with pin parabolas of the center heights lc = 1.9µm, lc = 1.5µm and
lc = 1µm. They correspond to a relative decrease of 5%, 25% and 50% of the
reference center height. The resulting Stribeck curves are displayed in Figure
15. Afterwards, the change in the friction coefficient relative to the reference
profile is computed for each velocity as displayed in Figure 16. It shows that
a measurement deviation of 25% or 0.5µm in the characteristic length of the
reference pin causes a maximum difference in the friction coefficient of more
than 80%. Therefore, the observed difference between the experimentally
determined Stribeck curve and the model prediction for the measured pin
geometry in the mixed lubrication regime could be caused by the fact that
the macroscopic pin geometry differs for a run-in pin.
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lc = 2µm

Figure 13: Gap coordinates for different
pin profiles.

Figure 14: Stribeck curves for different
pin profiles and the experimentally de-
termined Stribeck curve of Braun et al.
[8].

Figure 15: Stribeck curves obtained
by the variation of the reference pin
parabola.

Figure 16: Relative difference in the
friction coefficient compared to the ref-
erence pin parabola.

5. Conclusions

In order to investigate the sensitivity of a predicted Stribeck curve we
studied the macroscopic pin shape and its microscopic roughness in a simpli-
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fied digital twin of a pin-on-disc tribometer. The numerical model consists
of the homogenized Reynolds equation with mass-conserving cavitation, the
boundary element method and the contact mechanics model of Bowden and
Tabor [25, 26]. The model is capable of simulating the tribometer in EHL,
mixed and boundary lubrication conditions.

The experimental results of Braun et al. [8], complemented by informa-
tion about the macroscopic pin geometry and surface roughness, serve as
reference data for the numerically predicted Stribeck curve.

The main findings of the work can be summarized as follows:

• The measured surface roughness that is employed in this work has neg-
ligible influence on the tribometer’s Stribeck curve in the EHL regime
but significantly affects the relative velocity at which the transition
from the purely EHL to the mixed lubrication regime occurs.

• The mixed lubrication regime of the Stribeck curve is highly sensitive
to the macroscopic pin geometry. An approximation of the pin profile
through a parabola allows a quantitative estimation of the pin geometry
influence on the Stribeck curve. It indicates that a 0.5µm variation in
the characteristic length of the pin profile can cause a deviation in the
predicted friction coefficient of more than 80%.

• In order to enable the comparison of experimental results with numeri-
cal predictions, which is critical for the further development of a digital
twin of a pin-on-disc-tribometer, macro- and microscopic surface mea-
surements of the pin and disc profiles in worn conditions need to be
provided.

We note that further steps to create a digital twin do not only require the
knowledge of the geometric properties discussed in this work in addition to
the values listed in Table 1. Moreover, the self aligning pin holder may allow
variations of the pin inclination which induces changes in the gap height
distribution. Also geometrical imperfections and EHL effects on the disc
should be considered. Lastly, the hydrodynamic model needs to be enhanced
to consider the temperature and pressure dependency of the fluid viscosity
and density.
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Appendix A. Homogenization

The homogenization factors A, ~b, ~c and d are determined as [15, 24]:

A(h0) =


1

Y1Y2

∫
A~ξ

h3
(

1 + ∂χ1

∂ξ1

)
dA~ξ

1
Y1Y2

∫
A~ξ

h3 ∂χ2

∂ξ1
dA~ξ

1
Y1Y2

∫
A~ξ

h3 ∂χ1

∂ξ2
dA~ξ

1
Y1Y2

∫
A~ξ

h3
(

1 + ∂χ2

∂ξ2

)
dA~ξ

 , (A.1)

~b(h0) =


1

Y1Y2

∫
A~ξ

h3 ∂χ3

∂ξ1
− 6hµlUdA~ξ

1
Y1Y2

∫
A~ξ

h3 ∂χ3

∂ξ2
dA~ξ

 , (A.2)

~c(h0) =


1

Y1Y2

∫
A~ξ

−h
2

(
1 + ∂χ1

∂ξ1

)
dA~ξ

1
Y1Y2

∫
A~ξ

−h
2
∂χ2

∂ξ1
dA~ξ

 , (A.3)

d(h0) =
1

Y1Y2

∫
A~ξ

−h
2

∂χ3

∂ξ1
+
µlU

h
dA~ξ. (A.4)

Bayada et al. [15] only employed longitudinal, transversal or oblique
roughness profiles and could therefore derive an analytical solution of the
homogenization factors. In order to consider arbitrary roughness profiles,
the following local problems must be solved numerically for their solutions
χ1, χ2 and χ3 in [24]:

∇~ξ ·
(
h3∇~ξχ1

)
= −∂h

3

∂ξ1
, (A.5)

∇~ξ ·
(
h3∇~ξχ2

)
= −∂h

3

∂ξ2
, (A.6)

∇~ξ ·
(
h3∇~ξχ3

)
= 6µlU ·

∂h

∂ξ1
. (A.7)

The indexed nabla operator ∇~ξ means using it with respect to the ~ξ
coordinates.

Appendix B. Relation of Vickers hardness and yield strength

Depending on whether the Vickers hardness is calculated from the in-
dentation mass or force, there are two slightly different hardness definitions.
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Tabor describes the Vickers hardness HVT as [25]:

HVT =
W

AS
= 0.9272

W

AG
= 1.8544

W

d2
, (B.1)

where W is the applied indentation mass in kg and AS is the area of
the sides of the indented volume. For a Vickers indentation pyramid, AS =
AG/0.927 holds, where AG = d2/2 is the projected surface of the indented
volume. The diagonal length of AG is given by d in mm. The resulting hard-
ness HVT has the units kg/mm2. In this case, the ultimate tensile strength
in MPa roughly correlates to:

UTS ≈ 3HVT ·m/s2. (B.2)

However, there exists another definition of the Vickers hardness HV in
dependency of the indentation force FI in the unit N, which is commonly
used e.g. in Germany [28]:

HV = 0.189
FI
d2

. (B.3)

From experiments, an approximation for the ultimate tensile strength in
MPa was found [28]:

UTS ≈ 3HV . (B.4)

In both cases, the yield strength is equal to the ultimate tensile strength
σy = UTS if ideal elastic-plastic material properties are assumed.
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