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A B S T R A C T   

Models for long-term investment planning of the power system typically return a single optimal solution per set 
of cost assumptions. However, typically there are many near-optimal alternatives that stand out due to other 
attractive properties like social acceptance. Understanding features that persist across many cost-efficient al
ternatives enhances policy advice and acknowledges structural model uncertainties. We apply the modeling-to- 
generate-alternatives (MGA) methodology to systematically explore the near-optimal feasible space of a com
pletely renewable European electricity system model. While accounting for complex spatio-temporal patterns, 
we allow simultaneous capacity expansion of generation, storage and transmission infrastructure subject to 
linearized multi-period optimal power flow. Many similarly costly, but technologically diverse solutions exist. 
Already a cost deviation of 0.5% offers a large range of possible investments. However, either offshore or on
shore wind energy along with some hydrogen storage and transmission network reinforcement appear essential 
to keep costs within 10% of the optimum.   

1. Introduction 

As governments across the world are planning to increase the share 
of renewables, energy system modeling has become a pivotal instru
ment for finding cost-efficient future energy system layouts. Energy 
system models formulate a cost minimization problem and typically 
return a single optimal solution per set of input parameters (e.g. cost 
assumptions). 

However, feasible but sub-optimal solutions may be preferable for 
reasons that are not captured by model formulations because they are 
difficult to quantify [1]. Public acceptance of large infrastructure pro
jects, such as many onshore wind turbines or transmission network 
expansion, ease of implementation, land-use conflicts, and regional 
inequality in terms of power supply are prime examples of considera
tions which are exogenous to most energy system models. Bypassing 
such issues to enable a swift decarbonization of the energy system may 
justify a limited cost increase. 

Thus, providing just a singular optimal solution per scenario un
derplays the degree of freedom in designing cost-efficient future energy 
systems. Instead, presenting multiple alternative solutions and pointing 
out features that persist across many near-optimal solutions can remedy 
the lack of certainty in energy system models [2,3]. Communicating 
model results as a set of alternatives helps to identify must-haves (in
vestment decisions common to all near-optimal solutions) and must- 
avoids (investment decisions not part of any near-optimal solution) [4]. 

The resulting boundary conditions can then inform political debate and 
support consensus building. 

A common technique for determining multiple near-optimal solu
tions is called Modeling to Generate Alternatives (MGA) which uses the 
optimal solution as an anchor point to explore the surrounding decision 
space for maximally different solutions [1]. Other methods, such as 
scenario analysis, global sensitivity analysis, Monte Carlo analysis and 
stochastic programing, that likewise address uncertainty in energy 
system modeling, concern parametric uncertainty, i.e. how investment 
choices change as cost assumptions are varied [3,5–7]. Conversely, 
MGA explores investment flexibility for a single set of input parameters, 
by which it accounts for structural uncertainty and simplifications of 
model equations. In consequence, MGA is a complement rather than a 
substitute for methods sweeping across the parameter space. 

Evidence from previous work suggests many technologically diverse 
solutions exist that result in similar total system costs for a sustainable 
European power system [15,16]. These two studies research the sen
sitivity of cost input parameters or the relevance of transmission net
work expansion for low-cost power system layouts considering 30 re
gions. 

Previous studies that applied MGA to long-term energy system 
planning problems or retrospective analyses are reviewed in Table 1. 
This work is the first to apply a variant of MGA to a European pan- 
continental electricity system model which includes an adequate 
number of regions and operating conditions to reflect the complex 
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spatio-temporal patterns shaping cost-efficient investment strategies in 
a fully renewable system. Furthermore, the co-optimization of genera
tion, storage and transmission infrastructure subject to linear optimal 
power flow (LOPF) constraints is unique for MGA applications. 

The goal of this work is to systematically explore the wide array of 
similarly costly but diverse technology mixes for the European power 
system, and derive a set of rules that must be satisfied to keep costs 
within pre-defined ranges. Additionally, we investigate how the extent 
of investment flexibility changes as we apply more ambitious green
house gas (GHG) emission reduction targets up to a complete dec
arbonization and allow varying levels of relative cost increases. 

The remainder of the paper is structured as follows: Section 2 guides 
through the problem formulation, the employed variant of MGA, 
sources of model input data, and the experimental setup. The results are 
presented and discussed from different perspectives in Section 3 and 
critically appraised in Section 4. The work is concluded in Section 5. 

2. Methodology 

2.1. Problem formulation for long-term power system planning 

The objective of long-term power system planning is to minimize 
the total annual system costs, comprising annualised1 capital costs c* 

for investments at locations i in generator capacity Gi,r of technology r, 
storage capacity Hi,s of technology s, and transmission line capacities Fℓ, 
as well as the variable operating costs o* for generator dispatch gi,r,t: 
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where representative time snapshots t are weighted by duration wt such 
that their total duration adds up to one year; 

= == w 365·24 h 8760ht
T

t1 . The objective function is subject to a set of 
linear constraints, including multi-period linear optimal power flow 
(LOPF) equations, resulting in a convex linear program (LP). 

The capacities of generation, storage and transmission infra
structure are constrained above by their installable potentials and 
below by any existing infrastructure: 

G G G i r,i r i r i r, , , (2)  

H H H i s,i s i s i s, , , (3)  

F F F (4)  

The dispatch of a generator may not only be constrained by its rated 
capacity but also by the availability of variable renewable energy, 
which is derived from reanalysis weather data. This can be expressed as 
a time- and location-dependent availability factor g ,i r t, , given in per-unit 
of the generator’s capacity: 

g g G i r t0 , ,i r t i r t i r, , , , , (5)  

The dispatch of storage units is split into two positive variables; one 
each for charging +hi s t, , and discharging hi s t, , . Both are limited by the 
power rating Hi,s of the storage units. 
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This formulation does not prevent simultaneous charging and dischar
ging, in order to maintain the computational benefit of a convex fea
sible space. The energy levels ei,s,t of all storage units have to be con
sistent with the dispatch in all hours. 
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Storage units can have a standing loss ηi, s, 0, a charging efficiency +,i s, ,

a discharging efficiency ,i s, , natural inflow hi s t, ,
inflow and spillage hi s t, ,

spillage. 
The storage energy levels are assumed to be cyclic 

=e e i s,i s i s T, ,0 , , (9) 

and are constrained by their energy capacity 

e T H i s t0 · , , .i s t s i s, , , (10) 

To reduce the number of decision variables, we tie the energy storage 
volume to power ratings using a technology-specific parameter Ts that 
describes the maximum duration a storage unit can discharge at full 
power rating. 

Kirchhoff’s Current Law (KCL) requires local generators and storage 
units as well as incoming or outgoing flows fℓ,t of incident transmission 
lines ℓ to balance the inelastic electricity demand di,t at each location i 
and snapshot t 
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where Kiℓ is the incidence matrix of the network. 
Kirchhoff’s Voltage Law (KVL) imposes further constraints on the 

flow of passive AC lines. Using linearized load flow assumptions, the 
voltage angle difference around every closed cycle in the network must 
add up to zero. This constraint can be formulated using a cycle basis of 
the network graph where the independent cycles c that span the cycle 
space are expressed as directed linear combinations of lines ℓ in a cycle 
incidence matrix Cℓc [17]. This leads to the constraint 

Table 1 
Literature review: studies applying MGA to energy system models.              

Main     Max. GHG MGA Cost Near-optimal  
Source Sector Region Nodes Snapshots Pathway Reduction Objective Deviation Solutions LOPF  

Price et al. [8] coupled (IAM) global 16 >1 yes 50% energy <10% 30 no 
DeCarolis et al. [9] electricity US 1 1 no 85% capacity <25% 9 no 
DeCarolis et al. [1] electricity US 1 1 yes 80% energy <10% 28 no 
Li et al. [10] electricity UK 1 >1 yes 80% any <15% 800 no 
Sasse et al. [11] electricity CH 2258 1 no none energy <20% 2000 no 
Trutnevyte et al. [12] electricity UK 1 3 no none any <23% 250,500 no 
Berntsen et al. [13] electricity CH 1 386 no none any N/A 520 no 
Nacken et al. [14] coupled DE 1 8760 no 95% capacity <10% 1025 no 
Hennen et al. [4] urban energy generic 1 >1 no none capacity <10% 384 no 
This study electricity Europe 100 4380 no 100% capacity <10% 1968 yes 

IAM–Integrated Assessment Model, GHG–greenhouse-gas, MGA–Modeling to Generate Alternatives, LOPF–Linear Optimal Power Flow, UK–United Kingdom, 
CH–Switzerland, US–United States of America, DE–Germany  

1 The annuity factor + n1 (1 ) converts the overnight investment of an asset 
to annual payments considering its lifetime n and cost of capital τ. 
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where xℓ is the series inductive reactance of line ℓ. The controllable 
HVDC links are not affected by this constraint. 

All line flows fℓ,t are also limited by their capacities Fℓ 

f f F t| | , ,t, (13) 

where f acts as a per-unit security margin on the line capacity. 
Finally, total CO2 emissions may not exceed a target level CO2. The 

emissions are determined from the time-weighted generator dispatch 
wt · gi, r, t using the specific emissions ρr of fuel r and the generator 
efficiencies ηi,r: 
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Note, that this formulation does not include pathway optimization 
(i.e. no sequences of investments), but searches for a cost-optimal 
layout corresponding to a given GHG emission reduction level. For 
capacity expansion planning, it assumes perfect foresight for the re
ference year based on which capacities are optimized. Additional as
pects such as reserve power, system stability, or robust scheduling have 
not been considered. The optimization problem is implemented in the 
open-source modeling framework PyPSA [18]. 

2.2. Modeling to generate alternatives (MGA) 

As shown in Fig. 1, following a run of the original model, the ob
jective function is encoded as a constraint such that the original feasible 
space is limited by the optimal objective value f* plus some acceptable 
relative cost increase ϵ. 

+f G H F g f( , , , ) (1 )· * (15) 

Other than preceding studies, this paper pursues a more structured 
approach to MGA to span the near-optimal feasible space. The search 
directions are not determined by the Hop-Skip-Jump (HSJ) algorithm 
that seeks to minimize the weighted sum of variables of previous so
lutions [5], but by pre-defined groups of investment variables. Conse
quently, the new objective function becomes to variously minimize and 
maximize sums of subsets of generation, storage and transmission ca
pacity expansion variables given the ϵ-cost constraint. 

The groups can be formed by region and by technology. Examples 
for thought-provoking search directions are to minimize the sum of 
onshore wind capacity in Germany or the total volume of transmission 
expansion (cf. Section 2.4). 

This process yields boundaries within which all near-optimal solu
tions are contained and can be interpreted as a set of rules that must be 
followed to become nearly cost-optimal. 

In fact, by arguments of convexity, it can be shown that near-op
timal solutions exist for all values of a group’s total capacity between 

their corresponding minima and maxima. The original problem is 
convex as it classifies as a linear program. Neither adding the linear ϵ- 
cost constraint nor introducing an auxiliary variable z that represents 
the mentioned sum of the group of variables alter this characteristic. 
Hence, for any total z ∈ [zmin, zmax] a near-optimal solution exists, 
however not for any combination of its composites leading to this total. 

2.3. Model input data 

The exploration of the near-optimal feasible space is executed for 
the open model dataset PyPSA-Eur of the European power system with 
a spatial resolution of 100 nodes and a temporal resolution of 4380 
snapshots (two-hourly for a full year) [23]. The chosen levels of geo
graphical and temporal aggregation reflect, at the upper end, the 
computational limits to calculate a large ensemble of near-optimal so
lutions and, at the lower end, the minimal requirements to expose 
transmission bottlenecks and account for spatially and temporally 
varying renewable potentials with passable detail [24,25]. 

Following a greenfield approach (with the exception of the trans
mission grid and hydropower installations), we allow simultaneous 
capacity expansion of transmission lines, HVDC links and various types 
of storage units and generators: solar photovoltaics, onshore wind 
turbines, offshore wind turbines with AC or DC grid connections, bat
tery storage, hydrogen storage and, ultimately, open- and combined 
cycle gas turbines (OCGT/CCGT) as sole fossil-fueled plants. 

Run-of-river and pumped-hydro capacities are not extendable due to 
assumed geographical constraints. All other generators and storage 
units can be built at any location up to their geographical potentials. 
The corridors for new HVDC links, limited to 30 GW, are taken from the 
TYNDP 2018 [26]. Individual AC transmission line capacities may be 
expanded continuously up to four times their current capacity, but not 
reduced. We further assume that the annual electricity demand for the 
power sector does not deviate substantially from today’s levels. Given 
the densely meshed and spatially aggregated transmission system, we 
do not add new expansion corridors but constrain options to re
inforcement via parallel AC lines. To approximate N 1 security, the 
effective transfer capacity of transmission lines is restricted to 70% of 
their nominal rating [23]. The dependence of line capacity expansion 
on line impedance is addressed in a sequential linear programing ap
proach [27]. This relaxation is justified as it removes the excessive 
computational burden of integer programming, while yielding equally 
accurate solutions given tolerated optimality gaps in discrete problems 
and other more decisive model condensations (e.g. network clustering)  
[27]. Full details on the workflow of PyPSA-Eur and processing the 
underlying datasets can be found in [23]. Cost assumptions and further 
techno-economic input parameters are listed in Table 2. 

2.4. Experimental setup 

The MGA analysis is run within a parallelized workflow for different 
deviations ϵ ∈ {0.5%, 1%, 2%, 3%, 4%, 5%, 7.5%, 10%} from the cost- 
optimal solution and for system-wide greenhouse-gas emission reduc
tion targets of 80%, 95% and 100% compared to emission levels in 
1990. This allows to follow the propagation of investment flexibility for 
increasing optimality tolerances and more ambitious climate protection 
plans. The alternative objectives are to minimize and maximize the 
generation capacity of all (i) wind turbines, (ii) onshore wind turbines, 
(iii) offshore wind turbines, (iv) solar panels, and (v) natural gas tur
bines. Moreover, we search for the minimal and maximal deployment of 
(vi) hydrogen storage, (vii) battery storage, and (viii) power transmis
sion infrastructure. This setup yields 384 near-optimal solutions. On 
average, each problem required 6.5 h and 31 GB of memory to solve 
with the Gurobi solver. 

For slacks ϵ ∈ {1%, 5%, 10%} and a 95% emission reduction target a 
3-hourly resolved model is run for country-wise minima and maxima of 
the investment groups above, resulting in additional 1584 near-optimal 

Fig. 1. Illustration of the near-optimal feasible space and the modeling to 
generate alternatives (MGA) methodology for a two-dimensional problem for 
the search-directions relating to dimension x1. 
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solutions. On average, each problem required 3.5 h and 22 GB of 
memory to solve. 

3. Results and discussion 

3.1. Optimal solutions 

Before delving into near-optimal solutions, we first outline the 
characteristics of the optimal solutions for different emission reduction 
levels (cf. Table 3). A system optimized for a 100% emission reduction 
is strongly dominated by wind energy. More than half of the electricity 
is supplied by offshore wind installations. Onshore wind turbines pro
vide another quarter. In contrast, photovoltaics account for only 16% of 
electricity generation. Strikingly, a system targeting a 95% reduction in 
greenhouse gases uses significantly less onshore wind generators but 
more solar energy in comparison to a completely decarbonized system, 
while keeping the share of offshore wind generation constant. Thus, for 
the last mile from 95% to 100% more onshore wind generation is 
preferred to phase out the last remaining natural-gas-fired power 
plants. The total system costs scale nonlinearly with more tight emis
sion caps. Achieving an emission reduction of 95% is roughly a quarter 
more expensive than a reduction by 80%, while a zero-emission system 
is almost 50% more expensive. 

Also, the map in Fig. 2-(i) shows the optimal regional distribution of 
the capacities of power system components for a fully renewable Eur
opean power system. Generation hubs tend to form along the coasts of 
North, Baltic and Mediterranean Sea, whereas inland regions produce 

little electricity. Expectedly, solar energy is the dominant carrier in the 
South, while wind energy prevails close to the coasts of the North Sea 
and the Baltic Sea. Most grid expansion can be found in Germany, 
France and the United Kingdom and individual HVDC links are built 
with capacities of up to 30 GW. The routes and capacities of HVDC links 
are well correlated with the placement of wind farms. 

3.2. The near-optimal feasible space 

In this section we extremise different groups of investments in 
generation, storage and transmission infrastructure. As an example,  
Fig. 2-(ii) depicts a system that seeks to deviate from the optimum by 
minimizing the volume of transmission network expansion up to a total 
cost increase of 10%, for instance as a concession to better social ac
ceptance. With the results particularly the Suedlink HVDC link con
necting Northern and Southern Germany manifests as a no-regret in
vestment decision up to a capacity of 15 GW in the context of full 
decarbonization. It is one of the few persistent expansion routes. All 
other transmission expansion corridors are (to a significant extent) not 
compulsory. Missing transmission capacities can be compensated by 
adding storage capacity and more regionally dispersed power genera
tion. Nevertheless, some transmission network reinforcement is indis
pensable to remain within the given cost bounds. These results are also 
broadly aligned with findings in [15,24]. 

Beyond this example, the MGA results offer insights about the 
structure of the near-optimal space. The intent is to portray a set of 
technology-specific rules that must be satisfied to keep costs within pre- 
defined ranges ϵ. Note, that the discontinuity created by ϵ restricts the 
accuracy of the solution space. 

Fig. 3 reveals that wind generation, either onshore or offshore, is 
essential to set up a cost-efficient European power system for all three 
evaluated emission reduction levels. Whilst already a small cost in
crease of 0.5% yields investment flexibilities in the range of   ±  100 
GW, even a 10% more costly solution would still require more than 500 
GW of wind generation capacity for a fully renewable system: two- 
thirds of the optimal system layout. However, even for a zero-emission 
system a cost increase of just 4% enables abstaining from onshore wind 
power, and a 7.5% more expensive alternative can function without 
offshore wind farms. 

The investment flexibility develops nonlinearly with increasing 
slack levels ϵ. Even a minor deviation from the cost optimum by 0.5% 
creates room for maneuver in the range of   ±  200 GW for onshore 
and   ±  150 GW offshore wind installations, which indicates a weak 

Table 2 
Assumptions for techno-economic input parameters.           

Technologye Investment Fixed O&M Marginal Lifetime Efficiency Investment T f Source  
[€/kW] [€/kW/a] [€/MWh] [a] [-] [€/kWh] [h]   

Onshore Wind 1330 33 2.3 25 1   DEA [19] 
Offshore Wind (AC) 1890 44 2.7 25 1   DEA [19] 
Offshore Wind (DC) 2040 47 2.7 25 1   DEA [19] 
Solar 600 25 0.01 25 1   Schröder et al. [20] 
Run of River 3000 60 0 80 0.9   Schröder et al. [20] 
OCGTa 400 15 58.4b 30 0.39   Schröder et al. [20] 
CCGTa 800 20 47.2b 30 0.5   Schröder et al. [20] 
Hydrogen 689 24 0 20 0.8  ·  0.58c 8.4 168 Budischak et al. [21] 
Battery 310 9 0 20 0.81  ·  0.81c 144.6 6 Budischak et al. [21] 
Pumped Hydro 2000 20 0 80 0.75 N/Ad 6 Schröder et al. [20] 
Hydro Reservoir 2000 20 0 80 0.9 N/Ad fixed Schröder et al. [20] 
Transmission (submarine) 2000 €/MWkm 2% 0 40 1   Hagspiel et al. [22] 
Transmission (overhead) 400 € /MWkm 2% 0 40 1   Hagspiel et al. [22] 

a Gas turbines have a CO2 emission intensity of 0.19 t/MWth. 
b This includes fuel costs of 21.6 € /MWhth. 
c The storage round-trip efficiency consists of charging and discharging efficiencies +· . 
d The installed facilities are not expanded in this model and are considered to be amortized. 
e For all technologies a discount rate of 4% is assumed. 
f This relates a storage unit’s energy capacity to its power capacity; it is the maximum duration the storage unit can discharge at full power capacity.  

Table 3 
Statistics on optimal solutions for different GHG emission reduction levels.      

GHG Emissions −100% −95% −80%  

Generation [TWh]    
- Onshore Wind 750 (24%) 421 (14%) 423 (15%) 
- Offshore Wind (AC) 886 (28%) 568 (19%) 297 (10%) 
- Offshore Wind (DC) 873 (27%) 1032 (34%) 769 (27%) 
- Solar 502 (16%) 605 (20%) 381 (13%) 
- Run of River 150 (5%) 153 (6%) 154 (5%) 
- CCGT (natural gas) 0 (0%) 171 (6%) 761 (26%) 
- OCGT (natural gas) 0 (0%) 41 (1%) 105 (4%) 
Transmission [TWkm] 504 (+71%) 458 (+55%) 368 (+25%) 
Load [TWh] 3138 3138 3138 
Total Cost [bn € /a] 246 207 165 
Total Cost [€ /MWh] 78.4 66.1 52.6 
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tradeoff between onshore and offshore wind capacities very close to the 
optimum. Nonetheless, dispensing with both is not viable. Furthermore, 
10% of total system costs must be spent to rule out solar panels, but 
already a slack of 1% allows to reduce the solar capacity by a third. 

Price et al. observed in their model that investment flexibility in 
generation infrastructure decreased as more tight caps on carbon-di
oxide emissions were imposed [8]. While it is reproduced in this con
tribution that more ambitions climate protection plans incur more 
must-haves (i.e. minimum requirements of capacity), for the case-study 
at hand the viable ranges of marginally inferior solutions increase as 
more total capacity is built. 

As Fig. 4 exhibits, even for a complete decarbonization of the Eur
opean power system building battery storage is not essential, although 
they are deployed in response to e.g. minimizing network 

reinforcement. Conversely, once weather-independent dispatch flex
ibility from natural-gas-fired power plants is unavailable, it becomes 
imperative to counter-balance with long-term hydrogen storage. The 
cutback of hydrogen infrastructure under these circumstances goes 
along with building additional generation capacities and multiplied 
amounts of curtailment. 

The reinforcement of the transmission network becomes more pi
votal the more the power system is based on renewables. Aiming for an 
emission reduction by 80% a 2% more expensive variant can get by 
without any grid reinforcement. Reducing emissions by 100% still re
quires some additional power transmission capacity at a 10% cost de
viation. However, within this range, the transmission volume can de
viate from almost double of today’s network capacities to merely a 
marginal reinforcement (cf. Fig. 2). 

MGA iterations were also applied from a country-wise perspective. 
Remarkably, any one country could completely forego any one gen
eration or storage technology and remain within 5% of the cost 

Fig. 2. Maps of transmission line expansion and regional generator and storage 
capacities for a 100% renewable power system for the (i) optimal solution and 
(ii) minimal transmission volume within a 10% cost increase. 

Fig. 3. Solution space of renewable generation infrastructure by technology for 
different levels of slack ϵ and emission reduction targets. 
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optimum when targeting a 95% reduction in greenhouse gas emissions. 
In this case, neighboring countries offset the absence of this technology. 

3.3. Correlations 

So far, the study of the near-optimal feasible space did not capture 
the interdependence between different system components apart from 
the envelopes the analysis provided for each technology. Shifting to the 
extremes of one technology will diminish the investment flexibility of 
other carriers. Fig. 5 demonstrates how diversity in capacity mixes rises 
if more leeway is given in terms of system costs. The striking variety in 
capacity totals is largely attributable to the lower capacity factors of 
solar compared to wind energy. 

Hennen et al. suggested to present the intertwining of technologies 
through Pearson’s correlation coefficient across all near-optimal solu
tions [4]. Fig. 6 confirms many of the previously noted connections. 
Hydrogen storage substitutes natural gas turbines and is positively 
correlated with onshore and offshore wind capacity, while battery de
ployment rather matches with solar installations. Likewise, transmis
sion expansion occurs in unison with onshore and offshore wind de
ployment. Thereby, hydrogen storage and transmission become 
complements for high renewable energy scenarios. It should be noted 
with caution that CCGT and OCGT as well as AC- and DC-connected 
offshore wind installations have high correlations because they are 
grouped in the MGA iterations. 

3.4. Distributional equity 

Surveys suggest that an equal distribution of power supply is pre
ferred among the population and may increase their willingness to 
participate in the energy system transformation process [28]. Sasse 
et al. and Drechsler et al. investigate the trade-offs between least-cost 
and regionally equitable solutions in Switzerland and Germany by using 
concepts of the Lorenz curves and the Gini coefficients as equity mea
sures [11,28]. 

In the context of power, the Lorenz curve can relate the cumulative 
share of electricity generation of regions to their cumulative share of 
electricity demand as shown in Fig. 7. For more ambitious emission 
reduction targets, less equitable solutions are favored from a cost-per
spective, however, they may not be in line with the public attitude. 

The Gini coefficient is the corresponding scalar measure of uni
formity and is determined by multiplying the area between the Lorenz 
curve and the identity line by two. A Gini coefficient of 1 represents the 
most unequal distribution, while 0 corresponds to the situation where 
every region produces, on average, as much electricity as they consume. 

Fig. 4. Solution space of storage and transmission infrastructure by technology 
for different levels of slack ϵ and emission reduction targets. 

Fig. 5. Composition of generation and storage capacities for various near-op
timal solutions with 100% renewables. Each subplot corresponds to a slack 
level ϵ and an optimization sense. The labels of the bar charts indicate which 
group of investment variables is included in the objective. 

Fig. 6. Correlations of capacities across all near-optimal solutions.  

F. Neumann and T. Brown   Electric Power Systems Research 190 (2021) 106690

6



Preceding studies have, in general, noted that the focus on wind 
power tends to be detrimental to a regionally balanced distribution of 
electricity generation [28], whereas photovoltaic power supply is a key 
factor for an even distribution of the power supply [11]. This ob
servation is consistent with the results of the European power system at 
hand. But as we consider the transmission grid and energy storage 
options, we can further extend on these findings. In Fig. 8 we track the 
equity of solutions in relation to the transmission network volume as we 
approach the boundaries of either technology category. Substantially 
more regionally equitable solutions are attainable for a limited cost- 
increase when diverting attention away from transmission network 
expansion. Utilizing less energy storage rather discourages equitable 
generation patterns; in the opposite direction, this is not the case for a 
zero-emission system. Note that the equity measures are only an ob
served side-effect and not the objective of a particular search direction 
of the MGA method. There is no guarantee that no more equitable so
lutions exist within the near-optimal feasible space. 

4. Critical appraisal 

This paper covers the electricity sector only. Brown et al. suggested 
that with an increasing coupling of energy sectors the benefit of the 
transmission system decreases [29]. It is not far-fetched, that the near- 
optimal feasible space might look very different with a tightened sec
toral integration. 

Within the computational constraints, it is moreover desirable to 
further enhance the spatial and temporal resolution to better reflect 
curtailment caused by transmission bottlenecks and factor in extreme 
weather events [24]. 

This work further neglects parametric uncertainty. Coupling this 
paper’s variant of MGA with a parameter sweeping method (such as 
Monte Carlo simulation [10]) would allow to derive a more sophisti
cated version of Figs. 3 and 4 with fuzzy boundaries that represent the 

probability with which the respective capacities of system components 
are contained within the near-optimal feasible space. 

5. Summary and conclusions 

This work sheds light on the flatness of the near-optimal feasible 
decision space of a power system model with European scope for am
bitious climate protection targets. 

An understanding of alternatives beyond the least-cost solutions is 
indispensable to develop robust, credible and comprehensible policy 
guidelines. Therefore, we derived a set of technology-specific boundary 
conditions that must be satisfied to keep costs within pre-defined ranges 
using an adapted modeling-to-generate-alternatives methodology. 
These rules permit well-informed discussions around social constraints 
to the exploitation of renewable resources or the extent to which the 
power transmission network can be reinforced, given large degrees of 
freedom. 

Indeed, we observed high variance in the deployment of individual 
system components, even for a fully renewable system. Already a minor 
cost deviation of 0.5% offers a multitude of technologically diverse 
alternatives. It is possible to dispense with onshore wind for a cost in
crease of 4%, and to forego solar for 10%. Nevertheless, either offshore 
or onshore wind energy plus at least some hydrogen storage and grid 
reinforcement are essential to keep costs within 10% of the optimum. 
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