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Abstract: We have added the {ReIVX5}@ (X = Br, Cl) synthon to

a pocket-based ligand to provide supramolecular design
using halogen···halogen interactions within an FeIII system
that has the potential to undergo spin crossover (SCO). By

removing the solvent from the crystal lattice, we “switch on”

halogen···halogen interactions between neighboring mole-

cules, providing a supramolecular cooperative pathway for
SCO. Furthermore, changes to the halogen-based interaction
allow us to modify the temperature and nature of the SCO

event.

Introduction

Supramolecular chemistry is a rapidly expanding area of re-

search,[1] having seen the award of two Nobel prizes within the
last 30 years.[2] Whilst this means the phenomenon is well

known, the important role it plays within inorganic structural
chemistry is only beginning to be fully appreciated. The most

common supramolecular interaction utilized is hydrogen bond-
ing, which is fundamental for all life by allowing liquid water

to exist over a wide range of temperatures and pressures.[3] In

addition to hydrogen bonding, there are other intermolecular
interactions such as p–p,[4] van der Waals,[5] and the less

common halogen,[6] chalcogen,[7] tetrel,[8] or pnictogen bonds.[9]

Spin crossover (SCO) complexes are a class of materials which
exhibit molecular bistability where both the high spin (HS) and

low spin (LS) electronic configurations of certain d4–d7 transi-
tion metal complexes can be accessed in response to external

stimuli such as light, temperature, or pressure.[10] In solid sys-
tems the nature of the spin-transition is steered by the local
coordination sphere as well as the long-range order (supra-

molecular bonds).[11] The latter can be removed by isolating
the molecules, either through crystal engineering approaching

or dissolution.[12] The role that supramolecular interactions play
in SCO complexes is well established, with both the strength
and direction of these leading to extensive changes,[13] in par-
ticular solvent mediated interactions have been recognized as

important.[14] It has recently been recognized that halogen
bonds are a significant noncovalent bonding pathway for
transmitting or supporting information transfer, whilst also
providing stability to supramolecular systems.[15] The high di-
rectionality associated with halogen bonds should prove a

useful tool in SCO research, allowing systems to be designed
with a high degree of control over the direction of information

propagation. In recent years studies by Fourmigu8 have point-
ed towards this direction, demonstrating the potential for hal-
ogen-based supramolecular interactions within SCO re-

search.[16]

In an attempt to produce a bimetallic 3d–5d molecule using

a {ReX5}@ synthon and a Schiff-base contacting ligand with flex-
ible binding pockets, similar to those previously used by our
group[17] (Scheme 1), we produced a family of new heterome-

tallic FeIII-5d systems. In practice we found that the transition
metal preferentially occupies pocket 2, giving a mer-coordinat-

ed system with the general formula [ReIVX5(m-Rpch)Fe(R’-Im)3]
where H2Rpch has the formula (E)-N’-(2-hydroxy-3-R-benzyl-

idene)pyrazine-2-carbohydrazide, and R’-Im has the formula 1-
R’-imidazole (Figure 1, Table 1).
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Whilst the use of the {ReX5}@ synthon has been seldom re-

ported[18] we noted that by removing competing intermolecu-

lar interactions such as hydrogen bonds we promote halogen···
halogen interactions, allowing us to switch on supramolecular

interactions which enable SCO events. A careful multipronged
investigation involving modifications to the halogen, the

ligand and co-ligand, as well as the synthesis of the analogous
CoIII compounds (5)-(8) (see ESI), showed that the SCO proper-
ties of the FeIII center could be readily modified. Crystal struc-

tures are labelled with the general name “(Compound)w/d_
TEMP”, where w or d denotes “wet” (solvated) or “dry” (desol-
vated) crystals, and TEMP is the temperature of the structural
determination.

Results and Discussion

Single crystal X-ray analysis of complex (1)w_100 shows that
the complex crystallizes in the space group C2/c with Z = 8.

Complex (1) was chosen as a representative of the series with
structural details of complexes (1)–(4) including halogen bond

parameters in the ESI. The asymmetric unit contains a [ReBr5(m-
MeOpch)Fe(Me-Im)3] complex with the {ReIVBr5} synthon bound

to a nitrogen atom of the pyrazine ring of the deprotonated

MeOpch ligand. The central FeIII ion is coordinated to the
ligand through an azine nitrogen (N1), a carbonyl oxygen (O3),

and a hydroxy oxygen (O1), whilst three additional Me-Im co-li-
gands complete the coordination sphere through nitrogen

atoms N5, N9, and N7. In addition to this there were two inter-
stitial MeCN molecules within the lattice connected through

nonclassical hydrogen bonds. The shortest intermolecular

Br···Br distance was 4.663 a and is therefore too long to be
considered a halogen bond, and is unlikely to contribute to in-

formation exchange.[19] The N4O2 coordination sphere of the
FeIII ion is often observed in SCO active compounds,[20] so this

complex warranted further investigation and a structure was

collected at 280 K, (1)w_280. FeIII@N bond lengths are charac-
teristic of the spin state (LS&1.95 a and HS&2.15 a)[21] and

crystallographic analysis of the complex showed that the
system was in the HS state at both temperatures, with the

average Fe@N bonds being 2.098 a and 2.114 a at 100 K and
230 K, respectively. However, magnetic analysis of complex (1)

using a SQUID magnetometer revealed an SCO active system

with an incomplete transition occurring between 220 K and
90 K, from fully HS to only 22 % of molecules in the HS elec-

tronic configuration with T1/2 = 155 K (Figure 2). This initial
result was surprising given that single crystal X-ray diffraction

data had indicated a HS state at 100 K. The sample was re-
moved from the SQUID and new single crystal X-ray diffraction

data were collected. The sample (1)d_100 crystallized in the

same space group, C2/c, with the same neutral metal complex
in the asymmetric unit. However, the average Fe@N bond

length (1.982 a) indicated the complex was now at least par-
tially in the LS state; it was also observed that the sample had

desolvated (between measurements) with loss of the intersti-
tial MeCN molecules (confirmed by elemental analysis) whilst

retaining crystallinity. Crystallographic data were also collected

at 140, 180, 230 and 280 K and by plotting the adjusted

Scheme 1. Synthetic route for the preparation of ligands (9)–(11), [ReX5(Rpch)]@ (containing the a {ReX5}@ synthon), and the complexes (1)–(4).

Figure 1. The molecular structure in the desolvated compound (1)d_100.

Figure 2. cT plot with overlaid adjusted unit cell volume (see ESI) for com-
plex (1) showing the close correspondence of the values. Magnetic data col-
lected under an applied DC field of 0.1 T.
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change in unit cell volume (see ESI for details) against the tem-

perature the SCO event clearly correlates with the changes in
the crystal structure (Figure 2).

A more detailed investigation revealed that, by removing
the lattice solvent and therefore the hydrogen bonding, halo-

gen···halogen interactions become the dominant supramolec-
ular effect (Figure 3). In the original solvated sample, the

longer Br···Br distances and Re-Br···Br angle blocks the forma-

tion of a bond (Br2···Br2’ = 4.663 a, ffRe-Br···Br = 1608, RXB =

1.217), however the loss of the solvent leads to reorientation

of molecules in the crystal resulting in a significant shortening
of the Br···Br distances, “switching on” a type I halogen bond

(Br2···Br2’ = 3.733 a, ffRe-Br···Br = 1768, RXB = 1.009).[22]

Complexes (2)–(4) were then synthesized to characterize the

importance of these halogen···halogen interactions. The modifi-

cations are summarized in Table 1 and Figure 1 and were de-
signed to provide additional insight. The replacement of a bro-

mide for a chloride resulted in complex (2). Complex (2)w_100
also crystallized in the space group C2/c with the neutral metal

complex now [ReCl5(m-MeOpch)Fe(Me-Im)3] together with two
MeCN molecules in the asymmetric unit. Analysis of the Fe@N
bond lengths (average: 2.111 a) shows the iron(III) center to be

in the HS state at 100 K. In this solvated sample there is again
no appreciable halogen···halogen interaction, with the shortest
Cl···Cl distance at 4.539 a. Despite the apparent HS structure,
magnetic investigation revealed that at 100 K the FeIII is mostly
LS (74 % LS) (Figure 4). Elemental analysis confirmed the crystal
had lost the interstitial MeCN molecules indicating a similar

effect to that seen in complex (1) with the halogen bond
“switching on” upon loss of solvent. Since this sample lost crys-

tal quality during desolvation, the exact nature of the halo-

gen···halogen interaction could not be clearly defined. Previous
work has ordered the strength of halogen bonds as F < Cl <

Br < I.[23] It is also well established that a decrease in coopera-
tivity between metal centers results in less abrupt spin transi-

tions.[24] By exchanging the bromide ion with chloride, a
weaker halogen bond has been induced; it is therefore expect-

ed that a transition would be more gradual. We can quantify

the gradual nature of this transition when comparing it with
complex (1). Both events start at 230 K from a cT value of

&5.8 cm3 mol@1 K, however the T1/2 value is 33 K lower (T1/2 =

124 K) for (2) consistent with the gradual nature of the cross-

over which occurs over a wider temperature range (130 K and
170 K for (1) and (2), respectively).

Complex (3) was produced by changing the non-coordinat-

ed MeO group on the primary-ligand for the sterically larger
EtO group. (3)w_180 crystallized with a similar unit cell and

packing, but in P21/n due to loss of C-centering. The asymmet-
ric unit thus contains two [ReBr5(m-EtOpch)Fe(Me-Im)3] com-

plexes and a single molecule of MeCN. Both crystallographical-
ly independent complexes appear to be HS at 180 K with the

Figure 3. Packing rearrangement of (1) before (left) and after (right) loss of solvent molecules, both crystal structures measured at 100 K.

Table 1. The formula of the reported compounds (1)–(4) colored for clari-
ty.[a]

Compound X = R = R’ =

(1) Br MeO Me
(2) Cl MeO Me
(3) Br EtO Me
(4) Br MeO Et

[a] Note: Compounds (5)–(8) are the CoIII analogues of (1)–(4), respective-
ly.

Figure 4. cT plots from the iron containing complexes (1)—(4) Data collect-
ed under an applied DC field of 0.1 T.
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average Fe-N lengths of 2.116 a and 2.101 a for Fe1 and Fe2,
respectively. In the complex containing Fe2 there is evidence

of a weak type II halogen bond (Br7···Br10’ = 4.099 a, ffRe-
Br···Br = 131 & 1198, RXB = 1.108), which is missing for the mol-

ecule containing Fe1, thus only half the molecules in the crys-
tal lattice can utilize a halogen bond mediated process. Upon

complete solvent loss, sample (3)d_180 undergoes a transfor-
mation to a structure with only one [ReBr5(m-EtOpch)Fe(Me-
Im)3] molecule in the asymmetric unit. In this case the halo-

gen···halogen interaction is stronger than previously observed
(Br5···Br5’ = 3.888 a, ffRe-Br···Br = 1218, RXB = 1.051) involving all
molecules in the crystal. SCO events are highly sensitive and
this slight change in peripheral substituent from MeO to EtO is

enough to modify the SCO properties.[25] The magnetic data
for the desolvated compound demonstrates a more abrupt in-

complete SCO with 61 % of the metal centers reaching the LS

occurring between 140 K to 60 K (80 K range) with a T1/2 = 98 K
(Figure 4). The dramatic change in T1/2 highlights the suitability

of this system to tune the SCO event towards a desired tem-
perature.

Finally, complex (4) which replaces the methyl group on the
imidazole-based secondary ligand, R’, with a larger ethyl group

crystallizes without interstitial solvent, (4)d_180. In the case of

(3) only one additional CH2 unit was added to the molecule in
a position placing it at a maximum distance from the {ReX5}@

synthon. However, in complex (4) a total of three additional
CH2 units were introduced pushing the molecules further

apart. In addition, a methyl group on one imidazole points di-
rectly into the {ReX5}@ synthon (Figure 5) hindering the forma-

tion of a halogen bond (Br1···Br1’ = 4.455 a, ffRe-Br···Br = 1678,

RXB = 1.204). This results in a desolvated complex lacking halo-
gen···halogen interactions and therefore without the desired

SCO behavior (Figure 4).
The results for the desolvated complex (4) rule out the pos-

sibility that removing solvent alone is enough to induce SCO
properties and provide further evidence that in these systems

a halogen···halogen interaction is required. This highlights the

key role of halogen bond mediated information exchange and
demonstrates the potential for halogen bonding within SCO

research.
As a classic halogen bond is defined as an attractive dipolar

interaction between nucleophilic and electrophilic halogen
centers, the symmetrical ReBr5···ReBr5 interactions we report

here will clearly not be as strong, which is why we describe
them as interactions rather than bonds. However, examination

of the intermolecular geometries suggests that they can be
validly described as weak halogen interactions. This is shown
when they are “switched on” by solvent loss through a de-
crease in the Br···Br distances to what amounts approximately
to the sum of their Van der Waals radii and the fact that the
Re-Br-Br angles switch from 110–1408 to values close to linear.

These concomitant changes provide good evidence that for
the relevance of these halogen···halogen interactions in these
systems. Incorporating additional halogen interaction/bonding
motifs offers a fruitful avenue of research into providing in-
creased cooperativity between the FeIII centers.

Conclusions

Our systematic approach which utilizes magnetic measure-

ments and detailed structural investigations to observe com-

pare and contrast the properties of similar systems showing
the presence or absence of halogen···halogen interactions

leads to a clear and concise understanding of the role which
non-typical supramolecular interactions can play in magnetic

switching. The use of the {ReX5}@ synthon in conjunction with
a pocket ligand enabled us to provide an ideal FeIII SCO envi-

ronment coupled with the possibility to switch on halogen···

halogen interactions through desolvation of the crystals. This
engendered long-range noncovalent interactions. The success-

ful implementation of this approach to providing a facile way
to include highly directional supramolecular interactions paves
the way for future research into the role of such interactions
within SCO and magnetically interesting compounds.

Experimental Section

The experimental section below covers the ligands (9) to (11) and
compounds (1) to (4), with the CoIII analogues, compounds (5) to
(8), presented in the ESI along with the full details of the analytical
equipment.

Synthesis of the (NBu4)[ReIVBr5(H2MeOpch)] ligand (9)

(NBu4)2ReBr6 (1.61 g, 1.40 mmol) and H2MeOpch (2.29 g,
8.40 mmol) were dissolved in a mixture of 2-propanol/acetone (2:1,
v/v, 150 mL) and heated to 75 8C for 2 hours. After cooling to room
temperature, the solvent volume was reduced to &80 mL and the
orange precipitate collected via filtration and dried in vacuo. Yield:
1.34 g (87 %). C29H48Br5N5O3Re (1098.44 g mol@1): Calculated C:
31.7 %, H: 4.4 %, N: 6.4 %, Found: C: 31.0 %, H: 4.3 %, N: 6.1 %. IR (ñ
cm@1): 2960 (m), 2932 (w), 2872 (w), 1683 (s), 1608 (w), 1528 (m),
1462 (s), 1406 (m), 1377 (m), 1353 (m), 1244 (vs), 1148 (s), 1077 (s),
968 (m), 952 (m), 905 (m), 881 (m), 781 (m), 629 (w), 482 (m). UV/
Vis : (MeCN) (l nm) = 201, 220, 305, 339, 357 (sh), 590.

Synthesis of the (NBu4)[ReIVCl5(H2MeOpch)] ligand (10)

(NBu4)2ReCl6 (0.088 g, 0.10 mmol) and H2MeOpch (0.163 mg,
0.6 mmol) were dissolved in a mixture of 2-propanol/acetone (2:1,
v/v, 30 mL) and heated to 75 8C for 6 hours. After cooling to room
temperature, the solution was filtered and left to stand under an
inert atmosphere. After six days orange needles were collected via

Figure 5. Representation of (4)d_180 (left) and (1)d_100 (right) shown in ball
and stick with the “{ReX5}” and “imidazole R’ group” in space filling mode
demonstrating the steric hindrance induced by the ethyl group.
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filtration and dried in vacuo. Yield: 0.067 g (67 %). C29H48Cl5N5O3Re
(997.35 g mol@1): Calculated C: 42.2 %, H: 6.4 %, N: 7.0 %, Found: C:
40.9 %, H: 6.4 %, N: 7.0 %. IR (ñ cm@1): 3490 (vw), 2960 (s), 2932 (m),
2873 (m), 1682 (vs), 1608 (m), 1576 (w), 1533 (s), 1464 (vs), 1407
(m), 1377 (m), 1354 (s), 1282 (s), 1246 (vs), 1147 (vs), 1076 (s), 1024
(m), 952 (s), 906 (m), 881 (m), 835 (w), 817 (w), 783 (m), 739 (vs),
486 (m), 344 (s). UV/Vis: (MeCN) (l nm) = 200, 221, 292, 353 (sh).

Synthesis of the (NBu4)[ReIVBr5(H2EtOpch)] ligand (11)

(NBu4)2ReBr6 (0.080 g, 0.07 mmol) and H2EtOpch (0.120 g,
0.42 mmol) were dissolved in a mixture of 2-propanol/acetone (2:1,
v/v, 30 mL) and heated to 70 8C for 3 hours. After cooling to room
temperature, the solvent volume was reduced to &10 mL and the
orange precipitate collected via filtration and dried in vacuo. Yield:
0.064 g (82 %). C30H49Br5N5O3Re (1113.48 g mol@1): Calculated C:
32.4 %, H: 4.4 %, N: 6.3 %, Found: C: 32.6 %, H: 4.5 %, N: 6.3 %. IR (ñ
cm@1): 3298 (vw), 2953 (w), 2928 (w), 2868 (w), 1708 (s), 1607 (m),
1513 (s), 1461 (s), 1403 (s), 1377 (m), 1354 (m), 1255 (vs), 1153 (vs),
1111 (m), 1057 (s), 1023 (s), 948 (m), 922 (w), 882 (s), 778 (m), 732
(vs), 581 (s), 486 (s), 443 (w). UV/Vis: (MeCN) (l nm) = 221, 265, 305,
339, 357 (sh).

Synthesis of [ReBr5(m-MeOpch)Fe(Me-Im)3] (1)

A solution of Fe(ClO4)2·6 H20 (7 mg, 0.02 mmol) in MeCN (5 mL) was
slowly added to a solution of (NBu4)[ReBr5(H2MeOpch)] (9) (12 mg,
0.01 mmol) and 1-Me-Im (4 mg, 0.04 mmol) in MeCN (5 mL). The
reddish-brown clear solution was sealed and left to stand for three
weeks until dark brown needle crystals were formed. Yield: 5 mg
(48 %). C25H28Br5FeN10O3Re (1158.2 g mol@1): Calculated C: 25.9 %, H:
2.4 %, N: 12.1 %, Found: C: 26.5 %, H: 2.7 %, N: 12.7 %. IR (ñ cm@1):
3123 (w), 1589 (m), 1536 (m), 1515 (m), 1466 (w), 1431 (s), 1349 (s),
1287 (m), 1252 (s), 1231 (m),1213 (m), 1156 (m), 1087 (vs), 1020 (w),
969 (w), 948 (m), 923 (w), 825 (w), 785 (w), 750 (vs), 655 (s), 618
(m), 584 (s), 509 (w), 416 (s), 370 (m). UV/Vis: (MeCN) (l nm) = 216,
281, 337, 350, 360.

Synthesis of [ReCl5(m-MeOpch)Fe(Me-Im)3] (2)

A solution of Fe(ClO4)2·6 H20 (7 mg, 0.02 mmol) in MeCN (5 mL) was
slowly added to a solution of (NBu4)[ReCl5(H2MeOpch)] (10) (12 mg,
0.01 mmol) and 1-Me-Im (3 mg, 0.03 mmol) in MeCN (5 mL). The
reddish-brown clear solution was sealed and left to stand for eight
days until dark brown needle crystals were formed. Yield: 6 mg
(54 %). C25H28Cl5FeN10O3Re (1158.2 g mol@1): Calculated C: 32.1 %, H:
3.0 %, N: 15.0 %, Found: C: 31.2 %, H: 3.0 %, N: 14.7 %. IR (ñ cm@1):
2959 (vw), 2932 (vw), 2834 (vw), 1599 (s), 1548(s), 1509 (m), 1436
(s), 1354 (s), 1298 (m), 1242 (s), 1219 (vs), 1157 (s), 1081 (m), 1020
(w), 971 (w), 921 (w), 856 (m), 741 (vs), 629 (w), 552 (m), 492 (w),
442 (m), 404 (m), 360 (w). UV/Vis: (MeCN) (l nm) = 205, 282, 326
(sh), 338, 381, 477.

Synthesis of [ReBr5(m-EtOpch)Fe(Me-Im)3] (3)

A solution of Fe(ClO4)2·6 H20 (35 mg, 0.12 mmol) in MeCN (10 mL)
was slowly added to a solution of (NBu4)[ReBr5(H2EtOpch)] (11)
(60 mg, 0.06 mmol) and 1-Me-Im (20 mg, 0.24 mmol) in MeCN
(10 mL). The reddish-brown clear solution was sealed and left to
stand for four days until dark brown block crystals were formed.
Yield: 5 mg (48 %). C26H31Br5FeN10O3Re (1172.67 g mol@1): Calculated
C: 26.6 %, H: 2.6 %, N: 11.9 %, Found: C: 26.1 %, H: 2.4 %, N: 12.1 %.
IR (ñ cm@1): 3117 (w), 1606 (w), 1588 (m), 1532 (w), 1433 (m), 1391
(m), 1350 (m), 1280 (w), 1254 (s), 1211 (m), 1157 (m), 1086 (vs),

1023 (m), 946 (m), 901 (w), 844 (m), 783 (w), 741 (vs), 655 (s), 616
(m), 569 (m), 510 (m), 463 (w), 432 (m), 365 (w). UV/Vis: (MeCN) (l
nm) = 195, 208, 221, 307, 335, 355, 388 (sh).

Synthesis of [ReBr5(m-MeOpch)Fe(Et-Im)3] (4)

A solution of Fe(ClO4)2·6 H20 (22 mg, 0.06 mmol) in MeCN (10 mL)
was slowly added to a solution of (NBu4)[ReBr5(H2MeOpch)] (9)
(60 mg, 0.06 mmol) and 1-Et-Im (12 mg, 0.12 mmol) in MeCN
(15 mL). The reddish-brown clear solution was sealed and left to
stand for one day until dark brown block crystals were formed.
Yield: 31 mg (43 %). C28H34Br5CoN10O3Re (1153.26 g mol@1): Calculat-
ed C: 26.9 %, H: 2.6 %, N: 11.3 %, Found: C: 26.6 %, H: 2.7 %, N:
11.3 %. IR (ñ cm@1): 3118 (w), 2976 (vw), 934 (vw), 1589 (m), 1550
(m), 1531 (m), 1462 (m), 1426 (m), 1350 (s), 1278 (m), 1245 (m),
1230 (m), 1215 (m), 1182 (w), 1158 (m), 1087 (vs), 1020 (m), 958
(m), 945 (m), 838 (m), 798 (w), 744 (vs), 660 (s), 590 (m), 567 (m),
512 (m), 431 (m), 359 (s). UV/Vis: (MeCN) (l nm) = 191, 209, 274
(sh), 338, 363, 392.

Deposition Numbers 1978010, 1978011, 1978012, 1978013,
1978014, 1978015, 1978016, 1978017, 1978018, 1978019, 1978020,
1978021, 1978022, 1978023, 1978024, 1978025, 1978026, 1978027,
1978028, and 1978029 contain the supplementary crystallographic
data for this paper. These data are provided free of charge by the
joint Cambridge Crystallographic Data Centre and Fachinforma-
tionszentrum Karlsruhe Access Structures service www.ccdc.cam.a-
c.uk/structures.
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