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Abstract
In this paper layered shells subjected to static loading are considered. The displacements of the Reissner–Mindlin theory
are enriched by a an additional part. These so-called fluctuation displacements include warping displacements and thickness
changes. They lead to additional terms for the material deformation gradient and the Green–Lagrangian strain tensor. Within
a nonlinear multi-field variational formulation the weak form of the boundary value problem accounts for the equilibrium of
stress resultants and couple resultants, the local equilibrium of stresses, the geometrical field equations and the constitutive
equations. For the independent shell strains an ansatz with quadratic shape functions is chosen. This leads to a significant
improved convergence behaviour especially for distorted meshes. Elimination of a set of parameters on element level by
static condensation yields an element stiffness matrix and residual vector of a quadrilateral shell element with the usual 5 or
6 nodal degrees of freedom. The developed model yields the complicated three-dimensional stress state in layered shells for
elasticity and elasto-plasticity considering geometrical nonlinearity. In comparison with fully 3D solutions present 2D shell
model requires only a fractional amount of computing time.

Keywords Layered plates and shells · Coupled global local boundary value problems · Interface to 3D material law ·
Four-node shell element · Standard nodal degrees of freedom · Fast computation of the load deflection behaviour

1 Introduction

Shell elementswhich account for the layer sequence of a lam-
inated structure are able to predict the deformation behaviour
of the reference surface in an accurate way. Also the assump-
tion of a linear shape of the in-plane strains through the
thickness is sufficient, if the shell is not too thick. In con-
trast to that only constant transverse shear strains through the
thickness are obtained within the Reissner–Mindlin theory.
As a consequence only the average of the transverse shear
stresses is accurate.Neither the shape of the stresses is correct
nor the boundary conditions at the outer surfaces are ful-
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filled.Within theKirchhoff theory the transverse shear strains
are set to zero. By assumption the thickness normal stresses
are neglected in a standard shell theory. This is necessary to
avoid unphysical stresses due to inextensibility assumptions
in thickness direction.

In several publications the equilibrium equations are
exploited within post-processing procedures to obtain the
interlaminar stresses, e.g. [1,2] for the transverse shear
stresses and e.g. [3] for the thickness normal stresses. In a
standard version first and second derivatives of the in-plane
stresses require bi-quadratic or bi-cubic shape functions. The
essential restriction of the approach is the fact that these
stresses are not embedded in the variational formulation and
an immediate extension to geometrical and physical nonlin-
earity is not possible.

The standard displacement field is enhanced by layer-
wise (zig-zag) functions through the thickness in e.g. [4–6].
An enhanced modeling approach for multilayer anisotropic
plates based on the dimension reduction method is presented
in [7]. An assessment of the variable separation method is
discussed in [8].
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Higher order plate and shell formulations and layerwise
approaches represent a wide class of advanced models, e.g.
[9–15]. For geometrical nonlinear formulations we refer to
e.g. [16,17]. These theories are associated with layerwise
degrees of freedom in an associated FE formulation.

The use of brick elements or so-called solid shell ele-
ments represents a computationally expensive approach, e.g.
[18,19]. For a sufficient accurate evaluation of the inter-
laminar stresses each layer must be discretized with several
elements (≈4–10) in thickness direction. Especially for large
scale industrial problems with a multiplicity of load steps
and several iterations in each load step this is not a feasible
approach.

The purpose of this paper is to present a shell model
which is able to compute the load-deflection behaviour and
the complicated three-dimensional stress-state of geometri-
cal nonlinear, elasto-plastic, layered shells. It is based on
Refs. [20–22]. Present work delivers essential new develop-
ments.

(i) The displacements of the Reissner–Mindlin kinematics
are enriched by warping displacements and thickness
changes. This yields additional terms for the material
deformation gradient, the Green–Lagrangian strain ten-
sor and associated variation. The thickness integration of
the local equilibrium equations are extended to elasto-
plasticity.

(ii) The proposed nonlinear variational formulation leads
to Euler-Lagrange equations which include besides the
usual shell equations in terms of stress resultants, the
local equilibrium in terms of stresses, a constraint which
enforces the correct shape of the displacement fluctua-
tions through the thickness, the geometric field equations
and the constitutive equations.

(iii) A new ansatz for the independent shell strains with
quadratic shape functions is proposed. It leads to a sig-
nificant improved convergence behaviour especially for
distortedmeshes. Furthermore, quadratic functions allow
the computation of second derivatives. These are neces-
sarywhen rewriting the local equilibrium equation for the
thickness direction with the derivatives of the transverse
shear strains.

(iv) Elimination of a certain set of parameters by static con-
densation from the resulting system of equations yields
the element stiffnessmatrix and the element residual vec-
tor. The derived four-node element possesses the usual
5 or 6 nodal degrees of freedom. This is an essential
feature since standard geometrical boundary conditions
can be applied and the element is applicable also to
shell intersection problems. In comparison with fully 3D
discretizations present 2D shell model requires only a
fractional amount of computing time.

The paper is organized as follows. In Sect. 2 the shell
theory is derived. The associated finite element formulation
is presented in Sect. 3. Several geometrical and physical
nonlinear examples are presented in Sect. 4. The com-
puted displacements and stresses of the developed model
are compared with costly 3D computations. Furthermore, we
compare with the displacements and stresses computed with
Reissner–Mindlin shell elements.

2 Governing equations

2.1 Shell kinematics

LetB0 be the three-dimensional Euclidean space occupied by
the shell with thickness h in the undeformed configuration.
The position vector X of any point P ∈ B0 is parametrized
with convected coordinates ξ i

X(ξ1, ξ2, ξ3) = X0(ξ
1, ξ2) + ξ3N(ξ1, ξ2)

|N(ξ1, ξ2)| = 1 ,
(1)

whereX0 andN denote the position vector and normal vector
of the reference surface �, respectively. The thickness coor-
dinate ξ3 is defined in the range h− ≤ ξ3 ≤ h+, where h−
and h+ denote the coordinates of the outer surfaces. The coor-
dinate on the boundary � = �u ∪ �σ of � is s. The usual
summation convention is used, where Latin indices range
from 1 to 3 and Greek indices range from 1 to 2. Commas
denote partial differentiation with respect to the coordinates
ξ i .

The kinematic assumption for the position vector of the
deformed shell space B reads

x(ξ1, ξ2, ξ3) = x0(ξ1, ξ2) + ξ3 d(ξ1, ξ2) + ũ(ξ3)

|d(ξ1, ξ2)| = 1 .
(2)

Here, x0 describes the position vector of the current reference
surface �t . The director vector d(ϕ) of the current configu-
ration is not perpendicular to the deformed reference surface,
thus shear deformations are accounted for. We introduce the
vector field v(ξ1, ξ2) = [u,ϕ]T , where u = x0 − X0 and ϕ

contains rotational parameters. In Eq. (2) the assumptions of
the Reissner–Mindlin theory are extended by the displace-
ment fluctuation field

ũ(ξ3) = �(ξ3)α . (3)

For this purpose the shell is subdivided in thickness direc-
tion in M numerical layers. For laminated shells M usually
corresponds to the number of physical layers. The vector α

contains displacements at nodes in thickness direction and
is element-wise constant. The matrix � contains layer-wise
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cubic hierarchic functions

�(ξ3) = [
φ1 13 φ2 13 φ3 13 φ4 13

]
ai

φ1 = 1

2
(1 − ζ ) φ2 = 1 − ζ 2

φ3 = 8

3
ζ (1 − ζ 2) φ4 = 1

2
(1 + ζ ) ,

(4)

where ai is an assembly matrix, which relates the 12 degrees
of freedom of layer i to the K components of α. For M layers
this leads to K = 9 · M + 3. Furthermore, ζ is a normalized
coordinate of layer i defined in the range −1 ≤ ζ ≤ 1 and
1n denotes a unit matrix of order n.

With the parametrization of the shell (1) and kinematic
assumption (2) one can express thematerial deformation gra-
dient as

F = gi ⊗ Gi gi = x,i Gi = X,i Gi = Gi j G j (5)

with the contravariant metric coefficients Gi j and

X,α = X0,α +ξ3N,α
X,3 = N
x,α = x0,α +ξ3 d,α
x,3 = d + ũ,3 .

(6)

The vector ũ,3 follows from ũ,3 = �,3 α with

�,3 = [φ1,3 13 , φ2,3 13 , φ3,3 13 , φ4,3 13] ai

φ j ,3 = dφ j

dζ

2

hi
,

(7)

where hi denotes the thickness of layer i .
Inserting the deformation gradient into the Green–

Lagrangian tensor Eg = 1
2 (FTF − 1) yields

Eg = Ei j Gi ⊗ G j Ei j = 1

2
(x,i ·x, j −X,i ·X, j ) , (8)

where the index g refers to geometrical strains. The compo-
nents read with (6) considering d · d = N ·N = 1 as well as
N,α ·N = d,α ·d = 0

Eαβ = εαβ + ξ3 καβ + (ξ3)2 ραβ

2Eα3 = γα + gα · ũ,3
E33 = g̃3 · ũ,3

(9)

with

εαβ = 1

2
(x0,α ·x0,β −X0,α ·X0,β )

καβ = 1

2
(x0,α ·d,β +x0,β ·d,α −X0,α ·N,β −X0,β ·N,α )

ραβ = 1

2
(d,α ·d,β −N,α ·N,β )

γα = x0,α ·d − X0,α ·N
g̃3 = d + 1

2
�,3 α .

(10)

The higher order curvatures ραβ are neglected. This is admis-
sible for sufficiently thin structures with L/h � 1, see e.g.
[23,24]. Here, L is a characteristic length of a plate or low-
est curvature radius of a shell. Hence, the in-plane strains
{E11, E22, 2E12} are linear functions of ξ3. Our numerical
investigations show that for L/h ≥ 10 this is a good approx-
imation. Using Voigt notation the Green-Lagrangian strains
of a point in shell space with coordinate ξ3 are obtained with

Eg = A1 εg + Ã2 α (11)

where

εg(v) = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]T

Eg =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

E11

E22

E33

2E12

2E13

2E23

⎤

⎥
⎥⎥⎥⎥⎥
⎦

A1 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 0 0 ξ3 0 0 0 0
0 1 0 0 ξ3 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 ξ3 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥
⎦

Ã2 =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

0

0

g̃T3
0

gT1
gT2

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

�,3 .

(12)

The components of F andEg are transformed to the element-
wise constant Cartesian element coordinate system ti , see
Sect. 3. The transformations are standard and therefore are
not displayed here.

For the belowdescribed variational formulation the virtual
Green–Lagrangian strain tensor has to be specified

δEg = δEi j Gi ⊗ G j

δEi j = 1

2
(δx,i ·x, j +δx, j ·x,i )

δx,α = δx0,α +ξ3 δd,α
δx,3 = δd + �,3 δα .

(13)

123



1356 Computational Mechanics (2020) 66:1353–1376

Using Voigt notation it holds

δEg = A1 δεg + A2 δα

δEg =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

δE11

δE22

δE33

2δE12

2δE13

2δE23

⎤

⎥⎥⎥⎥⎥
⎥
⎦

A2 =

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0

0

gT3
0

gT1
gT2

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

�,3
(14)

with

δεg = [δε11, δε22, 2δε12, δκ11, δκ22, 2δκ12, δγ1, δγ2]T

δεαβ = 1

2
(δx0,α ·x0,β +δx0,β ·x0,α )

δκαβ = 1

2
(δx0,α ·d,β +δx0,β ·d,α

+δd,α ·x0,β +δd,β ·x0,α )

δγα = δx0,α ·d + δd · x0,α .

(15)

The below presented finite element equations are iteratively
solved. To maintain quadratic convergence in the Newton-
Raphson scheme the vectors [d, g1, g2] of the last converged
load increment are used in Ã2 and A2. In order to assess the
effect of this approximation a variation of the load step size
has to be performed. This is done by means of the numerical
examples in Sect. 4.

In this context also the second variation of the Green–
Lagrangian strains has to be derived. One obtains

�δEg = �δE1
g + �δE2

g

�δE1
g = A1 �δεg

�δE2
g = [0, 0,�δE33, 0, 0, 0]T

�δE33 = δαT (�T,3 �,3 )�α .

(16)

The linearized virtual shell strains �δεg are specified e.g. in
Ref. [25].

2.2 Equilibrium equations and a constraint

This part follows Ref. [22] considering the new relations of
Sect. 2.1. Furthermore, the extension to elasto-plastic mate-
rial behaviour is derived. In this sectionweuseVoigt notation.
The components of the stresses, strains and material laws
refer to the element-wise constant Cartesian coordinate sys-
tem ti , see Sect. 3.

Fig. 1 Surface loading of the shell

2.2.1 Definition of stress resultants

The transformation of the Second Piola–Kirchhoff stress
tensor S = ST to the First Piola–Kirchhoff stress tensor
P is obtained in a standard way by P = FS. Thus, with
P = Pi j ti ⊗t j andF = Fi j ti ⊗t j , where Fi j = ti ·g j = Fi

j

with ti = ti , it holds

Pi j = Fi
k S

k j . (17)

Figure 1 depicts static loading p− and p+ acting at the
outer surfaces of the shell with coordinates ξ3 = h− and
ξ3 = h+, respectively. The stress boundary conditions at the
outer surfaces read

Pα3(h−) = 0
Pα3(h+) = 0
P33(h+) = p+
P33(h−) = −p− .

(18)

The components of the Second Piola–Kirchhoff stress ten-
sor are organized in a vector using Voigt notation

S =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

S11

S22

S33

S12

S13

S23

⎤

⎥⎥⎥⎥
⎥⎥
⎦

. (19)

In an analogous way the physical strains E and associated
variations δE are introduced. The components are organized
in vectors as the geometrical counterparts in Eqs. (12) and
(14).
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Now, the relation of S to the stress resultants is defined
by thickness integration of the internal virtual work per unit
area. This yields with δE = A1 δε + A2 δα, where δε is the
vector of the virtual independent shell strains

h+∫

h−
δETS μ̄ dξ3 = δεT ∂εW + δαT ∂αW (20)

with the determinant of the shifter tensor μ̄ and

∂εW :=
h+∫

h−
AT
1 S μ̄ dξ3 ∂αW :=

h+∫

h−
AT
2 S μ̄ dξ3 . (21)

The components of ∂εW = [n11, n22, n12,m11,m22,

m12, q1, q2]T are membrane forces, bending moments and
shear forces, whereas the components of ∂αW are higher
order stress resultants.

Remark: In contrast to the independent stress resultants
denoted by σ , we use for the stress resultants (21) computed
with S via the constitutive law the notation ∂εW . Thus, the
notation ∂εW and ∂αW has for nonlinear material laws not
the meaning of derivatives of a strain energy density with
respect to ε and α.

2.2.2 Thickness integration of the equilibrium equations

Neglecting body forces the component representation of the
equilibrium equation DivP = Pkl,l tk = 0 reads

⎡

⎣
P11,1 +P12,2 +P13,3
P21,1 +P22,2 +P23,3
P31,1 +P32,2 +P33,3

⎤

⎦ := f = 0 in B0 . (22)

Subsequently, the integral form of f = 0 is derived. This is
done in two steps. At first the derivatives of the stresses Piα

are reformulated. In a second step the terms Pi3,3 are treated.
The derivatives of the stresses Piα with respect to ξα using

(17) yield

⎡

⎣
P11,1 +P12,2
P21,1 +P22,2
P31,1 +P32,2

⎤

⎦ = F

⎡

⎣
S11,1 +S12,2
S21,1 +S22,2
S31,1 +S32,2

⎤

⎦ +
⎡

⎣
p̂∗
1

p̂∗
2

p̂∗
3

⎤

⎦

⎡

⎣
p̂∗
1

p̂∗
2

p̂∗
3

⎤

⎦ =
⎡

⎣
F11,1 F12,2 0 F11,2 +F12,1 F13,1 F13,2
F21,1 F22,2 0 F21,2 +F22,1 F23,1 F23,2
F31,1 F32,2 0 F31,2 +F32,1 F33,1 F33,2

⎤

⎦S .

(23)

In-plane stresses Sαβ as well as transverse shear stresses S3α

enter in this equation.

In the following the term S31,1 +S32,2 is reformulated. For
this purpose the first two equations of (22) are rewritten with
(17) and (23) as follows

F̂
[
S11,1 +S12,2 +S13,3
S21,1 +S22,2 +S23,3

]
+

[
p1
p2

]
=

[
0
0

]

F̂ =
[
F11 F12
F21 F22

]

pα = p̂∗
α + Fαi ,3 S3i + Fα3 S3i,i

(24)

For arbitrary F̂ 
= 0 and pα � p̂∗
3 the transverse shear

stresses follow from (24) as

S13 = S31 = −
ξ3∫

h−
(S11,1 +S12,2 ) dξ̄3

S23 = S32 = −
ξ3∫

h−
(S21,1 +S22,2 ) dξ̄3

(25)

and the sum of the derivatives yields

S31,1 +S32,2 = −
ξ3∫

h−
(S11,11 +2 S21,12 +S22,22 ) dξ̄3 . (26)

In a first step we assume elastic orthotropic mate-
rial behaviour. Hence, the strain energy density �(E) =
1
2 E

T CE can be written in terms of the constant elasticity
matrix C and the physical strains E. They are obtained with
the physical shell strains ε via E = A1 ε + Ã2 α . Hence, the
constitutive equation may be written in the following stan-
dard form

∂E� = S = C E⎡

⎢⎢⎢
⎢⎢⎢
⎣

S11

S22

S33

S12

S13

S23

⎤

⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢
⎣

C11 C12 C13 C14 0 0
C21 C22 C23 C24 0 0
C31 C32 C33 C34 0 0
C41 C42 C43 C44 0 0
0 0 0 0 C55 C56

0 0 0 0 C65 C66

⎤

⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢⎢
⎣

E11

E22

E33

2E12

2E13

2E23

⎤

⎥⎥⎥
⎥⎥⎥
⎦

.

(27)

Due to the varying fibre orientation in laminated shells the
constants Ci j = C ji differ for each individual layer. For the
in-plane stresses holds with E = A1 ε + Ã2 α and Eq. (27)

⎡

⎣
S11

S22

S12

⎤

⎦=
⎡

⎣
C11 C12 C14

C21 C22 C24

C41 C42 C44

⎤

⎦

⎡

⎣
ε11 + ξ3 κ11
ε22 + ξ3 κ22

2ε12 + ξ3 2κ12

⎤

⎦+
⎡

⎣
C13

C23

C43

⎤

⎦ E33 .

(28)
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We introduce the matrices

C1
23 =

[
C11 C12 C14 C41 C42 C44

C41 C42 C44 C21 C22 C24

]

C2 T
23 = −

ξ3∫

h−

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

C11

C12

C14

C21

C22

C24

2C41

2C42

2C44

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

ξ̂3 dξ̄3
(29)

with ξ̂3 = ξ̄3−ξ3i j . The constants ξ3i j are computed for every
Ci j ∈ {C11,C12,C14,C22,C24,C44}

ξ3i j =

h+∫

h−
Ci j ξ

3 dξ3

h+∫

h−
Ci j dξ3

with

h+∫

h−
Ci j dξ

3 
= 0 . (30)

For a symmetric shape of Ci j through the thickness and
h− = −h/2 as well as h+ = h/2 one obtains ξ3i j = 0. With
layerwise constant Ci j the integration in (29)2 and (30) can
be done by summation over layers and analytical integration
in each layer.

The derivatives of the stresses Piα (23) yield with (26)–
(30)

⎡

⎣
P11,1 +P12,2
P21,1 +P22,2
P31,1 +P32,2

⎤

⎦ = F
[
C1
23 ξ3C1

23 0
0 0 C2

23

]⎡

⎣
λε1

λκ1

λκ2

⎤

⎦ +
⎡

⎣
p∗
1

p∗
2

p∗
3

⎤

⎦

= C23 λ+p∗,
(31)

where

p∗ =
⎡

⎣
p̂∗
1

p̂∗
2

p̂∗
3

⎤

⎦ + F

⎡

⎣
C13 E33,1 +C43 E33,2
C43 E33,1 +C23 E33,2
0

⎤

⎦

.

(32)

The derivatives of E33 follows from (9)3 and yield E33,β =
g̃3,β ·ũ3 = d,β ·ũ3. However, the numerical tests show that
the second part in (32) leads to negligible contributions. The
vector λ contains derivatives of the membrane strains and

curvatures

λ =
⎡

⎣
λε1

λκ1

λκ2

⎤

⎦ λε1 =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

ε11,1
ε22,1

2ε12,1
ε11,2
ε22,2

2ε12,2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

λκ1 =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

κ11,1
κ22,1

2κ12,1
κ11,2
κ22,2

2κ12,2

⎤

⎥⎥⎥⎥⎥
⎥
⎦

λκ2 =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

κ11,11
κ22,11

2κ12,11
κ11,22
κ22,22

2κ12,22
κ11,12
κ22,12

2κ12,12

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

(33)

Next we introduce

∂αW = −
h+∫

h−
�T

⎡

⎣
P13,3
P23,3
P33,3

⎤

⎦ μ̄ dξ3 + q

D23 := −
h+∫

h−
�TC23 μ̄ dξ3 ,

(34)

where the reformulation of ∂αW with μ̄ = 1 according to
(21)2 is obtained with integration by parts. Here, one needs
the relation

AT
2 S = �T,3

⎡

⎣
P13

P23

P33

⎤

⎦

,

(35)

with A2 and Pi3 from (14) and (17), respectively. Consider-
ing the stress boundary conditions (18) one obtains for the
boundary term

q = [
p−, 0M−6, p+ ]T

, (36)

where p− = p− N and p+ = p+ N. Furthermore, 0n denotes
a zero vector with n components.

The weighted integral of p∗ is constant as is taken from
the last load increment. Therefore it can be summarized
with q

q̄ := q + q∗ q∗ =
h+∫

h−
�Tp∗ μ̄ dξ3 . (37)
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Now the integral form of f = 0 (22) is formulated with
δũ = � δα and Eqs. (31)–(37)

h+∫

h−
δũT f μ̄ dξ3 = −δαT (∂αW + D23 λ − q̄) = 0 . (38)

With δα 
= 0 one obtains the equilibrium of higher order
stress resultants

∂αW + D23 λ − q̄ = 0 . (39)

2.2.3 Thickness integration of a constraint

The displacement field ũmust fulfill a constraint. To specify
this equation we introduce the equilibrium of virtual stresses
δPiα . As C23 and p∗ are constant in Eq. (31) one obtains

⎡

⎣
δP11,1 +δP12,2
δP21,1 +δP22,2
δP31,1 +δP32,2

⎤

⎦ = C23 δλ := δf1 = 0 . (40)

The integral form of δf1 = 0 yields with ũ = �α

h+∫

h−
δfT1 ũ μ̄ dξ3 = δλT

h+∫

h−
CT
23 � μ̄ dξ3 α = 0 . (41)

With

D32 = −
h+∫

h−
CT
23 � μ̄ dξ3 = DT

23 (42)

Eq. (41) reads −δλTD32 α = 0 where δλ 
= 0. One obtains
the constraint

g(α) = D32 α = 0 , (43)

which enforces the correct shape of the displacements ũ
through the thickness. It has the descriptive meaning that
the superposedwarpingdisplacements and thickness changes
must not lead to additional stress resultants.

2.2.4 Extension to elasto-plastic material behaviour

The extension to elasto-plasticmaterial behaviour is possible.
In the following we consider small strain plasticity with an
additive decomposition of the total strains E = Eel +Epl in
elastic and plastic part and Eq. (27) is replaced by

S = C (E − Epl) . (44)

The vector Epl =
[
E pl
11, E

pl
22, E

pl
33, 2E

pl
12, 2E

pl
13, 2E

pl
23

]T

leads to further contributions in p∗ according to (32). It has
to be replaced by

p∗ =
⎡

⎣
p̂∗
1

p̂∗
2

p̂∗
3

⎤

⎦ + F

⎡

⎣
C13 E33,1 +C43 E33,2
C43 E33,1 +C23 E33,2
0

⎤

⎦ − F

⎡

⎢
⎣
ppl
1

ppl
2

0

⎤

⎥
⎦

ppl
1 = C11 E

pl
11,1 +C12 E

pl
22,1 +C13 E

pl
33,1 +2C14 E

pl
12,1

+ C41 E
pl
11,2 +C42 E

pl
22,2 +C43 E

pl
33,2 +2C44 E

pl
12,2

ppl
1 = C41 E

pl
11,1 +C42 E

pl
22,1 +C43 E

pl
33,1 +2C44 E

pl
12,1

+ C21 E
pl
11,2 +C22 E

pl
22,2 +C23 E

pl
33,2 +2C24 E

pl
12,2 .

(45)

The vector p∗ depends on the deformation. To maintain
quadratic convergence in the Newton iteration process, the
constant values of the last load increment are used.As already
written above this requires a variation of the load step size to
assess this approximation.

2.3 Linearized weak form of the boundary value
problem

In the following the weak form of the boundary value prob-
lem and associated linearization is derived. For a compact
representation the vector θ and admissible variation δθ are
introduced

θ :=
⎡

⎣
εg(v)

σ

ϑ

⎤

⎦ δθ :=
⎡

⎣
δεg(v, δv)

δσ

δϑ

⎤

⎦

ϑ :=
⎡

⎣
ε

α

λ

⎤

⎦ δϑ :=
⎡

⎣
δε

δα

δλ

⎤

⎦ .

(46)

Furthermore,

ψ :=
⎡

⎣
∂εW − σ

∂αW + D23 λ − q̄
D32 α

⎤

⎦ = 0 (47)

summarizes the constitutive equation, the equilibrium of
higher order stress resultants (39) and the constraint (43).

Hence, the weak form of the boundary value problem can
be written as

g(θ, δθ) =
∫

�

⎡

⎣
δεg
δσ

δϑ

⎤

⎦

T ⎡

⎣
σ

εg − ε

ψ

⎤

⎦ dA + gext = 0 . (48)

The shell is loaded statically by surface loads p+ = p+ N
and p− = p− N acting at the outer surfaces, see Fig. 1 and
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by boundary forces t̄ on the boundary �σ . Hence, the virtual
work of the external forces reads

gext = −
∫

�

(p̄ · δu + m̄ · δd) dA −
∫

�σ

t̄ · δu ds (49)

with surface loads p̄ = p+ + p− and couple loads m̄ =
h+ p+ + h− p−.

With application of integration by parts to the integral of
δεTg σ in Eq. (48) and use of standard arguments of varia-
tional calculus one obtains as Euler–Lagrange equations the
equilibriumof stress resultants and couple resultants, the geo-
metric field equation εg − ε = 0 and ψ = 0 in � along with
the static boundary conditions t = t̄ on �σ .

The associated nonlinear finite element equations are iter-
atively solved using Newton’s method. For this purpose
variational equation (48) is linearized. With A2 = A2(α)

one has to consider Eq. (16). The following matrices are
introduced

∂ψ

∂ϑ
:= D =

⎡

⎣
D11 D12 0
D21 D22 D23

0 D32 0

⎤

⎦ I :=
⎡

⎣
−1
0
0

⎤

⎦

Dαβ =
h+∫

h−
AT

α CT Aβ μ̄ dξ3 αβ ∈ {11, 12, 21}

D22 =
h+∫

h−
(AT

2 CT A2 + S33 �T,3 �,3 ) μ̄ dξ3

(50)

and D23 according to (34). The matrix CT = ∂ES denotes
the algorithmic tangent matrix. The singular matrixD = DT

is of order 29 + K . The integration of the submatrices Di j

is performed by summation over M layers and three point

Gauss integration for each layer. With dξ3 = hi
2 dζ one

obtains

Di j ≈
M∑

i=1

3∑

j=1

Ci j (ζ j ) μ̄
hi

2
Wj , (51)

where Ci j denotes the respective integrand of Di j . Further-
more, ζ j andWj are the normalized thickness coordinate and
weighting factor of the particular Gauss point, respectively.
For the determinant of the shifter tensor the first approxima-
tion μ̄ = 1 is taken. In case of linear elasticityCT is constant
and the numerical integration is exact.

With displacement independent loads p̄, m̄, t̄ and consid-
eration of (50) one obtains the linearized weak form

L[g(θ, δθ),�θ ] = gext+
∫

�

m̄ · �δd dA+
∫

�

�δεTg σ dA

+
∫

�

⎡

⎣
δεg
δσ

δϑ

⎤

⎦

T ⎧
⎨

⎩

⎡

⎣
σ

εg − ε

ψ

⎤

⎦ +
⎡

⎣
0 1 0
1 0 IT

0 I D

⎤

⎦

⎡

⎣
�εg
�σ

�ϑ

⎤

⎦

⎫
⎬

⎭
dA .

(52)

The second variation �δd of the current director vector has
been derived e.g. in Ref. [25].

3 Finite element formulation

The approximation of initial and current geometry of the shell
reference surface applying the isoparametric concept for 4-
node elements is specified in detail in Refs. [25,26]. Bilinear
functions NI (ξ, η) are used, where for the coordinates of the
unit square −1 ≤ {ξ, η} ≤ 1 holds. The local orthonormal
element coordinate system is denoted by [t1, t2, t3] , where
t3 is normal vector of the approximated shell surface at the
element center.With the vectors of nodal coordinatesXi (i =
1...4) it holds

d̄1 = X3 − X1 d̂1 = d̄1/|d̄1|
d̄2 = X2 − X4 d̂2 = d̄2/|d̄2|
t1 = (̂d1 + d̂2)/|̂d1 + d̂2|
t2 = (̂d1 − d̂2)/|̂d1 − d̂2|
t3 = t1 × t2 .

(53)

Hence, the Jacobian matrix J reads

J =
[
J11 J12
J21 J22

]
=

[
Xh
0 ,ξ ·t1 Xh

0 ,ξ ·t2
Xh
0 ,η ·t1 Xh

0 ,η ·t2

]

.

(54)

The superscript h refers to the finite element approximation
of the particular quantity, and commas denote the partial
derivative with respect to ξ or η.

The shape of the quantities δθh is chosen as follows

δθh :=
⎡

⎢
⎣

δεhg

δσ h

δϑh

⎤

⎥
⎦ =

⎡

⎢
⎣

B 0 0

0 Nσ 0

0 0 Nϑ

⎤

⎥
⎦

⎡

⎢
⎣

δv̂

δσ̂

δϑ̂

⎤

⎥
⎦

.

(55)

To avoid shear locking, ansatz functions of the assumed strain
method [27] are incorporated in B, see Ref. [25].
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The matrix Nσ for the interpolation of δσ h = Nσ δσ̂ as
well as σ h is chosen as follows

Nσ =
⎡

⎣
13 0 0 Nm

σ 0 0
0 13 0 0 Nb

σ 0
0 0 12 0 0 Ns

σ

⎤

⎦

Nm
σ = Nb

σ = T0
σ

⎡

⎣
η − η̄ 0
0 ξ − ξ̄

0 0

⎤

⎦

Ns
σ = T̃0

σ

[
η − η̄ 0
0 ξ − ξ̄

]

.

(56)

The coefficient matricesT0
σ , T̃

0
σ describe a transformation of

contravariant tensor components to the constant base system
ti . The matrices and the constants ξ̄ and η̄ are specified in
[25]. The parameter vectors σ̂ and δσ̂ contain 8 parameters
for the constant part and 6 parameters for the varying part
of the stress field. The interpolation of the membrane forces
and bending moments corresponds to the membrane part in
Ref. [28]. The original approach for plane stress problems
was published in Ref. [29]. Regarding requirements on the
interpolation functions to fulfill the patch test and to ensure
stability of the discrete system of equations we refer to the
discussion in Ref. [25].

The interpolation for ϑ and equivalent δϑ is chosen as
follows

⎡

⎣
εh

αh

λh

⎤

⎦ =
⎡

⎣
N1

ε N2
ε 0 0 N3

ε

0 0 0 Nα 0
0 0 N2

λ 0 N3
λ

⎤

⎦

⎡

⎢⎢⎢
⎢⎢
⎣

ε̂

λ̂1

λ̂2

α̂

λ̂3

⎤

⎥⎥⎥
⎥⎥
⎦

ϑh = Nϑ ϑ̂ ,

(57)

where ε̂ ∈ R
8, λ̂1 ∈ R

6, λ̂2 ∈ R
4, λ̂3 ∈ R

l , l = n + 9 and
α̂ ∈ R

K . The submatrices associated with εh read

N1
ε = 18

N2
ε =

⎡

⎣
Nm2

ε 0 0
0 Nb2

ε 0
0 0 Ns2

ε

⎤

⎦

8×6

N3
ε =

⎡

⎢
⎣

j0
j (T0

σ )−T Mm
n 0

0 j0
j (T0

σ )−T Mb

0 0

⎤

⎥
⎦

8×l

(58)

with j0 = j (ξ = 0, η = 0) where j = |Xh
0 ,ξ ×Xh

0 ,η |. The
submatrices of N2

ε read

Nm2
ε = Nb2

ε = T0
ε

⎡

⎣
η − η̄ 0
0 ξ − ξ̄

0 0

⎤

⎦

Ns2
ε = T̃0

ε

[
η − η̄ 0
0 ξ − ξ̄

]

.

(59)

The coefficient matrices T0
ε and T̃0

ε

T0
ε =

⎡

⎢⎢
⎣

J 011 J
0
11 J 021 J

0
21 J 011 J

0
21

J 012 J
0
12 J 022 J

0
22 J 012 J

0
22

2 J 011 J
0
12 2 J 021 J

0
22 J 011 J

0
22 + J 012 J

0
21

⎤

⎥⎥
⎦

T̃0
ε =

[
J 011 J 021

J 012 J 022

]
(60)

cause a transformation of contravariant tensor components to
the constant element base system ti . The entries J 0αβ are the
components of J according to (54) evaluated at the element
center. Detailed investigations on the use of ansatz functions
for contravariant stress and strain components in the frame-
work of a Hu-Washizu functional are contained in Ref. [30].

The interpolation matrixMm
n is chosen as

Mm
n =

⎡

⎣
ξ 0 0 0 ξη 0 0 (ξ2 − c) η 0 η2 ξ 0
0 η 0 0 0 ξη 0 0 (η2 − c) ξ 0 ξ2 η

0 0 ξ η 0 0 ξη 0 0 0 0

⎤

⎦

,

(61)

where the index n ∈ {0, 2, 4, 6, 7, 9, 11} has the meaning
that optionally the first n columns are taken. With n = 0
the matrix is omitted. Due to the factor j0/ j and the con-
stant coefficient matrix T0

ε the integrals of the functions
(ξ, η, ξ η, ξ2 η, η2 ξ) inN2

ε over the element domain�e van-
ish.

The shape factor c considers the deviation of the element
geometry from a square and warping of the particular ele-
ment. For this purpose the metric coefficients Gαβ of the
initial reference surface are evaluated at the element center

G0 =
[
G11 G12

G21 G22

]

G11 = X0,ξ ·X0,ξ G12 = X0,ξ ·X0,η
G22 = X0,η ·X0,η G21 = G12 .

(62)

A principal axis analysis leads to

Ĝ0 =
[

λ2min 0
0 λ2max

]

λ2max,min = 1
2 (G11 + G22) ±

√
1
4 (G11 − G22)2 + G2

12

(63)

with λ2min > 0, as G0 is positive definite.
Introducing x̂ = [x̂, ŷ]T one obtains for the quadratic

form x̂T Ĝ0 x̂ := r2 = x̂2 λ2min + ŷ2 λ2max and thus the equa-
tion of an ellipse

x̂2

a2
+ ŷ2

b2
= 1 with a = r

λmin
b = r

λmax
. (64)
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(a)

(b)

Fig. 2 a Inscribed ellipse in a distorted element (flat projection �h
0), b

element warping

Here, a and b (a ≥ b) denote the semiaxes of the ellipse
which can be inscribed in the flat projection�h

0 of a distorted
element, see Fig. 2a. Furthermore, the element warping d
according to Fig. 2b is computed. One obtains

d = |Xd · t3|
Xd := X0,ξη = 1

4 (X1 − X2 + X3 − X4)
(65)

with the position vectorsXi of the four nodes and the normal
vector t3. Hence, c is defined as

c =
√(a

b

)2 +
(d
h

)2
with

a

b
= λmax

λmin
(66)

as well as d and the shell thickness h. The part a/b considers
the in-plane distortion and d/h the out-of-plane distortion of
the particular element. For a flat square element holds c = 1.
The impact of c on the element convergence behaviour is
demonstrated by means of the numerical examples.

The matrix Mb, associated with the curvatures, reads

Mb =
⎡

⎣
ξ 0 0 0 ξ η 0 0 ξ2 η 0
0 η 0 0 0 ξη 0 0 η2 ξ

0 0 ξ η 0 0 ξη 0 0

⎤

⎦

3×9 .

(67)

With Nα = 1K the vector αh is constant within each
element. Considering Eq. (57) the interpolation for λh =

[λh
ε1,λ

h
κ1,λ

h
κ2]T is performedwithλh = N2

λ λ̂2+N3
λ λ̂3 using

the matrices

N2
λ =

⎡

⎢
⎣

N21
λ 0

0 N21
λ

0 0

⎤

⎥
⎦

21×4

N3
λ =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

N311
λ 0

N312
λ 0

0 N321
λ

0 N322
λ

0 N323
λ

0 N324
λ

0 N325
λ

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

21×l

(68)

where

N21
λ =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

1 0
1 0
0 1
0 1
0 1
1 0

⎤

⎥⎥⎥⎥⎥
⎥
⎦

N311
λ = T0

ε

⎡

⎣
1 0 0 0 η 0 0 2 ξ η 0 η2 0
0 0 0 0 0 η 0 0 η2 − c 0 2 ξ η

0 0 1 0 0 0 η 0 0 0 0

⎤

⎦ 2

�

N312
λ = T0

ε

⎡

⎣
0 0 0 0 ξ 0 0 ξ2 − c 0 2 ξ η 0
0 1 0 0 0 ξ 0 0 2 ξ η 0 ξ2

0 0 0 1 0 0 ξ 0 0 0 0

⎤

⎦ 2

�

N321
λ = T0

ε

⎡

⎣
1 0 0 0 η 0 0 2 ξ η 0
0 0 0 0 0 η 0 0 η2

0 0 1 0 0 0 η 0 0

⎤

⎦ 2

�

N322
λ = T0

ε

⎡

⎣
0 0 0 0 ξ 0 0 ξ2 0
0 1 0 0 0 ξ 0 0 2 ξ η

0 0 0 1 0 0 ξ 0 0

⎤

⎦ 2

�

N323
λ = T0

ε

⎡

⎣
0 0 0 0 0 0 0 2 η 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤

⎦ 2

�

N324
λ = T0

ε

⎡

⎣
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 ξ

0 0 0 0 0 0 0 0 0

⎤

⎦ 2

�

N325
λ = T0

ε

⎡

⎣
0 0 0 0 1 0 0 2 ξ 0
0 0 0 0 0 1 0 0 2 η

0 0 0 0 0 0 1 0 0

⎤

⎦ 2

� .

(69)

Concerning the predefinition � = 100 h we refer to the inves-
tigations in Ref. [20].

The FE approximation of the external virtual work of p̄, m̄
and t̄ leads to

gehext = −
numel∑

e=1

δv̂T fa . (70)
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Here, numel denotes the total number of finite shell elements
to discretize the problem and fa corresponds to the element
load vector of a standard displacement formulation. Further-
more, it holds

∫

�

m̄ ·�δd dA+
∫

�

�δεhTg σ h dA =
numel∑

e=1

δv̂TKg�v̂ , (71)

where for the special case m̄ · �δd = 0 the matrix Kg is
specified in detail in Ref. [25]. For the general case the term
m̄ · �δd 
= 0 leads to a symmetric contribution in Kg . The
second variation of d has been derived in e.g. Ref. [25] such
that the consideration of the load term is standard.

Hence, inserting eq. (55) and the corresponding equation
for �θh into the linearized variational equation (52) yields

L [g(θh, δθh),�θh] =
numel∑

e=1⎡

⎣
δv̂
δσ̂

δϑ̂

⎤

⎦

T ⎧
⎨

⎩

⎡

⎣
f i − fa

fs

fe

⎤

⎦ +
⎡

⎣
Kg GT 0
G 0 LT

0 L H

⎤

⎦

⎡

⎣
�v̂
�σ̂

�ϑ̂

⎤

⎦

⎫
⎬

⎭

(72)

with

f i =
∫

�e

BT σ h dA L =
∫

�e

NT
ϑ I Nσ dA

fs =
∫

�e

NT
σ εhg dA + LT ε̂ G =

∫

�e

NT
σ B dA

fe =
∫

�e

NT
ϑ ψ̂

h
dA + L σ̂ H =

∫

�e

NT
ϑ DNϑ dA .

(73)

The vector ψ̂ corresponds to ψ according to (47) without
vector σ . The integrals in (73) are computed numerically
applying a 3×3Gauss integration scheme considering dA =
|Xh

0 ,ξ ×Xh
0 ,η | dξ dη. It is important to note, that although D

is singular,H is regular. The matrix L is expressed with (57)

L = −
∫

�e

⎡

⎢⎢⎢⎢
⎢⎢
⎣

N1T
ε

N2T
ε

0

0

N3T
ε

⎤

⎥⎥⎥⎥
⎥⎥
⎦

Nσ dA =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

L1

L2

0

0

L3

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.

(74)

The columns with quadratic shape functions in N3
ε are not

orthogonal to columns 9–12 of Nσ and thus lead to entries
in L3. They are consistently omitted when setting L3 = 0 in
L, fe and fs .

We continue with L[g(θh, δθh),�θh] = 0 , where
δθh 
= 0 and obtain for each element

⎡

⎣
Kg GT 0
G 0 LT

0 L H

⎤

⎦

⎡

⎣
�v̂
�σ̂

�ϑ̂

⎤

⎦ +
⎡

⎣
f i − fa

fs

fe

⎤

⎦ =
⎡

⎣
r
0
0

⎤

⎦ (75)

where r denotes the vector of element nodal forces. Since
σ and ϑ are interpolated discontinuously across the element
boundaries the parameters �σ̂ and �ϑ̂ can be eliminated
from the set of equations. This is done applying a standard
Gaussian elimination procedure [31] to the system of equa-
tions (75).

One obtains the tangential element stiffness matrix keT ,
the element residual vector f̂e and (72) reduces to

L [g(θh, δθh),�θh] =
numel∑

e=1

δv̂T (keT �v̂ + f̂e) . (76)

The element possesses 5 or 6 degrees of freedom (dofs) at the
nodes. At nodes on intersections 6 dofs (3 global displace-
ments and 3 global rotations) and at the remaining nodes
5 dofs (3 global displacements and 2 local rotations) are
present. For the back substitution of �σ̂ and �ϑ̂ the corre-
sponding matrices have to be stored or to be recalculated.
Present element formulation has been implemented in an
extended version of the general finite element programFEAP
[32]. The linear element stiffness matrix possesses with six
zero eigenvalues the correct rank. Furthermore, the mem-
brane and bending patch tests, suggested in [33], are fulfilled.

Remark: The derivatives of the plastic strains E pl
i j in Eq.

(45) with respect to the coordinates ξα are computed as fol-
lows

[
E pl
i j ,1

E pl
i j ,2

]

= J−1
0

[
E pl
i j ,ξ

E pl
i j ,η

]

,

(77)

where J0 denotes the Jacobian matrix (54) evaluated at the
element center. The derivatives of E pl

i j (ξ, η) with respect to
ξ and η are approximated using a central difference scheme

E pl
i j ,ξ ≈ E pl

i j (�ξ, 0) − E pl
i j (−�ξ, 0)

2�ξ

E pl
i j ,η ≈ E pl

i j (0,�η) − E pl
i j (0,−�η)

2�η

(78)

and thus are elementwise constant. Here, �ξ = �η = √
0.6

are the coordinates of the applied 3 × 3 Gauss integration
scheme.

Remark: The derivatives of the deformation gradient in
(23) with respect to the coordinates ξα require the computa-
tion of second derivatives of the displacements. Thus, at least
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Table 1 Notation of the different element formulations

Element formulation Notation

Present shell element 2D

Solid shell element [18] 3D

Shell element [34] RM

Shell element [35] MITC4+

Shell element [36] +HW

bi-quadratic shape functions for the displacements have to
be used. This means that for 4-node elements with bi-linear
shape functions the derivatives Fi j ,α cannot be obtained in a
standard way. However, numerical investigations show that
for small strain problems Ri j ,α provides a good approxima-
tion for the required quantities. Here, Ri j denote components
of a rotation tensor R. For small strain problems the polar
decomposition of the deformation gradient F = RU leads
with |U| ≈ 1 to F ≈ R. Hence, for R the rotation tensor
which transforms the initial normal vector N via d = RN
can be used. For quadrilateral shell elements R is interpo-
lated with bi-linear functions NI and nodal rotations RI ,
thus the required first derivatives of Ri j are computable. It
is well-known, that for shells undergoing moderate or even
finite rotations the strains still may be small, if the structure
is sufficiently thin.

4 Examples

The displacements and stresses obtained with present 4-node
shell element are compared with 3D reference solutions. For
this purpose we use the 8-noded solid shell element [18]
with a sufficient number of elements in thickness direction
of the plate or shell. We add results computed with shell
element [34]. It is based on standard Reissner–Mindlin kine-
matic assumptions along with thickness strains which have a
constant and linear shape through the thickness. This leads to
an interface for three-dimensional constitutive laws. The ele-
ment was designed for homogeneous shell structures. With
application to layered shells it leads to restraints especially
for the thickness normal stresses. Furthermore, we compare
with literature results. These were obtained with the 4-node
shells elements [35] and [36]. The used notation of the dif-
ferent element formulations is summarized in Table 1.

4.1 Comparison of relative computing times

A simply supported square plate subjected to a constant load
is considered. The length and thickness of the plate are L =
1000 mm and h = 20 mm, respectively. We consider sym-
metric angle ply laminates [45◦/−45◦/ . . . /45◦/−45◦/45◦]
with M = 5, 10 and 20 layers of equal thickness as well as 8

Table 2 Comparison of relative computing times

Mesh M=5 M=10 M=20
2D 3D 2D 3D 2D 3D

20×20 1 2 1 2 1 2

40×40 1 6 1 7 1 7

60×60 1 9 1 15 1 19

80×80 1 13 1 28 1 37

100×100 1 17 1 45 1 –

120×120 1 21 1 – 1 –

140×140 1 27 1 – 1 –

160×160 1 32 1 – 1 –

different meshes. Assuming transversal isotropy the material
parameters for carbon fiber reinforced polymers (CFRP) are
chosen as follows

E1 = 125000 N/mm2 G12 = 4800 N/mm2

E2 = 7400 N/mm2 G23 = 2700 N/mm2

ν12 = 0.34 .

(79)

In Table 2 relative computing times (stiffness computation
and solution of the system of equations) using present 2D
shell element and the 3D solid shell element are displayed.
The 3D meshes are generated with 4 elements in thickness
direction of each layer. This is necessary to map the compli-
cated shape of the stresses through the thickness, see [37].
A fast direct parallel solver is used along with a Windows
PC (1 Intel i9-7900X CPU, 10 cores, 3.3 GHz). In each row
of the table the 3D times are normalized with respect to the
2D times. The 3D times for the finest meshes are not com-
putable with the used hardware. This shows that fully 3D
computations are costly, which restricts the applicability to
small problems.

4.2 Element convergence behaviour

4.2.1 Hemispherical shell

The first problem is the hemispherical shell with an 18◦
cutout subjected to alternating radial point loads P at its
equator, shown in Fig. 3a. This geometrically non-linear
example is often cited as a benchmark problem for shell ele-
ments. It is a test for the ability to model rigid body modes
and inextensible bending, [33]. Geometrical and material
data are R = 10, ϕ = 18◦, thickness h = 0.04 and
E = 6.825 · 107, ν = 0.3. Considering symmetry one quar-
ter of the structure corresponding to the region ABCD in Fig.
3a is discretized using regular and distortedmeshes.Here, the
principal mesh distortion is described in Fig. 3b for a 4 × 4
mesh. Each edge is discretized using the aspect ratios L1:
L2: L3: ... : LN = 1 : 2 : 3 : ... : N , where N denotes the
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(a)

(b) (c)

Fig. 3 Hemispherical shell: a 12 × 12 regular mesh, b principal mesh
distortion for a 4 × 4 mesh, c 12 × 12 distorted mesh

number of elements per direction. A 12× 12 distorted mesh
is illustrated in Fig. 3c. We employ the boundary conditions
uy = β = 0 onAD, ux = β = 0 onBC and uz = 0 at a point
on AB, e.g. at A. Fig. 4 shows load displacement curves for
the regular and distorted mesh 8× 8. The defined converged
solution is computed with a 128 × 128 mesh. Results are
only presented for P − ux A; similar output can be obtained
for P − uyB . For comparison we add results from Ref. [35]
using the MITC4+ element.

The convergence behaviour of the displacement ux A at
P = 400 versus the number of elements N is depicted in
Fig. 5 for both meshes. It is obvious that n = 11 leads to
a significant improvement of the element behaviour. The
results for n = 9 are close to those for n = 11. In this
context we compare the effort to setup the tangential stiffness
matrix for different parameters n. The computing time T is
normalized to T = 1 for the casen = 0.The comparisonwith
the further parameters leads to T = 1.21 for n = 7, T = 1.28
for n=9 and T = 1.32 for n = 11. The numbers prove that
the effort especially for the last two cases is comparable.
Within the following examples the parameter n = 9 is not
considered. Finally a plot of the shape factor c according to
Eq. (66) is shown for a regular and distorted 16 × 16 mesh
in Fig. 6.

4.2.2 Twisted beam

The twisted beam problem according to Fig. 7 was originally
introduced in [33]. Geometrical and material data are L =
12, b = 1.1, thickness h = 0.0032 and E = 29 · 106, ν =
0.22, respectively. The cantilever beam is clamped at one

Fig. 4 Hemispherical shell: P −ux A for the regular (top) and distorted
(bottom) 8 × 8 mesh

end and is loaded by an out-of-plane acting load P at point
A. A regular and a distorted 4 × 24 mesh is chosen for the
solution. The distortedmesh is depicted inFig. 8.Here, a ratio
Lmax/Lmin = 2 is chosen, where Lmax and Lmin denote the
longest and shortest element length in the flat projection,
respectively.

Figure 9 depicts load deflection curves for the regular
mesh and the distorted mesh using different parameters n .
Available results using the MITC4+ element [35] are added.
The converged solution is obtained employing a 32×192 reg-
ular mesh. Again, the quadratic terms in Eq. (61) (n = 11)
are necessary to produce accurate results.

For the distorted mesh the convergence behaviour of the
final displacements uyA and −uzA versus the number of ele-
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Fig. 5 Hemispherical shell: ux A − N for regular (top) and distorted
(bottom) meshes

ments N in width direction is presented in Figs. 10 and 11,
respectively. Again, n = 11 leads to a significant improve-
ment of the element behaviour. This is only obtained with
the shape factor c according to Eq. (66), as the comparison
with the curves n = 11 (c = 0) shows.

4.2.3 Hook problem

Next, we consider the hook problem shown in Fig. 12,
referred to in linear analysis as the Raasch challenge, [38].
For the FE-discretization we use N × 2 N × 3 N elements
with N elements in width direction, 2 N elements for the first
arch (radius R1) and 3 N elements for the second arch (radius
R2), see Fig. 12.

Geometrical and material data are R1 = 14, ϕ1 =
60◦, R2 = 46, ϕ2 = 150◦, b = 20, thickness h = 0.02
and E = 3.3 · 103, ν = 0.3, respectively. The structure is
fully clamped at one end and is loaded by a shear load P

Fig. 6 Hemispherical shell: distribution of shape factor c for the regular
(top) and distorted (bottom) 16 × 16 mesh

Fig. 7 Twisted beam: problem and 4 × 24 regular mesh

applied as a uniformly distributed traction at the free end.
For the solution, we use a regular and a distorted 4 × 8× 12
mesh. The principal distorted mesh is shown in Fig. 13 with
respect to a flat projection together with a perspective view
of the structure. Following [36], Lmax/Lmin = 1.5 is chosen
for the first arch and Lmax/Lmin = 2.0 for the second arch.
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(a) (b)

Fig. 8 Twisted beam: distorted 4 × 24 mesh, a perspective view, b
perspective view of the flat projection

Fig. 9 Twisted beam: P − uyA for the regular (top) and the distorted
(bottom) 4 × 24 mesh

Figure 14 shows the resulting load-displacement curves
P − uzA of point A . The displacements using the MITC4+
element [35] are included. Similar results can be found for
the +HW element (see Fig. 12b, 13b of [36]). The defined
converged solutions are obtainedwith a 32× 64× 96 regular
mesh.

Fig. 10 Twisted beam: uyA − N for the distorted mesh

Fig. 11 Twisted beam: −uzA − N for the distorted mesh

Fig. 12 Hook problem: geometry and a 4 × 8 × 12 regular mesh

Figure 15 shows the convergence behaviour of the final
displacementuzA of pointAversus the number of elements N
in width direction. Results for the elementsMITC4,MITC4+
and +HW are taken from Fig. 12a and 13a in [36]. The supe-
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Fig. 13 Hook problem: distorted mesh and flat projection for a 4 × 8
× 12 mesh

Fig. 14 Hook problem: P − uzA for the regular (top) and distorted
(bottom) 4 × 8 × 12 mesh

Fig. 15 Hook problem: convergence behaviour uzA − N for regular
(top) and distorted (bottom) meshes

rior behaviour of present element (n = 11) for N ≥ 8 is
demonstrated.

4.3 Inelasticity, layered shells and intersections

4.3.1 Elasto-plastic analysis of a square plate

A simply supported square plate (soft support) subjected to a
constant load is considered. The length and thickness of the
plate are L = 200 cm and h = 4 cm, respectively. The origin
of the (x, y, z)− coordinate system is chosen at the center of
the plate. The material parameters are the elastic constants E
and ν aswell as yield stress y0 and linear hardening parameter
ξ for J2-plasticity. They are chosen as follows

E = 21000 kN/cm2

ν = 0.3
y0 = 36 kN/cm2

ξ = 420 kN/cm2 .

(80)
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Fig. 16 Elasto-plastic square plate: λ − w

The plate is loaded by a constant load λ p̄ with p̄ = 1 N/cm2

which is applied one half each via the lower and upper sur-
face. With respect to symmetry one quarter of the plate is
discretized with a mesh of 20×20 quadrilateral elements.
Present element and the Reissner–Mindlin shell element [34]
are used with N = 5 layers of equal thickness. For the 3D
reference solution of the stresses themesh has to be refined to
obtain sufficient accurate results. We choose a 40× 40× 20
mesh. Besides the symmetry conditions the boundary condi-
tions are uz = 0 at (L/2, y, z) and (x, L/2, z).

Geometrical linear andmaterial nonlinear calculations are
performed. Load deflection curves for the center displace-
ment w = −uz(0, 0) are shown in Fig. 16. Both shell results
agree with the 3D reference solution. The yield line theory,
which assumes elasto-plasticity without hardening, predicts
a bearing load p̄ylt = 6 · y0 · (h/L)2 which leads to a load
factor λ̄ = 86.4.

For the maximum load the normal stresses Sxx and Szz are
evaluated near the plate center at the coordinates (xp1, yp) =
(2.5, 2.5) cm and are plotted as function of the thickness
coordinate in Figs. 17 and 18. The transverse shear stresses,
evaluated at the coordinates (xp2, yp) = (22.5, 2.5) cm,
are shown in Fig. 19 . The diagrams show, that there is
good agreement of present model with the reference solu-
tion. In Figs. 20, 21 and 22 the Reissner–Mindlin solutions
are shown. The stresses are computed in the elastic range
(λ = 50) and in the plastic range (λ = 100). Only in the
elastic range there is agreement of the in-plane stress Sxx
with the reference solution. For elasto-plasticity the stresses
fulfill the yield condition but not the equilibrium equations
in terms of stresses. This holds for all components. The inte-
grals of the stresses lead to correct stress resultants and thus
to correct load deflection curves for sufficient fine meshes.

Fig. 17 Elasto-plastic square plate: Sxx (xp1, yp, z)

Fig. 18 Elasto-plastic square plate: Szz(xp1, yp, z)

Fig. 19 Elasto-plastic square plate: Sxz(xp2, yp, z)
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Fig. 20 Elasto-plastic square plate: Sxx (xp1, yp, z) for λ = 50 (top)
and λ = 100 (bottom)

4.3.2 Elasto-plastic analysis of a sandwich plate

The next example is a square sandwich plate with a layup
according to Fig. 23. The origin of the (x, y, z)-coordinate
system lies in the center of the plate. The thickness of the
core is tc and the thickness of one face layer is t f . All edges
are simply supported (soft support). A constant load λ p̄ with
p̄ = 10−3 N/mm2 is applied at the upper surface. The mate-
rial properties for isotropy are Ec, νc for the elastic core and
E f , ν f for the elasto-plastic face layers with yield stress y0
and linear hardening parameter ξ for a J2-plasticity model.
One quarter is discretized with a mesh of N × N elements
considering symmetry. Two layers are used for the core and
one for each face layer. For the 3D solution 6 elements are
used in thickness direction of the core and one element for
each face layer. All data are summarized as follows.

Fig. 21 Elasto-plastic square plate: Szz(xp1, yp, z) for λ = 50 (top)
and λ = 100 (bottom)

Geometrical data Material data
L = 2000 mm Ec = 70 N/mm2

tc = 30 mm νc = 0.3
t f = 0.5 mm E f = 70000 N/mm2

ν f = 0.3
y0 = 100 N/mm2

ξ = 1000 N/mm2

(81)

The geometrical and material nonlinear computations are
carried out load controlled with mesh parameter N =
40. The displacements w are computed for load factors
λ = 1, 2, ..., 12 and subsequently for unloading with λ =
12, 11, ..., 0, see Fig. 24. The Reissner–Mindlin solution
without shear correction (k = 1) is to stiff in the elastic range.
With shear correction factor k = 0.03, computed with ele-
ment formulation [37], there is good agreement in the elastic
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Fig. 22 Elasto-plastic square plate: Sxz(xp2, yp, z) for λ = 50 (top)
and λ = 100 (bottom)

Fig. 23 Sandwich plate: cross section (not to scale)

range. For inelasticity the factor is applied to the algorithmic
tangent matrix. This leads in the inelastic range to a response
which is to soft.

The stresses are evaluated for load factor λ = 12. To
obtain sufficient accurate results especially for the thickness
normal stresses the 3D mesh is refined with N = 80. The
normal stresses Sxx and Szz are computed near the plate cen-
ter at xp1 = yp = L/80. They are plotted as function of z in
Figs. 25 and 26, respectively. The transverse shear stresses
are computed at xp2 = 61/80 · L, yp = L/80 and are shown
in Fig. 27. In all diagrams there is good agreement between
present 2D and the 3D results. This holds for the displace-

Fig. 24 Sandwich plate: λ − w

Fig. 25 Sandwich plate: Sxx (xp1, yp, z)

ments and the computed stresses. The Reissner–Mindlin
results for the stresses are not included in the diagrams. As
already shown with the previous example only for the in-
plane stresses and elasticity one obtains usable results. Here,
even the load deflection behaviour is not correct in the inelas-
tic range.

4.3.3 Clamped plate with angle ply laminate

A clamped plate according to Fig. 28 is considered. The
clamping is applied at x = y = 0, whereas the other
edges are free. The geometrical data are L = 1000 mm
and h = 20 mm. The constant loading p̄ = 0.25 N/mm2

is applied at the upper surface. The plate consists of an eight
layer angle ply laminate with a [45◦/ − 45◦/45◦/ − 45◦]s
stacking sequence. The material data for CFRP-layers (79)
are taken. The discretization is performed with a mesh of
24 × 24 elements. To obtain a sufficient accurate reference
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Fig. 26 Sandwich plate: Szz(xp1, yp, z)

Fig. 27 Sandwich plate: Sxz(xp2, yp, z)

Fig. 28 Clamped plate with angle ply laminate

solution for the interlaminar stresses the 3D mesh has to be
refined. We choose a 72 × 72 × 16 mesh of solid shell ele-
ments.

The geometrical nonlinear computation is performed
applying the load in one single step. The maximum displace-
ment computed with the different models amounts to uz =
−145.7 mm. The stresses Sxx , Szz, Sxz and Syz are evaluated
at the coordinates xp = 13/48 · L, yp = 5/48 · L . They are
plotted as function of the thickness coordinate z in Figs. 29,

Fig. 29 Clamped plate: Sxx (xp, yp, z)

Fig. 30 Clamped plate: Szz(xp, yp, z)

30, 31, and 32. The transverse shear stress Syz according to
Fig. 32 shows a very complicate shape. Even the sign of the
stresses changes several times. There is a good agreement of
present 2D solution with the 3D reference stresses. For com-
parison we add the results based on the Reissner–Mindlin
theory. As already written in the previous examples only
the in-plane stresses agree with the reference solution. The
interlaminar stresses deviate considerable form the reference
solution. The integrals through the thickness lead to correct
stress resultants within the chosen mesh density. Finally, the
deformed configuration is depicted in Fig. 33.

4.3.4 Stiffened cylindrical shell

As last example the stiffened cylindrical shell according to
Fig. 34 is investigated. The figure shows a cross-section of the
shell and a coarse finite element mesh of half the structure
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Fig. 31 Clamped plate: Sxz(xp, yp, z)

Fig. 32 Clamped plate: Syz(xp, yp, z)

Fig. 33 Clamped plate: displacements −uz in [mm]

accounting for symmetry conditions. Radius and length of
the cylinder are R = 1000mm, L = 2000mm and the shell
thickness is h = 10mm. The shell is free at x2 = x3 = 0
and clamped at x2 = L . A concentrated force F acts at the
coordinates (x1, x2, x3) = (0, 0, R). The skin of the struc-

Fig. 34 Stiffened cylindrical shell and finite element mesh

ture consists of a [0
◦
/90

◦
/0

◦
] lay-up, where 0

◦
refers to the

tangential direction and 90
◦
to the length direction of the

cylinder. The stiffeners with measurements d = 50mm and
h = 10mm are arranged in radial direction. In the symmetry
axis a thickness 2 h is present. The stiffeners are homo-
geneous and the fibre direction coincides with the length
direction. The material data for CFRP-layers (79) are taken.
The mesh density is denoted by l ×m × n, where in Fig. 34
l = 12 is the number of elements in circumferential direction,
m = 8 the number in length direction and n = 2 the number
of elements for a stiffener in radial direction. The laminate of
the skin is modeled with 6 numerical layers, whereas 3 layers
are used for the homogeneous stiffeners. A mesh density of
l × m × n = 48 × 32 × 4 elements is chosen.
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Fig. 35 Stiffened cylindrical shell: F − w

Fig. 36 Stiffened cylindrical shell: S11(ξ1p, ξ
2
p, z)

Comparative results are computedwith a 3Ddiscretization
of the skin. In thickness direction of the skin each physi-
cal layer is discretized with 2 elements. To obtain sufficient
accurate results for the thickness normal stresses an in-plane
refined mesh with l ×m × n = 144× 96× 4 is used. For the
discretization of the stiffeners present shell element is used.

The geometrical nonlinear computations are performed
with displacement control and a step size �w = 20 mm. In
Fig. 35 load F is plotted versus the prescribed displacement
w.

For two deformed configurations w = 200 mm and w =
400 mm the stresses S11, S33 and S13 at a point P of the
reference surface with coordinates ξ1p = (13/96 · π/2) · R,
ξ2p = x2p = 7/64 · L are displayed in Figs. 36, 37 and
38 in dependence of z = ξ3. In all diagrams there is good
agreement of present element with the reference solution.

For comparison results of the Reissner–Mindlin model
are added. Again, one obtains good results for the in-plane
stress S11, whereas this is not the case for S33 and S13. Figure

Fig. 37 Stiffened cylindrical shell: S33(ξ1p, ξ
2
p, z)

Fig. 38 Stiffened cylindrical shell: S13(ξ1p, ξ
2
p, z)

Fig. 39 Stiffened cylindrical shell: final deformed configuration com-
puted with a 24 × 16 × 2 mesh

39 shows the final deformed configuration computed with
present element formulation.
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5 Conclusions

An advanced 2D shell model for layered shell structures is
presented. With the developed finite element formulation the
load deflection behaviour of geometrical and material non-
linear shell problems and the complicated three-dimensional
stress state in layered shells can be computed. The matrices
Ã2 and A2 (Eqs. (12) and (14) ) are evaluated with the dis-
placements of the last converged load step. This also holds
for D23 and p∗ (Eqs. (34)2 and (45) ). All computed exam-
ples show by a variation of the load step size that no visible
differences in the load deflection curves occur, which means
that the applied approximation is admissible.

The proposed ansatz for the independent shell strains
with quadratic functions leads to a significant improved con-
vergence behaviour especially when meshes with distorted
elements are used. The computed displacements and stresses
are in good agreement with the results of 3D comparative
models. For structures with many layers present 2D shell
model requires only a fractional amount of the computing
time in comparison with fully 3D discretizations.

The numerical examples furthermore show, that shell ele-
ments based on the Reissner–Mindlin theory are able to
predict the correct shape of the in-plane stresses only for
the case of elasticity. For elasto-plasticity the stresses fulfill
the yield condition but not the equilibrium equations in terms
of stresses. This holds for all components. As the weak form
of equilibrium in terms of stress resultants is basis of the
finite element formulation, the integrals of the stresses lead
to correct stress resultants and thus to correct load deflection
curves for sufficient fine meshes. For sandwich plates and
shells the load deflection behaviour can only be predicted
with a shear correction factor in the elastic range.
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