
Structure Exploitation
in Mixed-Integer Optimization

with Applications to Energy Systems

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der KIT-Fakultät für Informatik,
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. Alexander Murray
geb. in Montreal, Canada

Tag der mündlichen Prüfung: 23.10.2020

Hauptreferent: Prof. Dr.-Ing. Veit Hagenmeyer
Korreferent: Prof. Dr.-Ing. Timm Faulwasser





Abstract

The goal of this thesis is to develop new numerical methods for mixed-integer
optimization problems and achieve improved speed and scalability. This is
done by exploiting common problem structures, such as separability or turn-
pike behaviour. Methods capable of exploiting these structures have already
been developed in the realms of distributed optimization and optimal control,
however they are not directly applicable to the mixed-integer case. To be able
to make use of distributed computing resources to solve mixed-integer prob-
lems, new methods are required. To this end, several extensions of existing
methods as well as novel techniques for mixed-integer optimization are pre-
sented. Benchmark problems drawn from power and energy systems are used
to demonstrate that the presented methods can lead to faster runtimes and can
allow for solution to large problems that are otherwise impossible to solve in a
centralized manner. The novelties presented in this thesis are as follows:

• Extension of the Augmented Lagrangian Alternating Direction Inexact
Newton distributed optimization algorithm applicable to mixed-integer
optimization.

• A new partially distributed mixed-integer optimization algorithm based
on outer approximation.

• Anew distributedmixed-integer optimization algorithm based on branch
and bound.

• A first investigation into turnpike properties in mixed-integer optimal
control and a specialized algorithm for solving this class of problems.

• A new branch and bound heuristic that more efficiently exploits a priori
problem information than current warm-starting techniques.

Finally, it is shown that the results of the presented distributed mixed-integer
optimization algorithms can heavily depend on how a given problem is parti-
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Abstract

tioned. To this effect, an investigation into partitioning methods for distributed
optimization is also given.

ii



Zusammenfassung

Das Ziel dieser Arbeit ist neue numerischeMethoden für gemischt-ganzzahlige
Optimierungsprobleme zu entwickeln um eine verbesserte Geschwindigkeit
und Skalierbarkeit zu erreichen. Dies erfolgt durch Ausnutzung gängiger
Problemstrukturen wie separierbarkeit oder Turnpike-eigenschaften. Metho-
den, die diese Strukturen ausnutzen können, wurden bereits im Bereich der
verteilten Optimierung und optimalen Steuerung entwickelt, sie sind jedoch
nicht direkt auf gemischt-ganztägige Probleme anwendbar.

Um verteilte Rechenressourcen zur Lösung von gemischt-ganzzahligen Prob-
lemen nutzen zu können, sind neue Methoden erforderlich. Zu diesem Zweck
werden verschiedene Erweiterungen bestehender Methoden sowie neuartige
Techniken zur gemischt-ganzzahligen Optimierung vorgestellt.

Benchmark-Probleme aus Strom- und Energiesystemen werden verwendet, um
zu demonstrieren, dass die vorgestellten Methoden zu schnelleren Laufzeiten
führen und die Lösung großer Probleme ermöglichen, die sonst nicht zentral
gelöst werden können. Die vorliegende Arbeit enthält die folgenden Beiträge:

• Eine Erweiterung des Augmented Lagrangian Alternating Direction In-
exact Newton-Algorithmus zur verteilten Optimierung für gemischt-
ganzzahlige Probleme.

• Ein neuer, teilweise-verteilterOptimierungsalgorithmus für die gemischt-
ganzzahlige Optimierung basierend auf äußeren Approximationsver-
fahren.

• Ein neuerOptimierungsalgorithmus für die verteilte gemischt-ganzzahlige
Optimierung, der auf branch-and-bound Verfahren basiert.

• Eine erste Untersuchung von Turnpike-Eigenschaften bei Optimals-
teuerungsproblemenmit gemischten-GanzzahligenEntscheidungsgrößen
und ein spezieller Algorithmus zur Lösung dieser Probleme.
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Zusammenfassung

• Eine neue Branch-and-Bound Heuristik, die a priori Probleminforma-
tionen effizienter nutzt als aktuelle Warmstarttechniken.

Schließlichwird gezeigt, dass die Ergebnisse der vorgestelltenOptimierungsal-
gorithmen für verteilte gemischt-ganzzahlige Optimierung stark Partition-
ierungsabhängig sind. Zu diesem Zweck wird auch eine Untersuchung von
Partitionierungsmethoden für die verteilte Optimierung vorgestellt.
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1 Introduction

1.1 Motivation

All around us, and at every moment, optimization is taking place. Every living
thing must make choices and decide how to behave in any given situation. Our
perception of reality forms a kind ofmodel, completewith both consciously and
unconsciously constructed constraints. To fulfil whatever objectives we may
have, we behave according to how ourmodel predicts success. If an unexpected
outcome occurs, then the model is adjusted and life goes on. Mathematical
modelling and optimization follows a similar process, albeit in a more precise
and rigorous way.

The process of mathematical modelling begins with some phenomenon to be
understood. The purpose may be to predict the outcome of a chemical reaction,
how many people to interview before hiring, or the most cost-effective way of
running a power grid. Once the scope of the phenomenon has been determined,
the governing dynamics must be identified. These may be something physical,
such as Kirchoff’s laws, or a quantization of a qualitative value, such as the
suitability of a job applicant. In any case, the key here is to describe some aspect
of reality as accurately as possible using mathematics. Once the variables, and
the relationships between variables, have been established, then the model
can be used to make predictions on the outcome of given decisions. Such
predictions often come in the form of achieving some set objectives, along with
some constraints on how those objectives may be achieved. Carrying on with
the previously used examples, this may be the minimization of generator costs,
or to hire the best applicant within a certain time window. Regardless of what
is chosen, the end result is an optimization problem. If the model is too large
or too detailed, then the resulting optimization problem may be intractable.
Indeed, we could never act if we were always conscious of every molecule or
bacterium in our surroundings. Rather, we require an approximation. Such
approximations and reformulations are sometimes required in modelling as
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1 Introduction

well, but when constructing a model it is important not to lose too much
accuracy and become too detached from reality. In some cases, the phenomena
to be modelled are so structurally complex that it becomes too difficult—
or outright impossible—to create something simpler and still preserve the
necessary structure. In these cases, improved methods for optimization are
required which can handle this complexity and return a solution. With such
solutions, we may better understand and react to the world around us.

Numerical algorithms can be traced back centuries to the ancient Greeks
and Egyptians who sought solutions to algebraic and geometric problems
[Cla99a, Hor72]. In the 17th century, the well known “Newton’s method”
became an early iterative optimization algorithm from which countless other
algorithms have been based [Wal85,Gau09,NW06]. With the advent ofmodern
computing, there has been a massive increase in algorithmic power due to both
improvements in computer processors and algorithms. As reported in [Bix12],
between the years 1988 and 2002 there was a machine improvement of a
factor of about 1,600 but an algorithmic improvement1 of about a factor of
3,300, resulting in a total improvement factor of 1, 600 × 3, 300 = 5, 280, 000.
For an updated example, the “AMD EPYC Rome” has a transistor count of
32,000,000,000 while the best transistor count in 1988 was just 7,500,000.
Thus, we can infer a machine speed-up of about 4,266. In that same time, there
has been an algorithmic speed-up of over 29,000 [Bix12]. This means that a
problem that would have taken 32 years to be solved in 1988 only takes about
8 seconds now! If this process is to continue, more advanced methods will be
required to tackle ever more complicated problems.

One of the most complicated class of problems are those that involve mul-
tiple discrete decisions, such as switches, gears, or people. These problems
are known as Integer Programs (IPs), or Mixed-Integer Programs (MIPs) if
they also include real-valued variables, and are known to generally be NP-
complete [BL12]. The difficulty in solving MIPs is primarily due to the
so-called “curse of dimensionality,” where increasing problem size leads to
combinatorial explosions in the number of combinations of possible decisions.
The enormous number of possible combinations makes verifying the optimal-

1 Calculated by applying successive versions of CPLEX to a set of benchmarking problems. The
largest improvement by far came in CPLEX v6 when many new ideas from academia were
implemented in the solver.
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1.2 Contributions

ity of any given combination quite difficult. For example, consider the problem
of assigning 70 people to 70 jobs where each person has a different aptitude
with each of the jobs. As the people and jobs are indivisible, the problem is
naturally formulated as an integer program. There are more possible solutions
to this problem than there are particles in the universe, and thus testing every
possible solution is impractical [LRKS91].

However, all is not lost. Even though the complexity of MIPs increases
exponentially with problem size, there are certain techniqueswhich can be used
to mitigate this issue. For example, by linearizing the job assignment problem
and using the simplex method, the vast majority of potential solutions can
be ignored and the optimal solution quickly and efficiently obtained [Hun83].
Techniques that can effectively eliminate large swathes of the solution space
are the key to solving MIPs, and can be done in several ways. First, part of the
constraint set could quite literally be cut off using so-called “cutting planes.”
Alternatively, by constructing successively better upper and lower bounds on
the optimal objective value, one can establish the optimality of a candidate
solution. This process is known as Branch and Bound (B&B). Cutting planes,
B&B, and other MIP methods will be discussed in more detail in Section 2.2.

Despite the many advances in mixed-integer programming, there are still many
problems which remain intractable and many applications where faster solu-
tion methods are needed [Iba94,YKF+00,mip18,BDM03]. Two examples of
problems in power systems that are difficult to solve at medium and large scales
are the reactive power dispatch problem, and battery scheduling. The former
is described in detail in Section 3.1.3, and the latter is described in Section
3.1.2. It is shown that large scale instances of both of these problems are
difficult to solve with standard techniques. The poor scalability of problems
such as battery scheduling and reactive power dispatch are the main focus and
motivation of this thesis. To this end, several new methods and algorithms
are developed that allow for faster solution to larger MIPs than was previously
possible.

1.2 Contributions

Many of the problems in power and energy involve a modular system of
components which can be decomposed into several interconnected subsystems.

3



1 Introduction

Such a decomposition can then be exploited by distribution and parallelization.
For problems with a temporal component, there is typically a sparse block-
diagonal structure that links the variables of subsequent time steps. In either
case, this structure can be exploited in order to gain some speed up and/or to
attain tractability through the solution of a collection of smaller subproblems.

Problem decomposition and distribution is not new and there are already a
number of well-established methods that are available. However, as shown in
Sections 2.1.2 and 4.1, these methods are almost all designed for real-valued
problems and can perform quite poorly when applied to an MIP. As such,
one of the main contributions of this thesis is the marriage of Mixed-Integer
Programming and Distributed Optimization. The result of which are three
algorithms for distributed mixed-integer optimization, which are described in
Sections 3.1, 3.2, and 3.3. Each of these sections are based onwork published in
[MEHF18], [MFH18], [MHF18], [MFH+20], [MH20b], and [MH20a]. There
is no “silver bullet” to distributed mixed-integer optimization, and each of the
presented algorithms have different properties and different performance for
different problems.

One significant factor that affects the performance of distributed methods is the
partitioning of the given optimization problem. Often, the choice of problem
partitioning is fully (or at least partially) open. As such, one key question in
distributed optimization is “how ought I decompose the problem at hand for a
given distributed optimization algorithm?” Some background on this problem
is given in Section 4.1, and some first steps towards problem partitioning for
distributed mixed-integer optimization are given in Section 4.1.1. Section 4.1
is primarily based on the work published in [KMS+20] and [MKS+20].

For problems with temporal decomposability, it is tempting to consider dis-
tributed optimization as an option. However, Section 4.2 presents two alter-
natives for this case based on the work published in [MHF20] and [FM20].
One, is an algorithm for mixed-integer optimal control problems with turn-
pikes. The details of the algorithm are found in Section 4.2.2. The other, is a
method which takes advantage of a priori information in a new way in order
to more efficiently solve MIPs. This method is presented in Section 4.2.3.
Both methods bring concepts from existing turnpike theory to mixed-integer
programming to more effectively solve certain mixed-integer optimal control
problems.

4



1.3 Outline

1.3 Outline

This dissertation is organized into five chapters. Chapter 2 focuses on the state
of the art in constrained optimization and is structured as follows: in Section
2.1, the core concepts and techniques used in mathematical programming of
continuous problems are introduced. These problems often arise as subprob-
lems of MIP algorithms and come in a variety of forms. The various problem
subclasses are introduced, and some illustrative examples are given to help
distinguish them. The methods used to solve such problems are described in
Sections 2.1.1 and 2.1.2.

Chapter 3 begins with a presentation of a distributed algorithm for MIPs.
Its optimality and convergence properties are examined and its performance
is tested on two different case studies: reactive power dispatch, and battery
scheduling. In Section 3.2, a partially distributed optimization algorithm
is presented. In contrast to the algorithm of Section 3.1, it has stronger
convergence and optimality guarantees but is not suited for certain problem
classes or contexts where full distribution is required. Its performance is also
benchmarked using two case studies: thermostatically controlled loads, and
battery scheduling. In Section 3.3 a fully distributed algorithm is presented
which has favourable convergence and optimality guarantees. Two case studies
are used to compare its performance against that of alternative methods: a suite
of MIQPs, and battery scheduling.

While Chapter 3 is primarily concerned with distributed approaches to mixed
integer programming, Chapter 4 consists of two parts. First, in Section 4.1
some insight is given into how problems ought to be partitioned for input into
distributed methods. Two optimization problems involving power grids are
used as examples, and it is shown that proper partitioning of these problems
plays an important role in the performance of the distributed algorithm which
is applied. Section 4.2 goes beyond exploitation of modularity in MIPs and
presents some methods for taking advantage of certain temporal structures in
mixed-integer optimal control problems. These methods are compared and
several case studies are used as benchmark examples.

Chapter 5 gives final conclusions on the contributions presented throughout
the thesis and lists a number of ways in which the work may be extended. All of
the algorithms presented in this thesis are implemented in MATLAB R2019a
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relying on CasADi v3.5.0 [AGH+19], and all numerical experiments are run
on a 2.9GHz Intel Core i5-4460S CPU with 8GB of RAM.
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2 State of the Art

The scope of this chapter is to give an overviewof the algorithms and techniques
commonly used to numerically solve optimization problems. This begins with
methods for continuous optimization in Section 2.1, which are categorized
further into centralized (Section 2.1.1) and distributed algorithms (Section
2.1.2). In Section 2.2 the methods most commonly used for mixed problems
involving both discrete and continuous variables are given.

2.1 Nonlinear Programming

Typically, the goal of an optimization problem is to minimize an objective
function f : Rn → R over a set X ⊆ Rn . Mathematically, this can be
expressed as:

min
x

f (x)

s.t. x ∈ X ⊆ Rn .
(2.1)

One can classify optimization problems into two main categories: constrained
and unconstrained. An unconstrained optimization problem is simply (2.1)
with X = Rn . If the function f is twice differentiable, then the minimizer of
an unconstrained problem can be solved by first identifying the set of points
with zero gradient:

Ξ = {x ∈ Rn |∇ f = 0},

along with the points Ω where ∇ f is not defined. Together, Ξ and Ω are the
critical points of f . The global minimum of the unconstrained problem can
be found by evaluating min{ f (x) |x ∈ Ξ ∪Ω}. It should be noted that while
finding the global minimum is often the goal, it is sometimes sufficient to find
a local minimum.

7



2 State of the Art

Figure 2.1: An example of a linear program. The red dot indicates the optimal solution.

Definition 1. A point x? ∈ X for an optimization problem (2.1) with objective
function f : X → R is said to be locally optimal if ∃ε > 0 such that
f (x?) ≤ f (x) for all x ∈ {y ∈ X|x? − y

 < ε }.

Now consider the more general case of Problem (2.1) where X , Rn . In
this case, the critical points of f are no longer necessarily potential solutions
to (2.1). Solving such constrained optimization problems requires specialized
techniques, depending on their structure. If f is linear andX is a polytope, then
the problem is said to be a Linear Program (LP), one of the first constrained
optimization problems to be studied [Dan48,Dan81]. A simple LP is depicted
in Figure 2.1.

Convexity is another very important structural property, and it is defined for-
mally in Definition 2.

Definition 2. A set C is defined as convex if ∀x, y ∈ C and t ∈ [0, 1] it holds
that (1 − t)x + ty ∈ C. That is, for all points x and y in C, the line segment
connecting x and y is also in C. A function is said to be convex if its epigraph
forms a convex set.

8



2.1 Nonlinear Programming

Convex function Convex set

Figure 2.2: An example of a convex function and a convex set. The red dot indicates the optimal
solution.

Remark 1. A related notion is that of strict convexity. A set C is said to be
strictly convex if ∀x, y ∈ C it holds that x(1− t) + yt belongs to the interior of
C for all t ∈ (0, 1).

A example of a convex set and a convex function are depicted in Figure 2.2,
and an important implication of Definition 2 is given in Corollary 1.

Corollary 1. The intersection of two convex sets is also convex. Likewise, if
the functions f1 : X → R and f2 : X → R are convex then so too is f1 + f2.

Remark 2. The union of two convex sets is not necessarily convex. A trivial
example of this is given by C1 ∪C2 for convex sets C1 , ∅ and C2 , ∅ such
that C1 ∩C2 = ∅.

If both the objective function f and feasible setX are convex, then the problem
is said to be a convex program, one of two main categories of Nonlinear
Programs (NLPs). Likewise, if f and X are strictly convex then the problem
is said to be a strictly convex program. One of the key properties of convex
programs is that their local solutions are also global solutions, and thus they

9



2 State of the Art

Non-convex function Non-convex set

Figure 2.3: An example of a non-convex function and a non-convex set. The red dots indicate
some locally optimal solutions.

have a unique minimum [BV04]. The second category of NLPs are non-
convex programs, which are optimization problems that have non-convexities
in either the objective function f or the feasible set X. They comprise a more
challenging class of constrained optimization problems as they can potentially
have many local minima and thus local optimization methods are typically
insufficient to obtain a globally optimal solution. Figure 2.3 illustrates a non-
convex objective function and a non-convex feasible set. The non-convexity
of the set in Figure 2.3 stems both from being disconnected and the “bend” in
the upper subset.

Note that if an optimization problem has a disconnected feasible set, such as
the one shown in Figure 2.3 then that problem is said to be disconnected. It
can sometimes be helpful to model such a feasible set using integer-valued
variables, which results in a Mixed-Integer Program (MIP). Details on the
state of the art and open problems in mixed-integer programming is given in
Section 2.2.

A key concept in the numerical optimization of real-valued problems is the
concept of duality. As its name suggests, it offers a related problem which can
sometimes be easier to solve than the original (primal) problem. The Lagrange

10



2.1 Nonlinear Programming

dual problem1 is constructed by taking problem constraints into account within
the objective function. For a problem of the form

P = min
x

f (x)

s.t. g(x) ≤ 0 (2.2)
h(x) = 0

its Lagrange dual is

D = max
µ,λ

inf
x

f (x) + µ>g(x) + λ>h(x)

s.t. µ ≥ 0, (2.3)

where µ and λ are the Lagrange multipliers for the constraints g(x) ≤ 0 and
h(x) = 0, respectively. Intuitively, Lagrange multipliers can be thought of as
“shadow prices” or sensitivity with respect to certain constraints [Ber06]. If
the primal optimal objective P and dual optimal objective D are equal, then
strong duality is said to hold. These concepts are crucial for establishing the
Karush-Kuhn-Tucker (KKT) optimality conditions.

Before stating the conditions, first recall Problem (2.1) with objective f and
feasible set X = {x |g(x) ≤ 0, h(x) = 0}, where g and h are denoted in vector
notation as g = [g1, . . . , gm ]> and h = [h1, . . . , h` ]>, respectively. The KKT
conditions are commonly used in the verification of the optimality of candidate
solutions to purely real-valued NLPs and the following provides a necessary
condition for local optimality of a point x?.

1 Which for brevity, is may be referred to as simply the dual problem.
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2 State of the Art

Theorem 1. Let f ,g, and h be continuously differentiable at a point x? such
that ∇gi (x?) and ∇h j (x?) are linearly independent for all i and j such that
gi (x?) = 0 and h j (x?) = 0. Then, for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , `}
there exist Lagrange multipliers µi and λ j such that:

∇ f (x?) +
m∑
i=1

µi∇gi (x?) +
∑̀
j=1

λ j∇h j (x?) = 0 (2.4)

gi (x?) ≤ 0,∀i ∈ {1, . . . ,m} (2.5)
hi (x?) = 0,∀i ∈ {1, . . . , `} (2.6)

µi ≥ 0,∀i ∈ {1, . . . ,m} (2.7)
µigi (x?) = 0,∀i ∈ {1, . . . ,m} (2.8)

Equations (2.4) – (2.8) collectively form the first-order KKT optimality con-
ditions. Equation (2.4) is known as the “stationarity” condition and gives a
notion of optimality with respect to constraints. Equations (2.5) and (2.6)
ensure primal feasibility of x?, while Equation (2.7) ensures dual feasibility.2
Complementary slackness of the Lagrange multipliers µ and the inequality
constraints g is upheld by Equation (2.8).

For convex optimization problems, the conditions (2.4) – (2.8), alongwith some
regularity conditions,3 are sufficient for verifying local optimality [NW06,
BV04]. For non-convex programs that is no longer the case and an additional
second-order sufficient condition is required, such as:

s>∇2xxL(x?, λ?, µ?)s ≥ 0 (2.9)

where L(x, λ, µ) = f (x) +
∑m

i=1 µigi (x) +
∑`

j=1 λ jh j (x) is the Lagrangian of
Problem 2.1, and s , 0 is a vector which satisfies

[∇xgi (x?),∇xh j (x?)]>s = 0

for the constraints gi such that gi (x?) = 0.

2 That is, the feasibility of the dual problem.
3 Such as Slater’s condition: g(x?) < 0, h(x?) = 0, or the linear independence of the gradient
of the active constraints at x?.
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2.1 Nonlinear Programming

The goal of many optimization algorithms is to obtain a point which satisfies
the KKT conditions (2.4)-(2.8), and sometimes the second order condition
(2.9) as well. We shall categorize these algorithms as 1) centralized, which
solve (2.1) with a single shared memory, and 2) distributed, which make use of
problem decomposability. Problem decomposition can allow for solution with
distributed computing resources, although it is not required. A brief overview
of some common centralized optimization methods is given in Section 2.1.1,
followed by distributed algorithms in Section 2.1.2.

2.1.1 Centralized Algorithms

For the most basic class of optimization problem, the LP, there is a plethora
of available algorithms [Vai89, Kar84, Kha79, Van15]. The simplex method
being one of the most common. The main idea behind the simplex method is
to represent the problem as a matrix “tableau,” which is solved via Gaussian
elimination. In effect, each iteration (corresponding to a pivot in Gaussian
elimination) navigates the vertices of the feasible set of the LP until no better
point is available. This method is known to be polynomial time for most
problems, although worst case problems can be constructed which have an
exponential runtime [KM70].

In addition to the simplex method, the “Interior Point Method” is also com-
monly used for solving LPs [CLS19, IT02, LS15]. Modern implementations
of interior point are generally as fast as those of simplex methods [GT96],
with some differences arising depending on the specific structure of the LP.
The main idea is to approximate the constraints with a barrier function and
then solve the resulting unconstrained optimization problem. This can be
done by iteratively solving a system of equations with a variant of Newton’s
method [PW00]. An advantage of interior point is that it can also efficiently
solve convex optimization problems [BV04]. However, interior point is not
alone in this regard.

Sequential Quadratic Programming (SQP) is an iterative method for problems
of the form (2.1), where f , g, and h are twice differentiable. The main idea be-
hind SQP is to iteratively construct successive quadratic approximations of the
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original problem. Each iteration of SQP contains the following optimization
subproblem:

min
d
∇x f (xk )>d + 1/2d>

(
∇2x,x f (xk ) − µg(xk ) − λh(xk )

)
d

s.t. g(xk ) +∇xg(xk )>d ≤ 0
h(xk ) +∇xh(xk )>d = 0

where µ and λ are Lagrange multipliers, xk is the current iterate, and d is
the search direction. One can think of SQP as being an extension to New-
ton’s method for inequality constrained problems. Indeed, for purely equality
constrained problems, SQP is equivalent to applying Newton’s method to the
first-order KKT conditions [NW06]. Often, the Hessian matrices in each SQP
step are approximated to reduce computational load and improve runtime,
however this can affect the convergence of the algorithm [Ulb04].

To solve Problem (2.1) to global optimality, even more advanced methods are
needed. In this case, there are two main options: spatial branch and bound
or heuristic methods. Spatial branch and bound seeks to solve (2.1) to global
optimality by iteratively splitting the feasible set X into successively smaller
pieces and obtaining local solutions on each of the resultant subproblems.
This method shares many properties with the B&B method for MIPs, which
will be covered in detail in Section 2.2.1. Alternatively, one may attempt
to use a heuristic such as genetic algorithms, particle swarm optimization,
reactive tabu search, etc. [BNKF98, EK95, BT95]. Each of these techniques
attempts to overcome the difficulties of non-convexity and non-differentiability
in a different way, by sacrificing optimality and convergence guarantees in
exchange for a lighter computational burden.

Although non-convex NLPs remain a very challenging problem class, some
large convex NLPs can be solved relatively quickly. For example the “nql180”
benchmark problem [Mit03] has 162,001 decision variables and 130,080 con-
straints but is solved in approximately 3 seconds by the commercial solver
MOSEK [ApS19]. However, this is not always the case. When an NLP is
too large to be solved on a single machine, or extra speed is required, then
distributed optimization may be needed. Background on the state of the art of
distributed optimization for NLPs is given in Section 2.1.2.
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2.1.2 Distributed Algorithms

It should first be noted that there are significant differences between the terms
distributed optimization, decentralized optimization, distributed computing,
and parallel computing, and in fact some of these terms are defined differently
by different authors [KM08,CYS18]. Herein, these terms shall be defined as
follows:

Definition 3 (Decentralized Optimization Algorithm). A decentralized opti-
mization algorithm is an algorithm which solves an optimization problem and
is completely parallelizable.

Definition 4 (Distributed Optimization Algorithm). A distributed optimiza-
tion algorithm is an algorithm which alternates between solving decoupled
subproblems and a centralized coupling problem.

Definition 5 (Parallel Computing). Parallel computing consists of a collection
of processors working in parallel which all have access to a single shared
memory.

Definition 6 (Distributed Computing). Distributed computing consists of a
collection of processors and a communication network between them, where
each processor only has access to its own memory resources.

Each of these concepts is depicted visually in Figure 2.4.

While the subproblems solved by both distributed and decentralized algorithms
can make use of distributed computing resources, it is not necessary. For
example, if the problem at hand is too large to solve centrally but no other
computing resources are available, then distributed optimization can still be
used. In this case each of the subproblems are solved sequentially rather than
in parallel.

A lot of research onNLPs has gone into how to exploit full or partial separability
in problem structure [Ers14,HBO14,KAGB04,BFG+18,GHT16a,MDS+17].
A problem is said to be fully separable if its objective function f and feasible
set X can be decomposed into

f =
N∑
i=1

f i (xi )
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Figure 2.4: (Top left) Distributed optimization. This schematic takes the perspective of multi-
agent systems, although other scenarios abound. More on Distributed optimization is
given in Section 2.1.2. (Top right) Decentralized optimization. (Bottom left) Parallel
computing. (Bottom right) Distributed computing.

such that f i : Xi → R for all i ∈ {1, . . . , N } and

X = X1 ∪ · · · ∪ XN ,

such that Xi ∩ Xj = ∅ for all i , j. Fully separable problems can be de-
composed into N subproblems, each of which can be solved independently.
Unsurprisingly, most problems do not come in this form (for N > 1) and
instead have some kind of coupling between the subproblems. If a problem is
separable save for some affine equality constraints, then the is problem is said
to be partially separable.
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The following offers an example of a partially separable problem that has been
decomposed into N parts:

min
x,z

N∑
i=1

f i (xi )

s.t. xi ∈ Xi ⊆ Rni ∀i ∈ {1, . . . , N }, (2.10)
N∑
i=1

Ai xi = b,

where Ai ∈ R`×ni for all i, and b ∈ R` . Typically, algorithms for solving
(2.10) involve a decomposition of the KKT criteria in order to guarantee local
optimality upon termination. Such methods are known as distributed or de-
centralized optimization algorithms, depending on how the algorithm handles
the coupling between each subproblem, if there is any. Where decomposi-
tion is concerned, the focus of this thesis will be on distributed optimization
algorithms.

By decomposing a given problem and applying a distributed optimization
method, it is sometimes possible to obtain solutions to large problems that
would otherwise be intractable in a centralized setting. Consider Problem
(2.10) and suppose that it is not solvable by any single available processor.
However, suppose that

min
x1

f ′1(x1)

s.t. x1 ∈ X′1
(2.11)

and

min
x2

f ′2(x2)

s.t. x2 ∈ X′2
(2.12)

are both individually solvable, where f ′1, f ′2,X
′
1, and X

′
2 are some modification

of f1, f2,X1, and X2, respectively. In this case, problem decomposition can
be employed to solve the overall problem via a collection of subproblems.
This now begs the question of how to construct f ′1, f ′2,X

′
1, and X

′
2, and how
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to perform the coupling step so that
∑N

i=1 Ai xi = b is satisfied, however for
now let us first consider other scenarios where distributed optimization may
be beneficial.

As the subproblems in distributed optimization algorithms are independent of
one another, there is also the possibility for speed-up via parallelization by
solving each subproblem with a different processor [Pel09, TMW09, LBR15,
MEHF18, VNR+06, LU05]. It is generally difficult to predict a priori how
difficult each subproblem will be, and thus balancing the work done by each
processor is non-trivial. As shall be shown in Section 4.1, the results can
heavily depend on how the centralized problem is partitioned.

Additional benefits can be found where communication bandwidth is an issue.
Namely, optimization becomes possible without the full problem description
being stored in any one place. This feature enables multiple agents4 to coop-
erate without the exchange of confidential data. Doing so can also mean that
the amount of data transferred within the system can be reduced, minimizing
expensive communication hardware requirements.

The inherent modularity of distributed and decentralized frameworks can also
be beneficial in a multi-agent setting when the number of agents in the system
is dynamic. For example, when a faulty component needs to be isolated and
shut down for maintenance, the temporarily reduced system can be readily
re-optimized within a distributed optimization framework. It is worth noting
that agents can also be unresponsive or acting atypically, which are known
as Byzantine faults. Detection and resolution of Byzantine faults are not
considered within this thesis, but we refer the interested reader to an early
paper by Lamport et al. ( [LSP82]) and the overview by Driscoll ( [DHSZ03]).

For distributed continuous convex optimization, there are already a number of
available algorithms such as dual decomposition [Eve63,NS08], Alternating
Direction Method of Multipliers (ADMM) [BPC+11, EB92,GM76], or Aug-
mented Lagrangian based Alternating Direction Inexact Newton (ALADIN)
methods [HFD16], which can all be used to solve large-scale strictly con-
vex programs to global optimality by alternating between solving small-scale
convex optimization problems and sparse linear algebra operations.

4 In a distributed computing system, these would be the individual processors.
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The main idea in dual decomposition is to take advantage of separable prob-
lem structure by iteratively solving a collection of dual subproblems. These
dual subproblems are constructed by placing the constraints and appropriate
Lagrange multipliers into the objective function. As an example, consider the
dual problem of (2.10):

max
λ

min
x,z

N∑
i=1

f i (xi ) + λ>
(
N∑
i=1

Ai xi − b
)

s.t. xi ∈ Xi ⊆ Rni ∀i ∈ {1, . . . , N }, (2.13)
λ ∈ R`

where λ is the Lagrange multiplier of the consensus constraint
∑N

i=1 Ai xi = b.
As λ is also an optimization variable in dual problem (2.13), it is also referred
to as a dual variable. Dual decomposition solves (2.10) by alternating between
the dual subproblems for each i ∈ {1, . . . , N }:

x+i = argmin
xi

f i (xi ) + (λ+)>Ai xi

and updating the dual variables:

λ+ ← λ+ + α
*.
,

N∑
i=1

Ai x+i − b+/
-
.

where α is the chosen step size parameter. If the set of optimal Lagrange
multipliers for Problem (2.10) is non-empty and f =

∑N
i=1 f i is strictly convex,

then dual decomposition is known to converge to a uniqueminimizer. If f is not
strictly convex, then convergence is no longer guaranteed [Han88,BPC+11].

For general convex problems, ADMM offers a good alternative to dual de-
composition. Originally introduced in [GM75] and [GM76], ADMM has seen
wide use in the realm of convex optimization, although it may be used as a
heuristic for non-convex problems as well. In comparison with other meth-
ods ADMM is known to converge quite slowly, however solutions with minor
suboptimality are often achievable in just tens of iterations. For a detailed
overview of ADMM see [BPC+11]. A form of ADMM for solving (2.10) is
shown in Algorithm 1.
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Algorithm 1: ADMM

Input: x0i ∈ Xi , λ
0
i ∈ R` for i ∈ {1, . . . , N }, ρ > 0, and a numerical tolerance ε > 0.

Initialization: Set k = 0.

1. Solve for all i ∈ {1, . . . , N }:

yk+1i := argmin
yi ∈Xi

fi (yi ) + (λk
i )>Ai yi + (ρ/2) | |Ai (yi − xki ) | |22

2. Termination check:
If | |

∑N
i=1 Ai y

k+1
i − b | |1 < ε then terminate, else k ← k + 1 and go to Step 1.

3. Update the dual variable:

λk+1
i := λk

i + ρAi

(
yk+1i − xki

)
4. Solve the coupling QP:

xk+1 := argmin
x

N∑
i=1

(ρ/2) | |Ai (yk+1i − xi ) | |22 − (λk+1
i )>Ai xi (2.14)

s.t.
N∑
i=1

Ai xi = b. (2.15)

Output: x, λ.

It is proven that for a convex problem (2.10), the primal and dual iterates
both approach optimality and | |

∑N
i=1 Ai y

k+1
i − b| |1 → 0 as k → ∞ [BPC+11].

However, in practice this can take many iterations and it may be the case that
the condition in Step 2 is satisfied before the primal and/or dual iterates reach
optimality. Although ADMM has been applied to non-convex NLPs—notably
the optimal power flow problem [Ers14, EMJ+17]—it is important to note if
f i or Xi is non-convex for some i, then ADMM may not converge [HFD16].
To solve such problems, the ALADIN algorithm was developed.

ALADIN builds on ADMM and sequential quadratic programming methods
to attain convergence guarantees for general NLPs, and has been shown to con-
verge significantly faster than ADMM [EMJ+17]. The main steps of ALADIN
are outlined in Algorithm 2.
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Algorithm 2: ALADIN

Input: Initial guess x0 ∈ X , λ > 0, ρ > 0, µ > 0, Σ � 0
and a numerical tolerance ε > 0.

Initialization: Set y = x0.

1. Solve for all i ∈ {1, . . . , N } the decoupled NLPs

x?i = min
xi

fi (xi ) + λ>Ai xi +
ρ
2 | |xi − yi | |

2
Σi

s.t. gi (xi ) ≤ 0 | κi

2. Compute local gradients, Hessians, and active sets for QP

Gi = ∇xi fi (xi ) |xi=x?i
Hi = ∇2xi ( fi (xi ) + κ>i gi (xi )) |xi=x?i

C?
i , j =




∇xi (gi (xi )) j |xi=x?i
if (gi (x?i )) j = 0

0 otherwise

3. Solve coupling QP

∆x = argmin
∆x ,s

1
2
∆x>H∆x +G>∆x + λ>s +

µ

2
‖s ‖22

s.t. A(x + ∆x) − s = b | λQP

C?
∆x = 0

4. Termination check
If ‖Ax? − b ‖1 < ε and ρ ‖Σi (x?i − yi ) ‖1 < ε, terminate.
Otherwise, update
y ← x? + ∆x, λ ← λQP ,
and go to Step 1.

Output: x?, λ.
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As in ADMM, the main idea is to decompose the problem into a collection
of decoupled subproblems and a coupling QP.5 Note that one may classify
ALADIN as a two-level hierarchical optimization algorithm as the QP in Step
3 takes the role of a coordinating entity [Sca09]. The dual variable κi is
associated with the ith inequality constraint hi (xi ) and is obtained during the
resolution of Step 1. Likewise, the dual variable λQP is associated with the
equality consensus constraint in Step 3. In Step 2, the Jacobians of the active
inequality constraint are obtained as they are required for the computation of
Step 3.

While ALADIN has some favourable convergence properties, it can still only
guarantee convergence to a locally optimal solution. Thus, if for some i, Xi is
disconnected in (2.10), then the final solution from Algorithm 2 will greatly
depend on its initial guess. Having a good initial guess is typically quite
rare and thus for such disconnected problems it can be advised to use more
specialized methods. The integrality constraints of MIPs are one such example
of a disconnected feasible set in an NLP, and the methods used to solve them
are the focus of Section 2.2.

2.2 Mixed-Integer Programming

Mixed-Integer Programs are non-convex problems that have the following
form:

min
x,z

f (x, z) (2.16a)

s.t. x ∈ X ⊆ Rn , (2.16b)
z ∈ Z ⊆ Zm . (2.16c)

One can think of (2.16) as being a special case of (2.1), when there are
polynomial equality constraints present. Such constraints are mathematically
equivalent to the integer variables z of Problem (2.16), and thus such problems

5 As this QP subproblem is equality constrained, it may be solved as a matrix inversion problem
via solution of the relevant Karush-Kuhn-Tucker conditions.
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aremost commonly represented asMIPs. The discrete variables z often arise as
“switches” between different values or dynamics in a system. Some examples
include on/off decisions, selling/buying, or perhaps a choice of gear.

In terms of complexity, MIPs are known to be NP-complete [PS82]; i.e. both
global and localMIP algorithms often do not scalewell in terms of computation
time. This is mainly due to fact that integer decisions in MIPs generally lead
to disconnected, and thus non-convex, feasible sets. The standard approach
utilized by numerical optimization algorithms to deal with this is to use B&B
methods [BKL+13,BBC+08,IBM19,Gur19]. These methods seek to establish
optimality without having to explore the entire integer-feasible decision space.
This is done by iteratively “branching” integer decisions and then solving
relaxed subproblems in order to establish upper and lower bounds on the
optimal objective value. The details on B&B, along with other techniques for
mixed-integer programming are given in this section.

2.2.1 Branch and Bound

Branch and Bound originates with [LD60] and [MM57] and is the most com-
mon method of solving mixed-integer programs. The algorithm consists of
iteratively splitting the feasible set and obtaining a solution to the subproblems
resulting from each new subset. The decision of how to split the feasible set is
known as “branching” and more details on that are given in Section 2.2.2. If it
is established that an optimal solution cannot exist in one of the subsets then it
is “pruned” and not explored further.

For mixed-integer programs, the integer decisions are typically chosen for
branching.6 That is, some integer variables are fixed to certain values while
others are relaxed. These subproblems are typically arranged in a tree structure
such that the root node of the tree corresponds to the convex relaxation of the
MIP, and each child node corresponds to a different feasible decision for a
particular integer variable.

6 For highly non-convex NLPs with many local optima, global optimality can be established by
partitioning the feasible set and branching on each partition.

23



2 State of the Art

As an example, consider the following integer program:

min
z

4∑
i=1

zi

s.t. 2z1 + z2 ≤ 1,
2z2 + z3 ≤ 1,
2z3 + z4 ≤ 1,
zi ∈ {0, 1} ∀i ∈ {1, . . . , 4}.

(2.17)

Problem (2.17) can be solved in a B&B framework by first solving its continu-
ous relaxation, followed by (2.17) with z1 = 0 and z2, z3, z4 ∈ [0, 1], etc. This
process is depicted in Figure 2.5 by the B&B decision tree for (2.17) with a
“breadth-first” branching strategy.

2
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previous best upper bound exceeded/ 
infeasible subproblem
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Z4=0 Z4=1 Z4=0 Z4=1

Figure 2.5: An example of a B&B decision tree for Problem (2.17).

Pseudocode for the B&B method is shown in Algorithm 3. The problem
relaxations are used to establish lower bounds on the optimal objective value.
This is done by taking the smallest solution from leaves of the explored decision
subtree T . That is, the lowest value among nodes which do not have explored
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children.7 On the other hand, leaf nodes of the B&B tree correspond to
subproblems with all integers fixed, and thus feasible solutions to the given
problem, which in turn provide upper bounds on the optimal objective value.
If a node in the candidate node set S is found to have a value above that of the
current best upper bound U , then clearly its corresponding child nodes do not
need to be searched since they contain a subset of the feasible set of current
subproblem and can thus only have an equal or greater solution. This pruning
technique can be used to eliminate large swathes of the feasible set and better
focus the search for the optimal value. If U − L ≤ ε for a sufficiently small
threshold ε > 0, then the algorithm will terminate without searching any other
nodes with the upper bound value as the solution.

Algorithm 3: Branch and Bound

Input: Termination tolerance ε > 0.
Preparation: SetU = ∞, L = −∞, T = ∅. Candidate node set S = {0}.
While S , ∅:

1. Choose n ∈ S, and update S ← S {n }

2. Obtain an upper bound J?(n) on the value of the child nodes of n.

3. If J?(n) < U , thenU ← J?(n) and proceed to Step 4.
If J?(n) > U proceed to Step 1.
Else add the child nodes of n to S and proceed to Step 4.

4. L ← min
n∈P (S)

{J?(n) }

If U − L ≤ ε terminate.
Else proceed to Step 1.

Output: J?(n) =U .

The upper bounding function J?(n) can be constructed in a number of ways.
For example, suppose that each node n corresponds to a vector Z(n) ∈ Rm

such that Z(n)i ∈ Z for i ∈ {1, . . . ,m}. Furthermore, suppose that for every
child node ñ of n, it holds that |{i |Z(n)i ∈ Z}| < |{i |Z(ñ)i ∈ Z}|. That is, the
set of fixed integers of the child nodes contains the set of fixed integers of their

7 This statement assumes a typical strategy—such as depth-first or breadth first—for exploring
the decision tree. The fully general statement would additionally require a path to the root node
through the subtree of explored nodes.

25



2 State of the Art

parent nodes. The value J?(n) for node n can then be obtained by solving
(2.16) such that

zi =



Z(n)i , if Z(n)i ∈ Z

zi ∈ conv(Zi ), otherwise

where conv(Z ) denotes the convex hull of a set Z .8

It should be noted that the efficiency of Algorithm 3 is highly dependent on pre-
processing of the problem and the heuristics used in Step 1. Such preprocessing
can take many forms, such as the additional or removal of constraints and vari-
ables, or solution of a subproblem to establish good optimality bounds. Some
background on preprocessing methods for MIPs can be found in [Sav94], and
some other heuristics can be found in [RP08] and [FL10]. More information
on how to perform Step 1 is given in Section 2.2.2.

2.2.2 Branching Heuristics

One major question when using the B&B method is which values to branch
on. Indeed, this is very difficult (if not impossible) to answer a priori and only
heuristics with good, but not provably optimal, performance can be applied.
There are a number of branching heuristics which have been developed, a few
of which shall be decribed here:

• Breadth-first: Explore all sibling nodes (all nodes of the same depth)
before proceeding to their child nodes. Good for improving the lower
bound.

• Depth-first: Explore child nodes before proceeding to sibling nodes.
Quickly obtains upper bounds.

• Best-first: Explore the node with the lowest associated objective value.
Similar to a greedy algorithm.

8 The convex hull of Z is the smallest superset of Z which is convex. For example,
conv ( {0, 2, 3}) = [0, 3].
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More advanced branching rules also exist, such as reliability branching
[AKM05], strong branching, and pseudocost branching [LS99]. Which
branching method is best to use is difficult to answer since different branching
rules are better suited to different contexts. For example, if no upper boundU is
available then a branching rule which quickly obtains one, such as depth-first,
is often preferrable since it can then be used to begin pruning the search tree.
On the other hand, a strategy that quickly improves the lower bound L, such
as breadth-first, is better in the opposite case since it can then lead to faster
termination by satisfying U − L ≤ ε.

Section 4.2.3 presents a method for generating a custom branching heuristic
based on a priori information. For example, online optimal control often
involves the solution of a sequence of related problems. Information about not
only their final results, but also their decision tree subproblems can be carried
over between iterations for use in the next problem. In effect, this means that
different areas of the feasible set can be prioritized and potentially yield faster
solutions.

Cutting Planes

While B&B is an effective tool for organizing a search of the feasible set, there
are other tools which can assist in the solution-finding process. Cutting planes,
also known as cuts, are added constraints which are meant to allow for faster
optimization [DFJ54]. ForMixed Integer Linear Programs (MILPs), a solution
can be obtained through convex relaxation if the convex hull of the MILP is
equivalent to its LP relaxation. As an example, consider the problem shown
in Figure 2.6. Here, the cutting planes are linear inequality constraints. With
these additional constraints, a continuous relaxation of the problem results in
an optimal solution to the original MIP.

In general, constructing these cuts can be quite difficult and a number of
methods have been developed. Some examples of cutting plane algorithms
are:

• Gomory cut [Gom58]: Solve the continuously relaxed problem and
obtain a solution. Introduce a cut such that the relaxed solution is on one
side of the cutting plane and all feasible integer points are on the other.
Many such cuts may be required before an integer point is obtained.
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Figure 2.6: The gray area is region bounded by the inequality constraints, the black dots are the
integer-feasible points and the red lines are the added constraints.

• Chvatal-Gomory cut [Chv73]: Given the constraints Az ≤ b on the
integer valued variable z, then it holds that for any λ > 0 one may use
the cut bλAzc ≤ bλbc.

• Split cut [Bal79]: For some integer variable z, obtain the sets D1, D2
constructed by z ≤ y and z ≥ y + 1, respectively. For a feasible set G,
the split cut is obtained by computing (D1 ∪ D2) ∩G.

While cutting planemethods alone can takemany iterations to obtain an integer
solution, they can be very effective when used in conjuction with a B&B
method. This is known as “branch and cut” [PR91]. This method can yield
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faster convergence by returning better solutions to the relaxed subproblems
and thus better lower bounds.

2.2.3 Outer Approximation

Outer Approximation (OA) goes back to Duran and Grossmann [DG86] and
is a commonly used algorithm for solving mixed-integer programs which are
convex under continuous relaxation. Problems belonging to this class are
known as Mixed Integer Convex Programs (MICPs), and differ from general
MINLPs in that they can be solved to global optimality without resorting to
spatial B&B or heuristic methods [LYBV18,KAGB04]. A notable extension
of OA has been developed by Fletcher and Leyffer [FL94], who suggest to
include curvature information in the relaxed integer program leading to a
quadratic outer approximation method.

The main steps of OA consist of an NLP subproblem with fixed integer values
and an MILP. A construction of such an NLP subproblem for (2.16) is shown
below:

f ?(z) = min
x,y

f (x, z)

s.t. Ax + Bz = c,
x ∈ X,

(2.18)

for a fixed integer parameter z.

The second step of OA involves constructing a set of supporting hyperplanes
at the solution to (2.18). Let x?(z) denote a solution of (2.18) in dependence
on z. If f is not differentiable, we have to use a particular choice of the
subgradient, that is:

λ?(z) ∈ ∂x f (x?(z), z).

Likewise, one can construct subgradients of f with respect to z at the optimal
solution of (2.18):

µ?(z) ∈ ∂z f (x?(z), z).

Both λ?(z) and µ?(z) can be use to construct supporting hyperplanes of the
convex function f at the point z. A collection of such hyperplanes can then be
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used to construct a piecewise affine approximation of f . Let H denote a set of
hyperplane coefficients associated with a finite set of points Π ⊆ Z:

H (Π) =




(α, β, γ)

��������������

z ∈ Π

α = λ?(z)

β = µ?(z)

γ = f ?(z) − αT x?(z) − βTz




. (2.19)

The set H can be used to construct a piecewise affine lower bound on f :

Φ(x, z,Π) = max
(α,β,γ)∈H (Π)

{
αT x + βTz + γ

}
≤ f (x, z) . (2.20)

The particular construction of Φ on f allows us to establish for the following
tightness property:

Lemma 1. Let X and conv(Z) be compact convex polytopes and let Π ⊆ Z
be any finite set of points. It holds that for all z ∈ Π,

f ?(z) = min
x∈X
Φ(x, z,Π) s.t. Ax + Bz = c . (2.21)

Proof. If there is no x ∈ X and z ∈ Z such that Ax + Bz = c, then both
sides of (2.21) are equal to infinity and the statement of the lemma holds in the
extended value sense. Thus, we may assume that the equation Ax + Bz = c
has a solution in X for a fixed z. By the definition of Φ in (2.19) and (2.20) we
have that

Φ(x, z,Π) = f ?(z) +
[
λ?(z)

]T
(x − x?(z)) +

[
µ?(z)

]T
(z − z)︸               ︷︷               ︸

=0

30
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Thus, we have

min
x∈X ,Ax+Bz=c

Φ(x, z,Π)

= min
x∈X,Ax+Bz=c

f ?(z) +
[
λ?(z)

]T
(x − x?(z))

= f ?(z) −
[
λ?(z)

]T
x?(z) + min

x∈X,Ax+Bz=c

[
λ?(z)

]T
x︸                           ︷︷                           ︸

LP1

Let X := {x |Gx ≤ 0} where G ∈ Rn×m . Writing out the KKT conditions of
LP1 and (2.18) yields:

[λ?(z)]> + ν>A+ µ>G = 0
Ax + Bz = c

Gx ≤ 0
µ ≥ 0

µ>Gx = 0

∂x f (x, z) + ν>A+ µ>G = 0
Ax + Bz = c

Gx ≤ 0
µ ≥ 0

µ>Gx = 0

which in turn reduce to

[λ?(z)]> x + ν>(c − Bz) = 0
Ax + Bz = c

Gx ≤ 0

∂x f (x, z)x + ν>(c − Bz) = 0
Ax + Bz = c

Gx ≤ 0
As x? is a solution to (2.18) and λ?(z) = ∂x f (x, z) |x=x? by construction, it
follows that x? is a solution to LP1. This proves the assertion

f ?(z) = min
x∈X
Φ(x, z,Π) s.t. Ax + Bz = c

for all z ∈ Π. �

Lemma 1 states that the minimum of (2.18) with an objective function f and
compact convex polytopic feasible set X is equivalent to the minimum of the
linearization of f at a globally optimal point x? ∈ X. Note that the proof
of Lemma 1 does not rely on the convexity of f , however if f is non-convex
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then it no longer holds that Φ(x, z,Π) ≤ f (x, z) for all (x, z) ∈ X ×Z. Thus,
the convexity of f is crucial for the third step of OA. Herein, the supporting
hyperplane set H (Π) are used to solve the MILP coupling subproblem given
by:

min
x∈X,z∈Z

Φ(x, z,Π) s.t. Ax + Bz = c , (2.22)

which gives a lower bound, L, on (2.16). As the solutions (x?, z?) of sub-
problem (2.18) are feasible points of Problem (2.16), the value of f (x?, z?)
provides an upper bound,U, on (2.16). Thus, optimality of a point (x?, z?) can
be established by satisfaction of U − L ≤ ε for a given termination tolerance
ε.

The main steps of OA are summarized in Algorithm 4, and an illustration of a
possible iteration of the algorithm is provided in Figure 2.7.

Figure 2.7: Outer Approximation Example.
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Algorithm 4: Outer Approximation for MICP

Input: Initial guess z ∈ Z and a numerical tolerance ε > 0.

Initialization: Set Π = ∅ andU = ∞.

Repeat:
1. Solve the convex optimization problem

f ?(z) = min
x

f (x, z) s.t.



Ax + Bz = c

x ∈ X .
(2.23)

2. If (2.23) has no feasible solution, return a certificate of infeasibility. Otherwise, update

U ← min
{
U , f ?(z)

}
and Π ← Π ∪ {z } .

3. Solve the (extended) MILP

(x+, y+, z+) ∈ argmin
x∈X,y ,z∈Z

N∑
i=1

yi

s.t.




∀i ∈ {1, . . . , N },

∀(αi , βi ,γi ) ∈ Hi (Π)

αT
i xi + β

T
i zi + γi ≤ yi

Ax + Bz = c

(2.24)

4. IfU −
N∑
i=1

y+i ≤ ε, terminate.

5. Update z ← z+ and go to Step 1.
Output: (x+, z+).

The following finite termination result for outer approximation is (at least in
very similar versions) well-known in the literature [DG86,LYBV18].

Theorem 2. For MICPs, Algorithm 4 terminates after a finite number of
iterations.

Proof. Notice that if the equation Ax + Bz = c has no solution in X, this will
be detected immediately by Step 2 of Algorithm 4, which causes termination.
Thus, we may assume that all optimization problems are feasible.
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The main idea of the proof is to assume that the termination criteria are never
satisfied and proceed by contradiction. First, note that any solution (x+, y+, z+)
of the MILP (2.24) satisfies the equation

Φ(x+, z+,Π) =
N∑
i=1

y+i (2.25)

by construction. Moreover, because we have Ax+ + Bz+ = c, the inequality

min
x,Ax+Bz+=c

Φ(x, z+,Π) ≤ Φ(x+, z+,Π) (2.26)

holds. If we assume that the termination criterion is not satisfied, we must
have

N∑
i=1

y+i < U − ε . (2.27)

If z+ ∈ Π, then the result of Lemma 1 implies that

f ?(z+)
(2.21)
= min

x,Ax+Bz+=c
Φ(x, z+,Π) , (2.28)

as well as U ≤ f (z+). By substituting all the above relations we find that

f ?(z+)
(2.28),(2.26)
≤ Φ(x+, z+,Π)

(2.25),(2.27)
< U − ε ≤ f (z+) − ε ,

which is a contradiction.

If z+ < Π, then Π ← Π ∪ {z+} in Step 2 and the algorithm continues. This
implies z+ cannot be chosen twice, and as Z is finite, Algorithm 4 must
terminate after a finite number of iterations. �

2.2.4 Mixed-Integer Optimal Control

The methods described in Sections 2.2.1-2.2.3 are applicable to a wide class
of problems, however there are more efficient, specialized methods available
for MIPs with specific structure. A prime example of which are Mixed-Integer
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Optimal Control Problems (MIOCPs). First, consider the general form of an
Optimal Control Problem (OCP) with a discretized time horizon of length T :

min
x ( ·),u ( ·)

T−1∑
t=0

f (x(t), u(t)) (2.29a)

subject to ∀t ∈ {0, . . . ,T − 1},
x(t + 1) = h(x(t), u(t)), x(0) = x0, (2.29b)

x(t) ∈ X ⊆ Rn , u(t) ∈ U ⊆ R` . (2.29c)

where f : Rn ×R` → R is the stage cost and h : Rn ×R` → Rn is the state
transition map.

One can think of OCPs as being a specific type of optimization problem which
includes time-varying state dynamics upon which an objective function must
be minimized. The solution of (2.29) is a control trajectory

{u?(t) |t ∈ {0, . . . ,T − 1}} .

The underlying dynamics present in OCPs add structure which can be ex-
ploited in terms of numerical solutions. For example, a discretization of an
OCP leads to an optimization problem where each time step is dependent
on the previous one. This naturally leads to a KKT-system with a block-
diagonal structure which can be exploited [KBSS11]. Depending on the ex-
act nature of the problem, more specialized techniques can be used. Some
examples include detection of control switching, symmetry reduction, or re-
formulation [BKMP18, FOBK12, SM06]. In the latter, it is common practice
to reformulate hybrid systems as MIOCPs [BM99,BN18,ABRM14]. Model
Predictive Control is another area which could benefit from some of the meth-
ods described in the following sections, although it will not be extensively
discussed in this thesis. For hybrid model predictive control, some work has
already been done and we refer the interested reader to the following: [BD-
CHJ10,BHDS02,BN18,LH09].

MIOCPs are a subclass of (2.29) which include discrete decision variables.
Some examples include the Lotka Volterra fishing problem [Sag05] or the
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classic “Fuller’s problem” [Ful63].9 Hybrid systems are often formulated as
MIOCPs, and have recently seen significant interest [BN18,ABRM14,Gey09,
CL18]. These problems involve either switching between different dynamics
or jumps in the state trajectory. For completeness, the general form of an
MIOCP is given below:

min
x,u,z

T−1∑
t=0

f (x(t), u(t), z(t)) (2.30a)

subject to ∀t ∈ {0, . . . ,T − 1},
x(t + 1) = h(x(t), u(t), z(t)), x(0) = x0, (2.30b)

x(t) ∈ X ⊆ Rn , u(t) ∈ U ⊆ R` (2.30c)
z(t) ∈ Z ⊆ Zm , (2.30d)

As (2.30) is anMIP, it is nonconvex and thus generally NP-complete. Nonethe-
less, as with (2.29), there is a particular structure to the problem which can
be exploited. This is discussed in depth within Section 4.2, where several
techniques for efficient exploitation of MIOCPs are given.

9 Note that, although the original formulation of Fuller’s problem is not an MIOCP it can - and
often is - formulated as one.
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3 Algorithms for Distributed
Mixed-Integer Optimization

When designing distributed optimization algorithms there are a number of
things that one must keep in mind:

• Is the algorithm guaranteed to converge?

• Will the returned solution be guaranteed to be optimal?

• How should the agents/processors coordinate with each other?

Each of these points is prioritized and addressed differently among each of
the algorithms presented in this section, and there is rarely a perfect answer
to these questions. Indeed, as is shown in Section 3.3, an algorithm which
has favourable properties on paper is not necessarily one which has good
performance.

In Section 2.1.2, some distributed algorithms for continuous problems were
described, however as we shall see they are not effective methods for solving
MIPs. Overall there are relatively few distributed methods for solving MIPs.
For MILPs, there is Benders Decomposition [Ben62] and Dantzig-Wolfe De-
composition [DW60], however both are limited in their scope of applicability.
While extensions to higher order problems have been developed [Geo72], these
lack optimality, and in some cases, convergence guarantees [SG91]. Consider
the following MILP:

min
x,z

c>1 x + c>2 z (3.1a)

s.t. Ax + Bz ≥ b (3.1b)
z ∈ Z ⊂ Zm (3.1c)
x ≥ 0 (3.1d)
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3 Algorithms for Distributed Mixed-Integer Optimization

The main steps of Benders Decomposition for Problem (3.1) are as follows
[Kal02]:

1. Initialize z? with a feasible integer solution, and set upper boundU = ∞
and lower bound L = −∞.

2. Solve the subproblem:

u? = argmin
u

c>2 z? + (b− Bz?)>u

s.t. A>u ≤ c1
u ≥ 0

3. If the solution to Step 2 is unbounded then get the unbounded ray u? and
add the cut (b− Bz)>u? to the master problem.

Otherwise, get the extreme point u? and add the cut y ≥ c>2 z + (b −
Bz)>u? to the master problem. SetU = min{U, c>2 z? + (b− Bz?)>u?}.

4. Solve the master problem:

z?, y? = argmin
z,y

{y |cuts, z ∈ Z}.

and set L = y?.

5. If U − L < ε then terminate. Else go to Step 2.

The main idea of Benders Decomposition is to use the continuous subproblems
solved in Step 2 to obtain good solutions in the master problem solved in Step 4.
The solution to the integermaster problem is then used to inform the continuous
subproblem. This process continues until the termination threshold between
the upper and lower bounds has been satisfied.

Apart from Benders Decomposition there are other alternatives to solving
MIPs in a distributed framework. For example, an extension of ADMM for
MIPs was presented in [TMBB20] but also lacks any convergence or optimality
guarantees. Thus, one of the main contributions of this thesis is to address
this gap in the literature. To this end, three different algorithms are presented.
The first is a mixed-integer extension of the ALADIN algorithm described in
Section 2.1.2, and is shown to outperform competing methods in Section 3.1.
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The second, Partially Distributed Outer Approximation (PaDOA), is based on
the outer approximation algorithm described in Section 2.2.3. PaDOA was
originally developed as an attempt to create a distributed algorithm for MIPs
with strong convergence and optimality guarantees, and as seen in Section 3.2,
it can outperform some commercial solvers on several problem classes. The
third is a distributed branch and bound algorithm which aims to maintain the
optimality guarantees of PaDOA, while remaining applicable to a wide range
of problems. Distributed branch and bound is discussed in Section 3.3 along
with two case studies that demonstrate its numerical performance.

3.1 Mixed-Integer ALADIN

Both ADMM and ALADIN were originally designed with purely real-valued
problems in mind and thus are not immediately applicable toMIPs. It is always
possible to reformulate integer constraints as polynomial equality constraints
[SOM04]:

z ∈ {ζ1, . . . , ζn } ⇐⇒ (z − ζ1) . . . (z − ζn ) = 0, z ∈ R.

However, doing so is typically not helpful if the problem is to be solved via
a local optimization method. This is due to the fact that each integer point
is itself locally optimal and thus the solution of a local algorithm will remain
in the neighbourhood of the initial point. Thus, using a local algorithm to
solve an NLP with polynomial equality constraints essentially amounts to an
expensive means of fixing the integer values.
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The following presents an example problem to illustrate the difficulty with
which MIPs are solved using continuous local optimization methods:

min
x,z∈R

x1 + z1 + x2 + z2 (3.2a)

s.t. − 2 ≤ x1, x2 ≤ 2 (3.2b)
(x1 + z1)2 ≤ 1 (3.2c)
(x2 + z2)2 ≤ 1 (3.2d)
z1(z1 − 1) = 0 (3.2e)
z2(z2 − 1) = 0 (3.2f)
x1 + x2 = 0.5. (3.2g)

An optimal solution to Problem (3.2) is clearly x1 = x2 = 0.25 and z1 =
z2 = 0, however if ALADIN (without line search) is initialized closer to
(z1, z2) = (1, 1) then the algorithm can fail to converge.

This can be seen by first assuming that Step 1 of ALADIN is solved with a local
optimization method. In this case, the solution will be either x?i ≥ −1, z?i = 0
or x?i ≤ 0, z?i = 1 for i = 1, 2, depending on how the local solvers are
initialized and the value of ρ. Given that the initial guess for the problem
includes z1 = z2 = 1, we will proceed with the second possibility as it is the
most likely outcome.

In Step 2, the active constraintmatrixC? includes values for the active quadratic
constraints (3.2e) and (3.2f). These constraints are always active, and thus
Step 3 will always include

∆z1 = 0, ∆z2 = 0.

The solutions x?1 and x?2 will both continue to be less than or equal to zero
and thus cannot satisfy the termination criteria x?1 + x?2 = 0.5. The result
is that ALADIN returns to Step 1 with the primal iterates of z1 and z2 un-
changed. Thus the previous steps are repeated indefinitely, not matter how
many iterations are allowed.
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However, Problem (3.2) is easily formulatable as anMIP. Namely, by replacing
(3.2e) and (3.2f) with z1, z2 ∈ {0, 1}. As an MIP, the problem is efficiently
solvable in a centralized manner using current MIP methods such as outer
approximation or B&B. Problem (3.2) can also be solved in a distributed
framework through an extension of ALADIN to mixed-integer programming.1
The structure of one such extension as originally published in [MFH18] is
shown in Algorithm 5.

As with the original ALADIN algorithm, Algorithm 5 seeks to determine
the solutions to a set of MINLPs in the first step and then keep the integer
variables fixed throughout the remaining steps until the consensus step among
the real-valued variables is completed and the next iteration begins. Note that
the coupling step only involves the real-valued variables x and thus Algorithm
5 is only applicable to problems of the form:

min
x∈Rn ,z∈Zm

N∑
i=1

f i (xi , zi )

s.t. gi (xi , zi ) ≤ 0, ∀i ∈ 1, . . . , N , (3.3)
N∑
i=1

Ai xi = b.

It is easy to verify that Algorithm 5 applied to (3.3) for a fixed value of z reduces
to the standard ALADIN algorithm, however in general Algorithm 5 does not
inherit the convergence properties of ALADIN. The convergence properties of
Algorithm 5 are the subject of Section 3.1.1.

3.1.1 Convergence Properties

As shown by the example of Problem (3.2), ALADIN may return a poor
solution if the feasible set is disconnected. Reformulation of the problem to an
MIP and application of MI-ALADIN can return a better solution as the integer
variables are directly taken into account. For Problem (3.2), MI-ALADIN
converges to the optimal solution almost immediately. Thus, it is unclear to

1 For Problem (3.2), Algorithm 5 converges to the global solution in just 3 iterations.
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Algorithm 5: Mixed-Integer ALADIN

Input: Initial guess x0 ∈ X , λ > 0, ρ > 0, µ > 0, Σ � 0
and a numerical tolerance ε > 0.

Initialization: Set y = x0.

1. Solve for all i ∈ {1, . . . , N } the decoupled NLPs

(x?i , z
?
i ) = min

xi ,zi
fi (xi , zi ) + λ>Ai xi +

ρ
2 | |xi − yi | |

2
Σi

s.t. gi (xi , zi ) ≤ 0 | κi

2. Compute local gradients, Hessians, and active sets for QP

Gi = ∇xi fi (xi , z?i ) |xi=x?i
Hi = ∇2xi ( fi (xi , z?i ) + κ>i gi (xi , z?i )) |xi=x?i

C?
i , j =




∇xi (gi (xi , z?i )) j |xi=x?i
if (gi (x?i , z

?
i )) j = 0

0 otherwise

3. Solve coupling QP

∆x? = argmin
∆x ,s

1
2
∆x>H∆x +G>∆x + λ>s +

µ

2
‖s ‖22

s.t. A(x + ∆x) − s = b | λQP

C?
∆x = 0

4. Termination check
If ‖Ax? − b ‖1 < ε and ρ ‖Σi (x?i − yi ) ‖1 < ε, terminate.
Otherwise, update y ← x? + ∆x?, λ ← λQP ,
and go to Step 1.

Output: (x?, z?), λ.
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what extent Algorithm 5 inherits the properties of ALADIN. To this end, this
section investigates the convergence properties of Algorithm 5.

AlthoughAlgorithm5 can be applied to problems of the form shown in Problem
3.3, convergence cannot be guaranteed for every problem within this class.
However, guarantees can be made for the following subclass of problems:

min
x,z

f (x) + g(z)

s.t. h(x) ≤ 0, (3.4)
x ∈ Rn , z ∈ Zm .

As the real-valued and integer parts of Problem (3.4) are completely separated,
it is clear that application of Algorithm 5 to Problem (3.4) will result in the
same primal (real-valued) iterates as would be observed when applying the
original ALADIN algorithm to Problem 3.4 with a fixed value of z. Thus,
by the convergence properties of ALADIN, Algorithm 5 will converge for
Problem (3.4) in a finite number of iterations.

3.1.2 Case Study – Battery Scheduling

To test the performance Algorithm 5 we require a problem which is easily
scalable both in terms of the number of subproblems N and the dimension of
each subproblem ni + mi . One problem which fits these requirements and is
in the form (3.3) is the battery scheduling problem. The battery scheduling
problem is depicted in Figure 3.1 for N batteries, with a central connection to
the main grid.

At each time step t in T = {1, . . . ,T }, battery i has a state of charge Ei (t) along
with local power generation Li (t) and load profiles Pi (t). These are taken
together and parametrized as Li (t) = Pi (t) − Li (t). If insufficient power is
generated or stored in the battery at time t then power P+i (t) can be drawn from
the grid to satisfy the demand at node i. Likewise, if there is a surplus then
power P−i (t) can be sold to the grid. The total power flow between node i and
the grid is thus P+i (t) + P−i (t), where flow towards the battery is taken to be
the negative direction and thus P−i (t) ≤ 0, and P+i (t) ≥ 0.
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Main Grid

Figure 3.1: Schematic diagram of the battery scheduling problem.

The goal of battery scheduling is to use the projected load forecast and power
generation information to minimize the cost of operating the system. This
problem can be thought of as an OCP where the charge of a battery E is
the state variable and the power provided to the battery, P+ and taken from
the battery, P− are the controls. Using the discrete-time formulation of this
problem as defined in [MFH18] and [MHF18], the cost function is composed
of three parts: minimize the cost of energy drawn from the grid/maximize
revenue from energy sold to the grid, minimize emptiness of the battery at the
end of the time horizon, and minimize large changes in power flow from time
step to time step.

For each time step of length τ, the primary objective is to minimize the cost
of the power flowing to/from the grid at time t, denoted by P−0 (t) and P+0 (t)
respectively: ∑

t ∈T

(a+(t)P+0 (t) + a−(t)P−0 (t))τ,

where a+(t) ≥ 0 and a−(t) ≥ 0 describe the prices for buying and selling
electricity at time t and are assumed to be given. However, this objective can
result in solutions with some unwanted properties. First, sudden large changes
in power flow between time steps are possible, which can degrade battery
lifetime and induce a hidden cost [BFR+15]. Second, optimal solutions will
generally result in empty batteries at the end of the time horizon T . While
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emptying the batterymay be optimal over the short term, if the schedule is being
repeatedly computed in closed loop then this can result in some suboptimality
in future iterations. To compensate for both of these issues, the additional
objective functions are defined for each node i ∈ N = {1, . . . , N }:

γ(Ei − Ei (T ))2 + β
∑
t ∈T

(
(P+i (t) + P−i (t) − PAVG

i )τ
)2

,

where γ > 0 is a constant and PAVG
i =

∑
t ∈ T(P+i (t) + P−i (t))/T is the

average of Pi (t) over all T time steps and β > 0 is a scaling constant. The term
γ(E − Ei (T ))2 is included to penalize the emptiness of each battery at the end
of the scheduling horizon.

The sum of all power flowing from the nodes must always be equivalent to
the new power flowing to/from the main grid. This results in the following
constraint:

∀t ∈ T, P0(k) =
N∑
i=1

Pi (t). (3.5)

Further constraints in the problem come from the fact that power supplied
to/drawn from each battery cannot exceed the capacity/supply. Therefore
the capacity/supply of battery i, Ei (t) must satisfy the following inequality
constraint for each time step t ∈ T: Ei ≤ Ei (t) ≤ Ei , where the dynamics of
each of the batteries for an initial state Ei (0) is given by:

Ei (t + 1) = Ei (t) + ((1 − `)P+i (t) + (1 + `)P−i (t) − Li (t))τ, (3.6)

where Li (t) is the given (mean) local power injected/drawn by the load such
that PV generation is taken as negative load, and ` is the power conversion
loss.

Additionally, the following constraints are introduced to discriminate between
power flow directions ∀ i ∈ N0 = {0, . . . , N }:

P+i (t)P−i (t) = 0, P+i (t) ≥ 0, P−i (t) ≤ 0. (3.7)

However, many NLP solvers face convergence issues at P+i (t) = P−i (t) = 0.
Here we consider two methods for dealing with the cusp in the feasible set:

45



3 Algorithms for Distributed Mixed-Integer Optimization

relaxation of the equality constraints (3.7) and reformulation as a convexmixed-
integer problem.

NLP with Constraint Relaxation

As in the battery scheduling problemof [AOM+18], replacement of the equality
constraint in (3.7) with −δ ≤ P+i (t)P−i (t) ≤ 0 for some small δ > 0 can avoid
some of the numerical issues caused by the constraint P+i (t)P−i (t) = 0 close
to the point P+i (t) = P−i (t) = 0.2 The battery scheduling problem with the
constraint relaxation can be summarized as follows:

min
P+,P−

T∑
t=1

(
[a+(t)P+0 (t) + a−(t)P−0 (t)]τ

+

N∑
i=1

(
γ(Ei − Ei (T ))2 (3.8a)

+ β[(P+i (t) + P−i (t) − PAVG
i )τ]2

))
subject to ∀t ∈ {1, . . . ,T } :

Ei (t + 1) = Ei (t) + [(1 − `)P+i (t)
+ (1 + `)P−i (t) − Li (t)]τ, ∀i ∈ N0, (3.8b)

Ei (t) ∈ [Ei , Ei ], ∀i ∈ N0, (3.8c)

P0(t) =
N∑
i=1

Pi (t), ∀i ∈ N0, (3.8d)

0 ≤ P+i (t) ≤ Pi , ∀i ∈ N0, (3.8e)
Pi ≤ P−i (t) ≤ 0, ∀i ∈ N0, (3.8f)
−δ ≤ P+i (t)P−i (t) ≤ 0, ∀i ∈ N0. (3.8g)

2 This is known as the Fischer-Burmeister relaxation. More information can be found in [Fis95a]
and [Fis95b].
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Unfortunately, if δ is chosen too small then the numerical problems persist,
and if δ is chosen to be too large then the solution may contain simultaneously
bi-directional power flows. This is observed in the results of Section 3.1.2.

Results for NLP Formulation

In this section, Problem (3.8) is solved using ALADIN for a variety of time
horizons and batteries. The PV production and load consumption data, Li ,
comes from a clean subset of three years worth of data from 300 Australian
households. This data is freely available online and the clean subset of 54
households was chosen according to the specifications listed in [RWKM15].
Likewise, the pricing information comes from the Ausgrid pricing policy for
a residential load at the time of publication. As the Ausgrid data is discretized
into 30 minute intervals, τ = 30 mins. For the battery, the parameters E = 0,
E = 13.5kWh, P = −5kW , P = 5kW and ` = 0.05 are chosen according to a
commercial provider [Tes17]. The parameters γ and β are both chosen to be
1. The Fischer-Burmeister relaxation parameter δ is chosen to be 10−2.

The algorithm is initialized by setting Pi (t) = Li (t) ∀ i ∈ {1, . . . , N }, t ∈ T,
and P0(t) =

∑
i Pi (t) ∀ t ∈ T. This initialization was chosen since it is

guaranteed to be feasible. Table 3.1 presents the performance of ALADIN for
a variety of problem sizes and time horizons. The results from the centralized
interior point method IPOPT [WB05] are shown for comparison. IPOPT is
also used by ALADIN to solve its NLP subproblems. For the results of Table
3.1, the ALADIN parameters ρ = 500, µ = 5000, and termination threshold
ε = 10−3 are chosen. Each problem consists of 2(N + 1)T real-valued decision
variables. Thus, the largest case considered involves 5280 variables, for which
ALADIN fails to return a solution within the time limit.

Note that during the computation of the centralized solution in trials involving
over 200 variables, IPOPT either exceeds its default maximum iteration limit
or fails in its restoration phase. In such cases a point close to the local solution
is returned at the cost of significant computation time. This issue is likely
due to the complexity of the problem, as constraint relaxation or simplification
eliminates the issue. Regardless, despite failing for the case of 54 batteries and
48 time steps, results are obtained for smaller problems.

47



3 Algorithms for Distributed Mixed-Integer Optimization

Table 3.1: Results obtained for Problem (3.8).

N T IPOPT Alg. 2 Alg. 2 fALADIN

Time (s) Time (s) Iter. f I POPT

2 2 0.1074 0.1707 6 1.0361
12 2 0.2756 0.2053 9 1.0276
2 12 0.1562 0.4924 13 1.0052
54 2 4.9145 3.7592 68 1.0000
2 48 14.857 2.6398 15 1.0772
12 12 3.8895 8.4472 86 1.0009
12 48 57.642 203.25 32 1.1170
54 12 4.6093 200.66 29 1.0631
54 48 767.06 > 5200 > 12 N/A

Additionally, the Fischer-Burmeister relaxation of the complementarity con-
straints (3.7) results in a slight bi-directional power flow. Figure 3.2 illustrates
this issue.
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Figure 3.2: Power to/from the grid and each battery for the case of 2 batteries and 48 times steps.
Real-valued formulation solved with ALADIN.
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One possible solution is to set, ∀ i, t, P+i (t) = 0 if P+i (t) < |P−i (t) | and
P−i (t) = 0 otherwise. However, doing so causes an increase in the primal
residual | |Ax − b| | of an entire order of magnitude. This must be taken into
account when performing the optimization and thus practical use of the real-
valued formulationwould requiremanymore iterations than are shown in Table
3.1 in order to account for this phenomenon.

Mixed-Integer Reformulation

The issue of the choice of relaxation parameter δ may be circumvented using
integer decision variables. By introducing a binary decision variable zi for
each node i ∈ {0, . . . , N } whose values denote the direction of power flow,
the objective functions and constraints associated with each direction can be
toggled on or off. Specifically for each time step t, the constraints (3.8e), (3.8f),
and (3.8g) are replaced with:

0 ≤ P+i (t) ≤ zi (t)Pi , ∀i ∈ N0 (3.9a)
(1 − zi (t))Pi ≤ P−i (t) ≤ 0, ∀i ∈ N0 (3.9b)

P+0 (t) + P−0 (t) =
N∑
i=1

P+i (t) + P−i (t), ∀i ∈ N0 (3.9c)

zi (t) ∈ {0, 1}, ∀i ∈ N0 (3.9d)
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The battery scheduling problem with the integer variables is an MIQP and can
be summarized as follows:

min
P+,P−,z

T∑
t=1

(
[a+(t)P+0 (t) + a−(t)P−0 (t)]τ

+

N∑
i=1

(
γ(Ei − Ei (T ))2 (3.10a)

+ β[(P+i (t) + P−i (t) − PAVG
i )τ]2

))
subject to ∀t ∈ {1, . . . ,T } :

Ei (t + 1) = Ei (t) + [(1 − `)P+i (t)
+ (1 + `)P−i (t) − Li (t)]τ, ∀i ∈ N0, (3.10b)

Ei (t) ∈ [Ei , Ei ], ∀i ∈ N0 (3.10c)

0 ≤ P+i (t) ≤ zi (t)Pi , ∀i ∈ N0 (3.10d)
(1 − zi (t))Pi ≤ P−i (t) ≤ 0, ∀i ∈ N0 (3.10e)

P+0 (t) + P−0 (t) =
∑
i∈N

P+i (t) + P−i (t), ∀i ∈ N0 (3.10f)

zi (t) ∈ {0, 1}, ∀i ∈ N0 (3.10g)

Results for MIQP Formulation

As in Section 3.1.2, the PV production and load consumption data comes
from [RWKM15], however this section uses the mixed integer formulation of
the battery scheduling problem (3.10). As this formulation is exact and does
not rely on a Fischer-Burmeister relaxation, no parameter δ is chosen. Apart
from this, all other problem parameters remain the same. Due to the inclusion
of integer decision variables to reformulate the non-convex complementarity
constraints, each problem instance has 2(N + 1)T real-valued variables and
(N + 1)T integer decision variables. For the largest problem instance with
N = 54 and T = 48, this results in 5280 real-valued variables and 2640 integer
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variables. The results from both Bonmin3 and Algorithm 5 applied to Problem
(3.10) are displayed in Table 3.2. The N/A denotes cases where Bonmin failed
to return a solution. The time spent before failure is still recorded.

Table 3.2: Results obtained for Problem (3.10).

N T Bonmin Alg. 5 Alg. 5 fALADIN

Time (s) Time (s) Iter. fBonmin

2 2 0.1533 0.1380 9 1.0014
12 2 0.3335 0.2375 17 1.0020
2 12 0.2742 0.2305 13 1.0061
54 2 0.7612 0.1651 14 N/A
2 48 1.3299 0.6024 23 N/A
12 12 1.8344 0.2449 17 N/A
12 48 1,6787 0.4716 10 N/A
54 12 17.1634 0.4067 14 N/A
54 48 > 3000 1118.5 72 N/A

Problem (3.10) is solved centrally using Bonmin, and in a distributed frame-
work using Algorithm 5. As in Section 3.1.2, the parameters ρ = 500,
µ = 5000, and termination tolerance ε = 10−3 are chosen for Algorithm 5.
The iterates of Algorithm 5 for the instance of (3.10) with N = 2, T = 48 are
shown in Figure 3.3.

While Bonmin does terminate for each problem instance, it does not always do
so successfully. The N/A values in the fALADIN/ fBonmin column indicate
where the centralized solver fails to return a solution. In the cases where
Bonmin does converge, it returns the same values as IPOPT. Figure 3.4 depicts
the trajectory for the instance N = 2, T = 48. Note that for the solution from
Algorithm 5, the power flow remains within the feasible region of -5 to 5 kW,
and the battery state remains in the feasible region of 0 to 13.5kWh. However,
as Bonmin fails to converge for this case, only the initialization is shown.

3 Bonmin is an open-source local mixed integer solver that uses IPOPT to solve its local non-linear
subproblems [BBC+08].
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Figure 3.3: Objective value and constraint violation at each iteration of Algorithm 5 for the case
of two batteries and forty eight time steps.

An interesting observation to note from the comparison of Tables 3.1 and 3.2
is that the mixed-integer formulation is solved in less time and less iterations
than for the real-valued formulation. In some cases, the difference is a factor
of four or more. This is in addition to the fact the solutions of (3.10) are exact,
while those of (3.8) are not.

3.1.3 Case Study – Reactive Power Dispatch

Section 3.1.2 gives some results for how Algorithm 5 performs for MIQPs,
however it is applicable to higher order problems as well [MEHF18]. One
particularly difficult MINLP is known as the Reactive Power Dispatch (RPD)
problem. The goal of RPD is the minimization of line losses while maintaining
voltages within certain limits. This is done by controlling reactive power
generation, tap changers, and shunt capacitors. The last two grid components
are discrete in nature, and the overall problem is constrained by the highly
non-convex AC power flow equations. The result is an MINLP, and thus it is
often difficult to quickly obtain solutions, even for relatively small grids.
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Mathematically, the grid is described by a node set N , a generator set G, a
line set L ⊂ N ×N and a bus admittance matrix Y = G + jB ∈ CN×N . The
entries Ykl = Gkl + jBkl of the bus admittance matrix are given by

Ykl =



∑
m∈N\{k } ykm , if k = l
−ykl , if k , l,

where the complex value ykl ∈ C is the admittance of the transmission line
connecting buses k and l.

For brevity, the real-valued decision variables shall be denoted by

u = [v, θ, pg , qg ] ∈ R4 |N | .

This vector collects the voltage magnitudes v = [v1, . . . , v |N | ], voltage angles
θ = [θ1, . . . , θ |N | ],4 active power generation pg = [pg

1 , . . . , pg
|N |

], and reactive
power generation qg = [qg

1 , . . . , q
g
|N |

] at the nodes {1, . . . , |N |} in the grid.
Naturally, the active and reactive power generation are zero for all nodes not
in G. Furthermore, in RPD the active power generation pg , reactive power
demand qd , and active power demand pd are all fixed, with the exception of the
reference bus r . As in optimal power flow, the reference bus has fixed voltage:
vr = 1, and θr = 0.

Likewise, the discrete decision variables shall be denoted by z = [s, a], where
s = [s1, . . . , s |N | ] ∈ S are the shunt susceptances, and akl ∈ Akl are the
transformer tap setting at line (k, l) ∈ L.5 For nodes without shunt capacitor
or lines that are not connected via a tap-changing transformer, sk and akl are

4 Note that for the sake of brevity, the standard notation θkl = θk − θl is used.
5 Without loss of generality, we assume that the admissible tap and shunt settings are discrete,
but not necessarily integer valued. However, they may be transformed into sets of integers with
an appropriate constant factor.
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zero and one, respectively. The polar form of the reactive power optimization
problem is summarized by the following MINLP:

min
u,z

∑
(k ,l )∈L

−Gkl ((aklvk )2 + (alkvl )2 − 2aklalkvkvl cos(θkl ))

(3.11a)
s.t. ∀k, l ∈ N

pg
k
− pd

k = vk
∑
l ∈N

alkakl (Gklvl cos(θkl ) + Bklvl sin(θkl )), (3.11b)

qg
k
− qd

k − v
2
k sk = vk

∑
l ∈N

alkakl (Bklvl cos(θkl ) −Gklvl sin(θkl )), (3.11c)

vk ≤ vk ≤ v̄k , ∀k ∈ N , (3.11d)
q
k
≤ qg

k
≤ q̄k , ∀k ∈ N , (3.11e)

where the objective function given by (3.11a) is the loss function for all trans-
mission lines (k, l) ∈ L.

Commonly used approaches to (3.11) are continuous relaxation of the the
discrete decision variables as per [HGA09,YLCW06] and then rounding to the
nearest integer after solving anNLP.However, doing so can result in suboptimal
results [YLCW06]. Alternatively, one may avoid relaxation and solve the MIP
using genetic algorithms [Iba94] or particle swarm optimization [YKF+00].
While good results have been found using these methods [SMY+08], they
lack optimality guarantees. Decomposition and parallelization is a promising
alternative [MEHF18], however it first requires the problem to be given in a
partially separarable form.

Separable Problem Formulation

To be able to use Algorithm 5 to solve (3.11), the problem at hand must be
in affine coupled separable form; i.e. the form shown in (3.3). This entails
the partitioning of the problem into N regions, where a region Ri contains
regional node set Ni such that Ni ∩Nj = ∅ for all i , j, and local line sets
Li ⊆ Ni × Ni . Each region is coupled via auxiliary nodes located at the
border between two regions. For example, on a line from node k in region R1
to node ` in region R2, the auxiliary nodes k ′ and `′ are added as illustrated
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schematically in Figure 3.5. In addition to the power flow equations (3.11b)-
(3.11e) the following coupling constraints hold between the nodes k ∈ R1 and
k ′ ∈ R2: vk = vk ′ and θk = θk ′ . Likewise, v` = v`′ and θ` = θ`′ for ` ∈ R2
and `′ ∈ R1.

Figure 3.5: An example of how auxiliary buses are constructed and thus how Problem (3.11) can be
put in the form of (3.3). Solid lines denote nodes which are coupled by (3.11b)-(3.11e)
and dashed lines denote nodes which are affinely coupled. (Top) Two nodes before
partitioning. (Bottom) The two original nodes, plus two auxiliary nodes.

The new problem formulation becomes a collection of problems in the form
of (3.11), with affine coupling constraints:

v`′ = v`

vk = vk ′

θ`′ = θ`

θk = θk ′

for each pair of nodes k, ` on the ends of an inter-partition line, and their
respective auxiliary nodes k ′, `′. Thus, for each line crossing between regions,
two additional buses and four additional equality constraints must be added.
Although the resulting problem is mathematically equivalent to the original,
this partitioning can add substantial numerical burden to the solution process.
Section 4.1 offers some insight into how power grids can be partitioned such
that favourable results from distributed methods can be obtained.
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Results IEEE 14 Bus Case

As a small benchmark example to evaluate the performance of Algorithm 5
for MINLPs we consider the IEEE 14 bus case. The parameters for the 14 bus
case are taken from [YKF+00].6 Tap changers and shunt capacitors are placed
as in [LCW+07] and relevant constants chosen accordingly. Table 3.3 lists the
location and feasible set for each decision variable in p.u. of the IEEE 14 case.

Table 3.3: Control variables for the 14 bus case and their admissible values (in p.u.).

Variable Domain
[v, v] [0.90,1.10]

a {0.90, 0.91 . . . , 1.09, 1.10}
s9 {0, 0.18}
s14 {0, 0.18}

As no partitions are given in the case file, they are selected as shown in Figure
3.6. For generality, a variety of different partitioning strategies are considered.
Partition 1a partitions the grid into approximately equally sized partitions,
however Partition 1b was meant to simulate the case where the majority of the
grid is controlled by a central entity, but a number of independently controlled
enclaves exist, as is the case in Northern Germany [SRLBM12]. Partition 1c
investigates the case where every node is contained within its own partition.

Table 3.4 presents the results obtained from both Bonmin and Algorithm 5 for
each of the partitions. In [YKF+00], Reactive Tabu Search (RTS) and Particle
Swarm Optimization (PSO) were used to solve this problem for the 14 bus
case. Shown in Table 3.5 is a comparison of their best results and the fastest
solution obtained by Algorithm 5.7 Algorithm 5 terminates for every case with
a termination threshold of ε = 10−3 and ρ = 5 · 102.

6 The power system test case archive is available at www.ee.washington.edu/research/pst
ca.

7 It should be noted that the runtimes for PSO and RTS are those reported in the original papers
and thus part of the difference is due to differing hardware.
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Figure 3.6: Partitions 1a and 1b for the IEEE 14 bus case. The red lines denote the connections
between partitions.

Table 3.4: Results obtained for the 14 bus case.

Part. 1a Part. 1b Part. 1c
Bonmin Time (s) 4.554 4.554 4.554

Algorithm 5 Time (s) 5.526 30.485 154.950
Algorithm 5 Iter. 287 277 814

Bonmin Obj. (MW) 12.684 12.6841 12.684
Algorithm 5 Obj. (MW) 12.588 13.2940 12.682

Table 3.5: Results from Partition 1a and those of [YKF+00].

Initial Losses RTS PSO Algorithm 5
Min. loss (MW) 13.3933 13.2366 13.3509 12.5884
Calc. time (s) - 19.5 16.5 5.5267

As for the difference between the objective values in Table 3.5, it should also be
noted that there is no unique notion of “closest local solution” inMixed-Integer
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Programming (choice of norm etc.). Moreover, the solution tolerance ε in the
consensus constraints (‖Ax − b‖1 ≤ ε) can be understood as a slight problem
relaxation; i.e. it enlarges the feasible set compared to the centralized solution.
Thus, the integer nature of the problem and how it is handled by Algorithm 5
appears to be source of this difference. It should also be noted that the values
in Table 3.5 come from [YKF+00], and thus use hardware that is 20 years older
than that used for Algorithm 5.

Results for IEEE 30 Bus Case

For a slightly larger benchmark example, we consider the IEEE 30 bus case.
As in Section 3.1.3, the parameters for the IEEE 30 bus case are taken from
the power system test case archive with tap changers and shunt capacitors are
placed as in [LCW+07]. Table 3.6 lists the location and feasible set for each
decision variable in p.u. of the IEEE 30 case. The total initial line losses for
the IEEE 30 bus case are 20.8674MW.

Table 3.6: Control variables for the IEEE 30 bus case and their admissible values (in p.u.).

Variable Domain
[v, v] [0.90,1.10]

a {0.90, 0.92 . . . , 1.08, 1.10}
s10 {0, 0.20}
s24 {0, 0.04}

As no partitions are given in the case file, they are selected as shown in Figure
3.7. As in the 14 bus case, Partition 2a partitions the grid equally and Partition
2b has a single large partition with a pair of enclaves, in analogy to Partition
1b. Likewise, Partition 2c mirrors Partition 1c and splits every node into their
own partitions. The results returned by Bonmin and Algorithm 5 are shown in
Table 3.7.

Both Bonmin and Algorithm 5 are initialized as in the 14 bus case and with
termination threshold ε = 10−3. However, the parameter ρ is chosen to be
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Figure 3.7: Partitions 2a and 2b for the IEEE 30 bus case. The red lines denote the connections
between partitions.

Table 3.7: Results obtained for the 30 bus case.

Partition 2a Partition 2b Partition 2c
Bonmin Time (s) 8.8515 8.8515 8.8515

Algorithm 5 Time (s) 41.0716 83.7757 107.8566
Algorithm 5 Iterations 302 446 1383
Bonmin Obj. (MW) 20.1249 20.1249 20.1249

Algorithm 5 Obj. (MW) 20.1379 20.7797 22.2365

104 for the 30 bus case. In general, larger values of ρ will lead to slower
convergence but if ρ is chosen to be too small then Algorithm 5 may not
converge at all. Furthermore, as the problem size increases, the other terms of
the subproblem objective functions take on larger values and thus larger values
of ρmust be chosen to compensate. The iterates of Algorithm 5 for two of the
tested partitions are shown in Figure 3.8.
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Figure 3.8: (Top) The objective function value per iteration of Algorithm 5 for Partitions 2b and
2c in semi-log scale. The purple dot indicates the solution returned by the centralized
solver. (Bottom) The consensus constraint violation per iteration for Partitions 2b and
2c.

Overall, the best results seem to come from the case where the partitions are
split evenly. These partitions allow for a moderate degree of parallelization
without introducing too many auxiliary variables into the subproblem compu-
tations. The worst results come from Partitioning 2c, where every node is in
its own partition. This leads to the inclusion of auxiliary variables at every
branch and is almost certainly the cause of the long run times and large number
of iterations required for partition 2c.

3.2 Partially Distributed Outer Approximation

As shown in Sections 3.1.2 and 3.1.3, Algorithm 5 can be used to solve mixed-
integer optimization problems with a partially separable structure. However, as
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mentioned in Section 3.1.1, its convergence properties are somewhat limited.
In this section a partially distributed outer approximation algorithm (PaDOA)
for mixed integer optimization is presented which has stronger convergence
properties than Algorithm 5.

Recall from Section 2.1.2 and Section 3.1 how distributed algorithms typically
alternate between solving small-scale decoupled subproblems with augmented
objective functions and an equality constrained coupling problem. This struc-
ture will serve as both an inspiration and a template for the distributed mixed-
integer optimization algorithm presented in this chapter. One key distinction
between PaDOA and previously described distributed algorithms is that the
algorithm presented in this section does not used augmented Lagrangians.
This is due to the fact that Lagrange multipliers give a notion of sensitivity,
which is of limited use in integer programming. More information on duality
in mixed-integer programming can be found in [BOW16, Joh79, Jer78].8 Fur-
thermore, while Algorithm 5 solves equality an constrained QP in the coupling
step, PaDOA solves an MILP which allows for application to problems of the
form:

min
x,z

N∑
i=1

f i (xi , zi )

s.t. ∀i ∈ {1, . . . , N },
xi ∈ Xi ,

zi ∈ Zi ,
N∑
i=1

Ai xi + Bi zi = c,

(3.12)

whereX = X1 × · · · ×XN and conv(Z) = conv(Z1 × · · · ×ZN ) are polytopes.

Remark 3. Note that the coupling constraint Ax + Bz = c is completely
general. Suppose that some (integer or real-valued) variables w are coupled
via the inequalities Dw ≤ k.One can then include an additional auxiliary
variable w′ and reformulate the coupling inequality as Dw + w′ = k, with
appropriate constraint on w′.

8 For an intuition of this phenomenon consider how small changes to constraints in integer
programming will either have no impact on the solution or a large one, depending on whether
an integer feasible point is gained/lost in the change.
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The main idea of PaDOA is to construct piecewise lower bounding functions
Θ?i (x?, z?) which together form a piecewise affine lower bound on the ob-
jective function f . This lower bounding function together with the coupling
constraints forms anMILP, which is solved by the central coordinator to update
the integer solution z ← z+.

One way to construct functionsΘ?i : X ×Zi → R is by taking a linearization9
of f at the solution to a subproblem of the form:

Vi (z) =min
x,ζi

f i (xi , ζi ) +Ψi (x, z)

s.t. Ax + B̃i z + Bi ζi = c

x ∈ X

ζi ∈ Zi ,

(3.13)

where [B̃i Bi ] = [B1, . . . , Bi−1, Bi+1, . . . , BN , Bi ], and the function Ψi (x, z) is
defined as

∀(x, z) ∈ X ×Z, Ψi (x, z) =
∑
j,i

f j (x j , z j )

and are introduced in order to keep the x-dependence of the remaining sum-
mands, i.e., all objective terms whose index is not equal to i. This is
in analogy to Gauss-Seidel or more general block-coordinate descent meth-
ods [Tse01,Wri15] in the sense that a partial decoupling is obtained by fixing
some of the integer variables while others are optimized.

Notice that if Problem (2.16) is an MICP then the lower bounding functions
Θ?i must satisfy the condition

Vi (z) ≤ min
x∈X,ζ∈Zi

Θ
?
i (x, ζ ) s.t. Ax + B̃i z + Bi ζi = c. (3.14)

In practice the function Θ?i can be stored by maintaining a set of hyperplane
coefficients as explained in detail in Section 2.2.3. Moreover, in order to avoid
the accumulation of too many hyperplanes, one can discard all hyperplanes

9 Specifically, this linearization can be constructed as per (2.20) and the hyperplanes of (2.19) as
defined in Section 2.2.3.
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that are inactive at the optimal solution of the last MILP relaxation, because
this operation does not affect the right hand expression of (3.14).

Given the aforementioned means of constructing lower bounding functions,
PaDOA proceeds according to five main steps: In the first step, the partially
decoupled MICPs of the form (3.13) are solved by using a traditional outer ap-
proximation method. Under the assumption that the original MICP is feasible,
the partially decoupled MICPs are feasible, too. Thus, the outer approxima-
tion solvers will return optimal integer solutions ζ?i and associated piecewise
affine lower bounds Θ?i such that (3.14) is satisfied. The second step updates
the associated upper bound U and the third step updates the piecewise affine
lower bound. In the third step, a large scale MILP problem is solved which
yields a lower bound Θ(x+, z+) on the objective value V? of (3.13). Thus, the
difference between the current upper and lower bounds,

U −Θ(x+, z+) ,

can be used as a termination criterion, which is implemented in the final step
of the algorithm. If the termination is not successful, the integer variables z are
updated, and the algorithm subsequently proceeds to the next iteration. These
steps are summarized in Algorithm 6.
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Algorithm 6: Partially Distributed Outer Approximation (PaDOA)

Input: Initial guess z ∈ Z and a numerical tolerance ε > 0.

Initialization: Set Π = ∅, Θ( ·, ·) = −∞, andU = ∞.

Repeat:
1. Solve for all i ∈ {1, . . . , N } the partially decoupled MICPs

Vi (z) = min
x ,y ,ζi

fi (xi , ζi ) +Ψi (x, z)

s.t.




Ax + B̃i z + Biζi = c

x ∈ X

ζi ∈ Zi

(3.15)

where Ψi (x, z) =
∑

j,i f j (x j , z j ). If (3.15) is infeasible, terminate and return a certifi-
cate of infeasibility. Otherwise, update the set Π ← Π ∪ {ζ?i } and construct a piecewise
affine model Θ?i such that condition (3.14) is satisfied.

2. Update the upper boundU ← min
{
U , V1 (z), . . . ,VN (z)

}
and construct the piecewise

lower bounding function Φ(x, z,Π) as in (2.20).

3. Update the lower bound

∀x ∈ X, ∀z ∈ Z, Θ(x, z) ← max
{
Θ(x, z) , Φ(x, z,Π) , max

i
Θ
?
i (x, zi )

}
4. Solve the MILP problem

(x+, z+) ∈ argmin
x∈X ,z∈Z

Θ(x, z) s.t. Ax + Bz = c (3.16)

5. IfU −Θ(x+, z+) ≤ ε, terminate. Otherwise, update z ← z+ and go to Step 1.
Output: (x+, z+).

Notice that the main difference between Algorithm 4 and Algorithm 6 is
the introduction of partially decoupled MICP problems that can be solved
separately and which contain much fewer integer variables than the original
MICP. The theoretical results in Section 3.2.1 will elaborate further on the
benefits of this alternation strategy. Moreover, in Section 3.2.3 a numerical case
study is examined which illustrates the practical advantages of Algorithm 6.
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3.2.1 Convergence Analysis

In this section we provide a concise overview of the convergence properties of
Algorithm 6. Namely, that for a class of MICPs, Algorithm 6 converges to the
global solution after finitely many iterations, and after just a single iteration if
initialized at the optimal solution.

The following theorem establishes the fact that Algorithm 6 converges after
a finite number of iterations under exactly the same conditions under which
convergence of Algorithm 4 can be established.

Theorem 3. For MICP (3.12), Algorithm 6 terminates after a finite number of
steps.

Proof. We may assume that the coupled equality constraint is feasible, as
infeasibility would be detected immediately in Step 1 of Algorithm 6. Similar
to the proof of Theorem 2, the main idea is to show that the cardinality of the
set Π increases in every iteration of Algorithm 6 under the assumption that the
termination criterion is not satisfied. Let us assume that the integer solution
z+ from Step 1 satisfies z+ ∈ Π. Then we have

U ≤ Vi (z+)
(3.14)
≤ min

x∈X,ζ∈Zi ,Ax+B̃i z+Biζi=c
Θ
?
i (x, ζ ) .

Furthermore, by the construction of Θ in Step 3 we also have

min
x∈X,ζ∈Zi ,Ax+B̃i z+Biζi=c

Θ
?
i (x, ζ ) ≤ min

x∈X,z∈Z,Ax+B̃i z+Biζi=c
Θ
?(x, ζ ) = Φ(x+, z+) ,

for all i. Putting these inequalities together yields U − Φ(x+, z+) ≤ ε , a
contradiction to our assumption that the termination criteria are not satisfied.
Thus, it must be the case that z+ < Π. However, the cardinality of Z is finite
and thus this process can only repeat finitely many times. It follows that the
termination criteria of Algorithm 6 must be satisfied in a finite number of
iterations. �

Although finite convergence is a useful property, the actual number of iterations
is upper bounded only by the number of integer feasible points. For many
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MIPs, this can be more than the number of atoms in the universe.10 However,
a stronger convergence property can also be proven for Algorithm 6. If the
initial guess is chosen as z = z?, where z? is an optimal solution of (3.12),
then Algorithm 6 converges after just one iteration. This is a property which
is not shared by Algorithm 4, from which Algorithm 6 is based.

Theorem 4. Let (x?, z?) be a minimizer of MICP (3.12). If Algorithm 6 is
initialized with z = z? then the termination criterion in Step 4 is satisfied. In
other words, the algorithm terminates after one step.

Proof. Let V? =
∑N

i=1 f i (x?i , z?i ) denote the optimal value of (3.12). If Prob-
lem (3.12) is an MICP, then the partially decoupled optimization problems are
all feasible and return piecewise affine lower bounds that satisfy the termination
condition (3.14) with Vi (z?) = V?, i.e., we have

V? ≤ min
x∈X ,ζ∈Zi

Θ
?
i (x, ζ ) s.t. Ax + B̃i z? + Bi ζ = c (3.17)

for all i ∈ {1, . . . , N }. By construction, the function Θ is an upper bound on
Θi (for any i), and thus

min
x∈X ,ζ∈Zi ,Ax+B̃i z?+Biζi=c

Θ
?
i (x, ζ ) ≤ min

x∈X ,z∈Z ,Ax+Bz=c
Θ(x, z) = Θ(x+, z+) ,

where (x+, z+) denotes the solution of from Step 4 of Algorithm 6. By
substituting the above inequalities we find that

V? ≤ Θ(x+, z+) .

and thus it follows that

U −Θ(x+, z+) = V? −Θ(x+, z+) ≤ ε .

Thus, the termination condition is satisfied and Algorithm 6 terminates after
the first step. �

10 It is easy to verify that a MIP with over 273 binary variables has over 1082 integer-feasible
points.
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Recall from Section 2.2.1 that other global optimization algorithms, such as
branch-and-bound, often find a global solution quite quickly and then spend a
considerable amount of time proving optimality. This makes the statement of
Theorem 4 to be of fundamental relevance and a very favourable property of
PaDOA. In fact, Theorem 4 implies that global optimality of a point z? ∈ Z can
be verified by solving the N instances of the partially decoupled MICPs and
the master MILP (3.16). Notice that this result is not in conflict with existing
results from the field of complexity theory, because the master MILP (3.16)
remains NP-hard [GJ79,MK87].

Remark 4. One limitation of Algorithm 6 is that it is only applicable to
MICPs, due to the requirement that the lower level solvers return piecewise
level modelsΘi , which satisfy the termination condition (3.14) (this assumption
is only reasonable if strong duality holds) and which need to be global lower
bounds on f . These properties are in general not satisfied if one considers
more general non-convex MINLPs. The result of Theorem 4 relies heavily on
the convexity of the functions f i on the convex hull of Xi × Zi , although this
fact is not highlighted explicitly in the proof.

3.2.2 Case Study – Battery Scheduling

Once againwe shall use themixed-integer formulation of the battery scheduling
problem presented in Section 3.1.2 as means of benchmarking. The battery
scheduling problem is scalable both spatially and temporally, and fits perfectly
into the class of problems for which Algorithm 6 is applicable, making it
an excellent benchmark problem. For consistency, the same constraints, PV
production, and load consumption data are used as in Section 3.1.2. The results
of Algorithm 6 with a termination tolerance of ε = 10−3 are compared in Table
3.8 against those of Bonmin.

While Bonmin does terminate for each problem instance, it does not always
do so successfully. As in Table 3.2, the N/A values in the fPaDOA/ fBonmin

column indicate where the centralized solver fails to return a solution within
1000s.

In the cases where Bonmin does converge, it returns approximately the same
solution as Algorithm 6. There are multiple solutions to Problem (3.10) and
it is worth noting the flatness of the solutions returned by Algorithm 6. This
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Table 3.8: Results obtained for Problem (3.10).

N T Bonmin Alg. 6 Alg. 6 fPaDOA

Time (s) Time (s) Iter. fBonmin

2 2 0.1533 0.2611 1 1.000
12 2 0.3335 0.4085 8 1.000
2 12 0.2742 1.2763 16 1.003
54 2 0.7612 0.9183 10 N/A
2 48 1.3299 0.2544 1 N/A
12 12 1.8344 2.5633 5 N/A
12 48 1,6787 55.541 42 N/A
54 12 17.1634 399.47 76 N/A
54 48 > 1000 500.89 60 N/A

linearity is likely due to the way in which PaDOA uses hyperplanes to reach
and verify a solution. As an example, the trajectory for the instance N = 2,
T = 48 is depicted Figure 3.9. Such solutions do have an advantage in
practical implementation as they require less precise and constant controls of
the batteries.

3.2.3 Case Study – Thermostatically Controlled Loads

As a second benchmark example for Algorithm 6, the problem of thermostati-
cally controlled loads is used. Like battery scheduling, it is also scalable both
spatially and temporally, and has several parameters which can change the
shape of the objective function. It is an important problem in the planning and
operation of a heating and/or cooling system and involves the scheduling of
so-called Thermostatically Controlled Loads (TCLs). These are devices that
regulate the temperature of a room or building within a certain user-defined
interval known as a “deadband.” By taking future temperature and electricity
costs into account, the heaters/coolers can be designed to coordinate and oper-
ate more efficiently than they would by following a simple control scheme that
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Figure 3.9: Comparison of Bonmin (blue) and PaDOA (red) results. (Top) The average power
flow to/from the batteries. The dashed yellow line corresponds to the local power
generation/demand. (Bottom) The average energy stored in the batteries.

activates when the deadband is reached. Schematics for two possible problems
are illustrated in Figure 3.10.

The optimal operation strategy is especially difficult to determine when a
non-constant cost function is introduced for a population of heterogeneous
TCLs [ZKF+12]. Although the cost function is typically taken to be the cost of
electricity, it can also be used to represent user-discomfort from temperatures
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Figure 3.10: Two room configurations with controlled cooling elements ui , ambient temperature
Tamb and initial temperatures Ti (0).

that deviate from the setting but are still within the deadband. This can be a
useful addition that distinguishes solutions with equal monetary cost, but more
temperature fluctuation.

The controllable elements are modelled with an “on” and an “off” setting and
thus the resulting scheduling problem is a binary MIP with R regions and a
discretized time horizon H , consisting of hour-long time steps:

min
T ( ·),u ( ·)

H−1∑
t=0

c(t)u(t) + γ(Ti (t) −Tre f (t))2, (3.18a)

subject to ∀i ∈ {1, . . . , R},

T i ≤ Ti (t) ≤ T i , ∀t ∈ {0, . . . , H } (3.18b)
ui (t) ∈ {0, 1}, ∀t ∈ {0, . . . , H − 1} (3.18c)
∀t ∈ {0, . . . , H },
Ti (t + 1) = Ti (t) (3.18d)

+ biui (t) + ai
*
,

Ti (t) +Tamb (t) +
∑

j ∈Ni
Tj (t)

|N (i) | + 2
−Ti (t)+

-
,

where c(t) is the vector of device costs at time t, γ is a comfort parameter,
T i and T i are the deadband temperature limits of device i, ai and bi are heat
transfer parameters, Tamb (t) is the ambient temperature at time t and N (i)
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are the number of regions neighbouring i. The equations in (3.18) are based
on the formulation given in [KMC11], but with linear dynamics modelling
the interaction between each region. Specifically, Equation (3.18d) takes an
average of the current and surrounding temperatures to update the temperature
of the next time step. As the temperature for each room is more influenced
by past temperatures than neighbouring rooms, Problem (3.18) is partitioned
spatially for Algorithm 6, with each room in its own partition.

Sections 3.2.3, 3.2.3, and 3.2.3 present results for first, second, and fourth
order variants of Problem 3.18. Regardless of the order of the problem, each
problem instance with R rooms and H time steps contains R(H + 1) real-
valued variables and RH discrete variables. The results of Sections 3.2.3,
3.2.3, and 3.2.3 use ambient temperature taken from [Deu17] for two days in
June 2017 in the Karlsruhe (Germany) area. High prices of $25.67/kW are
set from 2pm to 8pm (time steps 6 to 12 and 29 to 35) with low and medium
prices of 2.46cents/kW and 4.62cents/kW in all other time steps. Each region
is initialized at 20 degrees with ai = 0.2 and bi = −2.

Results for MILP

If the comfort parameter γ is taken to be zero then Problem (3.18) is linear
and partially separable with affine coupling in both its discrete and real-valued
variables. Shown in Tables 3.9 and 3.10 are the simulation results for each
configuration, respectively. The results of Algorithm 6 are compared with
results obtained from a B&B approach as implemented in Bonmin with default
settings [BBC+08] as well as the commercial MIQP solvers Gurobi [Gur19]
and CPLEX [IBM19]. An example solution for the 3 room case is depicted in
Figure 3.11.

At first glance, the results from Tables 3.9 and 3.10 may seem surprising since
the 4 room case has more space to keep cool but nonetheless is able to do so
at a lower cost than the 3 room case. This is due to an insulation effect that the
4 room configuration enjoys. With the activation of two coolers in the first six
time steps, the room temperatures can stay within their deadbands for the entire
48 hour period. In contrast, the 3 room configuration is more susceptible to
the ambient temperature and requires more use of the coolers. This also seems
to have increased the computational complexity of the problem and requires
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Figure 3.11: The solid lines are the state trajectories for 3 rooms and 48 time steps, with activations
highlighted by stars. The red dotted and blue dotted lines are the ambient temperature
and deadband, respectively.

Table 3.9: Results for Problem (3.18) with 3 rooms.

Time steps: 8 24 48 62
obj. 0 13.86 16.32 21.23

Alg. 6 time(s) 0.15 0.20 0.89 5.23
iter. 2 1 2 2

B-OA obj. 0 13.86 16.32 21.23
time(s) 0.15 31.06 1,345 52,395

B-BB obj. 0 13.86 16.32 21.23
time(s) 0.15 29.19 480.27 828.08

Gurobi obj. 0 13.86 16.32 21.23
time(s) 0.22 0.56 0.85 4.39

CPLEX obj. 0 13.86 16.32 21.23
time(s) 0.07 0.16 0.54 2.81
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Table 3.10: Results for Problem (3.18) with 4 rooms.

Time steps: 8 24 48 62
obj. 0 9.24 9.24 11.69

Alg. 6 time(s) 0.17 0.25 0.39 1.41
iter. 2 2 2 2

B-OA obj. 0 9.24 9.24 11.69
time(s) 0.14 28.34 48.42 1,610

B-BB obj. 0 9.24 9.24 11.69
time(s) 0.18 33.11 56.83 822.48

Gurobi obj. 0 9.24 9.24 11.69
time(s) 0.22 0.37 0.51 1.08

CPLEX obj. 0 9.24 9.24 11.69
time(s) 0.07 0.09 0.11 0.48

more time for the 3 room case to be solved than the 4 room case. It should
be noted that several initializations were tested and the solution times were
not significantly affected, implying that this was not the cause of the runtime
differences in the two cases.

One of the advantages of using a distributed method is the ability to solve
problems that would be otherwise intractable for a centralized solver. Tables
3.9 and 3.10 show results for cases containing up to 496 variables, but even
larger problems may be considered. To this end, Table 3.11 shows results
for more rooms. Here, the room configuration is instead arranged such that
the rooms are in a line. While unrealistic for most buildings, this setup is
realistic for the temperature control of a train or rooms next to a corridor.
Mathematically, this example differs somewhat from the other two. While
the other problems have a significant amount of coupling between the control
variables, that is not the casewith such a long room configuration. This sparsity
allows for Algorithm 6 to outperform both Gurobi and CPLEX (applied to the
centralized problem).
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Table 3.11: Results for Problem (3.18) with a linear room configuration.

R : 10 12 18 20
H : 48 36 24 24
obj. 37.26 41.88 50.82 55.44

Alg. 6 time(s) 9,127.5 8,294 853.7 16,658
iter. 2 2 2 2

B-OA obj. N/A N/A N/A N/A
time(s) N/A N/A N/A N/A

B-BB obj. 37.26 41.88 50.82 55.44
time(s) 3,076.0 3,261.5 2,999.1 4,658.4

Gurobi obj. N/A 41.88 50.82 N/A
time(s) N/A 56,842 31,926 N/A

CPLEX obj. 37.26 41.88 50.82 N/A
time(s) 13,416 12,885 57,108 N/A

For the entries which include N/A, the algorithm failed to return a solution
within the time limit of 245,000s.

Results for MIQP

As in Section 3.2.3, Problem (3.18) is solved for a variety of room configura-
tions. However, the results in this section are with a comfort parameter γ = 1.11
This choice substantially changes the problem at hand since Problem (3.18) is
now a convex MIQP rather than an MILP. The results for this new problem as
obtained by Algorithm 6, Bonmin, Gurobi, and CPLEX are shown in Tables
3.12, 3.13, and 3.14 for the 3, 4, and multi-room scenarios, respectively.

11 This value was chosen to be one to allow for an equal weighting of comfort and cost.

75



3 Algorithms for Distributed Mixed-Integer Optimization

Table 3.12: Results obtained for Problem (3.18) with a 3-room configuration.

Time steps: 8 24 48 62
obj. 17.83 60.15 104.07 134.43

Alg. 6 time(s) 0.24 0.49 1.36 3.17
iter. 4 3 3 3

B-OA obj. 17.83 60.15 104.07 134.43
time(s) 4.36 46.94 399.49 1,702.60

B-BB obj. 17.83 60.15 104.07 134.43
time(s) 9.09 70.40 502.76 1,152.90

Gurobi obj. 17.83 60.15 104.07 134.43
time(s) 0.44 0.50 0.66 0.83

CPLEX obj. 17.83 60.15 104.07 134.43
time(s) 0.19 0.27 0.25 0.54

Shown in Figure 3.12 are the trajectories obtained for the three-room sce-
nario with a temperature deviation penalization. In contrast to Figure 3.11, a
quadratic penalty term is used to model discomfort caused by deviations from
the set temperature. Indeed, the solution with γ = 1 yields a trajectory with a
similar number of activations as when γ = 0 but with temperature trajectories
that stay much closer to the middle of the deadband.

Interestingly, the results of Tables 3.12, 3.13, and 3.14 are generally obtained
more quickly than in the MILP case of Section 3.2.3, even though one might
expect the higher order problem to be more difficult to solve. The most likely
explanation for this phenomenon is that the MIQP is better conditioned with a
unique minimizer. This makes proving the optimality of a given point much
easier for a B&B algorithm than it is for a problem where many of the nodes
in the decision tree have the same or similar values. In contrast, Algorithm 6
converges quite quickly for the MILP case since it is under-approximating a
linear problem with linear functions and thus can prove optimality quickly and
with few iterations. More supporting hyperplanes are needed in the MIQP
case and thus we see a couple more iterations and a slightly longer runtime for
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Table 3.13: Results for Problem (3.18) with 4-rooms.

Time steps: 8 24 48 62
obj. 21.68 52.26 99.68 134.43

Alg. 6 time(s) 0.37 0.65 8.82 31.07
iter. 5 3 3 4

B-OA obj. 21.68 52.26 99.68 134.43
time(s) 14.61 6.78 613.95 7,024.10

B-BB obj. 21.68 52.26 99.68 134.43
time(s) 30.39 11.13 661.95 1,495.30

Gurobi obj. 21.68 52.26 99.68 134.43
time(s) 0.41 0.54 0.72 2.31

CPLEX obj. 21.68 52.26 99.68 134.43
time(s) 0.15 0.16 0.41 2.15
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Figure 3.12: Trajectories are defined as in Figure 3.11 for the three room scenario, except with
comfort parameter γ = 1.
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Table 3.14: Results for Problem (3.18) with a linear 7 room configuration.

Time steps: 8 24 48 62
obj. 39.50 112.08 201.19 267.04

Alg. 6 time(s) 1.57 2.55 260.2 1022.38
iter. 4 3 4 3

B-OA obj. 39.50 112.08 N/A N/A
time(s) 358.12 1,833.9 N/A N/A

B-BB obj. 39.50 112.08 201.19 267.04
time(s) 593.17 955.77 6,095.6 15,582

Gurobi obj. 39.50 112.08 201.19 267.04
time(s) 0.95 0.72 10.83 65.59

CPLEX obj. 39.50 112.08 201.19 267.04
time(s) 0.93 0.77 6.53 17.50

Algorithm 6. As shown in Figure 3.13, the upper and lower bound converge
quite quickly for the MIQP case, but require several iterations to refine the
solution.

It is also worth noting that the majority of the runtime used by Algorithm
6 for the MIQP problem instance is spent in the MILP coupling step. A
breakdown of the runtime per iteration is reported in Table 3.15. This may
imply that quadratic under-approximating functions and an MIQP coupling
step could actually be more efficient for certain problems than the current
implementation with affine supporting hyperplanes. This would also have the
added benefit of allowing for applicability to a larger problem class.

Results for Higher Order MICP

One of the advantages of Algorithm 6 is that it is applicable to a relatively
large class of problems. While Section 3.2.3 shows favourable results for both
Gurobi and CPLEX, if the problem were adjusted slightly such that it were
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Figure 3.13: Progression of the upper and lower bounds during each iteration while solving the
2nd -order version of Problem 3.18 with 7 rooms and 48 time steps. The blue line
depicts the progression of the upper bound and the red shows that of the lower bound.

Table 3.15: Runtime breakdown of Algorithm 6 applied to the 2nd -order version of Problem 3.18
with 7 room TCL problem with 48 time steps.

Iter. 1 Iter. 2 Iter. 3 Iter. 4
MINLP time (s) 0.27 0.20 0.20 0.20
MILP time(s) 2.20 86.89 82.62 87.62

Hyperplane time (s) 0.001 0.005 0.002 0.002

no longer an MIQP then these solvers would no longer be applicable. For
example, if the objective function of Problem (3.18) were replaced with

min
T ( ·),u ( ·)

H−1∑
t=0

c(t)u(t) + γ(Ti (t) −Tre f (t))4,

then it would still be solvable via PaDOA, but not Gurobi or CPLEX. The
results for a variety of such problem configurations are shown below in Table
3.16.
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Table 3.16: Results obtained for Problem (3.18), but with a 4th order objective function.

Alg. 6 Bonmin
Rooms Time steps Obj. Time(s) Iter. Obj. Time(s)

3 8 16.72 4.20 5 16.72 7.51
3 24 76.86 19.14 4 76.86 308.64
3 48 115.62 95.56 3 115.62 547.98
3 62 141.44 405.19 6 141.44 779.41
4 8 21.73 4.35 6 21.73 16.93
4 24 44.94 6.47 3 44.94 9.93
4 48 86.72 151.58 5 86.72 477.60
4 62 120.71 175.78 6 120.71 781.46
7 8 38.41 8.87 7 38.41 374.38
7 24 122.09 34.86 3 122.09 1291.29
7 48 202.54 1,631.6 4 202.54 2,830.93
7 62 263.91 3614.54 4 263.91 9453.89

Note that Algorithm 6 returns the same, global solution as Bonmin, and does
so in less time. The runtime difference is particularly striking for the 7 room
scenarios as these contain the most variables and have the greatest potential
for parallelization.

It is also worth noting that while the majority of the runtime used by Algo-
rithm 6 for the MIQP problem instance is spent in the MILP coupling step,
the majority of the time spent solving the 4th-order problem is instead in the
partially decoupled MINLP subproblems. This implies higher parallelization
potential, and that the linear under-approximating functions are sufficient for
this case. A breakdown of the runtime per iteration for the 4th-order problem
instance is given in Table 3.17.
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Table 3.17: Runtime breakdown of Algorithm 6 applied to the 4th -order version of Problem 3.18
with 4 rooms and 8 time steps.

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6
MINLP time (s) 0.73 0.75 0.67 0.65 0.65 0.66
MILP time(s) 0.03 0.04 0.04 0.04 0.04 0.04

Hyperplane time (s) 0.004 0.006 0.002 0.002 0.002 0.002

3.3 Distributed Branch and Bound

While Section 3.1.1 establishes some convergence properties for Algorithm 5
and Sections 3.1.2 and 3.1.3 demonstrate some promising numerical results,
there are several drawbacks that the method faces. Namely, that the con-
vergence properties are quite restrictive and there is no means of handling
consensus constraints that include integer decision variables. Algorithm 6 is
shown in Section 3.2 to be capable of handling certain MIPs with affinely cou-
pled integer and real-valued variables. Despite the favourable results shown
in Sections 3.2.2 and 3.2.3, Algorithm 6 is limited to MICPs with a polytopic
feasible set. The distributed mixed-integer optimization algorithm described
in this section is designed to address these drawbacks.

The steps of the algorithm are shown inAlgorithm 7, but themain idea behind it
is to followa basicB&Bmethod, as described in Section 2.2.1 except each of the
NLP subproblems are solved using a state-of-the-art distributed algorithm. In
contrast to parallel branch and bound, which seeks to simultaneously investigate
several nodes of the B&B tree [KK84], Algorithm 7 investigates a single node
at a time, but in a distributed, parallelizablemanner. In doing so, it is possible to
be run in a distributed computing context where it is impractical or impossible
to transmit full problem information to a single memory location.

As in Section 2.2.1, the vector Zn is used to denote the integer variables which
fixed and/or relaxed at node n. For a given ordering of individual integer
decisions, the k th element of Zn corresponds to the k th integer variable. If
this element is feasible, then the corresponding integer decision is fixed to
Zn (k) and relaxed otherwise.
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Starting with a candidate node list consisting of the root node S = {0}, an
upper bound U , lower bound L, and a numerical tolerance ε > 0 Algorithm 7
has the following steps:

1. Choose a node n from the candidate node list S. Generate the corre-
sponding vector Zn .

2. Solve NLP(Zn ) =

(2.16) with (2.16c) swapped for



z = Zn if Zn ∈ Z
z ∈ conv(Z ) otherwise

3. If the objective value J?(Zn ) of NLP(Zn ) is below the current upper
bound U , then add the child nodes of n to the set S.

4. Compute new upper and lower bounds U and L.

5. Terminate if U − L is sufficiently small.

Algorithm 7: Distributed Branch and Bound for Affinely Coupled MINLPs

Input: Upper boundU , lower bound L, candidate node set S = {0} and a numerical tolerance
ε > 0.

While S , ∅:
1. Choose a node n ∈ S. Let Zn denote its corresponding vector.

2. (Optional) Predict/verify feasibility of NLP(Zn ). If NLP(Zn ) is feasible, proceed to
Step 3, else go back to Step 1.

3. Solve NLP(Zn ) for J?(Zn ) and z?(Zn ) with a distributed algorithm.

4. If z?(Zn ) is feasible and J?(Zn ) < U , thenU ← J?(Zn ) and proceed to Step 5.
If J?(Zn ) > U proceed to Step 1.
Else add the child nodes of n to S and proceed to Step 5.

5. Update L ← min
ñ∈P (S)

{J?(Zñ ) }, where P (S) denotes the set of parent nodes for a node

set S.
If U − L ≤ ε terminate.
Else proceed to Step 1.

Output: J?(n) and solution z?(Zn ) from NLP(Zn ).
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Remark 5. Note that no explicit branching rules are given in Algorithm 7,
and these must be provided by the user. Fortunately, there has been much
research dedicated to the development and refinement of B&B heuristics and
techniques. Some examples of which can be found in [Cla99b]. Section 4.2.3
can also assist in this regard, if sufficient a priori knowledge of the problem is
available.

3.3.1 Convergence Properties

As with standard B&B, Algorithm 7 tests every feasible integer point at most
once and thus is guaranteed to terminate in a finite number of iterations.
However, as shall be shown in Sections 3.3.3 and 3.3.4, Algorithm 7 typically
terminates much earlier. As mentioned in Section, 2.2.1 this is due to the fact
that, rather than enumerating each of these integer-feasible points of the MIP
and solving using brute force, B&B can solve the problem more efficiently
by navigating a decision tree made up of nodes which correspond to NLP
subproblems where some integer decisions are fixed and others are relaxed.

The distributed structure of Algorithm 7 results in an iterative method nested
inside another iterative method and hence, would be expected to converge quite
slowly as a result. There are several ways in which this issue can be alleviated,
such as warm starting primal and dual variables from the solutions of previous
similar subproblems, or using a method to first determine the feasibility of the
subproblem.

Furthermore, if ALADIN is used as the distributed algorithm for the NLP
subproblems, then it is guaranteed to converge monotonically provided that ρ
is properly chosen [HKJD18]. One can then use U and L to allow for early
termination if the objective value f ?

k
of iteration k violates L < f ?

k
< U. One

common feature of distributed optimization algorithms is that their accuracy
and rate of convergence can be influenced by the choice of penalty parameter(s)
and numerical termination tolerance. As shown in Sections 3.3.3 and 3.3.4,
this can be taken advantage of to quickly obtain slightly suboptimal solutions.
This is particularly useful in embedded systems where tight time constraints
are present.
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3.3.2 MICP-Feasibility Algorithm

The runtime of Algorithm 7 is highly dependent on how quickly it can solve its
NLP subproblems. To this end, we present an algorithm for determining the
feasibility of MICPs of the form (3.12). In general, finding a feasible solution
to Problem (3.12) is as difficult as solving it. While some feasibility algorithms
for MIPs have already been developed [BFL07,FL10], they are all centralized
methods and are generally inapplicable to a distributed computing context
where problem information may not be globally accessible. The coupling
constraint Ax + Bz = c is the key challenge when determining feasibility of
Problem (3.12) in a decentralized manner, and some method for determining
feasibility of this global constraint using only local information is required.
First, let us introduce an algorithm for determining the feasibility of an MICP
in a centralized manner. Shown in Algorithm 8 is such a method.

Algorithm 8: MICP feasibility solver

Input: A ∈ Rn ×R` , B ∈ Rm ×R` ,C ∈ R` , and feasible set X × Z ⊂ Rn ×Zm .

Initialize: Z = ∅.

1. Solve the matrix equation for (x, z) ∈ Rn ×Zm

[
A B

] 

x

z


= C (3.19)

If there is no point in Rn ×Zm that satisfies (3.19) then FALSE.

2. If Z = Z then FALSE. Otherwise, for some z′ ∈ Z − Z such that (3.19) is satisfied,
calculate the set

x(z′) = {x ∈ Rn |
[
A B

] 

x

z′


= C }

and update Z← Z∪ z′.

3. Apply the Gilbert-Johnson-Keerthi distance algorithm [GJK88] to x(z′) ∩G, where
G = {(x, z) |x ∈ X, z ∈ Z}.
If x(z′) ∩G , ∅, then TRUE. Otherwise, proceed to Step 2.

Output: TRUE or FALSE

An visualization of Algorithm 8 is given in Figure 3.14.
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3.3 Distributed Branch and Bound

Figure 3.14: A visualization of an iteration of Algorithm 8 for a problem of the form (3.12).

The algorithm begins in Step 1 by solving a relaxation of the feasibility problem
and can be useful if Ax + Bz = C is dense or has a high rank. If there is
anothermeans of characterizing the points that satisfy the consensus constraints
Ax + Bz = C then it may be applied as an alternative. For example, if A = 0
then the consensus constraints form a linear Diophantine system of equations,
for which polynomial-time algorithms are available for obtaining all integer
solutions [Fru77].

Algorithm 8 mostly consists of algebraic operations to construct the sets x(z′)
and the GJK algorithm, with Gaussian elimination available as an option to
quickly determine infeasibility. It is important to note that the GJK algorithm
requires the input convex sets to be of a particular shape in order to achieve
the best performance. For example, if the convex set G in Step 3 is neither
polytopic nor spherical, then it may be necessary to first create a polytopic
approximation of the set.

As is shown in Section 3.3.2, if the consensus constraints have a high rank then
Algorithm 8 ultimately turns into several applications of the Gilbert-Johnson-
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Algorithm 9: Gilbert-Johnson-Keerthi Distance Algorithm

Input: Compact convex sets P ⊂ Rn andQ ⊂ Rn , and initial points y1, . . . , ym ∈ Y = P −Q
such that 1 ≤ m ≤ n + 1.
Initialize: V0 = {y1, . . . , ym } and k = 0.

1. For some set {λ1, . . . , λm } such that λ i > 0 for all i and
∑m

i=1 λ
i = 1, calculate:

vk =

m∑
i=1

λ i yi .

2. If |vk |2 + hY (vk ) = 0,
where hY (vk ) = max{x · vk |x ∈ Y }, then terminate.
Otherwise, continue to Step 3.

3. Set Vk+1 = V̂k ∪ {sY (−vk ) },
where V̂k ⊂ Vk has at most n elements and satisfies vk ∈ conv (V̂k ), and sk (−vk ) ∈ Y
satisfies
hY (vk ) = sY (−vk ) · −vk .
Finally, update k ← k + 1 and proceed to Step 1.

Output: vk .

Keerthi (GJK) distance algorithm. The interested reader can find details on
GJK algorithm in [GJK88], however it is summarized in Algorithm 9.

Computational Complexity

The overall complexity of Algorithm 8 primarily depends on the construction
of the sets x(z′), the arithmetic complexity of the GJK algorithm, and the
number and dimension of the subspaces computed in Step 2.

Suppose that there are M points z′ ∈ Zm such that ∃x ′ ∈ Rn and (x ′, z′)
satisfies (3.19). Additionally, let νi be the dimension of each of the subspaces
x(z′i ) for i ∈ {1, . . . , M }. In Step 2, the construction of each set has complexity
ν2i and thus, the overall Step has complexity

∑M
i=1 ν

2
i . Likewise, each appli-

cation of the GJK algorithm has complexity n +m, as n +m is the dimension
of [A B]. Thus, Algorithm 8’s overall arithmetic complexity will be bounded
above by O(n3) + M max{ν21 , . . . , ν

2
M } + n.
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3.3 Distributed Branch and Bound

In principle, M can be quite large. If Z has dimension m, then M ≥ 2m
and Algorithm 8 has non-polynomial complexity. As the NP-completeness
of integer programs has been established, this is hardly surprising [PS82].
However, if the consensus constraints form a low-dimensional subspace in
Rn ×Zm , then Algorithm 8 becomes efficient. For example, if rank (B) =
m − 1 then the consensus constraints form a linear subspace and Algorithm 8
will have computational complexity O(n3).

Decentralized Variant

Notice that each step of Algorithm 8 is parallelizable. Indeed, a decentralized
variant of the algorithm can be constructed given that the coupling matrices
are decomposed column-wise into A = [A1, . . . , Ak ], B = [B1, . . . , Bk ], and
C = [C1, . . . ,Ck ]>. Step 1 can then be solved via accelerated projection based
consensus [ARLAH19]. For N processors, this algorithm consists of first
applying the following update rule for each processor i:



xi
zi


←



xi
zi


+ γPi

*.
,



x
z


−



xi
zi


+/
-

along with the master problem:



x
z


←

ν

N

N∑
i=1



xi
zi


+ (1 − ν)



x
z



where γ ∈ R and ν ∈ R are chosen parameters, and

Pi = I − [Ai Bi ]
>

(
[Ai Bi ][Ai Bi ]

>
)−1

[Ai Bi ]

is the projection matrix onto the nullspace of [Ai Bi ].

Likewise, Step 2 can be performed using a similar decomposition. Step 3 can
also be performed in parallel, provided that a decomposition of X ×Z into
X1 × · · · × XN ×Z1 × · · · ×ZN is possible. Assuming such a decomposition,
Step 3 proceeds to calculate xi (z′i ) ∩Gi , where Gi = Xi ×Zi for i = 1, . . . , N .
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Remark 6. As written, Algorithm 8 only returns an indication of whether or
not the given optimization problem is feasible. However, it is possible to use it
in order to obtain an explicit feasible point (x ′, z′) where z′ is the solution of
Step 2 and x ′ is the solution of the GJK algorithm applied to x(z′) ∩G in Step
3.

3.3.3 Case Study – Battery Scheduling

As a first benchmark example we shall consider the problem formulation
presented in Section 3.1.2. Recall that this problem is generally an MIQP,
without any coupling between integer variables, and with integer decisions for
every battery and time step. The cost function is relatively flat, and many
solutions have near optimal objective values. This makes the problem difficult
to solve in a B&B framework since many of the nodes in the decision tree
will have the same or similar values. Nonetheless, Algorithm 7 can still be
applied to this problem and its results are shown in Table 3.18. As each of
the NLP subproblems are convex, ADMM is used as the distributed algorithm,
due to its ease of implementation and convergence guarantees for this class
of problems.12 An iteration limit of 1000 is used for both algorithms, with a
termination tolerance of ε = 10−3 for Algorithm 7.

Recall that ADMM can sometimes require many iterations before converging
to an optimal solution, depending on how the parameters are initialized and
updated. Thus, when an iteration limit (or other stringent termination criteria)
are set, then ADMMmay return a suboptimal value. This is the case for some
subproblems solved by Algorithm 7, and the reason for it’s suboptimality in
certain in most problem instances. In the largest case, with 54 batteries and 48
time steps, Algorithm 7 terminates after the limit of 1000s without a feasible
solution. Even for the smallest case where an optimal solution is returned in
the time limit, Algorithm 7 still requires much more time than the centralized
algorithm.

The results of Table 3.18 demonstrate some of the limitations of the current im-
plementation of Algorithm 7. Despite having the potential for parallelization,

12 If the NLP in Step 1 of Algorithm 7 is non-convex, then ADMM may fail to converge and a
more advanced algorithm, like ALADIN may be needed.
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Table 3.18: Results obtained for Problem (3.10).

N T Bonmin Alg. 7 Alg. 7 fDB&B

Time (s) Time (s) Iter. fBonmin

2 2 0.1533 26.079 41 1.000
12 2 0.3335 0.8147 1 2.591
2 12 0.2742 > 1000 931 2.9013
54 2 0.7612 0.6114 1 2.7649
2 48 1.3299 > 1000 686 1.3925
12 12 1.8344 1.1852 1 2.2002
12 48 1,6787.0 62.323 38 2.6006
54 12 17.1634 1.7890 1 2.5921
54 48 > 1000 > 1000 171 N/A

good convergence properties, and applicability to a broad class of problems,
Algorithm 7 performs relatively poorly on the battery scheduling problem in
comparison with Algorithm 5 and Algorithm 6.

3.3.4 Case Study – Abstract MIQP

As a second benchmark example we consider MIQPs of the following form:

min
x,z

N∑
i=1

a1(xi + zi )2 + a2x2i + a3xi + a4zi

subject to, Ax + Bz = 0, and ,∀i ∈ {1, . . . , N } :

b1x2i + 2xi zi + z2i + b2xi + b3zi ≤ b4,
− 3 ≤ xi ≤ 3,
zi ∈ {−1, 0, 1}.

(3.20)

where a1, a2, a3, a4, b1, b2, b3, b4 ∈ R.
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Problem (3.20) is solved for a variety of parameters using prototypical imple-
mentations of a centralized B&Bmethod, and Algorithm 7. To solve the NLPs
of Step 1, Algorithm 7 uses ADMM to perform the step in a distributedmanner,
and IPOPT is used to solve the NLP subproblems. A numerical termination
tolerance of ε = 10−3 is used in all cases.

The simulation results are shown in Table 3.20. All of the respective problems
are generated such that Problem (3.20) are MICPs. The implemented branch-
and-bound algorithm starts with a depth-first branching strategy to obtain an
upper bound and then seeks to improve the lower bound as quickly as possible.
The ADMM subalgorithm of Algorithm 7 uses initial ρ = 0.1 f (x0, z0), where
x0 and z0 are the solution of the previous subproblem. The parameter ρ is
updated according to the rule shown in (3.21). There are many alternative
methods for improving the convergence of ADMM via update rules for the
penalty parameter ρ [HYW00,WL01], however it is observed that the rule:

ρ←




2ρ if | |rk | |22 > | |rk−1 | |
2
2 ,

0.5ρ if ∆ fk > ∆ fk−1,
1.02ρ else

(3.21)

results in relatively fast convergence of the primal residual r .13

For the results displayed in Table 3.20, the discrepancy in number of iterations
is due to an iteration of Algorithm 7 being found to be integer feasible, while
the IPOPT solution for the same subproblem in the standard B&B algorithm
are off by 10−8, and thus the upper bound is not updated and the centralized
B&B algorithm continued. Without this upper bound, less nodes are able to
be pruned and it takes longer for standard B&B to terminate with U − L ≤ ε.
The difference in time per iteration is dependent on how quickly ADMM
can converge, which itself is highly dependent on the choice of ADMM pa-
rameters [GTSJ15,LFPL15,Bol13]. Figure 3.15 illustrates this phenomenon.
Overall, Table 3.20 reflects other results in distributed mixed integer optimiza-
tion which show great speed-up for poorly condition problems, but less so for
well-conditioned problems [MFH+20].

13 Where ∆ fk = f (xk , zk ) − f (xk−1, zk−1).
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Table 3.19: Instances of Problem (3.20) used to benchmark the performance of Algorithm 7.
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Table 3.20: Results obtained for Problem (3.20) with the parameters of Table 3.19.

Alg. 7 B&B
Prob. obj. iter. time (s) obj. iter. time (s)
1 -0.749 2 0.887 -0.75 4 2.044
2 -2.5 181 64.649 -2.5 181 63.418
3 -88.833 15 3.776 -88.833 11 4.040
4 -6.514 4 1.120 -6.514 78 28.390
5 -10 5 0.741 -10 116 27.199
6 0 5 0.740 0 29 5.250
7 0 12 3.949 0 80 85.361
8 0.180 60 15.279 0 64 26.001
9 -17.321 9 1.358 -17.321 195 > 100
10 -523.607 4 0.977 -523.607 4 0.420
11 -37.272 3 0.578 -37.321 3 0.416
12 -0.0015 44 5.563 -0.0015 45 6.593
13 -134.105 111 51.782 -146.834 81 64.388
14 -0.00047 44 6.154 -0.00047 45 64.388
15 -0.001 59 8.471 -0.001 60 7.105

3.4 Summary and Comparison

All of the algorithms presented in this chapter have different properties, with
varying strengths and weaknesses. For example, although Mixed-Integer AL-
ADIN has weak convergence and optimality properties it still demonstrates
good results for a wide class of problems. On the other hand, PaDOA has
excellent convergence properties but is more limited in applicability and only
sees its best results for MILPs and higher order convex MINLPs. Finally, Dis-
tributed Branch & Bound is fully distributed and applicable to a wide range of
problems; it has excellent theoretical convergence and optimality guarantees,
however in practice its performance is somewhat lacklustre. Table 3.21 lists
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Figure 3.15: An illustrative example of the iterates of ADMM. The solid blue line corresponds to
a constant ρ = 0.4 f (x0), the dashed purple line corresponds to ρ = f (x0), and the
dotted red line corresponds to ρ = 4 f (x0). (Top) The objective value of the primal
iterates xk . (Bottom) The primal residual | |rk | |22 = | |Axk − b | |

2
2 .

the properties and highlights the differences between each of the algorithms
from this chapter in more detail. Each of these algorithms is applicable to the
battery scheduling problem, and these results are compared in Table 3.22.
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Table 3.21: Properties of Mixed-Integer ALADIN, PaDOA, and Distributed Branch & Bound.

MI-ALADIN PaDOA D B&B
Problem Class MINLP MICP MINLP

Fully Distributed Yes No Yes
Global Convergence No Yes Yes
Global Optimality No Yes Yes
Integer Coupling No Yes Yes

Table 3.22: Results of Mixed-Integer ALADIN, PaDOA, and Distributed Branch & Bound for
Problem (3.10).

N K Bonmin Alg. 5 Alg. 5 Alg. 6 Alg. 6 Alg. 7 Alg. 7
Time (s) Time (s) Iter. Time (s) Iter. Time (s) Iter.

2 2 0.153 0.138 9 0.261 6 26.07 41
12 2 0.333 0.237 17 0.408 8 0.814 1
2 12 0.274 0.230 13 1.306 17 1000 931
54 2 0.761 0.165 14 0.918 10 0.611 1
2 48 1.329 0.602 23 3.735 18 1000 686
12 12 1.834 0.244 17 2.563 5 1.185 1
12 48 1,678 0.471 10 55.54 42 62.32 38
54 12 17.1634 0.406 14 0.911 1 1.789 1
54 48 > 3000 1118 72 > 3000 N/A 1000 171
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4 Structure Exploitation and
Problem Partitioning

Chapter 3 has given three Algorithms for exploiting separable and partially
separable problem structure. Each of these algorithms requires the input
problems to already be partitioned and no comment is made on how one ought
to partition the problem for use in a distributed optimization context. This
chapter seeks to offer first steps towards optimal problem partitioning for the
distributed optimization algorithms presented in Section 2.1.2 and Chapter 3.
Additionally, a means of time-wise structure exploitation for mixed-integer
OCPs is presented in Sections 4.2.2 and 4.2.3. Like the distributed algorithms
that have been presented in previous chapters, these methods are meant for
large-scale optimization problems. Unlike the distributed algorithms, they do
so by exploiting some a priori knowledge about the optimal state trajectory
rather than problem decomposition.

4.1 Problem Partitioning

Graph partitioning takes different forms throughout the literature and for the
sake of consistency and rigour, we shall adopt the following definition:

Definition 7. Let G = (V , E,w) be a weighted graph with vertex set V , edge
set E, and edge weights w : E → R. Given an integer k > 1, a k-partitioning
of G is defined as the set

{G1(V1, E1,w1), . . . ,Gk (Vk , Ek ,wk )}

such that

• V1 ∪ · · · ∪Vk = V
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• Vi , Vj , ∀i , j

• |Vi | ≤ (1 + ε)d|V |/ke, for some ε > 0.

If E is the set of edges in E − {E1 ∪ · · · ∪ Ek } then the above partitioning is
considered to be optimal1 if

∑
e∈E w(e) is minimized.

The third condition is known as the balance constraint and uses an imbalance
parameter ε to enforce each partition to have roughly the same number of
vertices.

For k = 2, the graph partitioning problem can be formulated into an MIP as

min
x

∑
e=(i, j )∈E

(x(i) − x( j))2

s.t. x(i) ∈ {−1, 1}, ∀i ∈ V∑
i

x(i) = 0,

where the vector x is defined as x(i) = 1 if node i is in partition G1 and
x(i) = −1 if it is in partition G2. To obtain balanced partitions, the additional
constraint

∑
i x(i) = 0 is required.2 Recall that MIPs are known to be NP-

complete, and so too is the graph partitioning problem, where the existence of
many local solutions is possible.

Likewise, the related problem of graph clustering shall be defined as:

Definition 8. Let G = (V , E,w) be a weighted graph with vertex set V , edge
set E, and edge weights w : E → R. Given k > 1, a clustering of G is defined
as the set

{G1(V1, E1,w1), . . . ,Gk (Vk , Ek ,wk )}

such that

• V1 ∪ · · · ∪Vk = V

1 In a graph-partitioning sense where the objective is to minimize the number of interconnecting
edges.

2 This assumes that the cardinality ofV is even. An alternative can be easily formulated if this is
not the case.
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• Vi , Vj , ∀i , j

The above clustering is considered to be optimal if
∑k

i=1
∑

e∈Ei
wi (e) is maxi-

mized.

In graph clustering, it is common to refer to the edge weights w as the affinity
between pairs of graph nodes. While graph partitioning aims to minimize the
number of edges between partitions, graph clustering seeks to maximize the
affinity of elements within each cluster. The pairwise affinity between nodes
in G is predefined and compiled within an affinity matrix. Thus, provided
that a proper affinity matrix can be constructed, this method is suitable to
problem partitioning. The interested reader can find more information on
graph clustering techniques in [BGW03].

In general, there aremultiple ways to partition a given problem and the question
of how to optimally3 partition a problem for input to a distributed algorithm is
still unanswered. As the partitioned problem is to be input into a distributed
optimization algorithm, one must first consider how a given partitioning could
affect the algorithmic performance. All of the algorithms described in Chapter
3 follow a similar structure: alternation between a parallel step and a coupling
step. The overall runtime R of the algorithm can thus be computed as:

R =
M∑
i=1

min{p1(i), . . . , pn (i)} + s(i)

where s(i) is the time spent in the sequential part of the algorithm on the ith

iteration, n is the number of parallel components, M is the number of iterations,
and pj (i) is the time spent by the j th parallel component at the ith iteration.

One would expect that for Algorithm 5 the sequential time s(i) would be
primarily dictated by the time spent on the QP step in iteration i, while the
parallel time p(i) =

∑M
i=1 min{p1(i), . . . , pn (i)} would be mostly spent on

the decoupled MINLP subproblems at iteration i. Theoretically, s should
primarily depend on the number of edges that connect partitions, where fewer
connections typically results in better performance. Likewise, the size of a
partition should be proportional to its runtime. This motivates the need for

3 Such that runtime or overall iterations until convergence is minimized.
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partitioning methods which can minimize the number of interconnecting edges
while simultaneously balancing the sizes of each partition. These two criteria
perfectly fit the common partitioning problem in graph theory described by
Buluç in [BMS+16], however this conjecture is examined for two power systems
problems in Section 4.1.1.

Most graph partitioning approaches are hierarchical and iteratively split a graph
into two partitions per iteration [NJW02,GHT16a]. Such an approach is called
bi-partitioning, and recursive bi-partitioning can create a k-partitioning, but
is not a computationally efficient means of doing so [SHH+16].4 There are
other methods which take a more wholistic approach to graph partitioning by
directly creating k-partitions rather than relying on recursive bi-partitioning.
Spectral clustering andmulti-level graph partitioning are the twomost common
examples of this approach to graph partitioning.

Spectral clustering, as its name suggests, is designed for the related problem
of graph clustering, however it can also be used to construct k–partitions of a
given undirected graph. In spectral clustering, the partitions are formed via
clustering of the eigenvectors of the affinity matrix. As such, if many elements
are more similar to each other than the rest of the data set then they will be
grouped together. Thus, it is not guaranteed that the sizes of the partitions will
be balanced. Implementations of spectral clustering typically use a k-means
algorithm to perform the clustering of the eigenvectors of the affinity matrix,
where the first k eigenvectors of the affinity matrix are used to generate the
initial means of the k-means algorithm. Given, some initial points, the k-
means algorithm then aims to, for each of the k clusters, minimize the pairwise
squared deviations of each point in the same cluster. The algorithm iteratively
alternates between an assignment step, where each element is assigned to the
nearest mean, and the update step of the means [Mac67,Llo82]. As the results
of the k-means algorithm can change given different initial points, so too can the
partitions of the spectral clustering method. The Spectral Clustering algorithm
is summarized in Algorithm 10.

Multi-level graph partitioning is another technique which can generate bal-
anced partitions. Such methods consist of three main steps: contraction, initial

4 However, there is some evidence that it can make more efficient use of memory resources
[DGE+02].
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Algorithm 10: Spectral Clustering

Input: Affinity matrix A, graph G(V , E ), number of clusters k .

1. Define diagonal matrix D where

Di ,i =
n∑
j=1

Ai , j

and construct the matrix
P = D1/2AD1/2.

2. Construct the matrix V via a concatenation of the eigenvectors corresponding to the k
largest eigenvalues of P.

3. Apply a clustering algorithm, such as k-means, to the rows of V and obtain k clusters.

4. Assign bus i to cluster G` if row i of V was assigned to cluster G` in Step 3.
Output: G1 (V1, E1), ...,Gk (Vk , Ek ).

partitioning, and refinement [SS13a, SS13b]. In the first step, the algorithm
contracts the input graph to create a smaller representation until it is small
enough to be partitioned with a global algorithm. To find edges to contract,
the algorithm creates a maximum matching using the global paths algorithm
which was presented in [MS07].5 The matching is then contracted by combin-
ing the start and endpoint of every edge in the set, and decreases the size of the
input graph. This process is then repeated until the graph is small enough, at
which time a global partitioning algorithm is applied. Next, the contraction is
then undone step by step, applying local refinement strategies. This involves
checking whether moving some vertices that lie at the partition boundary to the
neighbouring partition would improve the partition balance or the minimum
number of edges cut. The result is a partitioning with evenly sized partitions
and a minimal number of edges that are cut in between the partitions. The
steps of multi-level graph partitioning are summarized in Algorithm 11

5 A matching is a set of edges where no two edges in the set have a common endpoint (vertex).
More information on the construction of these matchings can be found in Holtgrewe et al.
[HSS10].
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Algorithm 11: Multi-level Graph Partitioning

Input: Weighted graph G(V , E ,w) and number of partitions k .

1. The graphG is transformed into a sequence of smaller graphsG1,G2, . . . ,Gk such that
|V0 | > |V1 | > |V2 | > · · · > |Vk |.

2. A 2-way partition Pk of the graph Gk = (Vk , Ek ,wk ) is computed that partitions Vk

into two parts, each containing half the vertices of G.

3. The partition Pk of Gk is projected back to G by going through intermediate partitions
Pk−1, Pk−2, . . . , P1, P0.

Output: G1 (V1, E1,w1), . . . ,Gk (Vk , Ek ,wk ).

Two commonly used and well-knownmulti-level graph partitioning algorithms
are the “Karlsruhe Fast Flow Partitioner” (KaFFPa) and “METIS.” A detailed
description of the KaFFPa algorithm is given in [SS11]. Like KaFFPa, METIS
is a multi-level partitioning method where the main requirement is an equal
number of nodes in each partition and a minimum number of interconnections
between the partitions, however it uses a Kernigan-Lin approach in the un-
coarsening phase as opposed to the local search method used by KaFFPa
[KK99].6 Overall, the runtime is still comparable to KaFFPa.

4.1.1 Power Grid Partitioning Example

While highly symmetrical problems may have very natural partitionings, this
is not necessarily the case for other problems, such as OPF or RPD. Such prob-
lems typically represent each irreducible problem element as a node in a graph,
with edges representing relationships between problem elements [BGMT13,
EMJ+17,MEHF18,GHT16a]. With this representation, one may make use of
the vast research available on graph partitioning. Some work on partitioning
of the OPF problem has already been done [GHT16a, GHT16b, MKS+20],
however it is almost impossible to determine an “optimal” partitioning due to

6 It is worth noting here that this is not the only viable approach for this step and [Mey12] presents
a promising alternative.
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the sheer number of possible partitionings.7 Doing so would require check-
ing each partitioning with the chosen algorithm, and demand a considerable
amount of time and computational resources. Instead, one can use one of the
previously described graph partitioning strategies to obtain a partitioning with
favourable properties. Each of the previously described graph partitioning
methods requires an affinity matrix to be given which contains the pair-wise
edge weights. In [GHT16a], this is done by first solving it centrally, then eval-
uating the Hessian of the Lagrangian of Problem (4.1) at the optimal set point.
Alternatively, one could use the admittance matrix according to the algorithm
described in [NJW02].

In this section, two spectral clustering methods and two multi-level graph
partitioning methods are used to partition the IEEE benchmark test cases for
input into ALADIN. The first spectral clustering method uses the Y-bus matrix
(g and b parameters) as a notion of element-wise affinity, and the second
uses the Hessian of the Lagrangian of Problem (4.1) at the optimal operating
point. The two multi-level graph partitioning methods are the aforementioned
KaFFPa and METIS, and both only use the topology of the grid as the affinity
matrix.8

For a grid with a node set N , generator set G, and grid parameters g and b, the
OPF problem is defined as follows:

min
θ,v,p,q

∑
i∈G

αip2i + βipi + γi (4.1a)

s.t. ∀i ∈ N :
p
i
≤ pi ≤ pi , qi

≤ qi ≤ qi , vi ≤ vi ≤ vi (4.1b)

vi
∑
k ∈Ni

vk (gikcos(θik ) + bik sin(θik )) = pi − pdi (4.1c)

vi
∑
k ∈Ni

vk (gik sin(θik ) − bikcos(θik )) = qi − qdi (4.1d)

7 The number of partitions of a set of size n is the nth Bell number. For the IEEE 9-bus case
this is 21,147.

8 That is, the affinity matrix is equally weighted.
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where for each node i ∈ N , θik is the voltage angle between buses i and k,
vi is the voltage magnitude, pi is the active power injection, and qi is the
reactive power injection. The parameters αi ∈ R, βi ∈ R, and γi ∈ R are
the cost coefficients associated with the ith generator. As in Section 3.1.3, the
parameters of problem (4.1) are taken from the IEEE test cases. Using the
four aforementioned graph partitioning methods, the 2-partitions of the IEEE
14-bus case are shown in Figure 4.1. These partitions are in line with the
intuitive partitioning of these grids.

Figure 4.1: Partitions generated for the IEEE 14 bus case.

Partitions are generated for each of the IEEE test cases up to the 300 bus case,
and the number of iterations required by ALADIN to converge to a locally
optimal solution for each of the partitioned OPF problems are shown in Table
4.1. In all cases, the termination threshold of ALADIN is 10−3 and an iteration
limit of 500 is set, which is reached in the 300 bus case for several partitionings.

Recall that ALADIN requires certain parameters to be given, which not only
can be difficult to choose a priori, but also have a large effect on the convergence
rate. A number of different combinations of parameters are tested for each of
the partitionings and only the best results are shown in 4.2. Interestingly, the
best parameters seem to vary from partitioning to partitioning. All parameters
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Table 4.1: ALADIN iterations for the partitioned IEEE test cases.

Case Partitions KaFFPa SC SC METIS
Hessian Ybus

9 2 3 3 3 3
14 2 17 29 29 17
30 2 20 15 15 23
39 2 4 8 8 4
57 2 16 14 20 41
57 3 22 24 29 71
118 2 20 23 23 22
118 3 28 34 40 37
118 4 28 29 25 22
118 5 23 42 44 44
300 3 51 > 500 > 500 102
300 5 97 > 500 > 500 103

are given in the form (ρ, µ,∆ρ,∆µ) where ρ and µ are the initial values of
the parameters described in Section 3.1, and where ∆ρ and ∆µ are the factors
by which ρ and µ are updated at every iteration. It should be noted that this
updating method is a heuristic means of replacing the line search step.

The IEEE 57 bus case is the smallest example examined such that all of the
partitioning algorithms provided different partitionings. Shown in Figure 4.2
are the partitionings of each algorithm. Observe that although the partitions
generated by KaFFPa and METIS are quite similar, there is nonetheless a
large difference in the convergence rate of Algorithm 5. As seen in Figure
4.2, METIS generates many more branches between partitions than KaFFPa,
which is likely the reason for its relatively poor performance in the results
of Table 4.1. Also of note is the fact that spectral clustering applied to the
Y-bus matrix consistently yields almost the exact same partitions as spectral
clustering of the Hessian of the Lagrangian at the optimal operating point. This
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Table 4.2: Best ALADIN parameters for each partition.

Case # Part. KaFFPa SC SC METIS
Hessian Ybus

9 2 (500, 500, (500,500, (500,500, (500,500,
1.05, 2) 1.05,2) 1.05,2) 1.05,2)

14 2 (500, 500, (500,500, (500,500, (500,500,
1.05, 2) 1.05,2) 1.05,2) 1.05,2)

30 2 (500, 500, (500,500, (500,500, (500,1000,
1.05, 2) 1.05,2) 1.05,2) 1.05,2)

39 2 (20, 2000, (500,2000, (500,2000, (500,2000,
1.15, 1.15) 1.15,2) 1.15,2) 1.15,2)

57 2 (1000, 2000, (1000,2000, (1000,2000, (100,100,
1.05, 2) 1.05,2) 1.05,2) 1.2,2)

57 3 (100, 2000, (100,100, (100,2000, (500,2500,
1.2, 2) 1.2,2) 1.2,2) 1.05,1.15)

118 2 (100, 100, (100,100, (100,100, (100,100,
1.2, 2) 1.2,2) 1.2,2) 1.2,2)

118 3 (100, 1000, (100,1000, (100,1000, (100,1000,
1.05, 1.5) 1.05,1.5) 1.05,1.5) 1.05,1.5)

118 4 (500, 1000, (500,1000, (500,1000, (500,1000,
1.05, 1.5) 1.2,1.5) 1.1,1.5) 1.1,1.5)

118 5 (500, 2000, (500,2000, (500,2000, (500,2000,
1.1, 1.5) 1.1,1.5) 1.1,1.5) 1.1,1.5)

300 3 (100, 100, N/A N/A (100,100,
1.1, 2) 1.05,1.1)

300 5 (100, 100, N/A N/A (500,500,
1.1, 2) 1.05,2)
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seems to imply that the resistances and susceptances of the lines are dominant
when considering a partitioning and that very little is gained by the a priori
knowledge of the optimal operating point. However, as noted in [GHT16a],
this may change when line limits are reached.

4.1.2 Reactive Power Dispatch Example

Recall from Section 3.1.3 that RPD is typically performed as a secondary
optimization step after an OPF. In practice, any problem partitioning will come
along with specific infrastructure requirements, such as communication and
data storage constraints. Thus, if RPD were solved in a distributed computing
setting,9 then the partitions of RPD will be fixed by those of OPF.10 The
locations and values of the tap transformers and shunt capacitors for the 14 and
30 bus cases are the same as described in Section 3.1.3, while those of the 57
bus case are listed in Table 4.3.

Table 4.3: Control variables for the 57 bus case and their admissible values (in p.u.).

Variable Domain
VG [0.94,1.06]
a {0.90, 0.91s, . . . , 1.09, 1.10}

s23 {0, 0.2}
s27 {0, 0.2}
s42 {0, 0.2}
s53 {0, 0.2}

Given the partitions used to generate the results of Table 4.1, the convergence
rate and runtime of MI-ALADIN applied to the RPD problem (3.11) are

9 That is, where each partition does not have access to the information of other partitions.
10 It is worth noting that significant work has been done on grid partitioning for RPD, however all

have used continuous relaxation and an optimality condition decomposition algorithm [SGZ+12,
YXZ+96] to solve it.
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Figure 4.2: Partitions generated for the IEEE 57 bus cases. Thick red lines indicate which branches
cross between partitions.
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shown in Tables 4.4 and 4.5, and the parameters used to generate them are
shown in Table 4.6. Once again, a termination threshold of 10−3 and an
iteration limit of 500 is set. In Table 4.5, p =

∑M
i=1 max{p1(i), p2(i)}/M is the

average runtime spent in the parallel steps of Algorithm 5 over all M iterations.
Likewise, s =

∑M
i=1 s(i)/M denotes the average runtime of the sequential steps

in Algorithm 5.

Table 4.4: Mixed-Integer ALADIN iterations for the partitioned IEEE test cases.

Case-#partitions KaFFPa SC SC METIS
Hessian Ybus

14-2 23 19 19 23
30-2 39 52 48 49
57-2 70 70 65 56
57-3 77 68 62 > 500

Table 4.5: Mixed-Integer ALADIN runtime (ms) for the partitioned IEEE test cases.

KaFFPa SC Hessian SC Ybus METIS
Case p s p s p s p s

14-2 402.1 2.7 381.0 2.9 381.0 2.9 402.1 2.7
30-2 716.5 5.8 541.5 5.5 676.4 5.0 694.8 6.1
57-2 1.9227 0.0225 3.1279 0.0194 2.4660 0.0241 2.0928 0.0207
57-3 1.9010 0.6526 3.0482 0.2308 2.3489 0.0271 N/A N/A

The results shown in Table 4.4 are a significant improvement upon those
obtained in Section 3.1.3 with naive partitionings. This is likely due to each of
these partitionings having much fewer cut branches between partitions, which
reduces the size of the MINLPs and coupling QP solved by Algorithm 5.
The presence of less auxiliary variables can also make convergence easier to
achieve due to the presence of fewer coupling constraints. However, as shown
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Table 4.6: Best MI-ALADIN parameters for each partition.

Case KaFFPa SC SC METIS
Hessian Ybus

14-2 (20, 104, (100, 104, (100, 104, (20, 104,
1.2, 1.5) 1.1, 1.2) 1.1, 1.2) 1.2, 1.5)

30-2 (2, 104, (2, 104, (2, 104, (2, 104,
1.3, 1.4) 1.3,1.15) 1.2,1.05) 1.2,1.05)

57-2 (10, 104, (10, 104, (10, 104, (10, 104,
1.4, 1.2) 1.4, 1.2) 1.4, 1.2) 1.4, 1.2)

57-3 (10, 104, (10, 104, (10, 104, (10, 104,
1.4, 1.2) 1.4, 1.2) 1.4, 1.2) 1.4, 1.2)

in Table 4.4, METIS yielded results comparable to spectral clustering despite
having double the number of interconnecting edges between partitions in the
30 bus case. Thus, clearly the number of interconnecting edges is not the only
factor that must be considered.

While the number of interconnecting edges seems to have only a mild effect on
iterations until convergence, it does have a notable effect on the sequential part
of the overall runtime of Algorithm 5 applied to Problem 3.11. Indeed, METIS
generates the partitionings with the most interconnecting edges and it also
results in the highest sequential runtime. In the 30 bus case, spectral clustering
and KaFFPa generate partitionings with half the number of interconnecting
edges as METIS and this results in an overall reduction of roughly 20% less
runtime in the coupling step of Algorithm 5. Interestingly, balancing the
number of buses in each partition does not seem to balance the runtime of
each decoupled subproblem. For the 14 bus case, spectral clustering generated
the most balanced partitions (in terms of runtime), where each decoupled
subproblem requires almost the same amount of time to solve. This is in
contrast to the case where the partitioning of KaFFPa/METIS is used where
the slowest subproblem is on average 73% slower than the fastest. What these
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results indicate is the difficulty involved in predicting how much computing
power will be required to solve a given MIP.

Remark 7. While only the parameters which yielded the best results are shown
in Tables 4.2 and 4.6, it was observed that KaFFPa’s and METIS’ partitions
were the most robust to parameter changes. That is, different parameters still
result in convergence within the limit – albeit slower than what is reported in
Tables 4.1 and 4.4. As shown for the 300 bus case in Table 4.1, no parameter
combination was found for either spectral clustering method which resulted in
convergence within 500 iterations.

4.2 Turnpikes in Mixed-Integer Optimal Control

Thus far, the focus has been on the use of spatial decomposition in mixed-
integer optimization. In contrast, this section approaches structure exploitation
from a different perspective by considering steady-state features in mixed-
integer optimal control and presents two methods for taking advantage of this
phenomenon [FM20].

As noted in Section 3.1.2, the battery scheduling problem has a partially sepa-
rable problem structure that can be exploited through distributed optimization.
It is tempting to try something similar for other discrete time optimal control
problems, since for such problems it generally holds that each time step is
coupled only with the one before, and the one after it. While decomposition
along these lines can certainly be done, this section will show a more effective
method given that certain properties hold.

An OCP is said to exhibit a so-called “turnpike” property in its optimal state
trajectories if the time spent outside of any epsilon-neighborhood of the optimal
steady state is bounded independent of the horizon length. The notion dates
back to the 1950’s [Dor58], although early observations of the phenomenon
can be traced even further to John von Neumann in the 1930s [vN38].11 Since
then, this property has been well studied [FKJB17,MP01,McK76], and occurs
in a variety of contexts, such as economic model predictive control [Grü13]

11 The same phenomon also appears under different names in the literature: hyper-sensitive optimal
control problems and dichtomy in optimal control [AK87,WK72].
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and production planning [TS80,KKTK75]. Regardless of whether a turnpike
is present or not, OCPs are generally not solvable analytically and require
numerical methods. There are many methods and techniques which have
been developed, some of which are listed here: [LSKVI10, Sag05, FFCM15].
However, these methods generally do not apply to MIOCPs. The focus of this
section is to provide some algorithms which can be used to efficiently solve
MIOCPs with turnpikes.

Recall from Section 2.2.4 the form of an MIOCP without terminal penalty:

min
x,u,z

T−1∑
t=0

f (x(t), u(t), z(t)) (4.2a)

subject to ∀t ∈ {0, . . . ,T − 1},
x(t + 1) = h(x(t), u(t), z(t)), x(0) = x0, (4.2b)

x(t) ∈ X ⊆ Rn , u(t) ∈ U ⊆ R` , (4.2c)
z(t) ∈ Z ⊆ Zm . (4.2d)

where the stage cost f : Rn ×R` ×Zm → R and the dynamics h : Rn ×R` ×

Zm → Rn are assumed to be continuous in x and u. Let X0 denote the set
of admissible initial states of x0. Optimal solutions, provided they exist, are
written as v?(·) = (x?(·), u?(·), z?(·)).12

As an illustrative example of a simple problem in the form of (4.2) consider
the following from [FGM18,Grü13]:

min
x,u,z

T∑
t=1

u(t)2 + (1/2)z(t)2

s.t. ∀t ∈ {1, . . . ,T }, (4.3)
x(t + 1) = 2x(t) + u(t) + z(t) − 1,
(x(t), u(t), z(t)) ∈ [−2, 2] × [−3, 3] × {−1, 0, 1}.

12 The optimal solution v? depends on the initial state x0, however this omitted whenever no
confusion can arise.
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For x(0) = −2, the optimal state and input trajectories are as shown in Figure
4.3.
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Figure 4.3: Example plot of the optimal solutions for Problem (4.3) with T = 30 and a variety of
initial states.

Note that x is in a steady state for a large part of the time horizon of Problem
(4.3). This is called a turnpike and the formal definition of which for MIOCPs
is given in Definition 9 in Section 4.2.1.
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4.2.1 Sufficient Turnpike Conditions

The existence of a turnpike inMIOCPs is not guaranteed, and certain conditions
must be satisfied in order to allow for such a steady-state optimal trajectory to
arise. The definition of the turnpike property is given in Definition 9.

Definition 9 (Mixed-integer turnpike property). MIOCP (4.2) is said to have
an input-state turnpike at v̄ ∈ X ×U ×Z if there exist C ∈ R and α ∈ K∞13
such that, for all x0 ∈ X0 and all T ∈ N,

|Qε | ≥ T −
C
α(ε)

holds for every ε > 0, where

Qε := {t ∈ {0, . . . ,T − 1}| | |(v?(t; x0)) − v̄ | | ≤ ε}. (4.4)

Definition 9 essentially states that the amount of time an optimal tuple spends
inside of an ε-ball centred at ( x̄, ū, v̄) is at least T − C

α(ε) . Alternatively, one
could interpret Definition 9 as stating that the amount of time spend outside of
the ε-ball is bounded independently of T by C

α(ε) .

However, to provide sufficient conditions to guarantee the existence of a turn-
pike we must first recall a notion of dissipativity for MIOCPs as it was intro-
duced in [MSP+20]:

Definition 10 (Strict dissipativity with respect to z̄).
A system is said to be dissipative with respect to a steady-state tuple v̄ ∈ X ×
U ×Z, if there exists a function14 λ : X → R+ such that for all v ∈ X×U ×Z

λ(h(v)) − λ(x) ≤ f (v) − f (v̄). (4.5a)

If, additionally, there exists α ∈ K∞ such that

λ(h(v)) − λ(x) ≤ −α(‖v − v̄‖) + f (v) − f (v̄), (4.5b)

13 K∞ refers to the set of continuous functions R+0 → R+0 which are 0 at 0, strictly monotonously
increasing, and satisfy lim

s→∞
α(s) = ∞.

14 λ is also known as a storage function.

112



4.2 Turnpikes in Mixed-Integer Optimal Control

then the system is said to be strictly dissipativewith respect to v̄ =
[
x̄, ū, z̄

]>
.

Moreover, if the above dissipativity notions holds solely along optimal solutions
of (4.2), then the MIOCP (4.2) is said to be strictly dissipative with respect to
v̄.

It is straightforward to see that dissipativity w.r.t. to v̄ implies that v̄ = v̄?, i.e.
a system can only be dissipative with respect to steady state v̄. The steady state
of Problem (4.2), provided it exists, can be found by solving:

min
x̄,ū,z̄

f ( x̄, ū, z̄) (4.6a)

subject to
x̄ = h( x̄, ū, z̄), (4.6b)
x̄ ∈ X ⊆ Rn , ū ∈ U ⊆ R` (4.6c)
z̄ ∈ Z ⊆ Zm . (4.6d)

However, dissipativity alone is not sufficient to guarantee the existence of a
turnpike. An MIOCP (4.2) also requires the steady state to be exponentially
reachable.

Assumption 1 (Exponential reachability of x̄?). For all x0 ∈ X0, there exist
infinite-horizon admissible inputs u∞, z∞ : N ∪∞ → U ×Z and constants
c ≥ 0, ρ ∈ [0, 1) such that ∀k ≥ 0:

‖x(k; x0, u∞(·), z∞(·)) − x̄?‖ ≤ cρk ,

i.e. the optimal steady state x̄? is exponentially reachable.

Given that the optimal steady state x̄? is exponentially reachable and the
MIOCP (4.2) is strictly dissipative with respect to v̄?, then a turnpike is
guaranteed to exist at v̄? = v̄. This proposition is put formally in Proposition
1. The proof of Proposition 1 is very similar to its continuous discrete-time
counterpart found in [FGM18,Grü13] and follows a similar pattern.

Proposition 1 (Turnpikes in MIOCPs). Let Assumption 1 hold and suppose
that theMIOCP (4.2) is strictly dissipative with respect to v̄?. Then theMIOCP
(4.2) has an input-state turnpike at v̄? = v̄.
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Proof. Without loss of generality suppose that f (v̄) = 0. Evaluating the strict
dissipation inequality (4.5b) along an optimal triplet v?(·; x0) gives

λ(x?(T ; x0)) − λ(x0) ≤
T−1∑
t=0
−α(‖v?(t; x0) − v̄‖) + f (v?(t; x0)).

Let FT : X → R denote the optimal value function15 of (4.2). Boundedness
of the storage function λ implies

FT (x0) ≥ −2λ̂ +
T−1∑
t=0

α(‖v?(t; x0) − v̄?‖),

whereby λ̂ := supx∈X λ(x). Moreover, Assumption 1 implies that for all
x0 ∈ X0, we have the following upper bound on FT (x0):

Lhcρ+
Lc

1 − ρ
≥ FT (x0),

where L ∈ R+ and Lh are Lipschitz constant of the stage cost f onX ×U ×Z.

Observe that T − |Qε | is the time that the optimal triplet spends v?(·; x0)
spends outside of an ε-ball centered at v̄. Hence,

T−1∑
t=0

α(‖v?(t; x0) − v̄?‖) ≥ (T − |Qε |) · α(ε).

The last three inequalities imply |Qε | ≥ T −
Lhcρ+ Lc(1 − ρ)−1 + 2λ̂

α(ε)
. �

One interesting lemma specific to MIOCPS that follows from Proposition 1 is
the following:

Lemma 2 (Integer controls often exactly at turnpike). For all x0 ∈ X0, let
MIOCP (4.2) have an input-state turnpike at v̄? = v̄ in the sense of Definition
9. Then, for all ε ∈ (0, 1) and sufficiently large T ∈ N, the optimal integer
controls z?(·; x0) satisfy z?(t; x0) ≡ z̄? for all t ∈ Qε .

15 That is, the solution to (4.2) given an initial state x0 ∈ X0.
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4.2 Turnpikes in Mixed-Integer Optimal Control

Proof. Recall that ‖v?(k; x0) − v̄?‖ ≥ ‖z?(k; x0) − z̄?‖, and note the fact
that for the integer controls ‖z?(k; x0) − z̄?‖ < 1 ⇔ ‖z?(k; x0) − z̄?‖ = 0.
Combining both and taking the definition of Qε in (4.4) into account yields
the assertion.

�

Lemma 2 will help in Section 4.2.2 to efficiently exploit the existence of
turnpikes in MIOCPs.

In practice, one may not be able to guarantee the existence of a turnpike in the
optimal solution trajectory a priori. To this end, Theorem 5 provides a means
of numerically verifying Definition 10.

Theorem 5 (Dissipativity of linear-quadratic MIOCPs). Consider MIOCP
(4.2) and let the dynamics and the stage cost be given by

h(x, u, z) = Ax + B1u + B2z,

f (x, u, z) = x>Qx +


u
z



>

R


u
z


+ q>x + r>



u
z


,

with potentially indefinite matrices Q ∈ Rn ×Rn and R ∈ R(`+m) ×R(`+m) .

If there exists matrix P ∈ Rn×n such that

Q + P − A>PA � 0, (4.7)

then MIOCP (4.2) is strictly dissipative, and there exists p ∈ Rn such that
λ(x) = x>Px + p>x is a corresponding storage function.

Proof. The proof combines the available storage characterization of dissipa-
tivity with recent results from [GG18].
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The available storage is given by

λa
Z

(x) = sup
v( ·),N

N∑
k=0
−α(‖(vk ) − v̄‖) + f (vk ) + f (v̄)

subject to

x(k + 1) = Ax(k) +
[
B1 B2

] 

u(k)
z(k)


, x(0) = x0.

x(k) ∈ X, u(k) ∈ U , z(k) ∈ Z,

whereby the subscriptZ in λZ refers to the constraints on the discrete control
input z. Indeed the MIOCP (4.2) is dissipative onX0 if and only if λaZ (x) < ∞
for all x0 ∈ X0 [Wil72].

Step 1: Let conv(Z) be the convex hull of Z. By definition 2, conv(Z) is
compact ifZ is compact andZ ⊂ conv(Z). This implies that

λa
Z

(x) ≤ λaconv(Z) (x),

i.e. dissipativity of the continuously relaxed OCP certifies dissipativity of the
MIOCP.

Step 2: For the continuously relaxed problem it has been shown in [GG18, Lem.
4.1] that (4.7) is a necessary and sufficient condition for strict dissipativity with
quadratic storage function on bounded subsets of Rn . Combining both facts
yields the assertion. �

4.2.2 Sequential Move-Blocking

The key property of a turnpike is that the state variable(s) remain nearly
constant over some continuous portion of the time horizon. As shown in
(4.6), the decision variables that correspond with this steady state can be
computed a priori via an analytical expression. This turnpike may have a
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4.2 Turnpikes in Mixed-Integer Optimal Control

leaving arc16Determining where the turnpike begins however, is much more
difficult. As such, the main goal of the sequential moveblocking algorithm
presented in this section is turnpike detection. It does so by first fixing the
integer variables z to their steady state optimal values z over some time interval
[k, . . . , k2] and then “unfixing” the integer(s) of time step k. Each step relies
on the well-known “move blocking”17 technique that has seen some popularity
in MPC. For more background on move blocking and its use in MPC see
[CGKM07] and [SM15]. Sequential moveblocking performs this technique
until the objective value of the current iteration is equal to the objective value
of the last iteration, at which point the algorithm will terminate. Otherwise,
the next integer(s) are unfixed and the algorithm continues. This process is
illustrated in Figure 4.4, and formulated more precisely in Algorithm 12.

Algorithm 12: Sequential Move-blocking

Input: Guess for the start and end of the turnpike k1 and k2. Termination parameter K , steady
state integer solution v = (x, u, z) ∈ X × U × Z, and numerical tolerance ε > 0.

Initialization: Set Fk−1 (z0) = ∞.

While k ≤ k2:
1. Obtain objective value Fk and solution vk = (xk , uk , zk ) ∈ X × U × Z:

Fk = min
v

T∑
t=1

f (v (t ))

s.t.




x (t + 1) = h(v(t )),
x (t ) ∈ X, u (t ) ∈ U , z (t ) ∈ Z
{z (k ), . . . , z (k2) } = z

2. If k > K + k1 and
∑K−1

i=0 |Fk−i−1 − Fk−i | ≤ ε then terminate. Otherwise, k ← k + 1
and go to Step 1.

Output: Fk and vk .

16 A leaving arc is a state trajectory that leaves the neighbourhood of a turnpike at the end of the
time horizon. An example of this would be where profit is maximized over a finite horizon by
following some strategy and then selling off all assets at the end of the time horizon.

17 A technique wherein certain permissible control actions are restricted, allowing for potentially
faster solution on the smaller feasible subset.
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State Trajectories

Ttime steps

Discrete Control Trajectories

k2=Ttime steps

k=1

k1=0

k=2,3

k=0

k=1

k=2,3

k=0

Figure 4.4: An example plot of the state and input trajectories for Algorithm 12. On the left are
the state trajectories at each iteration, and on the right are the input trajectories for z.

The convergence properties of Algorithm 12 are given in Section 4.2.2 and
its numerical performance is evaluated using some benchmark examples in
Section 4.2.4.
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4.2 Turnpikes in Mixed-Integer Optimal Control

Convergence Properties

As long as the MIOCPs in Step 1 of Algorithm 12 terminate in a finite amount
of time, Algorithm 12 is guaranteed to converge either due to turnpike detection
or will reach the limit k2, which can be at mostT . The optimality of the solution
upon convergence is proven in Theorem 6.

Theorem 6. Given that (4.2) has a turnpike from timestep n1 to n2, if 0 < K <
min{k2 − k1, n2 − k1, k2 − n1, n2 − n1 + 1} then Algorithm 12 applied to (4.2)
will terminate with an optimal solution.

Proof. It follows from Lemma 2 that integer controls are exact at the turnpike
and thus Fn1 = · · · = Fn2 = f (v?). Consider the four cases:

• k1 ≤ n1 and k2 ≤ n2.

• k1 ≥ n1 and k2 ≤ n2.

• k1 ≤ n1 and k2 ≥ n2.

• k1 ≥ n1 and k2 ≥ n2.

The values of Fn1−1 and Fn2+1 are uncertain and thus if K ≥ k2 − n1 then the
termination criteria

K−1∑
i=0
|Fk−i−1 − Fk−i | ≤ ε

may not be satisfied for any iteration k. Likewise for the cases K ≥ k2 − k1,
K ≥ n2 − n1, and K ≥ n2 − k1. Thus, if 0 < K < min{k2 − k1, n2 − k1, k2 −
n1, n2 − n1 + 1} then Algorithm 12 applied to (4.2) will terminate with with
Fmax{n1,k1 }+K = f (v?). �

Theorem 6 essentially states that if the turnpike is at least as long as the
time preceding it, then Algorithm 12 is guaranteed to converge to an optimal
solution, given that K is appropriately chosen. In practice, K = 1 often
works well and can lead to much faster convergence. However, if the optimal
state trajectory reaches the turnpike more slowly than is feasible (perhaps due
to time-varying costs) then Algorithm 12 would quickly return a suboptimal
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solution that satisfies
∑K−1

i=0 |Fk−i−1 − Fk−i | ≤ ε. In this case, a larger choice
of K would be required.

4.2.3 Node Weighting

The method proposed in Section 4.2.2 seeks to solve (4.2) via a sequence of
smallerMIPs. Alternatively, one could instead attempt to solve the full, original
MIP but in a smarter way by reducing the number of nodes which must be
searched in the decision tree. Specifically, this is done by exploiting a priori
knowledge of solution properties which go beyond warm starting. Rather, a
prioritization hierarchy of the decision tree nodes is constructed which can
save time exploring dead-ends, in favour of more fruitful branches.

For turnpikes, this prioritization comes in the form of weightsW0 for each
node associated with the steady state optimal integer decisions at the turnpike.
These come in the form of full or partial guesses Z ∈ Rm×N of the sequence of
optimal integer decisions z?(·; x0) for Problem (4.2). The vector Z(k) denotes
the k-th column of Z, which corresponds to the integer decisions for the k th

time step. Lemma 2 can be leveraged in the construction of Z at the turnpike in
the middle part of the horizon, as these values must be exactly on the turnpike
values z.

The node weighting method itself in outlined in Algorithm 13. Note its
resemblance to the standardB&Balgorithm (Algorithm 3) described in Section
2.2.1. However one key difference is the inclusion of the integer guessesZ0 =
{Z0,1, . . . ,Z0,M } in Algorithm 13. Each iteration of Algorithm 13 requires
the selection of a node ñ from the candidate node set S. Each node n ∈ S is
associated with a vector Zn which corresponds to the integer decisions that are
fixed and relaxed in the subproblem solved at node n. The default branching
rules are encoded by the weight function w, which is modified by the values
ofW0 and the distance operator dZ (Z0,i ,Zn ) = |{ Z̃ ⊂ Z0,i | Z̃ ⊂ Z, Z̃ ⊂ Zn }|

from the vector Z0,i to Zn .18 The weighting of the node in relation to the
search strategy and in relation to the initial guesses provides the full weight
associated with choosing node n. After the node with the highest weighting

18 This notion of distance is similar to the Hamming distance in that what is counted is the number
of feasible elements of Z0,i that are also in Zn .
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has been selected,19 the solution of the following NLP given partial or full
guess(es) Z of the integer variables z:

NLP(Z) := MIOCP (4.2) with integrality constraint (4.2d) swapped for



z(k) = Z(k) if Z(k) ∈ Z

z(k) ∈ conv(Z) else
(4.8)

The condition Z(k) < Z implicitly encodes the relaxation V(k) ∈ conv(V ).
Solving (4.8) provides the optimal performance bound J?(Z) and subproblem
solution triplet v?(Z).

Algorithm 13: Branch and Bound with Node Weighting

Input: Guesses Z0 = {Z0,1, . . . ,Z0,M } and corresponding weightsW0 = {w0,1, . . . ,w0,M }.
Termination tolerance ε > 0. Default search strategy (depth-first, breadth-first, . . . ) and
corresponding weightsW .
Initialization: Set U = ∞, L = −∞, T = ∅. Re-index nodes N according to weights W0.
Candidate node set S = {0}.
While S , ∅:

1. ∀n ∈ S,
w̃ (n) = w (n) +

∑M
i=1 w0,i

(
dZ (Z0,i ,Zn )

)
2. ñ = argmax

n∈S
w̃ (n) and S ← S \ {ñ }

3. Solve NLP(Zñ ) for J?(Zñ ) and v?(Zñ ) and T ← T ∪ ñ

4. If v?(Zñ ) is feasible in MIOCP (4.2) and J?(Zñ ) < U , thenU ← J?(Zñ ) and proceed
to Step 5.
If J?(Zñ ) > U proceed to Step 1.
Else add the child nodes of ñ to S and proceed to Step 5.

5. L ← min
n∈P (S)

{J?(Zn ) }

If U − L ≤ ε terminate.
Else proceed to Step 1.

Output: J?(Zñ ) > U and v?(Zñ ).

19 Note that this may require some tie-breaking process to be undertaken.
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As Algorithm 13 amounts to a standard B&B method with a special branching
rule and ordering of the decision tree, no optimality guarantees are lost. Thus, if
a B&Bmethod without node weighting will return a globally optimal solution,
then so would Algorithm 13. If the weighting is done properly, then fewer
iterations will be necessary, however as seen in Section 4.2.4, it is not always
easy to find a proper weighting.

An example of Algorithm 13 for a small toy problem with six integer variables
is shown in Figures 4.5 and 4.6. Here, the nodes corresponding to certain
values of four integer variables are prioritized. This leads to a good upper
bound being found quite quickly, which then prunes several nodes and allows
the B&B algorithm to converge in fewer iterations.

Figure 4.5: An example of the order in which the nodes of a B&B tree are explored when a good
weighting strategy is used.

4.2.4 Case Studies

To test the performance of algorithms described in Sections 4.2.2 and 4.2.3,
several benchmark problems are used. All such MIOCPs are discretized and
solved using single shooting. The solutions to the resulting optimization
problems are obtained using a custom implementation of B&B (Algorithm 3).
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4.2 Turnpikes in Mixed-Integer Optimal Control

Figure 4.6: An example of the order in which the nodes of a B&B tree are explored when no
weighting strategy is used.

The custom B&B algorithm seeks to improve the lower bound as quickly as
possible in order to converge by proving optimality.

Example 1

We consider an example with the dynamics of [BM99]:

x(t + 1) =



0.8x(t) + u(t), if x(t) ≥ 0,
−0.8x(t) + u(t), if x(t) < 0,
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with m ≤ x(t) ≤ M . This can be reformulated into a mixed-integer system of
equations through the introduction of a continuous variable y and and integer
variable z:

2z(t)m ≤ y(t) + x(t) ≤ 2z(t)M ,
2(z(t) − 1)M ≤ y(t) − x(t) ≤ 2(z(t) − 1)m,

x(t + 1) = 0.8y(t) + u(t), (4.9)
(1 − z(t))m ≤ x(t) ≤ z(t)M ,

u ≤ u(t) ≤ u, z(t) ∈ {0, 1}.

It is easy to verify that if z(t) = 0 then y(t) = −x(t) and x(t) < 0, and if
z(t) = 1 then y(t) = x(t) and x(t) ≥ 0. Imposing an objective function on the
dynamics of (4.9) leads to the following MIOCP:

min
x,y ,u,z

T∑
t=1

c0u(t)2 + c1x(t)2 + c2x(t)

s.t. the dynamics given in (4.9), (4.10)
x(0) = x0.

As input Problem (4.10), Algorithm 12 uses k1 ∈ {1, . . . ,T/2}, k2 = T , and
K = 1. The results for each choice of k1 are aggregated in the results shown
in Table 4.8.

As input for Problem (4.10), Algorithm 13 is provided a collection of complete
solution vectors and weights, as shown in Table 4.7. These vectors operate
under the assumption that before and after the turnpike z? = 1 and on the
turnpike z? = 0. Thus, each vector corresponds to a specific guess as to where
the turnpike begins and ends.

Table 4.8 compares the performance of Algorithms 3, 12, 13, and standard
move blocking. The displayed values aggregate the results from each initial
state x0 = {−1,−0.9, . . . , 0.9, 1} for T = 10, 20, and 40. All results presented
use c0 = 0.5, c1 = 1, c2 = 0.5, m = −1, M = 1, u = 0.5, and u = 0.5. Shown
in Figure 4.7 is an example plot for the case with T = 20 and x0 = 1. Note that
one can clearly spot the turnpike at z̄? =

[
− 1

9
1
9 −0.2 0

]
.
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Table 4.7: Guesses Z0 and weightsW0 for Example (4.10).

Z0,i w0,i Z0,i w0,i

[1,1,0,. . . ,0] 1 [1,1,1,0,. . . ,0] 2
[1,1,1,0,. . . ,0,1] 3 [1,1,1,0,. . . ,0,1,1] 4

[1,1,1,0,. . . ,0,1,1,1] 3 [1,1,1,0,. . . ,0,1,1,1,1] 2

0 2 4 6 8 10 12 14 16 18 20
time steps

0

0.5

1

x,
y

0 2 4 6 8 10 12 14 16 18 20
time steps

-0.5

0

0.5

1

u,
z

Figure 4.7: An example plot of the state and input trajectories for Problem (4.10) with T = 20 and
x0 = 1. (Top) Optimal state trajectories, where the solid red and dashed blue lines
correspond to the trajectories of y and x, respectively. (Bottom) The solid red and
dashed blue lines correspond to the optimal input trajectories for z and u, respectively.

A termination limit of 3000 seconds is set for each test, however, the simple
standard branch-and-bound algorithm often failed to terminate within this time
for many of the larger problems, which is the cause of some suboptimality.
Despite its speed, move blocking removes large parts of the feasible set of
the MIP and thus this strategy often fails to obtain a feasible point or gives a
suboptimal solution. AsAlgorithm12 is specifically designed for problems like
(4.10), it is not surprising that it is best at exploiting the turnpike property and
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Table 4.8: Aggregated results for Problem (4.10).

T = 40 B&B move node seq. move
blocking weighting blocking

avg. # nodes 1084 229.72 1003.71 35.13
median # nodes 1084 146 1019 30
avg. runtime (s) 3003.96 49.14 3003.27 2.77
best # nodes 1077 52 842 7

best runtime (s) 3000.09 4.29 3000.65 0.56
avg. subopt. 507.11 3.60 0 0

T = 20 B&B move node seq. move
blocking weighting blocking

avg. # nodes 1106.48 137.38 934.05 109.00
median # nodes 1106 86 890 84
avg. runtime (s) 3004.33 22.31 591.77 12.92
best # nodes 1105 32 508 3

best runtime (s) 3000.77 2.03 97.71 0.18
avg. subopt. 465.55 3.45 0 0

T = 10 B&B move node seq. move
blocking weighting blocking

avg. # nodes 679.33 4.2 183.62 93.36
median # nodes 628 4 106 62
avg. runtime (s) 1041.44 0.32 249.61 11.96
best # nodes 272 0 58 22

best runtime (s) 68.62 0.04 3.93 1.16
avg. subopt. 0 141.93 0 0
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yields optimal solutions with minimal runtime. One interesting observation
from Table 4.8 is that Algorithm 12 solves the instance of Problem (4.10) with
T = 40 in less time on average than the instances with shorter time horizons.
This is simply due to the fact that Algorithm 12 quickly terminates for k1 ≥ 4
– when the turnpike begins – and the results are aggregated for 1 ≤ k1 ≤ T/2.

Although node weighting yields solutions much more quickly than standard
B&B, it is still nowhere near the speed of moveblocking or Algorithm 12.
Even though node weighting allows for very good upper bounds to be quickly
attained, many nodes must still be checked in order to establish a matching a
lower bound and return an optimality certificate. An example of the progress
of the upper and lower bounds per iteration is shown in Figure 4.8.

100 200 300 400 500
Iterations

-1200

-1000

-800

-600

-400

Figure 4.8: An example plot of the upper and lower bounds at each B&B iteration with node
weighting (solid) and standard B&B (dashed). The optimal solution is found within
100 iterations by Algorithm 13, and the next 400 are needed to confirm its optimality.
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Example 2

As a second example, we propose the following:

min
z

N−1∑
t=0

10u(t) + z(t) + 100u(t)2 + 100x(t)>x(t)

subject to ∀t ∈ {0, . . . , N − 1}, (4.11)

x(t + 1) =


0 I
0 0


x(t) + B1u(t) + B2z(t),

v(t) ∈ Rnx+1 × {0, 1}

with I ∈ Rd×d is the identity matrix, B1 =
[
0 0 . . . 0 1

]>
and B2 =[

1 1 . . . 1 1
]>

. The turnpike is at v̄? = 0. Notice that each state
xi (t) in the state vector x(t) = [x1(t), . . . , xnx (t)]> is coupled with the state
xi+d (t − 1) in addition to the control actions u(t − 1) and z(t − 1) This problem
is interesting because turnpikes are often part of the optimal state trajectory of
Problem (4.11), and the problem is scalable both in number of state variables
as well as time horizon.

Once again, Algorithm 12 uses k1 ∈ {1, . . . ,T/2}, k2 = T , and K = 1. The
results for each choice of k1 are aggregated in the results shown in Table 4.10.

The initial guesses Z0 for Algorithm 13 are constructed as partial guesses of
the integer controls corresponding to z? = 0 for k ≥ k̂ with k̂ = {2, . . . , 6} as
shown in Table 4.9.

Table 4.9: Guesses Z0 and weightsW0 for Example (4.11) with k̂ = 2.

Z0,i w0,i

[·,0,·,. . . ,·] 4 ·maxw∈W w

[·,0,0,·,. . . ,·] 4 ·maxw∈W w

. . . . . .
[·,0,. . . ,0,·] 4 ·maxw∈W w

[·,0,. . . ,0] 4 ·maxw∈W w
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Table 4.10: Aggregated results for Problem (4.11).

T = 20 B&B move node seq. move
n = 30 blocking weighting blocking

avg. # nodes 516.72 2.67 595.58 17.85
median # nodes 342 0 420 6
avg. runtime (s) 545 0.94 543.67 4.27
best # nodes 110 0 4 6

best runtime (s) 32.63 0.26 1.40 1.35
avg. subopt. 0.12 147223 0.01 0.79

T = 10 B&B move node seq. move
n = 30 blocking weighting blocking

avg. # nodes 38 3.24 38.68 18.93
median # nodes 38 2 20 6
avg. runtime (s) 5.59 0.59 5.71 2.41
best # nodes 2 0 2 6

best runtime (s) 0.40 0.14 0.37 0.68
avg. subopt. 0.002 14055 0.002 0.002

Shown in Table 4.10 are the aggregated results for each combination of x0 =
{−0.9,−0.8, . . . , 0.8, 0.9}+ r , where r is a uniformly distributed random vector
whose entries range between −0.1 and 0.1.

The results for Problem (4.11) mirror those for Problem (4.10), but also show
how each of the methods performs when the number of real-valued decision
variables is increased. Namely, the increase in the number of variables, and
the nature of the coupling between them, causes the feasible set to become
relatively sparse. This is disastrous for moveblocking since it leads to the al-
gorithm falsely claiming infeasibility in most cases. Sequential move blocking
is largely unaffected, and terminates quickly regardless of the number of real-
valued variables. However, node weighting does manage to find the solutions
albeit sometimes quite slowly. Interestingly, the number of nodes needed to
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Figure 4.9: An example plot of the state and input trajectories for Example 2 withT = 20 and three
state variables. The solid red and dashed blue lines correspond to the input trajectories
for z and u, respectively.

be searched with the node weighting strategy goes up when more real-valued
variables are introduced. This is in part due to the large quadratic penalty
term for the state variables which dominate the objective value and lead to
many nodes with very similar objective values and thus much more difficult
to prune from the B&B decision tree. Figure 4.9 depicts an example plot for
the case with T = 20 and three state variables. Note the long turnpike from
t = 4 to t = 20. This feature is successfully exploited by Algorithm 12 to yield
the excellent scalability observed in Table 4.10 between T = 10 and T = 20.
Unfortunately, Algorithm 13 does not seem to share this property; however it
may be the case that a different initial guess would further reduce runtime for
this problem and yield similar results to that of Algorithm 12.

130



5 Conclusions and Outlook

As detailed in Chapter 2, there are a number of challenges and open problems in
mixed-integer programming. Most of these stem from the non-convex nature of
MIPs, which often makes verifying the optimality of a potential solution quite
difficult. Nonetheless, as demonstrated by numerous examples throughout the
dissertation, this class of problems appears often in power and energy systems.

To date, there has been very limited research into distributed optimizationmeth-
ods for mixed-integer problems, which would allow for improved tractability,
runtime, and applicability to multi-agent settings. To this end, Chapter 3
presented three main algorithms for distributed mixed-integer optimization:

• Mixed-Integer ALADIN

• PaDOA

• Distributed Branch & Bound

Convergence and optimality properties of each of these algorithms was an-
alyzed, and their preformance was evaluated using a variety of benchmark
examples.

Mixed-Integer ALADIN is shown to have limited convergence and optimality
guarantees, although it is applicable to both a large class of partially separable
MIPs and to multi-agent systems. Despite theoretical limitations to its con-
vergence, it is shown to quickly converge for both MIQP battery scheduling
problems along with non-convex MINLP reactive power dispatch.

PaDOA has convergence and global optimality guarantees for MICPs, and in
fact is proven to converge in a single iteration given certain conditions are
satisfied. These properties are verified by both the battery scheduling and
TCL problems. Despite only a prototypical implementation, it is shown to
outperform the commercial solvers gurobi and CPLEX in several cases.
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Distributed Branch&Bound shares the convergence and optimality guarantees
of standard B&B, although it has the potential to be faster and more scalable
through parallelization. This conjecture was tested on two benchmark prob-
lems, one of which was the classic battery scheduling problem used to evaluate
PaDOA and Mixed-Integer ALADIN, and the other was a custom-made MIP.
Interestingly, despite its positive theoretical properties, its actual performance
for the battery scheduling problemwas poor compared to both other distributed
mixed-integer algorithms.

It is noted in Chapter 3 that the performance of distributed optimization al-
gorithms (mixed-integer or otherwise) are dependent on the given problem
decomposition. While not all power and energy problems are freely decom-
posable, many are. In particular, the optimal power flow and reactive power
dispatch problems have asymmetric, graph-like structures which make them
interesting candidates for an investigation into problem decomposition. Both
the RPD and OPF problems are partitioned in Section 4.1 using four different
state-of-the-art graph partitioning techniques. The numerical results ofMixed-
Integer ALADIN applied to the partitioned problems demonstrate the difficulty
involved with solving large-scale MIPs. Nonetheless, these results represent
some first steps towards more general results on optimal partitioning for the
five distributed mixed-integer optimization algorithms that were presented.

In Section 4.2 the focus changes from spatial decomposition to exploitation of
temporal structures in mixed-integer optimal control problems. Specifically,
the turnpike phenomenon is exploited to great effect using two distinctmethods:

• Sequential Moveblocking

• Node weighting

Sequential moveblocking is proven to converge within a finite number of it-
erations with an optimal solution given that the optimal control problem is
an MICP. Two benchmark examples demonstrate that this algorithm is signif-
icantly faster than standard techniques, and it achieves this by specializing to
MIOCPs with turnpikes.

Node weighting is given as an alternative technique which sacrifices speed for
flexibility. It maintains the convergence and optimality guarantees of standard
B&B, but presents a means of effectively taking advantage of a priori infor-
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mation in the form of a collection of (partial) guesses. While somewhat less
efficient than sequential moveblocking at exploiting the existence of turnpikes
inMIOCPs, it nonetheless has the potential for application to general MIPs and
thus can be recommended when the existence of a turnpike is not guaranteed.

Despite some runtime advantages, many of the algorithms presented in Chap-
ters 3 and 4 are still prototypical and could be greatly improved through the
combination of other methods. For example, the use of other lower bounding
functions in Algorithm 6 could be investigated. The use of quadratic lower
bounding functions in [FL94] was found to yield some benefit for certain
problems when implemented in Algorithm 4, and something similar could be
attempted with Algorithm 6 as well. As noted in Section 3.2, MIQPs can
be solved much more efficiently than their MILP counterparts, and thus an
MIQP coupling subproblem in Algorithm 6 could lead to faster runtime and
applicability to a wider class of problems.

There are numerous other variants of the presented algorithms which could al-
low for better results in different situations. For example, if the problem is such
that the coupling step cannot be solved by a central coordinator then it would be
interesting to investigate how this could be performed in a more decentralized
manner. Furthermore, the cutting plane methods and other heuristics used by
Gurobi and CPLEX could be implemented within Algorithm 6 or Algorithm 7
to reduce overall runtime.

In Section 4.1.1, partitioning results for Algorthm 5 were given, however it
would be interesting to see whether the same partitioning strategies that worked
well for Mixed-Integer ALADIN would also improve the convergence rate of
PaDOA or Distributed Branch & Bound. It is also worth questioning whether
one ought to search for optimal partitioning strategies for distributed optimiza-
tion, or whether a more elegant approach may be possible. For example, it is
conceivable that the central agent which solves the coupling problems could
also dynamically adjust the partitions to iteratively improve performance. This
would sidestep the need for computation of an initial partitioning in favour of
generating it throughout the optimization process. Such a dynamic partitioning
method is a priority for future research.

While the SequentialMoveblocking algorithm of Section 4.2.2 is shown to have
favourable properties for MIOCPs with turnpikes, one of its weaknesses is that
it requires guesses as to where the turnpike begins and ends in the MIOCP. It
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5 Conclusions and Outlook

may be possible to use machine learning to obtain sufficiently good guesses,
however this is left to future research. Finally, it should be noted that all of the
subproblems in Sections 4.2.2 and 4.2.3 are solved centrally. In principle, one
could extend these algorithms to a distributed computing context. It would be
particularly interesting to see how node weighting would affect the results of
Algorithm 7.
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