
SQL query log analysis for identifying user
interests and query recommendations

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Natalia Arzamasova

Tag der mündlichen Prüfung: 03.02.2020

Erster Gutachter: Herr Prof. Dr. Klemens Böhm

Zweiter Gutachter: Herr Prof. Dr. Michael Grossniklaus

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/382464463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

In the sciences and elsewhere, the use of relational databases has become ubiquitous.
To get maximum profit from a database, one should have in-depth knowledge in both
SQL and a domain (data structure and meaning that a database contains). To assist
inexperienced users in formulating their needs, SQL query recommendation system
(SQL QRS) has been proposed. It utilizes the experience of previous users captured by
SQL query log as well as the user query history to suggest. When constructing such
a system, one should solve related problems: (1) clean the query log and (2) define
appropriate query similarity functions. These two tasks are not only necessary for
building SQL QRS, but they apply to other problems. In what follows, we describe
three scenarios of SQL query log analysis: (1) cleaning an SQL query log, (2) SQL
query log clustering when testing SQL query similarity functions and (3) recommending
SQL queries. We also explain how these three branches are related to each other.

Scenario 1. Cleaning SQL query log as a general pre-processing step

The raw query log is often not suitable for query log analysis tasks such as clustering,
giving recommendations. That is because it contains antipatterns and robotic data
downloads, also known as Sliding Window Search (SWS). An antipattern in software
engineering is a special case of a pattern. While a pattern is a standard solution, an
antipattern is a pattern with a negative effect.

When it comes to SQL query recommendation, leaving such artifacts in the log during
analysis results in a wrong suggestion. Firstly, the behaviour of "mortal" users who
need a recommendation is different from robots, which perform SWS. Secondly, one
does not want to recommend antipatterns, so they need to be excluded from the query
pool. Thirdly, the bigger a log is, the slower a recommendation engine operates. Thus,
excluding SWS and antipatterns from the input data makes the recommendation
better and faster.

The effect of SWS and antipatterns on query log clustering depends on the chosen
similarity function. The result can either (1) do not change or (2) add clusters which
cover a big part of data. In any case, having antipatterns and SWS in an input log
increases only the time one need to cluster and do not increase the quality of results.

Scenario 2. Identifying User Interests via Clustering

To identify the hot spots of user interests, one clusters SQL queries. In a scientific
domain, it exposes research trends. In business, it points to popular data slices which

iii

one might want to refactor for better accessibility. A good clustering result must be
precise (match ground truth) and interpretable.

Query similarity relies on SQL query representation. There are three strategies to
represent an SQL query. FB (feature-based) query representation sees a query as
structure, not considering the data, a query accesses. WB (witness-based) approach
treat a query as a set of tuples in the result set. AAB (access area-based) representation
considers a query as an expression in relational algebra. While WB and FB query
similarity functions are straightforward (Jaccard or cosine similarities), AAB query
similarity requires additional definition. We proposed two variants of AAB similarity
measure – overlap (AABovl) and closeness (AABcl). In AABovl, the similarity of two
queries is the overlap of their access areas. AABcl relies on the distance between two
access areas in the data space – two queries may be similar even if their access areas
do not overlap.

The extensive experiments consist of two parts. The first one is clustering a rather
small dataset with ground truth. This experiment serves to study the precision of
various similarity functions by comparing clustering results to supervised insights. The
second experiment aims to investigate on the interpretability of clustering results with
different similarity functions. It clusters a big real-world query log. The domain expert
then evaluates the results. Both experiments show that AAB similarity functions
produce better results in both precision and interpretability.

Scenario 3. SQL Query Recommendation

A sound SQL query recommendation system (1) provides a query which can be run
directly, (2) supports comparison operators and various logical operators, (3) is scalable
and has low response times, (4) provides recommendations of high quality. The existing
approaches fail to fulfill all the requirements. We proposed DASQR, scalable and
data-aware query recommendation to meet all four needs. In a nutshell, DASQR is
a hybrid (collaborative filtering + content-based) approach. Its variations utilize all
similarity functions, which we define or find in the related work.

Measuring the quality of SQL query recommendation system (QRS) is particularly
challenging since there is no standard way approaching it. Previous studies have
evaluated the results using quality metrics which only rely on the query representations
used in these studies. It is somewhat subjective since a similarity function and a
quality metric are dependent. We propose AAB quality metrics and then evaluate
each approach based on all the metrics.

The experiments test DASQR approaches and competitors. Both performance and
runtime experiments indicate that DASQR approaches outperform the existing ones.

iv

Deutsche Zusammenfassung

In der Wissenschaft und anderswo ist die Verwendung von Datenbanken allgegenwärtig
geworden. Um den maximalen Nutzen aus einer Datenbank zu ziehen sollte man einge-
hendes Wissen haben, sowohl von SQL als auch von der Domäne (eine Datenstruktur,
die eine Datenbank enthält). Um unerfahrene Benutzer beim Formulieren Ihrer Infor-
mationsbedürfnisse zu unterstützen wurden SQL-Anfrage-Empfehlungssysteme (SQL
QRS) vorgeschlagen. Diese verwenden sowohl die Erfahrungen früherer Nutzer, die
in SQL-Anfrage-Logs erfasst werden, als auch die Anfragehistorie des Benutzers um
Vorschlage zu erzeugen.

Beim Konstruieren eines solchen Systems sollten die folgenden Probleme lösen werden:
(1) bereinigen des Anfrage-Logs und (2) geeignete Funktionen zum Quantifizieren der
Anfrageähnlichkeit definieren. Diese zwei Aufgaben sind nicht bloß notwendig zum Bau
eines SQL QRS, sondern gelten auch für andere Probleme. Im Folgenden beschreibe
ich drei Szenarios der Analyse von SQL-Anfrage-Logs: (1) bereinigen des SQL-Anfrage-
Logs, (2) clustern von SQL-Anfrage-Logs beim Testen der Ähnlichkeitsfunktionen
von SQL-Anfragen und (3) vorschlagen von SQL-Anfragen. Im Folgenden werde ich
detaillierter Beschreiben wie diese drei Teilgebiete miteinander verbunden sind.

Szenario 1. Bereinigen des SQL-Anfrage-Logs als allgemeiner Vorverarbeitungsschritt

Das unbearbeitete Anfrage-Log eignet sich häufig nicht für Analyseaufgaben, wie
Clustern oder Empfehlungen geben. Das liegt daran, dass es Anti-Pattern und Daten-
downloads von Robotern enthält, die auch als Sliding Window Search (SWS) bezeichnet
werden. In der Softwareentwicklung ist ein Anti-Pattern ein Sonderfall eines Pattern:
Während ein Pattern eine Standardlösung ist, ist ein Anti-Pattern ein Pattern mit
einem negativen Effekt.

Wenn im Falle von SQL QRS solche Artefakte während der Analyse im Log bleiben,
kann das zu einer falschen Empfehlung führen. Erstens unterscheidet sich das Verhal-
ten „sterblicher“ Benutzer, die eine Empfehlung benötigen, von Robotern, die SWS
ausführen. Zweitens möchte man keine Anti-Pattern empfehlen, daher müssen diese
aus dem Anfragepool entfernt werden. Drittens arbeitet eine Empfehlungsengine umso
langsamer, je größer das Log ist. Wenn SWS und Anti-Pattern aus den Logs entfernen
werden, macht das die Empfehlung besser und schneller.

Die Auswirkung von SWS und Anti-Pattern auf das Clustering von Anfragelogs hängt
von der gewählten Ähnlichkeitsfunktion ab. Entweder kann sich das Ergebnis
(1) nicht ändern oder (2) es werden Cluster hinzugefügt, die einen großen Teil der Daten

v

abdecken. Im ersten Fall verlängert sich die Zeit zum Clustern, wenn Anti-Pattern
und SWS in den Eingabelogs enthalten sind. Im zweiten Fall erhält man Cluster, die
nicht die Hotspots der Benutzerinteressen zeigen.

Szenario 2. Identifikation der Benutzerinteressen durch Clustering

Um Ähnlichkeitsfunktionen für Anfragen zu finden und zu testen, werden SQL-
Anfragen geclustert. Das Clustern ist eine eigenständige Aufgabe, die Benutzerin-
teressen offenbart. Im wissenschaftlichen Bereich werden damit Forschungstrends
aufgedeckt. Im Unternehmensbereich weist es auf beliebte Teildaten, die für bessere
Zugänglichkeit überarbeitet werden könnten. Ein gutes Cluster-Ergebnis muss präzise
(der Ground-Truth entsprechend) und interpretierbar sein.

Die Anfrageähnlichkeit hängt von der Darstellung der SQL-Anfrage ab. Es gibt drei
Strategien SQL-Anfragen darzustellen. Der FB-Ansatz (Feature-basiert) sieht eine
Anfrage als eine Struktur, ohne Berücksichtigung der Daten, auf die eine Anfrage zu-
greift. Der WB-Ansatz (Zeugen-basiert) repräsentiert eine Anfrage als eine Menge von
Tupeln in der Ergebnismenge. Der AAB-Ansatz (Anfragebereich-basiert) betrachtet
eine Anfrage als Ausdruck in der relationalen Algebra. Während die Ähnlichkeits-
funktionen von WB- und FB-Anfragen für die ersten beiden Ansätze (Jaccard- oder
Cosinus-Ähnlichkeit) unkompliziert sind, erfordert die Ähnlichkeit von AAB-Anfragen
eine zusätzliche Definition. Ich habe zwei Varianten des AAB-Ähnlichkeitsmaßes vor-
geschlagen — Überlappung (AABovl) und Nähe (AABcl). Die Ähnlichkeit von zwei
Anfragen in AABovl ist die Überlappung ihrer Zugriffsbereiche. AABcl basiert auf
dem Abstand zwischen den beiden Zugriffsbereichen im Datenraum — zwei Anfragen
können ähnlich sein, auch wenn sich Ihre Zugriffsbereiche nicht überlappen.

Die umfangreichen Experimente bestehen aus zwei Teilen. Das erste Experiment ist das
Clustern eines eher kleinen Datensatzes anhand der Ground-Truth. Dieses Experiment
dient dazu die Genauigkeit verschiedener Ähnlichkeitsfunktionen zu untersuchen indem
die Ergebnisse des Clusterings mit überwachten Erkenntnissen verglichen werden. Das
zweite Experiment zielt darauf ab, die Interpretierbarkeit der Cluster-Ergebnisse
mit verschiedenen Ähnlichkeitsfunktionen zu untersuchen. Dieses clustert ein großes
Echtwelt-Anfrage-Log. Ein Domänen-Experte bewertet anschließend die Ergebnisse.
Beide Experimente zeigen, dass AAB-Ähnlichkeitsfunktionen bessere Ergebnisse liefern,
sowohl bei der Genauigkeit als auch bei der Interpretierbarkeit.

Szenario 3. SQL Anfrageempfehlung

Ein zuverlässiges SQL-Anfrageempfehlungssystem (1) liefert eine Anfrage, die direkt
ausgeführt werden kann, (2) unterstützt Vergleichsoperatoren und verschiedene logische
Operatoren, (3) ist skalierbar und weist niedrige Antwortzeiten auf und (4) liefert
Empfehlungen von hoher Qualität. Existierende Ansätze erfüllen nicht alle diese
Anforderungen. Ich habe DASQR vorgeschlagen, eine skalierbare und datensensitive
Anfrageempfehlung, die alle vier Anforderungen erfüllt. Kurz gesagt ist DASQR ein
hybrider Ansatz bestehend aus kollaborativem Filtern und einem inhaltsbasierten

vi

Ansatz. Seine Varianten nutzen alle Ähnlichkeitsfunktionen, die ich definiert oder in
verwandten Arbeiten gefunden habe.

Das Messen der Qualität von SQL QRS ist eine besondere Herausforderung, da es
keine Standardmethode gibt. Bisherige Studien haben die Ergebnisse anhand von
Qualitätsmetriken ausgewertet, die auf Anfragerepresentationen basieren, die nur in
diesen Studien verwendet wurden. Das ist etwas subjektiv, da Ähnlichkeitsfunktion
und Qualitätsmetrik unabhängig voneinander sind. Ich schlage AAB-Qualitätsmetriken
vor und bewerte jeden Ansatz basierend auf allen Qualitätsmetriken.

Die Experimente testen meinen DASQR-Ansatz gegen Wettbewerber. Sowohl
Performance- als auch Laufzeitexperimente zeigen, dass mein DASQR-Ansatz existie-
rende Ansätze übertreffen.

vii

Acknowledgements

Here I would like to thank all the people who supported me during the writing of this
thesis.

First of all, I’m very thankful to my supervisor Klemens Böhm. Next, thanks to my
colleagues for advises in my research: Vadim Arzamasov, Georg Steinbuss, Holger
Trittenbach, Jens Willkomm, Edouard Fouché, Michael Vollmer and Fabian Laforet.

Many thanks again to Vadim Arzamasov for making me finish it. Last but not least, I
thank Varvara Arzamasova for her patience and understanding.

ix

Table of Contents

1 Introduction 1
1.1 Cleaning SQL query log as general pre-processing step 1

1.1.1 The influence of SQL query log cleaning to finding user interests
via clustering . 2

1.1.2 The influence of SQL query log cleaning to SQL query recom-
mendations . 3

1.2 Identifying User Interests via clustering 3
1.3 SQL Query Recommendation . 5
1.4 Main Contributions . 7
1.5 Outline . 9

2 Preliminaries 11
2.1 Common Definitions . 11
2.2 SQL Query . 11
2.3 SQL Query Log . 13
2.4 SQL Query Representations . 13
2.5 SQL query recommendations . 13

3 Related Work 15
3.1 General SQL Query Log Analysis . 15
3.2 Review of Database Antipatterns . 17

3.2.1 Stifle Antipattern . 17
3.2.2 Circuitous Treasure Hunt (CTH) 19

3.3 SQL Query Representations and Similarity Functions 20
3.3.1 Query as a String . 20
3.3.2 Query as Features . 21
3.3.3 Query as Result Tuples . 22
3.3.4 Query as an Access Area . 23
3.3.5 Summary . 27

3.4 Recommender systems and their Application to SQL QRS 29
3.4.1 "Classical" Recommender Systems (RSs) 29
3.4.2 SQL Query Recommendations – Applying Conventional Ap-

proaches . 29
3.4.3 An Overview of SQL QRS . 30
3.4.4 Resume . 35

xi

Table of Contents

4 Cleaning Antipatterns in an SQL Query Log 37
4.1 Patterns and antipatterns: formal definitions, detection rules and solving

solutions . 37
4.1.1 Definitions for a Database Pattern 38
4.1.2 Definitions for Antipatterns . 41

4.2 Implementation of Solving Antipatterns in an SQL Query Log 45
4.2.1 Original Query Log . 46
4.2.2 Deleting Duplicates . 46
4.2.3 Parsing Statements and Parsed Query Log 46
4.2.4 Query Templates and Patterns 48
4.2.5 Solving Antipatterns, Clean Query Log and Statistics 49

4.3 A case Study With SkyServer . 50
4.3.1 Appropriateness of the SkyServer Log for a Case Study 50
4.3.2 Choosing the Duplicate Time Threshold 50
4.3.3 General Results . 51
4.3.4 Effects of SQL Log Cleaning 51
4.3.5 Interpretation of Patterns . 52
4.3.6 CTH Detection . 55
4.3.7 Feedback from Domain Experts 56
4.3.8 Effects on Downstream Analysis 57

4.4 Conclusions . 60

5 SQL-Query-Similarity Measures 61
5.1 Our AAB similarity functions . 61

5.1.1 Requirements to an SQL query similarity function 61
5.1.2 Requirements to an SQL query 62
5.1.3 Definitions . 63
5.1.4 Corner cases of SQL query similarity 65
5.1.5 The simplest case: two approaches of AAB similarities. 65
5.1.6 Multiple Occurrences of an Attribute in Filtering Conditions . 69
5.1.7 Several Distinct Attributes in Filtering Conditions 72
5.1.8 Similarity in the Presence of Joins 74
5.1.9 The Overall AAB Similarity Function 76
5.1.10 Discussion . 76

5.2 Experimental evaluation . 77
5.2.1 Experiment Settings . 77
5.2.2 The Data Sets . 78
5.2.3 Evaluation Techniques . 81
5.2.4 Implementation . 81
5.2.5 Experiments with Supervision 82
5.2.6 Experiments with SkyServer . 83

5.3 Conclusions . 94

xii

Table of Contents

6 Scalable and Data-Aware SQL Query Recommendations 97
6.1 Our Approaches . 97

6.1.1 DASQR CF (Collaborative Filtering) 97
6.1.2 Thick Query Similarity, no Fitting (TkS) 98
6.1.3 Thin Query Similarity, thick Fitting (TnS) 101
6.1.4 DASQR CB (Content-Based) 105
6.1.5 Hybrid Approaches . 105
6.1.6 Summary . 105

6.2 Experiments . 107
6.2.1 Experiment Setup . 107
6.2.2 Evaluation Protocol . 108
6.2.3 Evaluation Metrics . 109
6.2.4 Experimental Evaluation . 111
6.2.5 Discussion . 114

6.3 Conclusions . 115

7 Conclusion 119

List of Algorithms 123

List of Figures 125

List of Tables 127

List of Theorems 129

Bibliography 131

List of Notations 137

Curriculum Vitae 143

List of Publications 145

xiii

1 Introduction

SQL query recommendation suggests an SQL query to a user, based on his submitted
requests and the ones of other users stored in a query log. When constructing
such system, there are related problems appear: (1) clean a query log and (2) define
appropriate query similarity functions. These two tasks do not only serve for developing
SQL QRS, but apply to independent problems. In what follows, we describe the three
scenarios of SQL query log analysis, namely (1) cleaning an SQL query log (2) SQL
query log clustering when testing SQL query similarity functions and (3) recommending
SQL queries. Moreover, we explain the relationship between these scenarios.

1.1 Cleaning SQL query log as general
pre-processing step

To cluster or give SQL query recommendation, one should first clean a log from
antipatterns and robotic data downloads a.k.a. Sliding Window Search (SWS). An
antipattern in software engineering is a special case of a pattern. While a pattern is a
common solution, an antipattern is a pattern with a negative effect.

Example 1.1 Table 1.1 lists a sequence of SQL queries of a user. These statements
reflect the specific intentions of the user, i.e., form patterns. The second, the third,
and the fourth query filter the tables using the same constant. Without the first
query, one cannot understand that constant. That is an occurrence of the Circuitous
Treasure Hunt (CTH) antipattern [Dud+03]. Next, the second and the third query
select different columns of the same table. That is the Stifle antipattern [Fow97].

A common method to detect antipatterns requires access to the software that generates
the requests [Dud+03]. Regarding SQL antipatterns, this means that one would need

Table 1.1: A series of statements from one user
Statements Result
1 SELECT E.empId FROM Employees E WHERE E.department = ‘sales’ 12
2 SELECT E.name, E.surname FROM Employees E WHERE E.id = 12 John, Doe
3 SELECT E.birthday, E.phone FROM Employees E WHERE E.id = 12 03/12/1985, 01259863448
4 SELECT count(orders) FROM Orders O WHERE O.empId = 12 36

1

1 Introduction

to have access to all systems working with the database. That is practically impossible,
for databases on the Web in particular. That solution also does not help regarding
antipatterns in an already existing query log. As Example 1.1 has mentioned, one
challenge when looking for SQL antipatterns is the identification of dependencies
among subsequent queries. At first sight, a promising approach is re-querying. For
instance, to know for sure that Statements 2, 3 and 4 depend on Statement 1, one
should re-run the first query and inspect the result. However, this is not viable for the
following reasons:

(1) Performance aspect : Re-running a significant part of an SQL log implies a huge
load on the database.

(2) Side effects aspect : ‘Re-run’ queries will be saved in the query log; this will bias
any subsequent log analysis.

(3) Data persistence aspect : In the presence of modifications of the data set, the
result of a re-issued query does not have to be the same as the original one.

(4) Schema modification aspect : Because of database-schema refactoring such as
renaming of attributes, old requests might even cause errors.

Cleaning antipatterns on an SQL query log is also a general preprocessing step in the
data-analysis process. Clean query log serves as an input for follow-up query analysis
tasks. Cleaning influences them in the following way.

1.1.1 The influence of SQL query log cleaning to finding user
interests via clustering

Let us demonstrate the effect of antipatterns cleaning when it comes to finding hot
spots of user interests on the examples.

Example 1.2 Queries 2 and 3 of Example 1.1 by the same user refer to the same
data object, and a naive log-analysis scheme would count two occurrences of interest
in this object. But it should not be overly controversial that these queries represent
the same information need, at least when being issued right after each other. In other
words, an occurrence of the Stifle has falsified this analysis.

Example 1.3 Consider again Table 1.1. Queries 2 to 4 can only be understood
together with Query 1. That is because the Attribute id does not have any meaning
from the domain perspective. Thus, if one rewrites queries without antipatterns, the
specific user interest would be more obvious:

SELECT E.empId, E.name, E.surname, E.birthday, E.phone, O.oCount

FROM Employees E INNER JOIN

(SELECT empId, count(orders) as oCount

FROM Orders GROUP BY empId) O ON O.empId = E.empId

2

1.2 Identifying User Interests via clustering

The effect of SWS on query log clustering depends on the chosen similarity function.
The result can either (1) do not change or (2) add clusters which cover a big part of
data. In the first case having antipatterns and SWS in an input increases the time one
need to cluster. In the second case, one gets clusters, which do not show hot spots of
user interests.

1.1.2 The influence of SQL query log cleaning to SQL query
recommendations

When it comes to SQL QRS, leaving SWS and antipatterns in the log during analysis
may result in a wrong recommendation. Firstly, the behaviour of "mortal" users, who
need advice, is different from robots, which perform SWS. Secondly, one does not want
to recommend antipatterns, so they need to be excluded from the query pool. Thirdly,
the bigger a log is, the slower a recommendation engine operates. Thus, excluding
SWS and antipatterns from the log makes the recommendation better and faster.

1.2 Identifying User Interests via clustering

An SQL query is a request for data or information from a database table or combination
of tables. This definition is rather abstract and does not answer the question "how to
compare two queries?". The second topic of our interest is finding an optimal way to
represent and compare SQL queries.

To test query similarities, we cluster SQL queries. By doing so, we aim to reveal user
interests. In a scientific domain, user interests expose research trends. In business, it
points to popular data slices, which one might want to refactor for better accessibility.
We are guided by two criteria while evaluating the clustering results: precision and
interpretability [HBV01]. A precise cluster matches the reality (or ground truth). The
interpretable cluster represents one clear user interest. [HBV01].

We see three main challenges on the way of clustering SQL query log:

(1) To cluster SQL queries, one needs a notion of query similarity. Query similarity
relies on SQL query representation. There are three strategies to represent an
SQL query:
(a) FB (feature-based) approach [Kho+10] sees a query as structure, not con-

sidering the data a query access.
(b) WB (witness-based) approach [Eir+14] represents a query as a set of tuples

in the result set.
(c) AAB (access area-based) approach [Ngu+15] considers a query as an ex-

pression in the relational algebra.

3

1 Introduction

Table 1.2: Queries in a log
Statements Result

1 SELECT * FROM Employees E
WHERE E.department = ’sales’ 12 employees from sales department

2 SELECT * FROM Employees E
WHERE E.department = ’store’ 8 employees from store department

3 SELECT * FROM Employees E
WHERE E.startdate >= ’01/12/2015’

10 employees who started working in
a company after the date

Example 1.4 Think of a query log consisting of the queries listed in Table 1.2.
All three queries access table ’Employees’. One might find the first and the second
query similar. That is because they have the same structure, asking for employees
in a particular department. Indeed, according to the FB approach, these two
queries are identical. However, one can also disagree with this conclusion. In line
with the WB representation, these two queries do not have any common tuples
in their results sets. When it comes to AAB, the first and the second query
refer to different parts of the data space and hence are not similar. Regarding
the similarity between the first and the third query, one cannot say much.
Even though there could be employees from the sales or the store department
who started to work after 01/12/2015 (similarity in WB), this does not lead to
meaningful insights. A user might have had different intentions when formulating
these queries.

So far, to our knowledge, there is no comparative study on the usefulness of
different query representations for clustering.

(2) Once one has a query representation, he can build a similarity function on it.
A query similarity function quantifies for any two queries to what extent they
are alike. The FB and WB representations lend themselves to straightforward
measures: Jaccard or cosine similarity. The similarity function for AAB in turn
proposed in [Ngu+15] is complex compared to FB or WB. It also has some
redundancies, and several definitions behind it are ad hoc, as we will explain
(see Section 3.3.4). Generally speaking, we also wonder whether there are more
answers to the question when two queries are similar.

(3) Another challenge when testing similarity function via clustering is that we are
not aware of any suitable publicly available data set, including a ground truth.
Ground truth is needed to quantify the precision of clustering. A ’suitable’
query log must include (a) a labeled SQL query log and (b) the database these
queries have been submitted to. It also (c) must be publicly available. So one
cannot objectively compare similarity functions and the corresponding query
representations.

4

1.3 SQL Query Recommendation

Table 1.3: Queries q1 and q2 submitted in a row
Statements

1 SELECT obj FROM Galaxies G
WHERE G.ra BETWEEN 29.122 AND 29.01 AND G.dec BETWEEN 0.996 AND 1.103

2 SELECT obj FROM Galaxies G
WHERE G.ra BETWEEN 29.065 AND 29.066 AND G.dec BETWEEN 1.016 AND 1.017

1.3 SQL Query Recommendation

Open-access databases let users retrieve data online. SQL serves as a common interface
to this end. However, it often is not helpful for users with little database expertise.
SQL query recommendation systems (SQL QRS) have been proposed to deal with this
mismatch [Kho+10], [Ali+15], [RRS11a].

A clean (without antipatterns and SWS) query log is as an input of building such a
system. The query similarity functions that we discover or define while identifying
user interest via clustering (Section 1.2) serve as one of building bricks on the way.

We formulate the following requirements to SQL query recommendation system:

(1) provides a query which can be issued directly,
(2) supports comparison operators and various logical operators,
(3) is scalable and has low response times,
(4) provides recommendations of high quality.

We now explain and motivate these requirements.

(1) Recommending full and data-aware queries. ’Full query’ means suggesting an
entire SQL request, not only a segment (like tables in the FROM clause). Data
awareness implies having real values (not placeholders) in the filtering condition
of the query. A full and data-aware request can be submitted to a database as is.

Example 1.5 Table 1.3 contains two queries submitted in a row, to the Sky-
Server database∗. q1 searches for galaxies in a cluster†. q2 zooms into a particular
area within the cluster. While it is not difficult to put together the structure
of the query, the complication rather is specifying the area to zoom into. Here,
suggesting only a query structure or a part of it is less helpful.

(2) Support of comparisons and various logical operators. Comparison operators
of SQL are {=,<,>,≤,≥, 6=}. Popular logical operators are ALL, AND, ANY,
BETWEEN, EXISTS, IN, NOT, OR, SOME. As motivated in Example 1.5, range
queries are needed. Our literature review will reveal that existing OLAP-oriented
approaches do not cover them.

∗http://skyserver.sdss.org
†A galaxy cluster is a structure that consists of anywhere from hundreds to thousands of galaxies
that are bound together by gravity. (https://www.spacetelescope.org/news/heic1201/)

5

1 Introduction

Table 1.4: The recommended q1 and the unseen q2 queries
Statements Result

1 SELECT name, population FROM Cities C
WHERE C.population BETWEEN 2000 AND 4000

{Rome, 2863};
{Madrid, 3223}

2 SELECT name, population FROM Cities C
WHERE C.population BETWEEN 1000 AND 2500

{Vienna, 1899};
{Minsk, 1982}

(3) Scalability and speed. ’Low response time’ means that a recommendation is
generated within a few seconds and that this time grows slower than linearly
with the log size.

(4) High quality. In a nutshell, recommendations need to be helpful to the user.

The last requirement is particularly challenging since there is no standard way to
measure the quality of query recommendations. In principle, one would need to
compare a recommended query to an unseen one, the query that represents the
information need of a user (if it was known). The result of such a comparison
would depend on the query representation.

Example 1.6 Table 1.4 contains two queries, q1 and q2, where q1 is a recom-
mended query and q2 an unseen one. If we see a query as a structure, the two
queries are identical. If we compare queries based on their result sets, q1 and q2
have nothing in common. So the outcome of comparison depends on the query
representation.

We have motivated data-aware recommendations; they are essential in many
situations. Such quality measures like precision and recall must capture the
differences between the recommended and the unseen queries in the data space.
However, the problem is that previous studies have evaluated their results using
quality metrics which only rely on the query representations they have used
themselves. For instance, [CEP09] relies on the witness-based (WB) representa-
tion, where the result tuples stand for the query. The approach then uses the
notion of witness in its quality metrics as well. Evaluations, where the query
representation and the quality metrics are decoupled, is missing, and is expected
to provide interesting insights.

To our knowledge, no existing approach satisfies all of the above requirements, see
Table 3.4. We aim to design such a recommendation system.

6

1.4 Main Contributions

1.4 Main Contributions

Our first contribution is a general solution of detecting and solving antipatterns in an
SQL query log. In particular,

(1) We provide formal definitions classifying a query load into normal queries,
patterns, and antipatterns.

(2) We describe our solution to detect and classify patterns and antipatterns. We
also solve antipatterns within a query log. While we confine ourselves to the
CTH and the Stifle, we have designed a processing framework that can also
accommodate other antipatterns (see Section 4.2.4).

(3) Our empirical study relies on the log of Sky-Server system, covering seven years
and containing nearly 42 million queries.

(4) In line with other research on data cleaning, our core evaluation criterion is the
plausibility of our results (in contrast to result quality of any downstream analy-
ses). For instance, the share of antipatterns in the SkyServer log is significant:
6 patterns among the 15 most frequent ones are antipatterns. After removing
them, all patterns among the 40 most frequent ones do represent important
information needs.

(5) We present evidence that the results of previous studies of the SkyServer log
(e.g., [Ngu+15], [CEP09]) would have been different, had the log been cleared of
antipatterns.

Our second contribution is studying the usefulness of SQL query similarity measures
to find user interests. Throughout this process,

(1) We provide an extensive discussion of existing measures for query similarity and
their advantages and disadvantages.

(2) Based on this discussion, we propose a new query similarities.
(3) We perform systematic experiments with the design alternatives. In particular,

we study the impact of various similarity functions and query representations on
clustering quality.

(4) To quantify the precision of clustering, data with ground truth is needed. Having
such data in our current domain is an issue that existing approaches have
difficulties with. We, in turn, come up with conditions where one knows in
advance which cluster a query belongs to. Then we collect these queries together
with this ground truth. We make this data publicly available.

(5) To measure interpretability we conduct a study which involves a domain expert.
He interprets various clustering results and assesses how well they align with
user interests.

(6) We find that our proposed similarity measures are better than the existing ones
regarding both precision and interpretability and provide explanations for this.
We have learned that the new measures are indeed helpful to arrive at ’query
clusters’ that are meaningful, i.e., represent user interests.

7

1 Introduction

Our third contribution is DASQR, a data-aware and scalable SQL query recommenda-
tion system. More specifically,

(1) We put together systematically which design decisions are necessary when
constructing an SQL QRS and then look at the respective solutions of existing
systems. More specifically,

(a) We propose both content-based (CB) and collaborative filtering (CF) ver-
sions of SQL QRS, as well as hybrid combinations. However, there are
significant differences between the SQL query domain and, say, e-commerce,
and instantiating these principles for SQL is a contribution of ours.

(b) We have designed CB query recommendation to study how beneficial it is
to recommend queries similar to already submitted ones. Previous studies
do not feature CB SQL query recommendations.

(c) Regarding collaborative filtering (CF), we come up with several proposals:
A first one (TkS) operates directly in the data space, a second one (TnS)
first finds a suitable structure of the recommended query and then assigns
filtering conditions. We also propose a hybrid approach and explain that,
though simple, it is more specifically tailored to the SQL domain than
earlier hybrid proposals.

(d) Some of our design decisions are borrowed from existing approaches which
are plausible and convincing. For instance, we make use of existing query
similarity functions (AABovl, AABcl) [Arz+19] and of other existing fea-
tures (FB [Kho+10], WB [CEP09]). However, regarding user sessions, while
we have started with existing methods (SWA [SW+81], DTW [Sak+90]) to
quantify their similarity, a proposal of our own has turned out to be better.

(2) We address the problem of existing solutions that quality metrics only rely on the
current representation. We introduce measures for all representations considered
and then compare the recommendations according to all measures. The rationale
is to learn more about the results if a metric does not correspond to a query
representation. In our experiments, we study whether the results are stable
irrespective of the SQL query representation the quality metric is built upon.

(3) An extensive experimental study shows that our approaches outperform the
competitors irrespective of the quality measure.

8

1.5 Outline

1.5 Outline

Chapter 2 presents basic definitions and concepts that we use in this thesis. Next,
Chapter 3 presents an overview of existing techniques and algorithms related to
SQL query log analysis. In particular, it studies SQL antipatterns, SQL query
similarity functions and SQL query recommendations. Chapter 4 presents our cleaning
solution for SQL query logs. Afterwards, we present and test our query similarity
functions in Chapter 5. In Chapter 6 we propose DASQR, our data aware SQL query
recommendation approach. The discussion of the results is presented in the end of
each corresponding chapter as well as in Chapter 7.

9

2 Preliminaries

In this chapter, we present basic definitions and concepts that are used throughout
this thesis.

2.1 Common Definitions

Definition 2.1 A relational database DB is a database consisting of N relations
R1, . . . ,RN .

Definition 2.2 A database schema S is a logical architecture of the database DB,
i.e., a set of definitions of relations {R1, . . . ,RN} of DB and constraints put on them.

Definition 2.3 A database state T of the database DB is data in the database DB
allowed by the database schema S at any particular time.

Definition 2.4 (U ;T) stands for the set of tuples of U at state T of DB.

Definition 2.5 A query q is a Select-Project-Join (SPJ) request together with an
optional aggregate computation.

Definition 2.6 A domain dom(a) of an attribute a is one of an attribute a.

Definition 2.7 The universal relation U is the Cartesian product of all relations in
the database U =R1×·· ·×RN .

2.2 SQL Query

Definition 2.8 The universal relation U(q) of a query q is the Cartesian product of
all relations in the query q : U(q) =R1×·· ·×RM .

Definition 2.9 Filtering conditions P (q) of a query q is a Boolean expression of all
constrains put on U by a query q.

11

2 Preliminaries

Definition 2.10 The interest Ints(q) of a query q is the sequence of attributes (in
alphabetical order) occurring in the filtering conditions P (q).

Example 2.11 Let us define interests of a query q:

SELECT * FROM Employees E WHERE E.department = ’sales’

AND E.startdate >= ’01/12/2015’ AND E.startdate <= ’01/12/2018’

Ints(q)= (Employees.department, Employees.startdate).

Let us refer to a particular interest in Ints(q) as Ints(q)[i], starting an index i from 1.
For instance, Ints(q)[1]=Employees.departmentandInts(q)[2]=Employees.startdate.

Definition 2.12 The operators operators(q) of a query q is a sequence of interests
with connected operators in the filtering conditions P (q).

Example 2.13 A query q from Example 2.11 has the following operators:

({Employees.department;{′=′}},{Employees.startdate;{′>=′,′<=′}})

Definition 2.14 Operators of the interest operators(q)[ints] or operators(q)[i] are
operators, which refer to the particular interest ints

Here i is an index of an interest ints within Ints(q).

Example 2.15 Operators of the interest of Query q and interest Employees.startdate
from Example 2.11 are:

operators(q)[Employees.startdate] = operators(q)[2] = {′>=′,′<=′}.

Definition 2.16 Filtering conditions of the interest P (q)[ints] or P (q)[i] are ones,
which refer to the particular interest ints.

Example 2.17 Let us define filtering conditions of interests for q from Example 2.11:

P (q)[Employees.department] = P (q)[1] = Employees.department =′ sales′;

P (q)[Employees.startdate] = P (q)[2] =
{Employees.startdate>=′ 01/12/2015′,
Employees.startdate<=′ 01/12/2018′}.

12

2.3 SQL Query Log

2.3 SQL Query Log

Users may submit queries in a sequence with a short time between them, so-called
user sessions.

Definition 2.18 A user session usi is a sequence of queries (qi1, . . . , qin) of one user.

Here l = |usi| is the length of usi. A user session often reflects a certain intention of
the user ([CEP09], [Eir+14], [Ali+15]).

Definition 2.19 A query log US is a set of user sessions {us1, . . . ,usn}.

2.4 SQL Query Representations

Definition 2.20 A representation scheme QRS of a Query q is a function which
returns certain feature values representing a query.

Definition 2.21 A query representation QR(q) of a query q is a set of feature values
which are the result of QRS applied to q.

Example 2.22 Think of a query log consisting of the queries listed in Table 1.2.

If a QRS which extracts the tables listed in the FROM clause, but nothing else,

QR(q1) = QR(q2) = QR(q3) = Employees.

In contrast, if the QRS also extracts the attributes listed in the WHERE clause,

QR(q1) = QR(q2) = Employees, Employees.department,
QR(q3) = Employees,Employees.startdate.

2.5 SQL query recommendations

Definition 2.23 us0 is the current user session, i.e., the one for which the recom-
mendation is made.

Definition 2.24 An unseen query q0
n+1 is the one intended, but not formulated by

the user.

13

2 Preliminaries

Unseen queries are contained in the respective session, i.e., |us0|= n+1.

nr is a number of recommendations an SQL recommendation system should provide.

The problem of SQL query recommendation is to suggest a ranked list of queries
(q′1, . . . q′nr) that predict q0

n+1. The subscript i of q′i is the rank of the respective
suggestion. Queries with the small ranks are recommended first. (q′1, . . . q′nr) can be
empty or only partially filled if an algorithm is unable to suggest queries for specific
input data {US,us0}.

14

3 Related Work

In this chapter, we give an overview of the SQL Query Log Analysis approaches. We
split it into four sections:

(1) general SQL query log analysis,
(2) review of database antipatterns,
(3) SQL query representations and corresponding similarity functions,
(4) SQL query recommendations

The first section overviews trends in SQL query log analysis. The second studies
database antipatterns. Here we present the detection rules and refactoring solutions
from the literature. Our third topic of interest is SQL query representations and
corresponding similarity functions. We list the limitations of existed approaches,
justifying the need for ours. The forth section first overview general approaches
in making recommendations and then reviews the methods of giving SQL query
suggestions.

3.1 General SQL Query Log Analysis

Query-log analysis currently is a field of intensive study. An elementary distinction
is between weblogs and SQL logs. Studies on weblog processing such as [Sil+09]
and [Cao+08] tend to focus on an understanding of the user behaviour through
their information-seeking activities. [Sil+09] studies web search engine optimization
by mining past queries. [Cao+08] proposes a context-aware query recommendation
approach by mining click-through and session data.

A promising branch of SQL log analysis is diagnosing and repairing data errors caused
by erroneous updates. [WMW17] works with a log of update queries: UPDATE,
INSERT and DELETE statements, and a set of known data errors to find and fix
mistakes within a dataset. The processing of DML queries does not address our
specific problem – finding antipatterns. Nevertheless, this study bears a connection
to our work since it provides formal definition rules for discovering and solving the
errors. Overall, query log analysis has different research threads, namely query
recommendation, finding user interests and diagnosing errors. Our study relates to all
these objectives.

15

3 Related Work

Another research area, clustering SQL queries to identify hot spots of users’ interests,
is studied in [Ngu+15]. It proposes a query-similarity metric based on the notion
of so-called access areas. We discuss this notion in detail when reviewing query
representations and similarity measures in Section 3.3. [CL07] uses query clustering to
help users locate interesting results. It generates clusters over the data. Each cluster
corresponds to one type of user preference. To perform clustering, the authors compare
queries based on the results they return. As an outcome, they present a navigational
tree over clusters generated in the first step to the user. He can then select the subset
of clusters matching his needs.

The third research thread applies association-rule mining to a query log. [CEP09]
describes an approach that generates SQL query recommendations online. It compares
user sessions and recommends a query to a user based on SQL requests from similar
sessions. The authors present an idea that similar user behaviour manifests itself
in similar data these users access. [Ali+14] presents a different approach to the
similarity of SQL user sessions. The paper focuses on OLAP sessions and introduces
an order-sensitive model to compare them. That means that the order of queries
within a session influences their similarity. The proposed method considers the filtering
conditions of SQL requests in a limited way: Only equality predicates are allowed.
Other related work [Kho+10] aims at auto-completion of a query, suggesting tables,
views, UDFs, columns and predicates. It adjusts its recommendation to the context:
The more of the SQL request the user has typed in, the more accurate is the suggestion
provided. [YPS09] recommends join queries based on log analysis. It first extracts
chains of joins with corresponding predicates from the training set. The algorithm
then creates queries from a test set with only tables present in these queries as an
input.

Studies of SQL logs mainly consider publicly available scientific databases. The most
popular one is the log from Sloan Digital Sky Survey, a.k.a. Sky Server∗. [Sin+07],
[Rad+14a] and [Rad+14b] are detailed reports of the Sky Server user activities. They
analyze both types of logs, SQL and web. The study provides various statistics
regarding the first five [Sin+07] and ten years [Rad+14a], [Rad+14b] since SDSS
SkyServer has gone online.

∗http://skyserver.sdss.org/dr15/en/home.aspx is a homepage for Sky Server project, the query log
can be downloaded from http://skyserver.sdss.org/log/en/traffic/sql.asp

16

3.2 Review of Database Antipatterns

3.2 Review of Database Antipatterns

In the following, we briefly review research on database antipatterns. [BG06] lists
semantic errors in SQL queries. Their insights stem from their experience while
correcting database exams. Some of the mistakes listed lead to syntax errors. That
work is orthogonal to ours. Database antipatterns, which we aim to detect, are
semantically correct queries. [Ees15] detects database design antipatterns by querying
metadata tables. Such antipatterns reflect errors in the database schema, which is
not the topic of our study. [Che+14] proposes a framework to detect object-relational
mappings (ORM) performance antipatterns. It performs static code analysis and a
rule-based approach. It is again, not suitable for our task since we operate only with
a query log. [Che+16] studies detection of DML bug patterns. DML queries, however,
are not in the focus of this research: we aim to clean a query log of SELECT statements
to facilitate further analyses on it (i.e., what do database users find interesting in the
database).

In what follows we focus on two antipatterns, which influence analysis of an SQL query
log. These are the Stifle [Wer+14] and the Circuitous Treasure Hunt [SW00]. They are
also known to be the main reason for antipattern-related performance degradations.
Our explanation includes suggestions for their detection and refactoring. We use a
term ’refactoring’, not ’solving’ in this context, because we reserve a term ’solving’
when we talk about query log modification.

3.2.1 Stifle Antipattern

3.2.1.1 Definition

The Stifle antipattern consists of several queries containing similar SQL statements
[Fow97]. The term similar does not have a formal definition. However, examples
are queries being identical except for constants in the WHERE clause. Processing
such queries may be a bottleneck and harm performance. When analyzing a query
log, the Stifle may falsify results. For instance, as pointed out earlier, it blurs the
representation of user interests.

Example 3.1 The following code generating SQL statements illustrates the Stifle
antipattern. Thus, every Id in the itemList causes a request to Table T .

for (int item: itemList)

{

String sql = "SELECT * FROM T WHERE Id = " + item;

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(sql);

}

17

3 Related Work

In a log, the Stifle manifests itself as a sequence of similar statements.

3.2.1.2 Detection

[Wer+14] bases its’ detection approach for the Stifle on measurements of a running
instance of the software. It assumes that a high load is a high-probability indicator for
the presence of antipatterns. A specific sign for the Stifle is a large number of database
calls per service and a small average number of result rows per query. Thus, this
approach is based on general statistics and may not be precise enough. [TK11] proposes
heuristics for measurement-based detection of several antipatterns on source-code level.
There, the Stifle antipattern manifests itself by many similar database requests. A
Stifle is detected if two or more database requests from one user for service exist.
Besides, the queries need to have the same structure, except for the values passed to
the method. Thus, this approach requires access to the source code of the service.
Also, it compares strings used in the source code, which then form the query.

3.2.1.3 Refactoring

We now review methods to rewrite instances of the Stifle antipattern. In software
development, this is called refactoring. [WMW17] proposes the Pack refactoring.
Their idea is to collect individual SQL statements and send them to the database in
one batch.

Example 3.2 The Pack refactoring for Example 3.1 is:

String sql = "";

for (int item: itemList)

{

sql = sql + "SELECT * FROM T WHERE Id = " + item + ";";

}

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(sql);

After the Pack refactoring one gets a single request which consists of several SQL
statements. This solution removes the unnecessary network overhead for any future
query. However, it still requires the same amount of database resources. It does not
alter the query log. We, for our part, seek an approach that rewrites such queries in
an existing query log to facilitate meaningful analyses.

18

3.2 Review of Database Antipatterns

3.2.2 Circuitous Treasure Hunt (CTH)

3.2.2.1 Definition

The Circuitous Treasure Hunt (CTH) antipattern [SW00] has one similarity with the
Stifle, as they both consist of several database requests. However, individual CTH
queries depend on each other. That means that a subsequent query requires the result
of previous ones as input.

3.2.2.2 Detection

Similarly to the Stifle, a huge database overhead is an indication for the CTH antipat-
tern [Wer+14]. However, to identify any CTH, one requires either knowledge on the
queries or the ability to trace the information flow. Detection of CTH in [TK11] is
based on the source code of an application. Consequently, a new approach is needed
to discover instances of the CTH in a database log. However, this is not trivial. As
Example 1.1 has shown, without having the results of the first query, one does not see
dependencies of a sequence of SQL statements with certainty.

3.2.2.3 Refactoring

The solving solution for CTH in [SW00] depends on the stage of software development
when the antipattern is discovered. If it is found early in the development, the authors
suggest re-organizing the database schema. For distributed systems where one cannot
do this, it is possible to reduce the number of remote database calls by using the
Adapter pattern [SBM96]. For designs with large intermediate results, an alternative
is to create a new association that leads directly to the final result.

These solutions depend on a concrete case and are not automatic. Furthermore, they
prevent future CTH occurrences but do not solve CTH occurrences in a log.

19

3 Related Work

3.3 SQL Query Representations and Similarity
Functions

In this section, we address how to define the similarity of queries. Since an SQL
query may have a complex structure, this is not trivial. First one has to decide
what to compare. Put differently, which query-representation scheme (QRS) to use?
We provide an overview of the approaches we have encountered in the scientific
literature. Table 3.2 summarizes the query representations and the corresponding
similarity/distance functions reviewed in this section. The last two rows refer to the
new AAB similarity functions we are about to propose.

While studying the literature, we have in mind that our final goal is to create a
data-aware query recommendation. Query similarity is a crucial auxiliary step on the
way.

3.3.1 Query as a String

Arguably, the most straightforward way to represent an SQL query statement is as a
string. To calculate query similarity, one could use string-similarity measures [II08].
However, this hardly captures any specific features of SQL.

3.3.1.1 String query similarity

Example 3.3 Consider the following queries:

q1: SELECT * FROM Employees WHERE birthyear < 1980

q2: SELECT * FROM Employers WHERE birthyear < 1980

On the level of string similarities, these two queries have a very small difference – only
one character. However, they access entirely different tables and therefore, probably
should have a very small similarity.

Besides, SQL keywords (SELECT, FROM, WHERE, etc.) overstate the similarity
since they occur in every SPJ request. A possible solution is to exclude such words
from consideration. However, this does not do away with effects like the one from
Example 3.3 – even without keywords, these two strings differ by only one symbol.

3.3.1.2 Discussion

Representing an SQL query as a string does not capture it in a meaningful way. Of
course, string-based query similarity cannot spot the resemblance in data two query
access.

20

3.3 SQL Query Representations and Similarity Functions

3.3.2 Query as Features

To overcome some of the obstacles described in Section 3.3 and to give more attention
to the structure of an SQL request, [Kho+10] proposes a query representation as
follows. There, a query is a set of features, and features are:

(1) tables, views, UDFs in the FROM clause
(2) attributes in the SELECT clause
(3) predicates (without values) in the WHERE clause
(4) attributes in the GROUP BY clause.

Example 3.4 Going back to queries from Example 3.3, FB representation for q1 is:

{fSELECT∗ ,fFROMEmployees,f
WHERE
Employees.birthyear<<num>}

A slightly modified FB query representation defined in [Eir+14]. A query qi is a vector
φi = (φi1, . . . ,φik) whose cell φij contains a weight if the feature φj appears in qi. k is
the number of possible features. There are two ways (weighting schemes) of setting
φij :

(1) binary scheme, where all features of a query have weight 1,
(2) weighted scheme, where a feature weight φij is equal to the number of times the

feature φj occurs in the query qi.

Hence, FB representation from [Kho+10] corresponds to binary scheme in [Eir+14].
Weighted scheme of [Eir+14] is a slight alteration of it. From now on we refer toFB
binary and FB weighted when talk about FB query representations from [Eir+14].

3.3.2.1 FB query similarity

According to [Eir+14], depending on the weighting scheme used, the query similarity
either is the Jaccard coefficient (binary) or cosine similarity (weighted).

SFBbin(q1, q2) =
∣∣φ1∩φ2∣∣
|φ1∪φ2|

(3.1)

SFBweig(q1, q2) = φ1 ·φ2

‖φ1‖ · ‖φ2‖
(3.2)

21

3 Related Work

3.3.2.2 Discussion

The FB approach captures the structure of a query and does not have the disadvantages
of string-based similarity. However, it is not clear why all feature types do have the
same importance: For instance, is the FROM clause always as important as the
SELECT? It seems promising to have weights of features, depending on their position
in the query (FROM, WHERE or SELECT clause). Next, one feature generally
depends on other ones: For example, columns in the SELECT clause and predicates
in the WHERE clause depend on the table in the FROM clause. Additionally, there
is the question of how to work with ’*’ in a SELECT statement. The main weakness
of such a query representation, however, is that it does not consider the values in a
filtering condition, i.e., data unaware.

3.3.3 Query as Result Tuples

Another query representation scheme [CEP09], [Mat+10] introduces the notion of
witnesses and is called witness based (WB) approach. This type of query representation
is data-oriented. Here, a query represents itself by the tuples it returns, a.k.a. witnesses.
As with FB, a WB query qi is a vector τ i whose element τ ij represents the importance
of the tuple τj as a witness for qi. Analogously to [Eir+14], [CEP09] proposes two
ways of setting the importance:

(1) binary scheme: τ ij =
{

1 if τj is a witness
0 otherwise

(2) result-based scheme: τ ij =
{

1/ |ans(qi)| if τj is a witness
0 otherwise

Here ans(qi) is the result of qi.

3.3.3.1 WB query similarity

According to [CEP09], one uses the Jaccard coefficient with the binary scheme. With
result-based, it is cosine similarity.

SWBbin
(q1, q2) =

∣∣τ1∩ τ2∣∣
|τ1∪ τ2|

(3.3)

SWBres(q1, q2) = τ1 · τ2

‖τ1‖ · ‖τ2‖
(3.4)

From now on, we call the similarities WBBin and WBRes.

22

3.3 SQL Query Representations and Similarity Functions

3.3.3.2 Discussion

We see several issues with this approach, as follows:

(1) Necessity to re-query the database. To identify all witnesses, one must run the
queries another time, leading to a huge load on the database. Next, even if
this was not an issue, it spoils subsequent query-log analysis. That is because
re-run queries are stored in the query log. Finally, due to possible updates of
the database in the meantime, there is no guarantee that a query will have the
same result as the first time.

(2) Result set can be empty. Two queries which do not return any data cannot be
compared even though they may be identical.

(3) Possible insignificance of witness sets. Due to the declarative nature of SQL
in particular, the same data can be obtained in many different ways. Consider
again Example 2.22. It is possible for Queries q1 and q3 to have similar result
sets. However, the intentions behind the two queries are different.

Summing up, the WB approach overcomes the disadvantages of FB. It is clear and
easy to implement. However, it may not be exactly practical in particular when the
number of queries is vast.

3.3.4 Query as an Access Area

[Ngu+15] proposes a way to overtake the disadvantages of WB approach. The authors
represent a query using the notion of so-called access areas. From now on, AAB is
short for ’access area based query representation’. The access area of a query captures
the area of the data space that the user is interested in.

Definition 3.5 A tuple t ∈ U is said to influence the result set (U,T)P of a query q
iff (U\t},T)P 6= (U,T)P . If t is removed from U , the result set of q at state T will
change.

Definition 3.6 The access area of a query q is the set of all tuples t contained in the
universal relation U that influence the result set of q in some database state T allowed
by the schema which satisfy Predicate P of conditions put on a query q:

{t ∈ U : ∃ T allowed by DB s.t.t influences (U,T)P} (3.5)

In contrast to WB, the access area of a query does not rely on the current database
state. In contrary, it describes these tuples as an expression in the relational
algebra. Coming back to q1 from Example 3.3, the access area of Query q1 is
σdepartment=′Sales′(Employees). The notion leaves aside the SELECT clause of the
query. It considers predicates and the FROM clause. [Ngu+15] describes how to
compute access areas for simple, join, aggregate and nested queries.

23

3 Related Work

3.3.4.1 AAB query similarity

[Ngu+15] proposes a query distance measure, based on the overlap of the access areas
of the two queries:

D(q1, q2) = dtables(q1.FROM, q2.FROM)+dconj(q1.WHERE, q2.WHERE) (3.6)

dtables(q1.FROM, q2.FROM) = 1− |q1.FROM∩ q2.FROM|
|q1.FROM∪ q2.FROM|

(3.7)

The predicate P is in conjunctive normal form (CNF), i.e., it is a conjunction of
clauses, where each clause is a disjunction of literals. Hence, dconj(b1;b2) in Formula
3.6 means distance of conjunctions. It is calculated as:

dconj(b1;b2) =

∑
o1∈b1

min
o2∈b2

ddisj(o1;o2)+
∑
o2∈b2

min
o1∈b1

ddisj(o1;o2)

|b1|+ |b2|
(3.8)

where each oi ∈ bi is a disjunction of Boolean expression(s), and |bi| is the number of
disjunctions of bi in Query qi.ddisj(o1,o2) is the distance of the disjunctions of o1 and
o2. It is as follows:

ddisj(o1;o2) =

∑
p1∈o1

min
p2∈o2

ddisj(p1;p2)+
∑
p2∈o2

min
p1∈o1

ddisj(p1;p2)

|o1|+ |o2|
(3.9)

where p1 ∈ o1 is an atomic predicate, and |o1| is the number of atomic predicates of
o1. The distances between predicates are:

(1) dpred(p1,p2) = 1− overlapWidth(a)
domainWidth(a) if both predicates p1 and p2 refer to the same

attribute a;
(2) dpred(p1,p2) = 1− width(a1)

domainWidth(a1) ×
width(a2)

domainWidth(a2) if both predicates p1 and p2
refer to different attributes a1 and a2.

width(a) is the width of the interval in which Predicate P is true.

Example 3.7 A query log contains of the following queries:

q1: SELECT * FROM Cities C WHERE C.latitude >= 40 AND C.longitude < 90

q2: SELECT * FROM Cities C WHERE C.population >= 3000 AND C.country = ’USA’

q3: SELECT * FROM Cities C WHERE C.latitude >= 40 OR C.longitude < 90

q4: SELECT * FROM Cities C WHERE C.population >= 3000 OR C.country = USA’

Attributes take the following values:

24

3.3 SQL Query Representations and Similarity Functions

C.latitude ∈ [−90;90], C.longitude ∈ [−180;180], C.population ∈ [0;20000],
C.country ∈ {Afghanistan, . . . ,Zimbabwe},
|{Afghanistan, . . . ,Zimbabwe}|= 250 .

Let us denote α= C.latitude≥ 40; β = C.longitude< 90; γ = C.population≥ 3000;
δ = C.country =′ USA′.

Let us calculate the following distances: D(q1, q2), D(q3, q4), D(q1, q4).

dpred(α,α) = 1− (90−40)/(90− (−90)) = 0.72;
dpred(β,β) = 1− (180−90)/(180− (−180)) = 0.75;
dpred(γ,γ) = 1−3000/20000 = 0.85;
dpred(δ,δ) = 1−1/250 = 0.996;
dpred(α,β) = 1− (90−40)/(90− (−90)) · (180−90)/(180− (−180)) = 0.9305;
dpred(α,γ) = 1− (90−40)/(90− (−90)) ·3000/20000 = 0.9583;
dpred(α,δ) = 1− (90−40)/(90− (−90)) ·1/250 = 0.998;
dpred(β,γ) = 1− (180−90)/(180− (−180)) ·3000/20000 = 0.962;
dpred(β,γ) = 1− (180−90)/(180− (−180)) ·1/250 = 0.999;

Thus, the distances of disjunctions are:

ddisj(α,γ) = dpred(α,γ) = 0.9583;
ddisj(α,δ) = dpred(α,δ) = 0.998;
ddisj(β,γ) = dpred(β,γ) = 0.962;
ddisj(β,δ) = dpred(β,δ) = 0.999;

ddisj(α,α∨β) = (min(dpred(α,γ),dpred(α,β)))+dpred(α,α)+
dpred(α,β))/3 = (0.72+0.72+0.9305)/3 = 0.79;

ddisj(α,γ∨ δ) = (min(dpred(α,γ),dpred(α,δ)))+dpred(α,γ)+
dpred(α,δ))/3 = (0.9583+0.9583+0.998)/3 = 0.971;

ddisj(β,α∨β) = (min(dpred(β,β),dpred(α,β)))+dpred(β,β)+
dpred(α,β))/3 = (0.75+0.75+0.9305)/3 = 0.81;

ddisj(β,γ∨ δ) = (min(dpred(β,γ),dpred(β,δ)))+dpred(β,γ)+
dpred(β,δ))/3 = (0.962+0.962+0.9995)/3 = 0.9745;

ddisj(α∨β,γ∨ δ) = (min(dpred(α,γ),dpred(α,δ))+min(dpred(β,γ),
dpred(β,δ)))/4+(min(dpred(α,γ),dpred(β,γ))+min(dpred(β,γ))
+min(dpred(α,δ),dpred(β,δ)))/4 =
(0.9583+0.962+0.9583+0.998)/4 = 0.96915;

The next step is calculating dconj(b1, b2), dconj(b3, b4) and dconj(b1, b4):

dconj(b1, b2) = dconj(α∧β,γ∧ δ) =
((min(dpred(α,γ),dpred(α,δ))+min(dpred(β,γ),dpred(β,δ))))/4+
((min(dpred(α,γ),dpred(β,γ))+min(dpred(α,δ),dpred(β,δ))))/4 =
(0.9583+0.962+0.9583+0.998)/4 = 0.969;

25

3 Related Work

dconj(b3, b4) = dconj(α∨β,γ∨ δ) = ddisj(α∨β,γ∨ δ) = 0.96915;

dconj(b1, b4) = dconj(α∧β,γ∨ δ) = ddisj(α,γ∨ δ)+ddisj(β,γ∨ δ))/3+
(min(ddisj(α,γ∨ δ),dpred(β,γ∨ δ)))/3 = (0.971+0.9745+0.971)/3 = 0.972;

dtables(q1.FROM, q2.FROM) = dtables(q1.FROM, q4.FROM)
= dtables(q3.FROM, q4.FROM) = 0

Finally,

D(q1, q2) = dconj(b1, b2)+dtables(q1.FROM, q2.FROM) = 0.969;
D(q3, q4) = dconj(b3, b4)+dtables(q3.FROM, q4.FROM) = 0.96915;
D(q1, q4) = dconj(b1, b4)+dtables(q1.FROM, q4.FROM) = 0.972.

3.3.4.2 Discussion

While the notion of access area is worthy, the distance function has several shortcom-
ings:

(1) The distance function is redundant, as follows: Formula 3.6 sums up the distance
of the access tables, calculated using the Jaccard coefficient, as well as the
distance of the conjunctions in the filtering conditions. If two queries have
the same attributes in the filtering conditions, they have common tables in
the FROM clause as well. Taking the distance of the tables accessed when
one already calculates a distance of the filtering conditions is redundant. The
following example illustrates this.

Example 3.8 Think of a query log containing the queries:
q1: SELECT * FROM Cities C WHERE C.latitude BETWEEN 30 and 50

q2: SELECT * FROM Cities C, Countries Cs WHERE C.latitude

BETWEEN 40 and 60 AND C.countryId = Cs.id

The access areas of these queries are:
q1 : σCities.latitude≥30∧Cities.latitude≤50(Cities);
q2 : σCities.latitude≥40∧Cities.latitude≤60(Cities×Countries).

The first addend of the distance measure is as follows:
dtables(q1.FROM,q2.FROM) = 1−|Cities|/|Cities,Countries|= 1/2.

To calculate dconj(q1.WHERE,q2.WHERE), the authors rely on the domain
of a column. For attribute latitude in Example 3.8,

dom(Cities.latitude) = [−90;90].
Hence the width of this attribute is:

width(Cities.latitude) = |90− (−90)|= 180.
With predicates in the two queries referring to the same single column,

dconj(q1.WHERE,q2.WHERE) = 1−
(overlap(latitude))/width(latitude) = 1−10/180 = 17/18.

Thus, the overall distance in this example is even more than 1:
D(q1, q2) = 1/2+17/18 = 13/9.

26

3.3 SQL Query Representations and Similarity Functions

Because two distances are summed up, the result may be an overall distance
greater than 1, while this ought to be the value indicating maximally dissimilar
queries. Summing up values with different meanings/with different units of
measure does not yield results with a clear meaning. One might argue that
addends show the degree of dissimilarity – this is their common unit. Then this
degree should have at least the same range. However, as Example 3.8 has shown,
this is not true: dtables ∈ [0;1],dconj ∈ [0;∞].

(2) The distance of two queries depends on the width of the attributes, see Example
3.8. Hence one cannot come up with a maximum distance in advance. That
renders the choice of threshold values for clustering algorithms like DBSCAN
difficult.

(3) The similarity function presented in the paper is not a semi-metric. To show
this, we calculate the distance of two identical queries from Example 3.8:

dtables(q1.FROM,q1.FROM) = 0.
dconj(q1.WHERE,q1.WHERE) = 1− overlap(latitude)

width(latitude) = 1− 20
180 = 8

9 .
D(q1, q2) = 0+ 8

9 = 8
9 , while the reflexivity condition requires that D(q1, q1) = 0.

(4) The distance calculates the overlap of the access areas even if the two queries
filter different attributes. The following example illustrates that this may be
problematic.

Example 3.9 Think of a query log containing the queries:
q1: SELECT * FROM T WHERE a = 1

q2: SELECT * FROM T WHERE b = 2

In this case, the authors propose to set dconj(q1.WHERE,q2.WHERE) to the
share of the joint space of the columns involved occupied by q1.WHERE and
q2.WHERE. So these two queries might end up in the same cluster. The
clusters then might become too big and consist of disjoint areas of the data
space.

In our opinion, these shortcomings impact the identification of user interests based on
clusters severely. Namely, when a cluster represents several user interests, one cannot
distinguish between them.

3.3.5 Summary

Table 3.1 shows the FB, WB and AAB representations of Query q1 from Example
2.22. FB is structure-oriented, WB is data-oriented, AAB is somewhere in between,
introducing access areas. Since an AAB representation is not a feature vector, one
cannot use standard similarity measures, but an AAB similarity function is needed.
To get the FB representation, one only needs the query. For WB, in turn, the query
and access to the data are needed. AAB does not require the entire data, only some
statistical properties, like extreme values of an attribute.

27

3 Related Work

Table 3.1: Query representations of q1 from Example 3.3
Method Query representation

FB [Kho+10] {fSELECT∗ ,fFROMEmployees,f
WHERE
Employees.department=<string>}

WB [CEP09] {(4352, John, Doe), (4322, Mary, Smith), (4152, Ivan, Green),. . . ,
(4356, Boris, Johnson), (4322, David, Black)}

AAB [Ngu+15] σdepartment=′Sales′ (Employees)

Table 3.2: Similarity functions
Sources Purpose Similarity

function Limitations

FB
[Kho+10]
[Eir+14]

SQL queries
autocompletion

Depends on the
structure of the
queries

Considers only the structure of query, not
particular values in filtering conditions. Hence,
the result of clustering does not reflects
users’interests on content level, only
meta-data level.

WB
[CEP09]

SQL query
recommendation

Depends on the
tuples in the
corresponding
result sets

- Scalability due to necessity of re-running
SQL statements;
- Spoils any further analysis of the query log;
- Cannot compare queries which do not return
any data;
- Might consider queries as similar when their
filtering conditions refer to different
attributes.

AAB
[Ngu+15]

Query clustering
of the aim of
finding users’
interests

Depends on
overlap of the
filtering
conditions of
corresponding
queries and the
width of access
for attributes in
filtering
condition

- Redundancy in the distance function;
- The maximum distance is undefinable;
- The distance function is not a semi-metric;
- Might consider queries as similar when their
filtering conditions refer to different attributes.

AAB
overlap

Query clustering,
association rules
mining – SQL
query
recommendation

Depends on
overlap of
corresponding
filtering
conditions

Does not capture closeness
of access areas, only overlap.

AAB
closeness

Query clustering,
association rules
mining – SQL
query
recommendation

Depends on
overlap of
corresponding
filtering
conditions

- Works only with ordinal
attributes- Sensitive to SWS
- “Gravity” effect

28

3.4 Recommender systems and their Application to SQL QRS

3.4 Recommender systems and their Application to
SQL QRS

In this section, we first review the techniques of generating recommendations. Then
we discuss how to apply them to the SQL context.

3.4.1 "Classical" Recommender Systems (RSs)

Recommender Systems (RSs) are software tools and techniques suggesting items to a
consumer [RRS11a]. According to [AT05], the recommendation problem is estimating
ratings for items that a consumer has not seen. This does not require consumers to
score items explicitly. For instance, if a consumer has bought an item or has viewed
it, this may already constitute an assessment. Based on how recommendations are
generated, RSs fall into three categories:

(1) Content-based (CB) recommendations [BS97] are based on the consumer’s past
preferences. They recommend items similar to the ones a consumer has preferred
so far.

(2) Collaborative filtering (CF) recommendations [Agg+99] use the preferences of
other consumers: They recommend items that people with similar taste have
chosen. CF falls into two classes:

(a) Memory-based methods directly utilize consumer-item ratings stored in the
system to predict ratings for new items.

(b) Model-based approaches use the ratings to learn a model. One is matrix
factorization, where vectors of latent factors represent both items and
consumers. If the vectors of a consumer and of an item are similar, the
item is recommended to the consumer.

(3) Hybrid approaches combine the earlier two categories.

3.4.2 SQL Query Recommendations – Applying Conventional
Approaches

We now map the above concepts to the domain of suggesting SQL queries. So
conventional recommendation techniques (which have been proven to be valid) become
applicable. Since our goal is to recommend SQL queries, items correspond to queries.
We now discuss CB and CF in the context of SQL queries.

29

3 Related Work

3.4.2.1 Content-based SQL Query Recommendation

Content-based recommendation means finding similar queries. A query similarity
function (QSF) S(q1, q2) is required. To recommend full and data-aware queries,
S(q1, q2) must distinguish between queries with identical structure, but different
filtering conditions. Filters may occur in the WHERE or HAVING clause or in the
FROM clause if it contains a UDF which requests data from a table based on some
condition. Content-based SQL query recommendation suggests queries from a query
log which are most similar to a submitted one.

3.4.2.2 Collaborative Filtering in SQL Recommendation

A difference compared to "classical" recommendations when it comes to recommending
SQL queries is that the set of items, i.e., all possible SQL requests, may now be infinite.
In line with this, the majority of queries occurs only once, in our case study and
elsewhere [Sin+07]. So a model-based collaborative approach like matrix factorization
is expected to be ineffective here.

To implement a memory-based CF approach, one has to find users (user sessions) with
information needs similar to the current one (us0). This calls for a way to quantify
the similarity of user sessions USS(us1,us2).

To conclude the section, CB recommendation finds similar queries. CB requires a
query similarity function S(q1, q2). CF requires a similarity function for user sessions
USS(us1,us2). Both similarity functions rely on how queries are represented. That is
the topic of Section 3.3. We present a more detail analysis of query similarity functions
in Chapter 5.

3.4.3 An Overview of SQL QRS

In this section, we review existing methods that generate SQL query recommenda-
tions in chronological order. We discuss how they match the requirements from the
introduction.

3.4.3.1 Witness-Based QueRIE (WB QueRIE)

SQL query recommendations have been studied for almost a decade. One of the first
proposals, [CEP09], is a hybrid technique, combining CB and CF principles. WB
QueRIE first builds n vectors each summarizing a user session, S1, . . . ,Sn. It uses
the WB representation, both binary and result-based schemes (see Section 3.3.3).
For a current user session us0 the method first builds a so-called predicted summary

30

3.4 Recommender systems and their Application to SQL QRS

Spred0 . It is a combination of S0 itself and of summaries {S1, . . . ,Sn} with similarities
sim(S0,S1), . . . ,sim(S0,Sn):

Spred0 = α×S0 +(1−α)×
∑

1≤i≤h sim(S0,Si) ·Si∑
1≤i≤h sim(S0,Si)

(3.10)

where h is the number of user sessions a recommendation is based on. Note that
Spred0 , a query and a summary of a user session are vectors of length tn, where tn is
the number of distinct tuples in a database. The queries from a log most similar to
Spred0 (according to binary or result-based similarity) form the recommendations. WB
QueRIE has the following limitations:

(1) It has the shortcomings of WB listed in Section 3.3.3.

(2) The similarities between Spred0 and S1, . . . ,Sn need to be calculated every time
the active user submits a new query. That leads to n vector comparisons. The
length of each vector is equal to the number of distinct tuples in a database.
In the original experiment [CEP09], there were already 13,602,430 witnesses†,
from only 6713 queries. That implies comparing 6713 vectors, each of length
13,602,430. As a result, scalability is poor. The follow-up paper [Eir+14] reports
response time of around 5 minutes even for that relatively small log.

(3) The memory required grows with the number of queries and witnesses. If each
tuple is an identificator of 4 bytes (Integer), to reproduce an experiment from
[CEP09], one must allocate 6713 vectors of length 13,602,430, i.e., 13,602,430 ·
6713 ·4≈ 340 GB.

(4) The method does not support GROUP BY queries. When a query aggregates
the result, it is impossible to "get back" to the individual tuples which have
gone into the result.

(5) Hybridization, as in Formula (3.10), merges the results of many queries. It leads
to Spred0 , which does not represent a clear user interest, but many of them.

Example 3.10 A current user session us0 consists of two queries presented in
Table 3.3. q2 of us0 is an unseen query. us0 (without q2) is most similar to user
sessions us1 and us2. S

pred
0 includes all tuples which belong to us0 (till q0

1), us1
and us2. In SQL, Spred0 is the following:

SELECT * FROM Cities C

WHERE (C.population BETWEEN 1000 AND 4000) OR C.country = ’USA’

But Spred0 is not similar to q0
2 since they query different tables.

†The number of tuples was not specified, but it is not less than the number of witnesses.

31

3 Related Work

Table 3.3: Three user sessions from a query log
User session Query SQL statement

us0
q0

1 SELECT * FROM Cities CWHERE C.population BETWEEN 2000 AND 4000
q0

2 SELECT * FROM Appartments A WHERE C.cityname = ’Madrid’
us1 q1

1 SELECT * FROM Cities C WHERE C.population BETWEEN 1000 AND 2500
us2 q2

1 SELECT * FROM Cities C WHERE C.country = ’USA’

WB QueRIE does hybridization on the level of witnesses (i.e., query represen-
tations) "early on". So one cannot distinguish which recommendation comes
from CB and which from CF, or even which suggestion comes from which user
session. Instead, it combines witnesses of multiple queries in an "unfocused"
predicted summary Spred0 , which does not reflect any particular user interest but
is a mixture of several ones. Moreover, if an unseen query accesses other tables
than the previous SQL requests of a current user session, as in Example 3.10,
WB QueRIE is not able to help.

We will investigate whether other approaches to hybridization will yield better
results.

3.4.3.2 FlexRecs

FlexRecs [KBGM09] supports recommendations as SQL statements over structured
data. As WB QueRIE, it requires access to the database. Queries are compared based
on their result sets. Moreover, it requires execution plans of the SQL requests, which
is often not possible to collect. Scalability-wise, FlexRecs is intended for relatively
small data (around 10000 entities in a table).

3.4.3.3 Recommending JOIN Queries

YPS‡ [YPS09] assists in writing queries with several joins. It builds a graph out of
a query log where nodes are tables and edges are join constraints. According to the
classification in Section 3.3, a query is represented as a set of features (FB): tables, join
conditions. In the experiments, YPS gets the tables which the query has requested.
The approach recommends join constraints. While the method is scalable, it does not
recommend full and data-aware queries.

‡The approach does not have a name in the original paper, so we use the initials of the authors.
The same with AGGMR.

32

3.4 Recommender systems and their Application to SQL QRS

3.4.3.4 SnipSuggest

SnipSuggest [Kho+10] recommends auto-completion of a partly written query, based
on the query log. Here, the FB query is tables, views, UDFs, attributes in the SELECT
clause, predicates in the WHERE clause, GROUP BY attributes. The recommendation
engine of SnipSuggest relies on a directed acyclic graph (DAG), built from the log.
Sequences of features form vertexes of the graph. Let us take sφ1 as a sequence of
features and sφ2 as another one built from sφ1 by appending feature φ1.i. The weight
of an edge between sφ1 and sφ2 is the probability of φ1.i following sφ1. SnipSuggest
transforms the user’s partially written query into a sequence of features sφj , which
is mapped onto a path in the DAG. It recommends features {φ1.j , . . .φk.j}, which
complement sφj to form (sφ1, . . . ,sφk). The ranking of features depends on the weight
of the edges.

Overall, SnipSuggest has developed the earlier idea of utilizing a graph from YPS
[YPS09]. As YPS, SnipSuggest is fast and scalable. However, it does not recommend
the entire query. Nevertheless, the corresponding feature-based query representation
and the idea of using DAG seem promising. We will adapt them for our purposes.

3.4.3.5 Fragment-based QueRIE (FB QueRIE)

To cope with the poor scalability of WB QueRIE [CEP09], the authors propose a FB
QueRIE approach in [Eir+14]. It, however, does not recommend data-aware queries,
only structures of queries. A fragment is what called a feature in [Kho+10]. Thus,
from now on we use the term feature instead of fragment. Similarly to [CEP09],
[Eir+14] first builds n vectors summarizing user sessions S1, . . . ,Sn. Each coordinate
of a vector represents the presence of some feature in the session. The authors utilize
either binary or weighted scheme (see Section 3.3.2).

As the second step, [Eir+14] computes pairwise feature similarities sim(ρ,ψ) offline.
For two features ρ and ψ, one gets sim(ρ,ψ) by comparing vectors Fρ = (wρ1 , . . . ,w

ρ
n)

and Fψ = (wψ1 , . . . ,w
ψ
n) of the presence of features in all user sessions{S1, . . . ,Sn}.

sim(ρ,ψ) reflects how often two features appear together in the queries of a log. To
recommend a query for a current user session us0, the algorithm builds a predicted
summary Spred0 . The approach recommends queries with summaries most similar to
Spred0 .

As with WB QueRIE, FB QueRIE results in an Spred0 , which includes too many
features. Therefore, we doubt that recommending query structures as in FB QueRIE
is the best way. We will investigate on this point when proposing our suggestion of
query templates and compare it to FB QueRIE.

33

3 Related Work

Table 3.4: Compliance with the requirements
hhhhhhhhhhApproach

Property Requirements QR CB/CF/
Hybrid Is applicable1 2 3

WB QueRIE [CEP09] + + - WB Hybrid
Yes. However, the input data
needs sampling
due to scalcbility issue.

FlexRecs [KBGM09] + + - WB -
No. It demands the access to
the database to see
query plans.

YPS [YPS09] - - + FB CF No. Does not provide full and
data aware queries.

SnippSuggest [Kho+10] - + + FB CF No. Does not provide full and
data aware queries.

FB QueRIE [Eir+14] - + + FB Hybrid No. Does not provide data
aware queries.

AGGMR [Ali+15] - + + FB CF No. Does not supprt range
queries.

FB QueRIE [Eir+14] claims it to be much faster than WB QueRIE [CEP09]. However,
it is more complex than other FB methods: To predict a single current user session,
one still has to compare Spred0 with all the queries from a log.

3.4.3.6 Recommending OLAP Sessions

[Ali+15] focuses on recommendations in OLAP databases. While the query language
used for OLAP queries may be different from SQL, we review it here, to borrow
a notion from this approach. The authors aim at the common OLAP interactions
(drill-down, slice-and-dice, etc.). They conclude that one should focus on sessions,
not on individual queries. A query representation is a mixture of the FB and AAB
representations: It includes attributes in SELECT and GROUP BY clauses as well as
filtering conditions. The principal limitation is that a query may only have equality
comparisons. Range queries are not allowed.

The AGGMR approach calculates the similarity of OLAP sessions based on query
similarity function σque ∈ [0,1], described in [Ali+14]. It applies collaborative filtering
(CF). The approach works in three steps: (1) It searches the log for similar user
sessions. (2) It extracts the most relevant query sequences (subsessions) within similar
user sessions. (3) It adapts (fits) the top-ranked subsession to the current session of
the user.

Finding similar sessions is order sensitive: It utilizes the Smith-Waterman algorithm
[SW+81]. In the fitting step, the authors modify the recommended query depending
on the differences of the current user session and a similar one.

AGGMR features several exciting ideas, namely (1) order-sensitive similarity of user
sessions and (2) query modification. However, the original method cannot work with
range queries.

34

3.4 Recommender systems and their Application to SQL QRS

3.4.4 Resume

Table 3.4 summarizes the approaches and their compliance with the requirements listed
in the introduction. No existing approach satisfies all requirements: They either

(1) do not produce data-aware queries or

(2) do not support range queries or

(3) require access to query plans.

We have found WB QueRIE to be conditionally appropriate: If the query log is small,
it fulfills the requirements. WB QueRIE suggests only queries from a query log. If a
user wants to explore data that nobody has requested before, the recommendation
will not be good.

35

4 Cleaning Antipatterns in an SQL
Query Log

In this chapter, we present an approach to clean SQL query log by removing or
solving antipatterns from it. This is a general step for any further SQL query log
analysis: clustering (Chapter 5) and query recommendation (Chapter 6). We reused
our corresponding publication [ASB18], including figures and algorithms.

Let us clarify what we meant by removing and solving.

Example 4.1 Get back to a query log from Table 1.1. If antipatterns are solved, the
output log would look like in Table 4.1. If antipatterns are removed, the log would be
like in Table 4.2.

Thus, when solving, one gets the queries, which return the same data, as an original
log. The only difference is that a query log does not contain antipatterns any more.
When one removes antipatterns from a query log, some information will be deleted.

We first provide formal definitions of a pattern and antipatterns for our context. We
also construct solutions for solving antipatterns whenever possible. Then we present
implementation details and results.

4.1 Patterns and antipatterns: formal definitions,
detection rules and solving solutions

Antipatterns are patterns with negative effects. That is why the notion of a pattern is
essential in the context of antipattern detection. This section formally defines and
introduces the properties of a pattern. We also need precise definitions of the Stifle

Table 4.1: A series of statements from one user
Statements Result
1 SELECT E.empId FROM Employees E WHERE E.department = ‘sales’ 12

2
SELECT E.empId, E.name, E.surname, E.birthday, E.phone, O.oCount
FROM Employees E INNER JOIN (SELECT empId, count(orders) as oCount
FROM Orders GROUP BY empId) O ON O.empId = E.empId

John, Doe,
03/12/1985
01259863448, 36

37

4 Cleaning Antipatterns in an SQL Query Log

Table 4.2: A series of statements from one user
Statements Result
1 SELECT E.empId FROM Employees E WHERE E.department = ’sales’ 12

and CTH antipatterns to facilitate their discovery and automatic solving. This section
contains these definitions.

4.1.1 Definitions for a Database Pattern

We identify a pattern as a sequence of queries which represents certain functionality.
Starting with the definition of patterns from software engineering, we first describe
the properties of patterns in databases informally. This discussion then leads to a
formal definition of a pattern. We then use it throughout this thesis.

4.1.1.1 Demonstrative example

In software engineering, a pattern is a recurring solution schema to a standard problem
deployed in a certain context [Dud+03]. In this thesis, we redefine a pattern as a
sequence of SQL queries in a query log. In a nutshell, wee see a pattern as it shows
itself in a query log.

Example 4.2 Think of the database of a shoe retailer. Buying a pair of shoe results
in the following sequence of steps that require interaction with the database:

(1) Scan a barcode of the shoes.
(2) Given the barcode, find the size and the model.
(3) Write the purchase into the Sales table.
(4) Decrease the count of the pairs currently available.

As shown below, Steps 2, 3 and 4 result in different queries forming one pattern. As
these steps refer to the same business process, a common implementation is to have a
procedure bundling the steps in one transaction:

CREATE PROCEDURE BUY (BARCODE IS NUMBER) AS BEGIN

SELECT MODEL, SIZE into curr_model, curr_size

FROM BarCodesInfo WHERE ID = BARCODE;

INSERT INTO SALES (datetime, barcode, seller)

VALUES (curr_time, BARCODE, curr_user);

UPDATE InPresence SET count = count - 1

WHERE model = curr_model and size = curr_size;

END BUY;

38

4.1 Patterns and antipatterns: formal definitions, detection rules and solving solutions

Now every sale will cause these three SQL requests occurring consecutively. The only
difference between occurrences is the parameter values, like the barcode.

Summing up, to be an instance of a pattern, a sequence of SQL requests should:

(1) come one after another (in the log file);
(2) have a short time between them;
(3) have a rather frequent occurrence;
(4) be from the same user.

4.1.1.2 Definition of a pattern

What we have learned from Example 4.2, is that a pattern manifests itself in a query
log as a sequence of queries. Values in filtering conditions or parameters of DML
requests are ignored. Let us first informally define the notion of a template as an SQL
query, where each value is replaced with a placeholder. Now we can formally define a
pattern:

Definition 4.3 A pattern p is a sequence of query templates (t1, . . . , tn).

The notion of a template requires additional clarification. Let us consider the following
example.

Example 4.4 Queries q1 and q2 listed below are from different users:

q1: SELECT MODEL, SIZE into curr_model, curr_size

FROM BarCodesInfo WHERE ID = 12;

q2: SELECT SIZE, MODEL into curr_model, curr_size

FROM BarCodesInfo WHERE ID = 13;

Seeing a template as a string, where values replaced by placeholders, these two queries
belong to different templates t1 = template(q1) and t2 = template(q2):

t1: SELECT MODEL, SIZE into curr_model, curr_size

FROM BarCodesInfo WHERE ID = <num>;

t2: SELECT SIZE, MODEL into curr_model, curr_size

FROM BarCodesInfo WHERE ID = <num>;

However, both templates, t1 and t2, implement the same functionality - obtain model
and size by a barcode.

39

4 Cleaning Antipatterns in an SQL Query Log

Example 4.4 shows that one needs more flexibility when defining a template. In a
nutshell, an order of attributes, tables, or filtering conditions should be ignored. We
propose to see a template as a FB query from [Eir+14]. To keep things simple, we
will utilize the notation from [Kho+10] for a feature. Thus, it could also be seen as a
query representation from [Kho+10] with the only difference: it is now not a sequence
of features, but a set.

Definition 4.5 A template t= template(q) of a query q is a set of features of q, where
a feature is defined as in [Kho+10].

Thus, two queries from Example 4.4 belong now to the same template:

template(q1) = template(q2) =
{fSELECTmodel ,fSELECTsize ,fFROMBarCodesInfo,f

WHERE
BarCodesInfo.Id=<num>}.

Let us define a specific sub-classes of features.

Definition 4.6 template(q)SELECT are all features, which start from fSELECT , i.e.
ones in SELECT clause.

Definition 4.7 template(q)FROM as all features, which start from fFROM .

Definition 4.8 template(q)WHERE as all features, which start from fWHERE .

Definition 4.9 template(q)GROUPBY as all features, which start from fGROUPBY .

Going back to Query q1 from Example 4.4,

template(q1)SELECT = tSELECT1 = {fSELECTmodel ,fSELECTsize },
template(q1)FROM = tFROM1 = {fFROMBarCodesInfo},
template(q1)WHERE = tWHERE

1 = {fWHERE
BarCodesInfo.Id=<num>}

4.1.1.3 Properties of a Pattern

Let us introduce a few definitions to find an instance of a pattern in a query log.

Definition 4.10 A user u= user(q) of a query q is a user, who has run q.

Definition 4.11 A moment in time time(q) is the time, when q was requested.

Definition 4.12 An instance (q1, . . . , qn) of a pattern p= (t1, . . . , tn) is a sequence of
queries in the query log such that

(1) ∀i,1≤ i≤ n,ti = template(qi)
(2) user(q1) = user(q2) = · · ·= user(qn)

40

4.1 Patterns and antipatterns: formal definitions, detection rules and solving solutions

(3) time(q1)≤ time(q2)≤ ·· · ≤ time(qn)
(4) ∀i,1≤ i≤ n,@qx /∈ (q1, . . . , qn) where user(qx) = user(qi)∧

time(qi)≤ time(qx)≤ time(qi+1)

The last axiom states that there are no other requests from the same user within time
window time(q1); time(qn).

Definition 4.13 The frequency of a pattern in a log is the number of its instances
occurring in the log.

Definition 4.14 The userPopularity of a pattern in a log is the number of users who
have submitted queries being instances of the pattern.

Frequent patterns with low userPopularity are an important phenomenon. For instance,
one might perceive such patterns as bias when identifying hot spots of user interests.
One hypothesis that explains the occurrence of such a pattern is that a database is
copied piece by piece. In our case study, we will examine how often such patterns
occur and discuss the phenomenon further.

4.1.2 Definitions for Antipatterns

We now give a formal definition of the selected antipattern types. In general, an
antipattern is a pattern which introduces negative consequences. Therefore, antipat-
terns have all the properties described in Section 4.1.1. For each selected antipattern,
we provide a detection rule. If an antipattern has a solving solution, we consider it
solvable.

4.1.2.1 The Stifle Antipattern

Our literature review (see Section 3.2.1) has yielded the following specific characteristics
of the Stifle:

(1) Small average number of result rows;
(2) High number of similar database queries.

The nature of the Stifle is that all its queries refer to one object. Each query has few
result rows, typically tuples with a foreign-key relationship with this object, and the
queries cause repeated similar requests. Thus, applications create Stifle instances most
likely using databases in an object-oriented fashion similarly to the get() or set()
method. These methods refer to specific objects, i.e., to rows in a database table
identified by the same id. Thus, we presume that the Stifle consists of one equality
predicate which filters data using an attribute which is a key.

41

4 Cleaning Antipatterns in an SQL Query Log

Definition 4.15 A Stifle antipattern is a pattern p= (t1, . . . , tn) such that

(1) |Ints(q1)|= |Ints(q2)|= · · ·= |Ints(qn)|= 1
(2) operators(q1)[1] = · · ·= operators(qn)[n] =′=′
(3) Ints(q1), . . . , Ints(qn) are key attributes

Note that Definition 4.15 relies on a database schema to distinguish between key
and non-key attributes. We could have omitted the third axiom in principle: This
would have simplified things, but with the potential drawback of some false positive
detected antipatterns. Our solving scheme for Stifle antipattern depends on its form.
We differentiate between classes of the Stifle, based on the clause where the queries
differ. Such a difference may be either in the WHERE, the FROM, or the SELECT
clause. We now describe them, followed by our solution to clean the log.

DW-Stifle

The first case is that the statements in an instance of a pattern have equal SELECT
and FROM clauses, but a different WHERE clause. We refer to this as DW-Stifle
(’different WHERE’ Stifle).

Example 4.16 The following is a DW-Stifle antipattern:

SELECT name FROM Employee WHERE empId = 8;

SELECT name FROM Employee WHERE empId = 1;

The formal definition is as follows:

Definition 4.17 A DW-Stifle is a Stifle (see Definition 4.15) p= (t1, . . . , tn) such that

(1) tSELECT1 = tSELECT2 = · · ·= tSELECTn

(2) tFROM1 = tFROM2 = · · ·= tFROMn

(3) tWHERE
1 = tWHERE

2 = · · ·= tWHERE
n

(4) P (q1)[1] 6= P (q2)[1] 6= · · ·= P (qn)[1]

See Definitions 4.6, 4.7, 4.8 and 2.16 for details.

The fourth condition in Definition 4.17 requires a comparison of predicates. This task is
difficult to comply in general. As we saw in the literature review, AAB query similarity
(Section 3.3.4), which compares the predicates of two queries, is quite complex and
has some shortcomings. Luckily for us, as we deal with Stifle, queries have only one
attribute with equality operation in their filtering condition. Those predicates are
easy to compare: iff the values are equal, two predicates are equal. Otherwise, they
are not alike.

Our solving solution is to compose one query with all filtering conditions in the
WHERE clause.

42

4.1 Patterns and antipatterns: formal definitions, detection rules and solving solutions

Example 4.18 The solving solution for Example 4.16 is :

SELECT empId, name FROM Employee WHERE empId IN (8, 1);

Compared to the solving solution in Example 3.2 we now get one SQL statement
instead of several ones.

DS-Stifle

If an instance of the Stifle has a sequence of queries with equal FROM and WHERE
clause, it is a DS-Stifle (’different SELECT’ Stifle).

Example 4.19 A DS-Stifle instance is as follows:

SELECT name FROM Employee WHERE empId=8;

SELECT address, phone FROM Employee WHERE empId=8;

Definition 4.20 A DS-Stifle is a Stifle p= (t1, . . . , tn) with the following characteris-
tics:

(1) tSELECT1 6= tSELECT2 6= · · ·= tSELECTn

(2) tFROM1 = tFROM2 = · · ·= tFROMn

(3) tWHERE
1 = tWHERE

2 = · · ·= tWHERE
n

(4) P (q1)[1] = P (q2)[1] = · · ·= P (qn)[1]

To solve this, we union the SELECT clauses, as follows.

Example 4.21 The solving solution for Example 4.19 is :

SELECT name, address, phoneNumber

FROM Employee WHERE empId = 8;

DF-Stifle

Stifels with different FROM statements are named DF-Stifle (’different FROM’ Sti-
fle).

Example 4.22 The following queries select information on the same real-world object
from different tables:

SELECT name FROM Employee WHERE empId = 8;

SELECT address FROM EmployeeInfo WHERE empId = 8;

The formal definition is as follows:

Definition 4.23 A DF-Stifle is a Stifle p= (t1, . . . , tn) where

(1) tSELECT1 = tSELECT2 = · · ·= tSELECTn

43

4 Cleaning Antipatterns in an SQL Query Log

(2) tFROM1 6= tFROM2 6= · · ·= tFROMn

(3) tWHERE
1 = tWHERE

2 = · · ·= tWHERE
n

(4) P (q1)[1] = P (q2)[1] = · · ·= P (qn)[1]

Example 4.24 illustrates our solving scheme:

Example 4.24 SELECT E.name, EI.address

FROM Employee as E INNER JOIN EmployeeInfo EI

ON E.empId = EI.empId WHERE empId = 8;

4.1.2.2 The Circuitous Treasure Hunt Antipattern

The distinctive feature of the CTH (The Circuitous Treasure Hunt) antipattern is
dependency of the queries. As re-querying is not feasible (see Section 1.1) to identify
dependencies in sequences of SQL queries, we need a different approach to detect
CTHs.

The sequence and structure of the individual queries of a CTH contain hints that allow
detecting CTH candidates. In a CTH, the result of the first query is an input parameter
for a subsequent one. Hence, we require that there are attributes in the SELECT
clause of the first query used in the WHERE clause of the follow-up query/queries.

However, relying solely on these conditions could yield false positives. Without re-
querying one can only detect candidates. So the following is a definition of ’CTH
candidate’, not of (real) CTH.

Definition 4.25 A CTH candidate is a pattern p= (t1, . . . , tn) such that:

(1) t1 6= t2
(2) ∃ intst, where ∀i ∈ [2 . . .n] (fSELECTintst ∈ tSELECT1)∧ (intst ∈ Ints(qi))

Here intst of the second condition is an attribute, which appears in both, SELECT
clause of q1 and WHERE clause of queries q2, . . . qn.

Our respective detection method looks for patterns which satisfy Definition 4.25. The
decision whether a candidate is a real CTH requires domain knowledge. Our case
study will quantify the share of false positive CTHs which our heuristics produces.

44

4.2 Implementation of Solving Antipatterns in an SQL Query Log

Original Query Log

Delete duplicates

Pre-clean Query Log

Parse statements

Parsed Query Log Query templates

Patterns

Solve antipatterns

Clean Query Log Statistics

Figure 4.1: Processing Steps

4.2 Implementation of Solving Antipatterns in an
SQL Query Log

In this section, we describe the realization of our approach. We first give an overview
of the architecture of our framework that solves antipatterns. We then introduce the
components of the processing pipeline in more detail. There is a web page∗ of our
framework where one can find its documentation, a test set and the source code.

The purpose of our framework is to analyze query logs. Depending on the analysis
target, we intend to find query templates or patterns (series of query templates) within
the log or identify and solve antipatterns. Figure 4.1 shows the respective workflow.
Rectangular boxes stand for input data, rounded boxes for processing steps, and gray
boxes for results. There are several outcomes extracted from a SQL log. In contrast,
the log is the only input.

To make it more understandable and fascinating, we put examples of a query log and
how it is transformed all the steps of the way.

∗https://dbis.ipd.kit.edu/2500.php

45

4 Cleaning Antipatterns in an SQL Query Log

4.2.1 Original Query Log

The original query log is the only input that is required. Our approach does not need
to have access to the database and does not introduce any load overhead. Table 4.3
list an example of an original query log.

4.2.2 Deleting Duplicates

The first processing step is deleting duplicate queries. We perceive duplicates as
unintended errors. Consequently, we record the number of duplicate removals in the
result statistics. That is because a large number of them may indicate a refactoring of
a particular application (logging system, at the best case).

We define duplicates as identical statements with a small difference in time. From a
conceptual point of view, we argue that two identical statements executed by the same
user only stand for the same information need in case the time difference is smaller
than the threshold. We propose setting the threshold to the minimum value, allowing
us to find most of the duplicates. Section 4.3.2 will discuss respective empirical
results.

After deleting duplicates an example query log from Table 4.3 became a query log
from Table 4.4.

4.2.3 Parsing Statements and Parsed Query Log

After deduplication, there may still be syntactically incorrect query statements. In
this step, we parse all queries into templates and store filtering conditions for all of
them. If the parsing finds a syntax error, the process will not consider the statement
any further. We also exclude non-select statements.

Table 4.7 contains an example of a parsed log, which is made from the log without
duplicates (see table 4.4). Each query of a parsed log also contains the link to a pattern
(from the Patterns data table) and a query template (from the Query templates data
table) a statement belongs to. The list of templates for the log in 4.7 is in Table 4.5,
the list of patterns is in table 4.6. If a parsed statement satisfies the definition of an
antipattern (Definition 4.15 to Definition 4.25), it is marked as an antipattern of the
respective type.

∗"d" stays for "department". It is shortened due to space limit.

46

4.2 Implementation of Solving Antipatterns in an SQL Query Log

Table 4.3: Original query log
Timestamp Statements
1 12/04/2017 09:35:40 SELECT E.Id FROM Employees E WHERE E.department = ’sales’
2 12/04/2017 09:36:30 SELECT E.Id FROM Employees E WHERE E.department = ’sales’
3 12/04/2017 09:37:10 SELECT E.name, E.surname FROM Employees E WHERE E.id = 12
4 12/04/2017 09:37:11 SELECT E.name, E.surname FROM Employees E WHERE E.id = 12
5 12/04/2017 09:37:40 SELECT E.name, E.surname FROM Employees E WHERE E.id = 15

6 12/04/2017 09:38:05 SELECT E.name, E.surname
FROM Employees E WHERE E.id = 16

Table 4.4: Query log without duplicates
Timestamp Statements
1 12/04/2017 09:35:40 SELECT E.Id FROM Employees E WHERE E.department = ’sales’
2 12/04/2017 09:36:30 SELECT E.Id FROM Employees E WHERE E.department = ’sales’
3 12/04/2017 09:37:10 SELECT E.name, E.surname FROM Employees E WHERE E.id = 12
5 12/04/2017 09:37:40 SELECT E.name, E.surname FROM Employees E WHERE E.id = 15
6 12/04/2017 09:38:05 SELECT E.name, E.surname FROM Employees E WHERE E.id = 16

Table 4.5: Table of templates
Template Id Template

1 {fSELECTid ,fFROMEmployees,f
WHERE
department=<string>}

2 {fSELECTname ,fSELECTsurname ,f
FROM
Employees,f

WHERE
id=<num>}

Table 4.6: Table of patterns
Pattern Id Pattern (series of Template Ids)
1 (1, (2))
2 (2, (2))

Table 4.7: Parsed query log

Time-
stamp Statements Filtering

conditions
Temp;ate
Id

Pattern
Id

Type of
anti-
pattern

1 2/4/2017
09:35:40

SELECT FROM
Employees WHERE
department =’sales’

Syntax
error: not
processed

2 2/4/2017
09:36:30

SELECT E.Id FROM
Employees WHERE
department =’sales’

Employees.
department
= ’sales’

1 1 CTH
candidate

3 2/4/2017
09:37:10

SELECT name, surname
FROM Employees
WHERE id = 12

Employees.
id = 12 2 1, 2

CTH
candidate,
DW-Stifle

5 2/4/2017
09:37:40

SELECT name, surname
FROM Employees
WHERE id = 15

Employees.
id = 15 2 1, 2

CTH
candidate,
DW-Stifle

6 2/4/2017
09:38:05

SELECT name, surname
FROM Employees
WHERE id = 16

Employees.
id = 16 2 1, 2

CTH
candidate,
DW-Stifle

47

4 Cleaning Antipatterns in an SQL Query Log

Table 4.8: A clean query log
Statements Type
1 SELECT E.Id FROM Employees EWHERE E.department = ’sales’ CTH candidate

2 SELECT E.name, E.surname
FROM Employees E WHERE E.id IN (12, 15,16) CTH candidate

4.2.4 Query Templates and Patterns

We compute statistics for each template and pattern using the frequency and userPop-
ularity properties (Definition 4.13 and Definition 4.14, see Section 4.1.1.3). In addition
to these attributes, a pattern has a property indicating whether it is an antipattern
and, if so, its type. As the next step, instances of the Stifle need to be solved.

Our framework can be extended to accommodate other antipatterns. In the presence of
a new antipattern, one first comes up with its formal definition, often after a literature
review. Based on the definition, one provides a detection rule and, if possible, a
solving solution. For instance, suppose that we want to extend our framework with
the "Searching nullable columns" (SNC) antipattern [KA10]. An example of it is as
follows:

Example 4.26 SELECT * FROM Bugs WHERE assignedto = NULL

SELECT * FROM Bugs WHERE assignedto <> NULL

Since neither equality nor inequality returns true when comparing a value to a null
value, one needs another operation when searching for a null value, IS NULL or IS
NOT NULL. Hence, if this is the intention, the previous statements should be rewritten
as follows:

Example 4.27 SELECT * FROM Bugs WHERE assignedto IS NULL

SELECT * FROM Bugs WHERE assignedto IS NOT NULL

We now provide a formal definition of SNC.

Definition 4.28 A SNC is a pattern p= (t1) where

(1) P (q1) consists of "NULL’
(2) ∃i, where operators(q1)[i] =′=′ or operators(q1)[i] =′ 6=′

The solving solution is rather straightforward: replace "= NULL" with "IS NULL"
and "<> NULL" or ’"!= NULL" with "IS NOT NULL". Now one needs to include
the new detection rule based on Definition 4.28 in the parse step, as we have done
with antipatterns described in Section 4.1. Since there is a solving solution as well,
one can include it in the step "Solve antipatterns". From now on, each SNC detected
would be solved.

48

4.2 Implementation of Solving Antipatterns in an SQL Query Log

4.2.5 Solving Antipatterns, Clean Query Log and Statistics

The approach iterates over the whole log, and for every pattern detected, it checks
whether it is an antipattern. If so, it solves it, following the solving solutions described
earlier (e.g., Example 4.19 or Example 4.18). The procedure returns a cleaned query
log and statistical information regarding antipatterns solved. We identify how many of
them we have encountered in the query log, how many we have solved. The following
is an example of this procedure.

Example 4.29 Table 4.7 contains a query log after parsing. Queries 3, 5 and 6 form
a DW-Stifle antipattern, which is solvable. The first four queries are CTH candidate.
In the next step, the instance of DW-Stifle is rewritten as one request, as shown in
Table 4.8.

In the example, Queries 3, 5 and 6 belong to both, DW-Stifle and CTH. However, since
we do not provide a solving solution for CTH, there is no conflict regarding what to
solve. If a specific subset of queries shows multiple solvable antipatterns, we perform
our solving procedure in the order of queries occurring in the log. Put differently,
solving starts with the antipattern, which appears in the log first. After one solving
step, there can be further solvable antipatterns. To check this, one needs to parse
statements again and possibly solve the antipatterns. In our case, the experiments
have not indicated any necessity to do so: After the first cleaning, the number of
solvable antipatterns contained in the log has been 0.09%, which is negligible.

49

4 Cleaning Antipatterns in an SQL Query Log

4.3 A case Study With SkyServer

This section reveals insights into the existence and frequency of antipatterns in a
real-world query log. The particular objectives of our case study are:

(1) Answer how many patterns and antipatterns a large real-world log contains;
(2) Give meaning to the most popular patterns;
(3) Hypothesize on the rationale behind patterns based on their frequency and user

popularity;
(4) Determine the positive detection rate of the CTHs;
(5) Showcase the influence of cleaning antipatterns on subsequent analyses.

4.3.1 Appropriateness of the SkyServer Log for a Case Study

We have used the SkyServer query log for our case study, since it is a large scientific data
set available to the public, and, to our knowledge, it is the only one with these character-
istic. The log provides extensive information regarding all requests. Besides the actual
SQL statement and its timestamp, it contains the user IP, a label of the user session
and the number of result rows. See http://skyserver.sdss.org/log/en/traffic/sql.asp for
a description of the SQL log columns. The public availability of this log allows for
easy verification or extension of our results by the scientific community. We analyze
the SkyServer log of SQL statements for five years from 2003 to 2008. It consists of 42
million queries from about 47 thousand users.

4.3.2 Choosing the Duplicate Time Threshold

For our analysis, we need to choose a time threshold for duplicate queries. We set this
threshold by testing several values with a sample data set of 105 queries (cf. Table 4.9).
We already identify most duplicates when using 1 second as the threshold. That means
that duplicates indeed are requests not intended by the user, as we have hypothesized
in Section 4.2.2. Most duplicate queries are results from web-form reloads or from
errors in applications.

When increasing the duplicate time threshold, the more identical queries from one
user are classified as duplicates, and the slower the procedure that removes duplicates.
Setting the threshold to infinity is not always good since two identical queries with a
big-time difference between them might not be a duplicate after all, but reflect user
intention. Since user behaviour may differ between databases, each SQL log analysis
may require its threshold value. Tests similar to the one just described should allow
determining this value.

50

4.3 A case Study With SkyServer

Table 4.9: Experiments with threshold parameter for deleting duplicates
Threshold Log size % Of original size
Original Log 5,748,440 100
1 sec 5,515,737 95.95
2 sec 5,515,737 95.95
5 sec 5,512,468 95.89
10 sec 5,507,233 95.80
Non restricted 5,484,746 95.41

4.3.3 General Results

From the 42 million queries of the raw log, we extract 40 million, which are not DML
or DDL, and which do not contain syntax error. After deleting duplicates, the log
contains 38.5 million queries (see Table 4.10). Overall, cleaning a log with our approach
has resulted in 27.5% size reduction. That is significant. The number indicates that
there is a large share of antipatterns and that our antipattern definitions are valid.
In more detail, we have uncovered 1018 distinct DW-Stifles, 656 DS-Stifles and 487
DF-Stifles. Among 50 candidates for CTH, 28 turn out to be real ones (see Section
4.3.6). The instances of the antipatterns cover about 7.5 million statements.

Another benefit due to this size reduction is a decreased load for subsequent downstream
analyses, see Section 4.3.8.

4.3.4 Effects of SQL Log Cleaning

To evaluate the effectiveness of solving antipatterns, we compare the most popular
patterns before and after running the solving procedure. Figure 4.2 tells us that there
are 9 antipatterns among the 30 most popular patterns. If we consider only the top-15
patterns, we even find six of them to be antipatterns. Table 4.11 shows the most
frequent ones. The frequency of discovered antipatterns highlights the importance
of cleaning the log. The solvable antipatterns (DS-Stifle, DF-Stifle and DW-Stifle)
cover about 19.2% of the query log, a significant value. Furthermore, discovering
antipatterns, in this case, allows detecting users who perform requests with such
antipatterns. Operators of the database could then contact these individuals and
inform/train them accordingly.

As Table 4.11 has revealed, the most frequent antipattern is DW-Stifle. All antipatterns
filter the table photoPrimary by the internal attribute objId, which is not a notion
from astronomy. Hence, we hypothesize that the antipatterns cannot be interpreted
as user intentions. On the contrary, patterns which are not antipatterns can. We will
discuss this assumption further in the next section. We observe that those antipatterns
do not have high user popularity – most of them come from a few distinct IP addresses.
We conclude that the software generating the antipatterns is proprietary and not part
of the SkyServer infrastructure.

51

4 Cleaning Antipatterns in an SQL Query Log

4.3.5 Interpretation of Patterns

In this section, we discuss the meaning of the most popular patterns. We demonstrate
that, unlike antipatterns, patterns represent user interests. That is an indication that
we have curbed the extent of bias introduced by antipatterns significantly.

4.3.5.1 What do patterns do?

Table 4.12 contains the most popular patterns in the query log after removing the
antipatterns. All five patterns perform a spatial search, i.e., look for objects in
some part of the sky. These queries are meaningful for domain experts. In other
words, pattern extraction reveals particular ways users use the database. We find it
remarkable that the most popular patterns come from very few users. None of the
patterns created by the SkyServer Web interface does fall in the top 5. Such patterns
occur at rank 12 and 17. Rank is a position in a list of patterns sorted by frequency.
The most frequent pattern has rank 1; the next one in frequency has rank 2, etc.

4.3.5.2 Sliding window search (SWS) pattern

According to Figure 4.3, our study reveals a large number of frequently occurring
patterns with low user popularity. In particular, 23 out of the 40 most popular patterns
were run only by one user. The instances of these patterns perform a sliding window
search, i.e., consecutive requests for certain objects with disjoint filtering conditions.
From now on, we refer to this as a sliding window search pattern (SWS pattern).
We do not classify the SWS pattern as an antipattern since it uses a database in
the right way. Our explanation of why this pattern occurs is that, due to SkyServer
database restrictions, users access data piece-wise, downloading a significant part of
the database.

Clearly, SWS detection depends on frequency and userPopularity thresholds. We now
briefly discuss the effect of these parameters. In a nutshell, they reflect how rigid one
wants to be in SWS cleaning. If we set frequency higher and userPopularity lower, we
will get rid only of the most obvious SWS. Only patterns which are frequent and are
due to, say, one or two users will be filtered out. Decreasing frequency and increasing
userPopularity means more major cleaning. That is because patterns of medium
frequency which come from more users will be labeled as SWS. Table 4.13 contains the
numbers for our case study. The frequency threshold is in relative terms (%). A cell of
a table indicates how much of the log we classify as SWS with the respective frequency
and userPopularity thresholds. The numbers are in line with our explanation.

The discovery of SWS patterns is essential for user-interest finding. Queries within
such a pattern do not overlap in the area of the data space accessed. However,
instances of these patterns produce a specific uniform noise, which one can exclude in

52

4.3 A case Study With SkyServer

Table 4.10: Results overview
Property Value
Size of original query log 41,998,253
Count of Select queries 40,177,133 (95.9 %)
Size of log after deleting duplicates 38,529,871 (91.74%)
Final log size 30,454,778 (72.51%)
Count of patterns 176,110
Maximal pattern frequency 3,349,709
Count of distinct DW-Stifle 1,018
Count of queries in all DW-Stifle 6,326,863
Count of distinct DS-Stifle 6,562
Count of queries in all DS-Stifle 1,281,936
Count of distinct DF-Stifle 487
Count of queries in all DF-Stifle 212,103
Count of distinct candidate CTH 50
Count of queries in all candidate CTH 424,792
Count of distinct real CTH 28
Count of queries in real CTH 435,251

Table 4.11: The most popular antipatterns
Frequency Type First template Second template Distinct IPs

1 1,454,207 DW
SELECT rowc_g, colc_g
FROM photoprimary
WHERE objid=<num>

SELECT rowc_g, colc_g
FROM photoprimary
WHERE objid=<num>

2

2 1,410,696 DW
SELECT rowc_r, colc_r
FROM photoprimary
WHEREobjid=<num>

SELECT rowc_r, colc_r
FROM photoprimary
WHERE objid=<num>

3

3 1,044,958 DW
SELECT rowc_i, colc_i
FROM photoprimary
WHERE objid=<num>

SELECT rowc_i, colc_i
FROM photoprimary
WHERE objid=<num>

1

4 559,450 DS
SELECT rowc_r, colc_r
FROM photoprimary
WHERE objid=<num>

SELECT rowc_g, colc_g
FROM photoprimary
WHERE objid=<num>

2

5 558,930 DS
SELECT rowc_g, colc_g
FROM photoprimary
WHERE objid=<num>

SELECT rowc_r, colc_r
FROM photoprimary
WHERE objid=<num>

2

subsequent analyses. An alternative to exclusion is a union of the filtering conditions,
i.e., replacing all these queries with one that yields the same result.

We hypothesize that SWS patterns also bog down the prediction quality of association-
rule mining. Suppose that we want to suggest the next query based on the previous
ones a user has typed so far. If the learning set contains SWS queries, a query recom-
mendation system would suggest it. However, this kind of behaviour (sliding window
search) is a "machine download", which does not require query-recommendation assis-
tance. Humans, on the other hand, would benefit from query suggestion without SWS
in a recommendation set [Sin+07].

53

4 Cleaning Antipatterns in an SQL Query Log

Table 4.12: The most popular patterns

Frequency Templates Description
Dis-
tinct
IPs

1 3,349,709

SELECT g.objid,...
FROM photoobjall as g
JOIN fgetnearbyobjeq as gn
on g.objid=gn.objid
left outer join specobj s
as gn s.bestobjid=gn.objid

Gets objects within @r arcmins
of an Equatorial point (@ra,@dec) 1

2 3,082,742

SELECT p.objid,...
FROM fgetobjfromrect
(@ra1,@dec1, @ra2,@dec2) n,
photoprimary p
WHERE n.objid=p.objid
and r between num and num

Gets objects from rectangle area
with radius between two values. 19

3 2,179,250

SELECT count(*)
FROM photoprimary
WHERE htmid >=@htm1
and htmid<=@htm2

Gets the count of objects within
a range of spherical triangles
(special search)

1

4 2,099,560

SELECT p.objId,...FROM
fgetnearbyobjeq
(@ra, @dec, @r) n,
photoprimary p
WHERE n.objid=p.objid

Get information about the
objects within @r arcmins of an
Equatorial point (@ra,@dec)

1

5 674,071

SELECT ra,...FROM
fgetnearbyobjeq
(@ra, @dec, @r) n,
photoprimary p
WHERE n.objid=p.objid

Get information about the
objects within one fraction
of a scan strip observed at
one time. It is also some
sort of special search.

1

0.E+0

1.E+6

2.E+6

3.E+6

4.E+6

0 5 10 15 20 25 30

F
re

q
u
en

cy

Rank (according to frequency)

Before

Patterns Antipatterns

0.E+0

1.E+6

2.E+6

3.E+6

4.E+6

0 5 10 15 20 25 30

F
re

q
u
en

cy

Rank (according to frequency)

After

Patterns

Figure 4.2: The most popular patterns before and after cleaning the log

54

4.3 A case Study With SkyServer

2^10

2^12

2^14

2^16

2^18

2^20

2^22

1 8 64 512 4,096

F
re

q
u
en

cy

Users' popularity
Low users' popularity
High users' popularity

Figure 4.3: Frequency and User Popularity of the Patterns

Table 4.13: SWS coverage depending on frequency and user popularity thresholds
hhhhhhhhhhhFrequency

UserPopularity
10% 1% 0.1% 0.01%

1 8.7% 18.7% 31.2% 35.4%
2 8.7% 18.7% 36.0% 40.9%
4 8.7% 18.7% 40.3% 45.6%
8 8.7% 18.7% 40.7% 46.1%
16 8.7% 18.7% 41.0% 46.3%

4.3.6 CTH Detection

With our solution, we discover 50 candidates for CTH antipatterns. As mentioned, the
decision whether such a pattern is, indeed, a CTH requires domain knowledge. The
number, however, is small, at least in this current case, making respective intellectual
effort tolerable. Thus, we analyze those few patterns by hand and conclude that 28
out of 50 are real CTH antipatterns. We deem a CTH candidate a real antipattern if
the decision regarding the next statement is predefined. The following example is an
illustration.

Example 4.30 Consider an instance of two CTH candidates:

The instances of CTH Candidate 1 comply with Sky-Server Web interface functionality:
First, a user looks for all tables in a database, and then chooses table ’Galaxy’ and
query it. The time difference between the two queries indicates that the second query
has not been issued before the first one – the user has reflected for a while which data
he wants to enrich next.

55

4 Cleaning Antipatterns in an SQL Query Log

Table 4.14: CTH candidate 1
Statements Time

1
SELECT name, type FROM DBObjects
WHERE type=’U’ AND name NOT IN
(’LoadEvents’, ’QueryResults’)ORDER BY name;

13.06.07
12.18.46 PM

2 SELECT description FROM DBObjects
WHERE name=’Galaxy’;

13.06.07
12.19.13 PM

Table 4.15: CTH candidate 2
Statements Time

1 SELECT * FROM dbo.fGetNearestObjEq
(145.38708,0.12532,0.1);

18.09.07
11.25.00 AM

2
SELECT plate, fiberID, mjd, SpecObjID
FROM SpecObjAll
WHERE SpecObjID=75094094447116288;

18.09.07
11.25.00 AM

The queries in CTH Candidate 2, in contrast, run directly one after another, with
no time difference. The first query returns the closest object for a certain point; the
second query then instantly asks for the object the first query has returned. Even if
the count of the second queries is not equal to the number of rows the first query has
returned, this can only mean that there is some logic deciding which objects from the
first result need further look. This logic relies on the first result, so this indicates a
dependency between the two queries. Thus, this is an instance of CTH.

We have distinguished between real CTHs and CTH candidates, due to our rigid
interpretation. A more generous interpretation results in more true CTHs. While
it seems reasonable to evaluate a CTH detection method objectively by measuring
precision and recall, this is not feasible in our case. These metrics require a ground
truth, i.e., false positive and false negative CTHs must be known. To get there, one
would have to interview thousands of SkyServer users on their exact intentions, make
sure that their answers are clear (even though many of them might not be trained
well enough to this end) etc. Thus, all we can claim based on our study is that our
detection method can identify CTHs within a query log.

Figure 4.4 shows false positives and real CTHs, depending on their frequency and user
popularity. In this visualization, we observe a dependency between user popularity
and the property of being a CTH. However, this is not an indicator for real CTH for
sure: Widely used software could introduce instances of the CTH as well.

4.3.7 Feedback from Domain Experts

To assess the usefulness of our results, we have conducted a study with domain experts.
We have provided the list of the most popular patterns and antipatterns and have
asked the experts to explain their meaning. They did not have any information from

56

4.3 A case Study With SkyServer

128

512

2048

8192

32768

131072

524288

0 10 20 30 40 50

F
re

q
u
en

cy

Rank (according to frequency)

False CTH True CTH

1

4

16

64

256

1024

4096

0 10 20 30 40 50

U
se

r
p

o
p

u
la

ri
ty

Rank (according to frequency)

Figure 4.4: Possible and real CTH antipatterns

our side regarding whether we consider a pattern an antipattern. We also had not
explained to them what antipatterns are. The experts have stated that all patterns (not
antipatterns) are meaningful from their point of view. They also deem antipatterns
follow-up queries, where a user has first obtained objIDs (see Table 4.11) with a
previous query and asks for more data. That is exactly what CTH does, and this has
been our hypothesis as well. The fact that, based on our results, the domain experts
have come to the same conclusion independently proves that our framework is indeed
able to find antipatterns in a real-world query log.

4.3.8 Effects on Downstream Analysis

Even though it is not the core topic of this chapter, we now present some insights
into the influence of the cleaning on subsequent analyses. To this end, we extract
1.3 million queries from the log and reproduce the experiment described in [Ngu+15].
It detects user interests via clustering from the log. They cluster queries, using the
overlap of the data space accessed by two queries as their distance measure. More
specifically, the bigger the overlap, which ranges from 0 to 1†, the smaller is the
distance. Queries with a distance smaller than a threshold go to the same cluster. We
run the experiments with different threshold values from 0.1 to 0.9 with a step of 0.1,
using three variants of that sample:

(1) Raw query log (1.3 million queries);
(2) Removal query log, obtained from the raw query log by removing antipatterns

(0.89 million queries);

†In the original work of [Ngu+15] a distance has value ranges [0;∞̇]. We have normalized the metric
from 0 to 1 to be able to set meaningful thresholds.

57

4 Cleaning Antipatterns in an SQL Query Log

(3) Solved query log, obtained from the raw query log by solving antipatterns (1
million queries).

In the case of cleaning, we do not delete antipatterns from a log, but rewrite them, as
discussed in Section 4.1.2. Hence, the removal log is smaller than the solved one.

It is important to point out that the purpose of this experiment is "only" to show the
effect on meta-level: (1) how much clusters one get with raw, solved and removed log,
(2) how big they are, (3) how much time does it take to perform clustering. We do
not investigate how good in terms of precision and interpretability (see Section 1.2)
the clusters are. As our literature review has discovered, there are certain problems
with a similarity function, [Ngu+15] has utilized. We will redefine it and perform an
extensive clustering experiment later on in Chapter 5. Therefore this initial experiment
serves to indicate if the noise introduced by antipatterns influences subsequent analysis
(clustering) in some way.

Figure 4.5 shows the results. Varying the threshold value (from 0.1 to 0.9) has little
impact on the number of clusters. That is because the distance metric which calculates
the overlap of two queries very often yields 0 (queries are identical) and 1 (queries
do not have any overlap). The number of occurrences of other distance values has
been very low in our experiments. The clusters in the raw log are too numerous to be
analyzed individually. For example, for threshold value 0.9 there are 1393 of them.
Most of them also are relatively small. The log without antipatterns ("removal") yields
bigger and at the same time fewer clusters. That happens for the following reason:
When removing antipatterns, we filter out a lot of small clusters formed by them.
Hence, for the removal log, we have got a number of clusters which one can analyze
manually and interpret as user interests (51 clusters for threshold value 0.9).

We have found all clusters from the removal log in the raw log. They also present
in the cleaned log. That indicates that removing antipatterns indeed is a way to get
rid of the noise that does not hamper subsequent processing. From the performance
point of view, cleaning or removing of antipatterns is significant as well: The runtime
curve of Figure 4.5 indicates that the smallest log ("removal") gives way to the best
time. This time, however, does not change linearly with the number of points, because
clustering requires comparing one object (query) to the other ones. The complexity of
the procedure in the worst case is O(n2).

The experiments with the cleaned log show that clusters with DS-Stifle instances are
smaller. This is in line with our prediction, i.e., 1.2. Figure 4.6 graphs the sizes of the
top 20 biggest DS-Clusters in the clean and in the raw log. Clusters in the raw log are
approximately two times bigger. For instance, the biggest DS-Cluster in the raw log
consists of statements like:

(1) SELECT text FROM DBObjects WHERE name=’photoobjall’;

(2) SELECT description FROM DBObjects WHERE name=’photoobjall’;

58

4.3 A case Study With SkyServer

0

600

1200

1800

0.2 0.4 0.6 0.8 1

C
lu

st
er

's
 c

o
u
n
t

threshold

Clusters' count

Raw
Cleaning
Removal

0

6000

12000

18000

0.2 0.4 0.6 0.8 1

A
v
er

ag
e

cl
u
st

er
's

 s
iz

e

threshold

Average clusters' size

0

2000

4000

6000

8000

0.2 0.4 0.6 0.8 1

R
u
n
ti

m
e

threshold

Runtime, (s)

Figure 4.5: Results of an experiment on query clustering

0

900

1800

2700

3600

4500

0 5 10 15 20

C
lu

st
er

's
 s

iz
e

DS-Cluster's rank (according to

size of Cleaned log)

DS-Cluster in cleaned log

DS-Cluster in raw log

Figure 4.6: DS-Clusters’ sizes for cleaned and raw log. Threshold = 0.9

Most queries in the clean log in turn consist of statements like:

SELECT text, description FROM DBObjects WHERE name=’photoobjall’;

We for our part conclude that both removal and cleaning improve the quality of the
data, and that the process as a whole is meaningful.

59

4 Cleaning Antipatterns in an SQL Query Log

4.4 Conclusions

Knowing how a big database is used is highly important for its owner. Analyzing the
SQL log and finding patterns is one promising approach to reveal such information.
Antipatterns, however, might falsify such analyses; discovering antipatterns in the
query log is beneficial for refactoring and post-processing. To our knowledge, finding
database antipatterns in SQL query logs have not been studied before systematically.
In this chapter, we have proposed a solution for the detection of patterns and solving
antipatterns in a query log. To this end, we have formalized the notion of a pattern
in the current context. Next, we have provided rules for detecting and – if possible
– solving antipatterns. Properties of patterns and antipatterns allow the discovery
of certain kinds of user behaviour, as a case study on the SkyServer query log has
demonstrated.

All in all, our approach is capable of detecting and classifying patterns in a query log.
The results show a significant number of instances of antipatterns within the SQL
query log. Moreover, it is feasible to remove the most frequently occurring antipatterns.
The remaining patterns refer to real user information needs. All this highlights the
importance of the approach as a general preprocessing step for any subsequent SQL
log analysis.

60

5 SQL-Query-Similarity Measures

This current chapter studies the similarity of SQL queries through clustering of SQL
query logs to identify user interests within a data space. It reuses our corresponding
publication [Arz+19]. In a nutshell, after performing a clustering, we want to know
not only how users work with a database (i.e., which patterns (Definition 4.3) do they
utilize), but what exactly they are looking for (i.e., which data they are interested in).
To this end, we need a data-aware query similarity function.

There are two data aware approaches we have found in the literature: witness-based
(WB) (Section 3.3.3) and access-area-based (AAB) (Section 3.3.4). While WB sees a
query as its result set, AAB query is a relational algebra expression. Whereas WB
query similarity is standard (Jaccard, cosine) and does not require additional care,
current AAB similarity has shortcomings, which make it inapplicable for clustering
(see Section 3.3.4.1). Therefore, a new AAB similarity is needed.

5.1 Our AAB similarity functions

Representing a query as its access area captures key details of an SQL request and
does not consider the current state of a database, in contrast to the WB approach.
However, as we have pointed out in Section 3.3, a different query-similarity function is
necessary. We now propose new functions which are still based on the notion of access
areas but do not suffer from the shortcomings discussed in Section 3.3.4.1.

5.1.1 Requirements to an SQL query similarity function

Let us first define a query similarity formally:

Definition 5.1 The similarity S(q1, q2) of two queries is a function returning a value
in [0;1].

S(q1, q2) =
{

1 if q1 = q2

[0;1) otherwise
(5.1)

61

5 SQL-Query-Similarity Measures

It holds that S(q1, q2) = 1−D(q1, q2). In general there is no restriction on the range
of values of D(q1, q2), i.e., D ∈ [0;∞). This requirement is there exclusively for our
query-distance function. We have introduced it to set a meaningful threshold for the
algorithms, which imply knowledge regarding extreme values of D (like DBSCAN).

Certain clustering algorithms impose conditions regarding the distance function used.
So-called semi-metric distances work with a wide variety of clustering algorithms.
According to [AM+09], such a distance D(xi,xj) must satisfy the following conditions
on a data set X:

(1) Symmetry. D(xi,xj) =D(xj ,xi);
(2) Positivity. D(xi,xj)≥ 0 for all xi and xj in X;
(3) Reflexivity. D(xi,xj) = 0 iff xi = xj ;

We will check these conditions when introducing our query-distance measures.

5.1.2 Requirements to an SQL query

InChapter 2 we have defined an SQL query as an SPJ (Select-Project-Join) one, cf.
Definition 2.5. When it comes to AAB query similarity and getting adequate clustering
results, we have to exclude two more types of queries out of consideration: (1) queries
with arithmetic operations in predicates and (2) queries without a filtering condition.
Let us discuss these queries justifying our choice:

(1) Queries with arithmetic operations in predicates. These queries are complicated
in general, for instance, for DBMS query optimizers. The current version of our
AAB approach does not cover these queries. The reason is the same as with
DBMS optimizers: there is no way knowing in advance which data one gets after
applying arithmetic operations. However, to include this type of queries into
consideration, one could resort to the WB approach. That is the case particularly
since one of our similarity functions, which calculates the overlap of access areas
(dubbed AABovl in the following), and WB yield similar results, as we will show
in Section 5.2.

(2) Queries without a filtering condition. This kind of query is often used in
combination with a TOP-n clause. These requests are usually the first ones a
user might issue, intending to test the database. In this case, they have relatively
little to do with user interests. They also blur the aggregated access area of
a cluster they belong to: the cluster spread to the whole domain, bringing no
insights of a particular dataspace the users are interested in. In our case study
with SkyServer, only 2.7 % of the queries are of this kind. So we have consciously
decided to leave them aside in this current study.

62

5.1 Our AAB similarity functions

5.1.3 Definitions

Definition 5.2 The similarity measure S(q1, q2).a of an attribute a of two queries q1,
q2 is a similarity measure of queries q1 and q2 which is defined if the queries both have
at least one filtering condition with Attribute a and is undefined otherwise.

For a query pair q1 and q2, there can be one or several conditions on Attribute a.

Definition 5.3 The distanceD(q1, q2).a of two queries q1, q2 with respect of Attribute
a is the corresponding distance, which is calculated as follows: D(q1, q2).a = 1−
S(q1, q2).a.

Definition 5.4 An ordinal attribute (OA) is one whose values have a natural order.

The values of such an attribute may or may not be from a domain (Definition 2.6)
that is continuous.

Definition 5.5 A nominal attribute (NA) is one whose values do not have a natural
order.

Definition 5.6 The common interest comInts(q1, q2)=Ints(q1)∩ Ints(q2) of two
queries q1,q2 is the set of interests which occur in both queries q1 and q2.

Definition 2.10 features the respective term of an interest.

Definition 5.7 The exclusive interest exclInts(q1, q2) = Ints(q1)∪ Ints(q2)
\comInts(q1, q2) of two queries q1, q2 is the set of interests which occur in only one
query.

In line with Definition 2.16, we use the notation Pi[a] for a filtering condition occurring
within Query qi and referring to Attribute a.

Definition 5.8 A set of intervals AOA
i = {aOAi.1 , . . . ,aOAi.k } of a query qi is one formed

by filtering condition P with ordinal attribute (OA) a.

Example 5.9 Consider Queries q1 and q2:

q1: SELECT * FROM Cities C WHERE C.latitude

BETWEEN 10 and 20 OR C.latitude BETWEEN 40 and 50

q2: SELECT * FROM Cities C WHERE C.latitude NOT BETWEEN 40 and 50

Query q1 has the following set of intervals for ordinal attribute Cities.latitude:

Cities.latitudeOA1 = {[10;20], [40;50]}.

63

5 SQL-Query-Similarity Measures

For Query q2:

Cities.latitudeOA2 = {[−90;40], [50;90]}, because dom(Cities.latitude) =
[−90;90] (see Definition 2.6).

We now define how to extract intervals out of a query.

Definition 5.10 The set of intervals AOA
i = {aOAi.1 , . . . ,aOAi.k } of a filtering condition

Pi[a] associated with an ordinal Attribute a is as follows. If Pi[a] is:

(1) Atomic clause: AOA
i is a singleton set containing exactly the clause;

(2) Conjunction clause (C1∧C2) :AOA
i =C1∩C2; it is the intersection of the intervals

in C1 and C2;
(3) Disjunction clause (C1∨C2) :AOA

i = C1∪C2; it is the union of intervals in C1
and C2;

(4) Negative clause (NOT C): AOA
i = ¬C; it is the inverse interval of C.

Definition 5.11 The width width(ai.k) of interval aOAi.k is defined as width(ai.k) =
amaxi.k −amini.k .

For instance, the queries from Example 5.9 have the following widths of intervals:

width(a1.1) = 20−10 = 10;width(a1.2) = 50−40 = 10;
width(a2.1) = 40+90 = 130;width(a2.2) = 90−50 = 40;

A set of values ANA
i = {aNAi.1 , . . . ,aNAi.k } valid with regard to a filtering condition Pi[a]

over a nominal attribute a is a set of values of a where each value satisfies the conditions
put on a by the filtering condition Pi[a]. As for intervals, we introduce an extraction
procedure:

Definition 5.12 The set of valid values of a filtering condition Pi[a] associated with
a nominal Attribute a ANA

i = {aNAi.1 , . . . ,aNAi.k } is as follows. If Pi[a] is:

(1) Atomic clause: ANA
i is a singleton set containing exactly the clause;

(2) Conjunction clause (C1∧C2) :ANA
i is the intersection of valid values in C1 and

C2;
(3) Disjunction clause (C1∨C2) :ANA

i is the union of valid values in C1 and C2;
(4) Negative clause (NOT C): ANA

i is all the values from domain not presented in
C.

64

5.1 Our AAB similarity functions

5.1.4 Corner cases of SQL query similarity

To come up with a query similarity function, we ask:

(1) How to define it in the simplest case.
(2) How to quantify the similarity of two queries in the following cases:

(a) There are several occurrences of an attribute in the filtering conditions in
both queries.

(b) There are different attributes in the filtering conditions, while the queries
have at least one common attribute.

(c) At least one query contains joins.

In what follows, we will answer these questions.

A distance function must meet the conditions from Section 5.1.1. We will prove that
our distance/similarity function has these characteristics. The next section introduces
some underlying notions of SQL query similarity.

5.1.5 The simplest case: two approaches of AAB similarities.

We first study the simplest case, when two queries have one occurrence of the same
attribute in the filtering condition and nothing else. It seems plausible that similar
queries are those whose access areas overlap. However, this might be too strict in
certain cases.

Example 5.13 Think of a query log containing the queries:

q1: SELECT * FROM Cities C WHERE C.latitude >= 45 AND C.latitude < 90

q2: SELECT * FROM Cities C WHERE C.latitude >= 30 AND C.latitude < 45

q3: SELECT * FROM Cities C WHERE C.latitude >= -75 AND C.latitude < -30

q4: SELECT * FROM Cities C WHERE C.name = ’New York’

q5: SELECT * FROM Cities C WHERE C.name = ’Paris’

Attribute latitude of table Cities has a continuous type, Cities.latitude ∈ [−90;90].
This attribute is ordinal (OA), while Cities.name is nominal (NA). Now look at the
first three queries in the log. Figure 5.13 plots the access areas of Queries q1, q2 and
q3. They are as follows:

q1 : σlatitude≥45∧latitude≤90(Cities);
q2 : σlatitude≥30∧latitude≤45(Cities);
q3 : σlatitude≥−75∧latitude≤−30(Cities).

No two queries overlap. But q1 and q2 appear to be closer to each other: Their access
areas even are adjacent.

65

5 SQL-Query-Similarity Measures

-90 30 60 90

access area 1 access area 2

-60 -30 0

-90 90

-90 90

access area 3

Figure 5.1: Access areas of attribute Cities.latitude for queries q1, q2 and q3
from Example 5.13.

So we need to take in closeness as a criterion as well. All already existing measures
which rely on the data, like WB or AAB from [Ngu+15], currently do not feature
this. In other words, the phenomenon that closeness is neglected is not specific to
access-area-based approaches.

5.1.5.1 Closeness Similarity for Ordinal Attributes

We want to quantify the closeness of the access areas of two queries. Lack of overlap
of access areas does not mean ’zero similarity’. Put differently, SQL queries which
request data in neighbouring parts of the data space should have the chance to end
up in the same cluster.

Definition 5.14 The similarity of two queries with the same filtering ordinal attribute
(OA) Scl(q1, q2).a is the proximity (closeness, cl) of their access areas:

Scl(aOA1.i ,a
OA
2.j) = 1

2 ·
(amax1.i −amin1.i)+(amax2.j −amin2.j)

max(amax1.i ,amax2.j)−min(amin1.i ,a
min
2.j)

(5.2)

amini.1 /amaxi.1 are the minimum/maximum of Interval aOAi.1 .

Since we are considering the simplest case, there is only one interval of one attribute
for each query. Because of this, the similarity of attribute conditions is the similarity
of the first occurrence of Attribute a in both queries: Scl(q1, q2).a = Scl(aOA1.1 ,a

OA
2.1).

The coefficient 0.5 normalizes the measure. The formula is the share of the space
accessed over the width of the space between the queries. Scl > 0.5 indicates overlap
of access areas.

Lemma 5.15 Dcl(q1, q2).a is semi-metric.

Proof. Moving from similarity to distance,

Dcl(q1, q2).a= (aOA1.i ,a
OA
2.j) = 1− 1

2 ·
(amax

1.i −a
min
1.i)+(amax

2.j −a
min
2.j)

max(amax
1.i

,amax
2.j

)−min(amin
1.i

,amin
2.j

)

66

5.1 Our AAB similarity functions

Symmetry : Dcl(q1, q2).a=Dcl(q2, q1).a

Dcl(q2, q1).a= (aOA1.i ,a
OA
2.j) = 1− 1

2 ·
(amax

1.i −a
min
1.i)+(amax

2.j −a
min
2.j)

max(amax
1.i

,amax
2.j

)−min(amin
1.i

,amin
2.j

)

This is identical to Dcl(q1, q2).a. Thus, Dcl(q1, q2).a=Dcl(q2, q1).a.

Positivity : Dcl(q1, q2).a≥ 0

Dcl(q1, q2).a ≥ 0 means Scl(q1, q2).a ≤ 1. The maximum similarity is achieved with
query identity: amin1.1 = amin2.1 ∧amax1.1 = amax2.1 . In this case,

Scl(q1, q2).a= 1
2 ·

2·(amax
1.1 −a

min
1.1)

amax
1.1 −a

min
1.1

= 1.

Hence Scl(q1, q2).a≤ 1 is proven as well as Dcl(q1, q2).a≥ 0.

Reflexivity : Dcl(q1, q2).a= 0 iff q1 = q2

Since q1 = q2, amin1.1 = amin2.1 ∧amax1.1 = amax2.1 . Hence,

Scl(q1, q2).a= 1
2 ·

2·(amax
1.1 −a

min
1.1)

amax
2.1 −a

min
2.1

= 1
2 ·

2·(amax
1.1 −a

min
1.1)

amax
1.1 −a

min
1.1

= 1

Therefore, Dcl(q1, q2).a= 1−Scl(q1, q2).a= 0. �

5.1.5.2 Overlap Similarity for Nominal Attributes

The closeness measure Scl(q1, q2).a in Equation 5.2 does not work with nominal
attributes (NA). See Queries q4 and q5 from Example 5.13. The values of Attribute
’name’ of Table ’Cities’ do not have a natural order. To illustrate, ’Paris’ is not close
to ’Prague’ just because they both start with ’P’ ∗. Having said this, for nominal
attributes, we propose to take the overlap (ovl) as the similarity. We use the Jaccard
coefficient to this end:

Sovl(q1, q2).a=
∣∣ANA

1 ∩ANA
2
∣∣∣∣ANA

1 ∪ANA
2
∣∣ (5.3)

In our case (Example 5.13),

Sovl(q4, q5).Cities.name = |{’New York’}∩{’Paris’}|
|{’New York’}∪{’Paris’}| = 0.

Lemma 5.16 Dovl(q1, q2).a, where a is a nominal attribute, is semi-metric.

Proof. The corresponding distance function is Dovl(q1, q2).a= 1−Sovl(q1, q2).a. Since
the Jaccard distance is symmetric, positive and reflexive, our measure has these
characteristics as well. �
∗In principle, one can use domain-specific ontologies and respective distance measures. To continue
the example, Paris and Prague might be similar because they both are capitals of European
countries with a rich history. However, taking such additional information into account is beyond
the scope of this paper.

67

5 SQL-Query-Similarity Measures

30 40 50 60

comWidth

allWidth

access area 1 access area 2

30 40 50 60

Figure 5.2: Access areas of attribute Cities.latitude from Example 3.8.

5.1.5.3 Overlap Similarity for Ordinal Attributes (OA)

With the definitions so far, we would rely on different paradigms, i.e., closeness and
overlap, when calculating the similarity for ordinal and nominal attributes. When
different types of attributes are treated differently, it is unclear how this will affect
analysis results, e.g., clustering. Therefore, to have an alternative which we can use as
a reference point later, we now propose a purely overlap-based similarity measure for
ordinal attributes:

Sovl(q1, q2).a= Sovl(aOA1.1 ,a
OA
2.1) = comWidth(aOA1.1 ,a

OA
2.1)

allWidth(aOA1.1 ,a
OA
2.1)

(5.4)

In each query, one interval aOA1.i represents Attribute a. comWidth(aOA1.1 ,a
OA
2.1) in

Formula 5.4 is the overlap of Queries q1 and q2 for Attribute a in absolute terms:

comWidth(aOA1.1 ,a
OA
2.1) =max(0,min(amax1.1 ,amax2.1)−max(amin1.1 ,amin2.1)) (5.5)

allWidth(aOA1.1 ,a
OA
2.1) is the difference between the highest maximal bound and the

lowest minimal bound:

allWidth(aOA1.1 ,a
OA
2.1) =max(amax1.1 ,amax2.1)−min(amin1/1 ,a

min
2.1) (5.6)

For instance, the similarity for Attribute Cities.latitude from Example 3.8 (from the
literature review) is:

Sovl(q1, q2).latitude = min(50,60)−max(30,40)
max(50,60)−min(30,40) = 50−40

60−30 = 1
3

Figure 5.2 graphs the corresponding access areas.

Lemma 5.17 Dovl(q1, q2).a, where a is an ordinal attribute, is semi-metric.

Proof. Distance Dovl(q1, q2).a= 1−Sovl(q1, q2).a is symmetric since we operate with
interval lengths. It is also positive since the overlap is never bigger than the overall
width. When two queries are identical, comWidth(a1.1,a2.1) = allWidth(a1.1,a2.1),
and hence Dovl(q1, q2).a= 0. Thus, Dovl(q1, q2).a is semi-metric. �

68

5.1 Our AAB similarity functions

-90 30 60 90

Clustering result

-60 -30 0

60

120

180

with closeness approach

Clustering result
with overlap approach

latitude

longitude

Figure 5.3: Clustering result for closeness or overlap approach

5.1.5.4 Summary

We have identified two paradigms of AAB query similarity: closeness (AABcl) and
overlap (AABovl). We use these acronyms from now on. We also have proposed query-
similarity measures for ordinal attributes (Formula 5.2 for AABcl and 5.4 for AABovl)
and nominal ones (Formula 5.3). Which method to apply (closeness or overlap)
when it comes to ordinal attributes depends on the objective. Our hypotheses, which
our experimental evaluation will address, are as follows: If an analyst is interested
in exact access areas many users have looked for, he might want to use the “strict”
overlap formula 5.4. In contrast, if he is more interested in the bigger picture, i.e.,
approximate, rather big areas users have looked at, the less strict closeness formula
5.2 might be better. Figure 5.3 shows the clustering results with the two approaches.
Our experiments in Section 5.2 will provide more details.

So far, we have discussed similarity measures for the simplest case, two queries having
the same attribute in the filtering conditions, and this attribute occurs only once. Now
we turn to more complex cases.

5.1.6 Multiple Occurrences of an Attribute in Filtering
Conditions

The first complication, when calculating query similarity, described at the beginning of
Section 5.1, occurs when one uses the same attribute several times in the same query.
This may happen when a query consists of OR predicates (for ordinal and nominal
attributes) or IN predicates (for nominal attributes).

69

5 SQL-Query-Similarity Measures

0 80 100

access area 1 access area 2

20 40 60

0 80 10020 40 60

Figure 5.4: Access areas of queries with multiple occurrence of an attribute from
Example 5.18

5.1.6.1 Overlap Similarity

Example 5.18 Consider the following queries:

q1: SELECT * FROM Cities WHERE (population BETWEEN 0 and 20)

OR (population BETWEEN 40 and 60) OR (population BETWEEN 90 and 100)

q2: SELECT * FROM Cities WHERE (population BETWEEN 10 and 30)

OR (population BETWEEN 50 and 60) OR (population BETWEEN 80 and 90)

The access areas of the queries look like in Figure 5.4. Both Queries q1 and q2 have
not one, but several occurrences of Attribute Cities.population. Some of the areas do
intersect: for instance, (population BETWEEN 0 and 20) of q1 and (population BETWEEN 10

and 30) of q2. Some however, like (population BETWEEN 40 and 60) of q1 and (population

BETWEEN 80 and 90) of q2, do not.

With an overlap approach for ordinal attributes, we define the similarity measure as
the ratio of the width of the overall overlap of the intervals to the width of the union
of the intervals. Formally,

Sovl(q1, q2).a= overallComWidth(a1,a2)
overallAllWidth(a1,a2) (5.7)

The terms in the numerator and in the denominator are as follows:

overallComWidth(a1,a2) =
i=l1,j=l2∑
i=1,j=1

comWidth(aOA1.i ,a
OA
2.j) (5.8)

overallAllWidth(a1,a2) =
i=l1∑
i=1

width(aOA1.i)+
j=l2∑
j=1

width(aOA2.j)

−overallComWidth(a1,a2)

(5.9)

where l1 and l2 are the numbers of intervals over Attribute a occurring in Queries q1
and q2 respectively. The width of an interval is calculated as in Definition 5.11.

70

5.1 Our AAB similarity functions

Example 5.19 Think of the queries from Example 5.18. Here,

population1.1 = [0;20], population1.2 = [40;60], population1.3 = [90;100];
population2.1 = [10;30], population2.2 = [50;60], population2.3 = [80;90].
Sovl(q1, q2).population = 20/(50+40−20) = 2/7.

For nominal attributes, the formula remains exactly the same as in Section 5.1.5.2
(Formula 5.3). This is because it already covers several occurrences of an attribute.

Lemma 5.20 Dovl(q1, q2).a, where a is an ordinal attribute which occurs several
times in queries q1 and q2, is semi-metric.

Proof. As with the simple case, this distance is symmetric because it works with
interval lengths. It is also positive because overallComWidth(a1,a2) is always less than
the sum of the widths of the intervals. For identical queries, overallAllWidth(a1,a2) =
overallComWidth(a1,a2)– the distance is reflexive. Thus, the overlap distance
Dovl(q1, q2).a is a semi-metric. �

5.1.6.2 Closeness Similarity

With the closeness similarity that we have considered so far, queries without overlap
can be similar. Thus, Formula 5.7 is not applicable in this case. Hence, we propose to
calculate overall closeness similarity for ordinal attribute (OA) a is as follows:

Scl(q1, q2).a= max
i=1,...,l1;j=1,...,l2

Scl(aOA1.i ,a
OA
2.j) (5.10)

The formula takes the maximum of pairwise similarities. So the closest intervals of
two queries determine the similarity. Besides, ’max’ has some desirable properties:

(1) It returns a normalized value in the [0;1] range of values. That is different from
aggregation with, say, sum.

(2) It does not underestimate the similarity of two queries with the closeness
paradigm. min or

∏
in turn do.

Lemma 5.21 D(q1, q2).a is semi-metric.

Proof. Formula 5.10 uses Formula 5.2 (simple case). We have already proven that
this is a semi-metric. With aggregation with max, the distances remain positive,
symmetric and reflexive, i.e., this similarity measure is a semi-metric as well. �

71

5 SQL-Query-Similarity Measures

5.1.7 Several Distinct Attributes in Filtering Conditions

So far, we have discussed the cases when both queries filter with the same single at-
tribute: Ints(q1) = Ints(q2);|Ints(q1)|= |Ints(q2)|= 1. The following example illustrates
the case of different attributes in the filtering conditions of two queries.

Example 5.22 A query log contains the following queries:

q1: SELECT * FROM Cities C WHERE C.latitude BETWEEN 52 and 80

AND C.longitude BETWEEN 30 and 45 AND C.population BETWEEN 30 and 500

q2: SELECT * FROM Cities C WHERE C.latitude BETWEEN 40 and 52

AND C.longitude BETWEEN 30 and 45 AND C.country =’France’

Queries q1 and q2 have two common interests:
comInts(q1, q2) = {C.latitude,C.longitude}.

They also have exclusive interests:
exclInts(q1, q2) = {C.population,C.country}.

We propose to calculate the similarity measure SattrFull(q1, q2) where both
comInts(q1, q2) and exclInts(q1, q2) are considered with similarities SattrCom(q1, q2) and
SattrExcl(q1, q2). Section 5.1.9 will feature the concrete formula.

5.1.7.1 Similarity for Common Interests

Till this moment we have defined the attribute-wise similarity for queries S(q1, q2).a.
If queries however have more than one common interest, as in Example 5.13, we
need a definition which takes the attribute-wise similarities for all common attributes
S(q1, q2).a,a ∈ comInts(q1, q2), as input. Since a query may contain ordinal and
nominal attributes, we cannot separate closeness and overlap approaches. Instead,
a general, unifying approach to arrive at meaningful overall similarities is necessary.
Coming back to Example 5.22,

Scl(q1, q2).latitude = 0.5;Sovl(q1, q2).latitude = 0
Scl(q1, q2).longitude = 1;Sovl(q1, q2).longitude = 1

The overlap approach assumes that, if there is no overlap, then there is no similarity.
Any non-overlapping condition should lead to zero similarity. For our example,
Sovl(q1, q2) = 0 since Sovl(q1, q2).latitude = 0. In general,

SattrCom(q1, q2) = min
i=1,...,|comInts(q1,q2)|

S(q1, q2).ai (5.11)

where ai is an attribute contained in comInts(q1, q2). min does not overestimate the
similarity. Hence, one might expect relatively small clusters with clear user interests.

72

5.1 Our AAB similarity functions

Since we do not see any alternative how the overlap approach could be generalized,
we use Formula 5.11 for the closeness approach as well.

Lemma 5.23 DattrCom(q1, q2) is semi-metric.

Proof. With aggregation by means of min, the corresponding distance remains a
semi-metric. �

5.1.7.2 Similarity for Exclusive Interests

If two queries have at least one shared interest, but also have exclusive ones, the
similarity measure should reflect this. For each attribute in exclInts(q1, q2), we calculate
an overlap similarity value. We assume that an empty filtering condition in q1 or q2
means that one is interested in the entire domain of that attribute.

SattrExcl(q1, q2) = min
i=1,...,|exclInts(q1,q2)|)

Sovl(q1, q2).ai (5.12)

Here, ai is an attribute contained in exclInts(q1, q2). In fact, SattrExcl(q1, q2) just
calculates overlap similarity among attributes that do not occur in both queries.

Example 5.24 Let us now calculate SattrExcl(q1, q2) for queries from Example 15.22.
Suppose that C.country has 250 distinct values, and that C.population ∈ [0;20000].

exclInts = C.country,C.population;

Sovl(q1, q2).country = |{′France′}|
|{′Afghanistan′,...,′Zimbabwe′}| = 0.004;

Sovl(q1, q2).population = (500−30)/20000 = 47/2000 = 0.0235;

SattrExcl(q1, q2) =min(0.004,0.0235) = 0.004

There are two reasons for using overlap-based similarity for SattrExcl:

(1) A non-shared filtering attribute can be nominal. We do not see any reason why
non-shared ordinal and nominal attributes should be treated differently.

(2) We believe that dissimilar interests stand for different user intentions. The
similarity values should be low. The closeness approach for ordinal attributes
might yield clusters of queries without similar interests.

Lemma 5.25 DattrExcl(q1, q2) is semi-metric.

Proof. Similarly to SattrCom(q1, q2), with min as aggregation function, the corre-
sponding distance remains to be semi-metric. �

73

5 SQL-Query-Similarity Measures

5.1.7.3 Overall Attribute Similarity

Finally, the minimum of SattrExcl(q1, q2) and SattrCom(q1, q2) is the overall similarity
of attributes:

SattrFull(q1, q2) =min(SattrExcl(q1, q2),SattrCom(q1, q2)) (5.13)

Lemma 5.26 DattrFull(q1, q2) is semi-metric.

Proof. The distance function is still semi-metric since we use min as the aggregation
function. �

All predicates including join predicates are processed when we compute attribute
similarities (Formula 5.13). While we mostly use one- or two-dimensional examples,
the principle is independent from this number.

5.1.8 Similarity in the Presence of Joins

The last remaining difficulty regarding our AAB similarity function is what needs to
be done in the presence of joins.

Example 5.27 Consider the following query log:

q1: SELECT * FROM Cities C INNER JOIN Objects O ON C.objId = O.objId

WHERE O.latitude BETWEEN 52 and 80 AND O.longitude BETWEEN 30 and 45

q2: SELECT * FROM PowerStations PS INNER JOIN Objects O ON PS.objId = O.objId

WHERE O.latitude BETWEEN 52 and 80 AND O.longitude BETWEEN 30 and 45

q3: SELECT O.id FROM Objects O

WHERE O.latitude BETWEEN 52 and 80 AND O.longitude BETWEEN 30 and 45

q4: SELECT O.id, T.typeName FROM Objects O INNER JOIN Types T ON O.type = T.id

WHERE O.latitude BETWEEN 52 and 80 AND O.longitude BETWEEN 30 and 45

Queries q1 and q2 look for different objects, i.e., entities from different relations, but
in the same part of the data space. One must take this distinction into account. But
our metric so far only relies on the filtering conditions.

An intuitive solution is to multiply the overall attribute-similarity values
SattrFull(q1, q2) with a value quantifying the overlap of the sets of tables accessed, e.g.,
the Jaccard coefficient:

Sfinal(q1, q2) = |q1.FROM∪ q2.FROM|
|q1.FROM∩ q2.FROM|

(5.14)

74

5.1 Our AAB similarity functions

where qi.FROM is the set of tables accessed by Query qi. This approach, while being
simple, has a problem. Consider Queries q3 and q4. They search all objects within
identical coordinate boundaries, i.e., intervals. q4 has as additional output the type
of an object which comes from the join with Table Types. According to Formula
5.15, the JOIN in Query q4 decreases the similarity of q3 and q4 twice, from 1 to
0.5. Adding more joins to q4, just to output more information, reduces similarity
even more, compared to the query without joins. Hence, we argue that an adequate
reduction coefficient should consider the size of tables accessed, in rows:

Sfinal(q1, q2) = reductCoefftable ·SattrFull(q1, q2) (5.15)

reductCoefftable =
∑i=|Tcom|
i=1∑j=|Tall|
j=1

(5.16)

Here, Tcom is the set of common tables of Queries q1 and q2:

Tcom = q1.FROM∩ q2.FROM.

Accordingly, Tall is the set of all tables accessed in Queries q1 and q2:

Tall = q1.FROM∪ q2.FROM.

Example 5.28 Let us suppose that Types.size = 20, Objects.size = 980.
The reduction coefficient reductCoefftable for q3 and q4 is:

Tcom = q3.FROM∩ q4.FROM = {′Objects′};
Tall = q3.FROM∪ q4.FROM = {′Objects′,′Types′};

reductCoefftable = Objects.size
Cities.size+Objects.size = 980

20+980 = 49
50 .

reductCoefftable has a specific value for each query pair. One should apply it once after
having calculated the overall attribute similarity SattrFull(q1, q2).

Lemma 5.29 Dfinal(q1, q2) is semi-metric.

Proof. After multiplying by reductCoefftable, the overall distance remains semi-
metric. �

Recall that the semi-metric characteristic is helpful: It allows us to use our similari-
ty/distance function in many clustering algorithms without any further validation.

75

5 SQL-Query-Similarity Measures

5.1.9 The Overall AAB Similarity Function

Summarizing what we have said so far, the overall AAB similarity function is as
follows:

S(q1, q2) = reductCoefftable ·SattrFull(q1, q2) (5.17)

To calculate the similarity S(q1, q2).a for an attribute which exists in both queries,
one can use Formulas 5.7 or 5.10, depending on the approach, i.e., AABovl or AABcl.
Consequently, Formulas 5.7 and 5.10 refer to the simple case of Formulas 5.2, 5.3 and
5.4.

5.1.10 Discussion

In a nutshell, the AAB query representation captures parts of the data space where
the user has an interest in. The WB query representation has the same objective, by
identifying the relevant data explicitly. Hence, we expect to get similar results from
clustering. However, as we have already pointed out, WB lacks scalability. AAB in
turn does not have this limitation since it operates with access areas, not the data
itself.

76

5.2 Experimental evaluation

5.2 Experimental evaluation

This section evaluates various algorithms, query representations and similarity functions
for query-log clustering. Our objectives are:

(1) Investigate the precision of the various QRSs (FB, WB, AAB) experimentally,
on data where a ground truth is available. A QRS is precise if it leads to a
clustering with a big overlap with the ground truth;

(2) Generate clustering results with real-world data, including the SkyServer query
log in our case, inspect it and try to arrive at general insights;

(3) Study the influence of sampling on the clustering result.

5.2.1 Experiment Settings

The quality of any clustering is hard to evaluate without a ground truth. One can ask
domain experts to provide an interpretation of the results. However, in our current
context, a domain expert may not be able to say whether a result is good or even
perfect – there often does not exist any expectation how an ideal result should look like.
To cope with this problem to some extent, we propose two experiments. The first one
is clustering queries which hundreds of individuals have formulated to solve a specific
task. In our case, these individuals are university students participating in a database
course. They have solved this task as part of an exercise where the information need
was given in natural language. We have anonymized the data before our analysis
so that it did not contain any personal information. This experiment ’only’ serves
to study the precision of the various query representations, by comparing clustering
results to a ground truth. This is because the data set available is relatively small,
and it has turned out that some query representations are more sensitive to it than
another. Ideally, all queries that the students have formulated to solve a particular
task should end up in one cluster.

The second experiment is a case study with a real-world SQL log. We use the SkyServer
query log, a large log of queries on scientific data available to the public. To our
knowledge it is the only query log publicly available. More specifically, we use the
SkyServer log for 2016†. It consists of 12.9 million queries from about 4,000 users.

For each data we first calculate pairwise distances, i.e., build a proximity matrix.
There are well-established types of clustering methods which can work with a prox-
imity matrix: hierarchical clustering, partitioning-based methods and density-based
approaches. To make our study comprehensive, we select well-known instances from
the different categories of clustering methods. We choose the hierarchical algorithm
CLINK [Def77], k-medoids [PJ09] from the class of partitioning-based methods and
DBSCAN [Est+96] as a density-based approach.
†We have decided to use the newer (compared to data from Chapter 4) fraction of the log to be
more up-to-date with our results

77

5 SQL-Query-Similarity Measures

Table 5.1: Description of the GtDbCourseLog data
Property Overall WB FB AAB
Size of original query log 1062 - - -
Preprocessed queries - 610 659 647
Among preprocessed
Task 1 259 259 252
Task 2 66 119 111
Task 3 228 221 227
Task 4 57 60 57
Non-preprocessed queries - 452 403 415
Among non-preprocessed
No solution provided 129 129 129 129
JSqlParser error 60 60 60 60
Syntax errors 214 214 214 214
Empty result set - 64 - -
Empty WHERE clause - - - 12

5.2.2 The Data Sets

In this section, we describe the data sets for our experiments – the small one from the
student exercise and the big one from the SkyServer project.

5.2.2.1 Data Set from the Student Exercise

We have collected 1062 SQL requests formulated by 274 participants of the database
course at our institution in the summer semester 2016. To facilitate repeatability,
we make these queries and the test database publicly available . We have asked the
participants to produce solutions to four information needs. Thus, our ground truth is
that all solutions to one information need form a cluster. Hence, we expect 4 clusters.
Of course, not all answers have been complete and syntactically correct. Table 5.1 of
the Appendix is a summary of GtDbCourseLog, the log with these queries from the
database course.

We have considered using other labeled query logs: [Cha+15] and [Kul+18]. [Cha+15]
however is not publicly available. [Kul+18] is the log of a database exam. First,
it has only two tasks, i.e., one may expect two clusters. It is smaller than in our
log. Second, the log is smaller in terms of the number of queries as well (178 against
1062). Moreover, [Kul+18] does not include the test database, which the WB query
representation requires. So we have decided to use only one query log with a ground
truth, GtDbCourseLog.

5.2.2.2 SkyServer Query Log

The original SkyServer query log for 2016 consists of 12.9 million queries. The
clustering procedure considers only queries which have both an AAB and an FB

78

5.2 Experimental evaluation

Table 5.2: Description of the SkyServer Log data
Property Value Share
Size of original query log 12,917,940
Preprocessed queries (FB, AAB), SkSLog 10,289,990 79.7 %
Non-preprocessed queries (FB, AAB) 2,627,950 20.3 %
Among non-processed
Arithmetic operation in WHERE clause 1,158,375 9.0 %
JSQL Parser limitations 784,798 6.1 %
Queries to meta-tables 364,505 2.8 %
Queries without WHERE clause 344,552 2.7 %
Errors in SkyServer logging 17,956 0.1 %
Queries to non-existing tables 2,444 0.02 %
Cleaned queries, FullLog 1,368,232 10.6 %
Queries excluded 8,921,758 69.1 %
Among excluded
Requests made by robots performing SWS 8,001,943 62 %
Requests which refer to SkyServer web pages
with default values 919,815 7.1 %

query representation. Having the same input data for a comparison of different
query-representation schemes is a prerequisite for meaningful results. As mentioned in
Section 3.3.4, the current version of AAB does not process queries with arithmetic
operations in the WHERE clause, and we also exclude SQL requests without a predicate
in the filtering condition. Table 5.2 summarizes the queries included in the comparison
and contains explanations for queries which we have not processed.

With query clustering, one wants to obtain meaningful results, i.e., finding user
interests in our case. So we also exclude queries with the following characteristics from
further consideration:

(1) Queries issued by robots performing a sliding window search (SWS). To identify
this behaviour, we have run a procedure described in Chapter 4. To identify
SWS, we use the FB and AAB query representations. The procedure consists of
two steps:
(a) From the FB query representations, we get queries which might be SWS:

more than 100 the same FB representations from one user.
(b) We filter out user sessions which do not perform range queries. To do so,

we check the corresponding intervals in the AAB query representations. A
user session US = q1, . . . , qn is an SWS iff ∀qi ∈ US:
i. qi.intlmin 6= qi.intlmax
ii. qi.intlmin 6= qi+1.intlmax
iii. qi.intlmax 6= qi+1.intlmax
Here, qi.intlmin and qi.intlmax are the lower and upper bounds of an interval
in Query qi.

As defined earlier, an SWS is a sequence of queries of identical structure, per-
forming a range search (see Section 4.3.5). Here, identical structure means that
only parameter values are different, and the ranges are contiguous.

79

5 SQL-Query-Similarity Measures

Table 5.3: Description of the WB sampled data (SampledLog)
Property Value
Size of WB sampled log 137,101 (1.06%)
Number of WB processed queries 72,817 (0.56%)
Among non-processed 64,284
Queries which return empty result 18,089
Queries which were timed out or returned an error 46,195
Number of witnesses 288,379,030
Average number of witnesses 3,960
Number of distinct witnesses 109,830,577
Overall time elapsed for requerying 19.8 days
Overall processing time 22.3 days
The size of WB sampled log data 0.08 GB
The size of preprocessed data 8.19GB

How SWS queries – if included – affect clustering, de-pends on the similarity
function used, AABovl or AABcl. In the case of AABovl, SWS queries do not
form a cluster, because SWS imply disjoint filtering conditions (no overlap).
Hence, for AABovl it counts as noise – more queries are processed, which
increase the runtime. With AABcl, SWS queries could form a cluster, because
"neighbour" queries will get non-zero similarities. In our opinion, this is not a
result one needs to get since SWS represent the information need only of one
user, not the common interest of many people.
The procedure of excluding SWS requires a threshold value as a parameter which
specifies the strictness when looking for SWS. Here, we fix the value to 100, i.e.,
100 contiguous range queries from one user in a row are an SWS. This kind of
queries occupies 62% of the SkyServer query log. See Table 5.2. We for our part
leave aside such queries since they represent interests of very few users or even
only one, and it even is unclear what the true interest behind an SWS is.

(2) Queries issued by many users when they open the SkyServer web interface for
the first time. To illustrate,
SELECT ...FROM fGetNearbyObjEq(258.25,64.05,3) n,

PhotoPrimary p WHERE n.objID=p.objID

has been issued 647907 times. It is available at the radial search web page of
SkyServer, with exactly these default values. Thus, the full log after cleaning,
named FullLog, consists of 1.37 million queries.

Obtaining WB query representations, even for a log of 1.3 million queries is difficult
to impossible. As mentioned, one would need to evaluate all queries to this end. The
overall runtime for all queries from the full cleaned log, the FullLog, is around 220
days according to SkyServer metadata, the sum of the numbers of rows in all results
is about 7.7 billion. Thus, for the WB query representation, we have sampled FullLog,
obtaining SampledLog. For this sampling, we have chosen one-tenth of the cleaned
log. Table 5.3 is a description of the WB sampled dataset. From now on, we will use
the names for the different query logs as in Table 5.4.

80

5.2 Experimental evaluation

Table 5.4: Overview of the data actually used in the experiments
The log name Description Size
GtDbCourseLog The log from the database course with a ground truth 1,062
SkSLog The processed SkyServer log for 2016 10,289,990

FullLog Cleaned SkSLog, without SWS and requests which refer
to SkyServer web pages with default values 1,368,232

SampledLog One tenth of FullLog (random sampling). 137,101

5.2.3 Evaluation Techniques

According to [HBV02], validity measures for clustering fall into two groups:

(1) External measures are used when ground truth is available. The idea behind
these measures is to compare the clustering result with the ground truth. An
example of such a measure is the Jaccard index [WW07]. The set of all pairs of
objects from two clustering results C and C′ is the disjoint union of the following
sets:
(a) S11 = {pairs that are in the same cluster under C and C′}
(b) S00 = {pairs that are in different clusters under C and C′}
(c) S10 = {pairs that are in the same cluster under C but in different ones

under C′}
(d) S01 = {pairs that are in different clusters under C but in the same under

C′}
The values n11, n00, n10 and n01 are the cardinalities of these sets. The Jaccard
index now quantifies the similarity of two clustering results as follows:

J(C,C′) = n11/(n11 +n10 +n01) (5.18)

The index takes values from 0 to 1. The bigger it is, the higher is the similarity.
(2) Internal measures do not require a ground truth. They rely on criteria derived

from the data itself, e.g., intracluster and intercluster distances. In our internal
evaluation, we use the BetaCV measure [ZMJM14], the ratio of the mean
intercluster distance over the mean intracluster distance. A small value indicates
higher clustering quality. To validate the consistency within clusters, we have
used the Silhouette coefficient s(i) [Rou87], which indicates how well each object
i lies within its cluster. s(i) takes values from -1 to 1. The bigger s(i), the better
i matches its cluster.

5.2.4 Implementation

To get the query representations, we first parse the queries. We use the JSQL Parser‡
written in Java. We then stored query representations in the database. We have

‡http://jsqlparser.sourceforge.net/

81

5 SQL-Query-Similarity Measures

implemented all similarity functions in SQL. To evaluate the results (i.e., to calculate
the BetaCV coefficient etc.), we have again used Java.

5.2.5 Experiments with Supervision

Regarding the student exercise, since the students were asked to perform four tasks, we
expect to get four clusters in the results. Hence, it may make sense to use the k-medoids
clustering algorithm with k = 4 for each similarity function and corresponding query
representation. Table 5.5 contains the results. As for similarity measures, we have
used the Jaccard index and the BetaCV coefficient.

The Jaccard indexes for the WB and the FB query representation, which indicate the
closeness of the clusters to the ground truth, do not show good results relative to the
other approaches. We see three reasons for this:

(1) The database schema consists of only three tables. The tasks have been con-
structed to have more than one table in an answer SQL statement. There also are
only a few attributes in each relation, namely 3, 7 and 3. Hence, the probability
of having the same tables and filtering attributes for different tasks is high. That
causes a problem with the FB approach. The value of 0.454 of BetaCV for the
FB query representation indicates this.

(2) The database has been tiny as well – it has 28 rows from 3 tables. That leads to
a high probability that queries from different tasks share the same tuples. That,
in turn, affects WB clustering.

(3) The students have made mistakes when formulating queries. If all answers were
precise, we would have obtained zero BetaCV for each query representation:
While the text of two correct answers might differ, all query representations for
one task would be identical. For instance, when looking at the WB representation,
a correct query should return only certain tuples. The same holds for FB and
AAB. That would have lead to zero intercluster distances. However, the actual
average intercluster distances are above zero. See Table 5.5.

Since the AAB query representation does not rely very much either on metadata
(database schema) or on actual data (witnesses), the respective clustering corresponds
to the ground truth very well. We have obtained identical results for both AABovl
and AABcl because of the high specificity of the tasks: Everybody has been asked the
same, and mistakes by formulating wrong filtering conditions are unlikely. However,
the AAB query representation (as well as FB and WB) cannot cope with the third
problem (errors in the student answers). That is in line with our expectations.

To sum up, this experiment shows that all query representations lead to meaningful
clustering in theory. However, there are certain obstacles which have turned out to
be spoilers: These are the small database schema for FB and the tiny database for
WB. On the other hand, the results are in line with the limitations we have already
discussed when introducing the query representations.

82

5.2 Experimental evaluation

Table 5.5: The results of the experiments with ground truth, dataset GtDb-
CourseLog, clustering algorithm k-medoids, k = 4

WB FB AABovl AABcl
Jaccard index
(compared with ground truth) 0.7518 0.4339 0.9451 0.9451

Experiment
BetaCV 0.257 0.454 0.1402 0.1402
Average intercluster distance 0.194 0.317 0.1402 0.1402
Average intracluster distance 0.753 0.698 1 1
Average Silhoette coefficient 0.885 0.409 0.87 0.85
Ground truth
BetaCV 0.171 0.194 0.231 0.231
Average intercluster distance 0.132 0.167 0.231 0.231
Average intracluster distance 0.773 0.857 1 1
Average Silhoette coefficient 0.74 0.754 0.689 0.689

5.2.6 Experiments with SkyServer

With SkyServer, we have generated the three query representations described before
for the randomly sampled log, dubbed SampledLog. We first discuss the results
generated from these. We also have experimented with FullLog, for the FB and AAB
representations, and we describe it as well. Next, by comparing the results from the
sampled log to the ones from the regular one, we evaluate how sampling affects the
clustering results. Finally, we conduct a study with a domain expert to interpret our
findings. All these experiments yield different insights regarding the usefulness of the
query representations and the appropriateness of the various clustering algorithms
when applied to a real-world SQL query log.

5.2.6.1 Clustering Results

Table 5.8 lists the parameter values for DBCSAN, k-medoids and CLINK. To set them,
we rely on the expectation that the size of clusters should be in line with the size of
input data. Thus we have set the value of parameter minPts of DBSCAN to 0.05% of
the number of queries. The size of a dataset is the number of distinct objects which
have at least one non-zero similarity value in the corresponding proximity matrix.
That is because only these objects have a chance to be contained in a cluster. If the
data is noisy, and there are many objects without similar ones, no group of similar
objects is big enough to form a cluster. For the experiments with full data, FullLog, we
set minPts= 100. We want to compare both the AABcl and the AABovl approaches
with the same non-strict parameters, i.e. when minPts= 100< 0.05% of the number
of objects in both cases. We set eps= 0.7 for DBSCAN, since it captures sufficient
overlap for the AABovl and the WB approach and allows to catch queries close to
each other with AABcl. The number of clusters DBSCAN returns will be the value
of our parameter k when running k-medoids. While the actual number of clusters
is typically not available in most real settings, we use it here nevertheless. That is

83

5 SQL-Query-Similarity Measures

because we are interested in how good the results can be. For the hierarchical CLINK
algorithm, the cut-off threshold is equal to eps of DBSCAN.

For the FB approach, however, we follow another strategy. Since FB yields templates
of user behaviour, it does not make sense to mix several templates. Therefore we have
chosen the parameters so that only very similar templates (eps = 0.1) go to the same
cluster. Our clustering results consist of almost 1000 clusters: 508 for AABovlFull, 82
for AABovlSampled, 182 for AABclFull, 88 for AABclSampled and 125 for WB.

Table 5.7 lists the values of the BetaCV coefficient. They are relatively large. That
is because we have considered only large clusters for their calculation; the size of
a cluster must be no less than 0.05% of the size of a query log. Within such big
clusters, a lot of queries have zero similarity with each other. That means that a
Query q has an overlap with only a few queries {q′1, . . . , q′n}. They are similar to other
ones {q′′1 , . . . , q′′m}, though q is not similar to them. In other words, the clusters are
not dense. Indeed, they cannot be since the corresponding proximity matrices are
sparse. See Figure 5.5 with the similarity distributions. Table 5.6 reports on average
Silhouette coefficients.

Nevertheless, for AABovl and WB, clustering yields areas of interests which are
small compared to the whole data space. Tables 5.9 and 5.10 list aggregated query
representations of the biggest clusters (in terms of number of queries) of DBSCAN,
with SampledLog and FullLog. The representation is the minimum bounding rectangle
(MBR) of all queries in the cluster. To present the results of WB clustering, one
cannot utilize the corresponding query representations – they contain huge numbers
of tuples. Instead, we use the more compact and intuitively understandable AAB
representation as well. For AAB there also is an area-coverage value available. It is
the ratio of the volume of the aggregated access area over the volume of the tables the
queries from the cluster are applicable to:

areaCoverage = Vaccess
Vcontent

(5.19)

To obtain Vaccess, we take bounds of each attribute occuring in a filtering condition of
the cluster. So Vcontent is calculated taking the domains of each such attribute.

84

5.2 Experimental evaluation

5.2.6.2 Discussion of Query Representations

We discuss the usefulness of the various query representations when clustering a
real-world query log based on the experiments with SkyServer.

WB clustering We observe that WB clusters are precise. That is because all
queries in the WB clusters ask for the same attributes, the spatial attributes dec and
ra. That means that there have not been any "accidental" similarities, i.e., queries
which refer to different attributes sharing witnesses by chance. With these identical
attributes, queries whose filtering conditions overlap are similar.

AABovl clustering

(1) We find it remarkable that the aggregated access areas for AABovl and WB
similarity are very much alike. Three of the four biggest (in a number of queries)
clusters with these approaches point to the same parts of the sky. We conclude
that the AAB query representation and AABovl similarity function also are
valid and precise. With AAB being scalable, we for our part find that it may be
preferable to WB.

(2) A difference we have observed in the AABovl and WB clustering results (with
SampledLog) is that there are clusters in AABovl which do not exist in WB.
The queries inside these clusters have empty results. Of course, WB cannot
detect them. For example, the fifth biggest cluster of AABovl has the following
aggregated access area:

photoprimary.dec ≥ -7.073 ∧ photoprimary.dec ≤ -7.026 ∧

photoprimary.ra ≥ 78.1498 ∧ photoprimary.ra ≤ 78.195

Indeed, there is no data object in this area. However, this has not prevented a
significant number of AAB query representations from forming a cluster.

One might wonder why clusters with an overlap (like #2 and #3 of AABovl FullLog,
see Figure 5.6) are not one single cluster. We had a closer look at this phenomenon and
have observed that queries from one cluster #2 indeed are similar to SQL requests from
the other cluster #3. However, these are points that are density-reachable, not core
points in DBSCAN terminology. To conclude, density reachability is a characteristic
that is not sufficient to end up in the same cluster in general.

AABcl clustering We have obtained big clusters which cover significant parts of
the data space when clustering with the AABcl similarity function. That is plausible:
As Figure 5.6 shows, the third biggest cluster of AABcl in the sampled log (the one
with Rank 3) has a big rectangular part from to 41.269 to 84.973 in the dec column.
This part is due to several queries with broad diapasons: These queries request data
based on attributes ra and dec with broad ranges. Different users have issued these
queries, so they are not SWS. They act like "supermassive" objects and have a "gravity

85

5 SQL-Query-Similarity Measures

effect" on queries with smaller ranges in the neighbourhood. In contrast to AABovl,
where supermassive objects do not have sufficient overlap with small objects to fall
into a cluster, AABcl is sensitive to queries with broad ranges. It is also sensitive to
sliding window search (SWS). However, because we had filtered them out beforehand,
we did not observe the influence of SWS on AABcl clustering. Summing up, whether
AABcl is successful strongly depends on specifics the query log: It needs to be free
from massive downloading, i.e., SWS, and there should not be any very broad range
queries. Put differently, that also indicates that cleaning the query log before analysis
might yield better, more meaningful results.

FB clustering Clustering, in line with the FB paradigm, reveals patterns of Sky-
Server database usage, i.e., which tables, views, UDFs and filtering attributes individ-
uals tend to use. However, as mentioned before, this query representation does not
reveal areas of the data space users are interested in. That also is why the column
"Area coverage" is empty for FB clustering.

5.2.6.3 Discussion of clustering algorithms

Different clustering algorithms have performed differently on the SkyServer log as well.
The data for the AAB and WB approaches contains noise – queries which do not have
sufficiently many similar objects. Different algorithms have unlike sensitivity to this
kind of noise. DBSCAN can work with this noisy data [19]. k-medoids suffers from it
a lot since it partitions the data, and all objects end up in some cluster. CLINK is
sensitive to noise as well, but ignoring small clusters can solve the problem here: If the
data to be clustered contains a lot of outliers, many small or even singleton clusters
occur. The algorithm does not merge them to bigger clusters since they are too distant
from each other. So we have classified clusters with a size less than a specific value as
noise. That is why the clustering result with CLINK does look structurally similar to
the one with DBSCAN, containing an extra "cluster" for noise.

Summing up, we would give preference to a density-based clustering algorithm when
it comes to query logs, for the following reasons:

(1) Data might be noisy.
(2) One cannot predict the number of clusters in advance, as required by k-means-

based algorithms.

Consequently, we have clustered the big log file, FullLog, only with DBSCAN.

‖’pp’ stands for ’photoprimary’
‖’po’ stands for ’photoobj’
‖’poa’ stands for ’photoobjall’

‡‡’pp’ stands for ’photoprimary’
‡‡’poa’ stands for ’photoobjall’
‡‡’as’ stands for ’apogeestar’

86

5.2 Experimental evaluation

Table 5.6: Values of Average Silhoette coefficient
Dataset Algorithm WB AABovl AABcl
SampledLog DBSCA 0.455 0.43 0.098

K-medoids 0.008 0.005 0.003
CLINK 0.624 0.721 0.632

Table 5.7: Values of BetaCV coefficient
Dataset Algorithm WB AABovl AABcl
SampledLog DBSCAN 0.933 0.925 0.993

K-medoids 0.9995 0.9997 0.9998
CLINK 0.998 0.997 0.999

FullLog DBSCAN - 0.913 0.981

Table 5.8: The parameter values for the clustering algorithms
Dataset Algorithm Parameter AABcl AABovl WB FB
SampledLog DBSCAN minPts 30 38 12 1

epsilion 0.7 0.7 0.7 0.1
K-medoids K 90 71 124 592
CLINK cutting threshold 0.7 0.7 0.7 0.1

FullLog DBSCAN minPts 100 100 - 1
epsilion 0.7 0.7 - 0.1

0

0.001

0.002

0.003

<0.4 <0.5 <0.6 <0.7 <0.8 <0.9 <1 1

S
in

S
D

,
%

Similarity

WB

SampledLog

0

0.001

0.002

0.003

0.004

0.005

<0.4 <0.5 <0.6 <0.7 <0.8 <0.9 <1 1

S
in

S
D

,
%

Similarity

AABovl

FullLog SampledLog

0

0.002

0.004

0.006

0.008

<0.4 <0.5 <0.6 <0.7 <0.8 <0.9 <1 1

S
in

S
D

,
%

Similarity

AABcl

FullLog SampledLog

0

4

8

12

16

<0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <0.8 <0.9 <1 1

S
in

S
D

,
%

Similarity

FB

FullLog SampledLog

Figure 5.5: Similarity distributions, SinSD – Share in Similarity Distribution

87

5 SQL-Query-Similarity Measures

Figure 5.6: Clustering results, DBSCAN algorithm

88

5.2 Experimental evaluation

Table 5.9: Top clusters of DBSCAN, dataset SampledLog

#
Relative
size,
%

Area
coverage,
%

Aggregated query representation

AABovl

1 0.78 0.25 pp.dec§≥ 1.2 ∧ pp.dec ≤ 7.3
∧ pp.ra ≥ 10.3 ∧ pp.ra ≤ 18.8

2 0.08 0.02 pp.dec ≥ 54.8 ∧ pp.dec ≤ 56.8
∧ pp.ra ≥ 241.4 ∧ pp.ra ≤ 245

3 0.07 0.002 pp.dec ≥ -9.1 ∧ pp.dec ≤ -9.05
∧ pp.ra ≥ 120 ∧ pp.ra ≤ 120.05

4 0.06 3.7 ·10−8 pp.dec ≥ 14.839 ∧ pp.dec ≤ 14.84
∧ pp.ra ≥ 2.023 ∧ pp.ra ≤ 2.024

AABcl

1 7.97 81 po.dec¶≥ -42.147 ∧ po.dec ≤ 76.686
∧ po.ra ≥ 0 ∧ po.ra ≤ 359.821

2 3.53 18.4 pp.dec ≥ -2.7 ∧ pp.dec ≤ 59.6
∧ pp.ra ≥ 0 ∧ pp.ra ≤ 73

3 3.06 54.3 pp.dec ≥ -4.94 ∧ pp.dec ≤ 91
∧ pp.ra ≥ 0 ∧ pp.ra ≤ 360

4 2.97 93.35 poa.dec‖≥ -60.572 ∧ poa.dec ≤ 84.98
∧ poa.ra ≥ 0 ∧ poa.ra ≤ 360

WB

1 0.6 0.1 pp.dec ≥ 1 ∧ pp.dec ≤ 7.8
∧ pp.ra ≥ 9.6 ∧ pp.ra ≤ 19.4

2 0.08 0.03 pp.dec ≥ -1.5 ∧ photoprimary.dec ≤ 1.2
∧ pp.ra ≥ 350.8 ∧ pp.ra ≤ 353.1

3 0.06 0.01 pp.dec ≥ 54.4 ∧ pp.dec ≤ 56.7
∧ pp.ra ≥ 240.9 ∧ pp.ra ≤ 245

4 0.05 5.1 ·10−6 pp.dec ≥ -9.105 ∧ pp.dec ≤ -9.057
∧ pp.ra ≥ 120.009 ∧ pp.ra ≤ 120.054

FB
1 27.77 {specobj;specobj.bestobjid}

2 17.15 {photoz; galspecline; specobj;
photoz.objid}

3 10.13 {photoobj; photoobj.dec; photoobj.ra}

4 10.11 {phototag; fgetobjfromrecteq;
phototag.objid}

5.2.6.4 Influence of Random Sampling on the Clustering Results

Clustering large query logs with the procedure used in this article is time-consuming
since one has to (1) extract the query representations, (2) build a proximity matrix,
and (3) perform the actual clustering.

Hence, it might be a good idea to cluster a sample of the data. However, so far, it is
not clear whether and how sampling influences the result. In particular, it is unclear
(1) how the aggregated access areas of clusters using full and sampled data differ, and
(2) which clustering results a domain expert finds better. The first answer will be
given right away, while the second question is discussed in Section 5.2.6.5.

AABovl clustering. As Figure 5.6 shows, clustering on a sample of the data and
the full data yields similar results with AABovl. The differences mainly have to do
with cluster ranks, i.e., the position when sorting clusters by their numbers of objects.

89

5 SQL-Query-Similarity Measures

Table 5.10: Top clusters of DBSCAN, dataset FullLog

#
Relative
size,
%

Area
coverage,
%

Aggregated query representation

AABovl

1 1.37 0.19 pp.dec ≥ 9.3 ∧ pp.dec ≤ 16.8
∧ pp.ra∗∗≥ 17.8 ∧ pp.ra ≤ 29

2 0.89 0.18 pp.dec ≥ 0.6 ∧ pp.dec ≤ 8.2
∧ pp.ra ≥ 9.6 ∧ pp.ra ≤ 19.8

3 0.38 0.03 pp.dec ≥-6.2 ∧ pp.dec ≤ -3.2
∧ pp.ra ≥ 32.8 ∧ pp.ra ≤ 38.1

4 0.27 0.1 poa.dec ≥ 1.8 ∧ poa.dec ≤ 8.4
∧ poa.ra ≥ 4 ∧ poa.ra††≤ 10.8

AABcl

1 4.35 11.27 pp.dec ≥ -11.5 ∧ pp.dec ≤ 59.6
∧ pp.ra ≥ 0 ∧ pp.ra ≤ 76.4

2 3.06 93.7 poa.dec ≥ -61.551 ∧ poa.dec ≤ 84.98
∧ poa.ra ≥ 0 ∧ poa.ra ≤ 360

3 1.26 15.76 pp.dec ≥ -24.323 ∧ pp.dec ≤ 84.973
∧ pp.ra ≥ 279.4 ∧ pp.ra ≤ 360

4 1.16 99.72 as.dec‡‡≥ -90 ∧ as.dec ≤ 87.581
∧ as.ra ≥ 0.833 ∧ as.ra ≤ 360

FB
1 27.85 {specobj.bestobjid; specobj}

2 17 {photoz; galspecline; specobj;
photoz.objid}

3 10.12 {phototag; fgetobjfromrecteq;
phototag.objid}

4 10.07 {photoobj; photoobj.dec; photoobj.ra}

That is why not all clusters occur with both the sampled and the full log: They exist,
but not in the top 10.

AABcl clustering. The results with AABcl differ more. Figure 5.6 shows how
certain queries "move" from one cluster to another one. It is safe to say that the
closeness approach is less robust when it comes to sampling than the overlap approach.
Again, the query which has formed a long vertical rectangle and has gone to the second
biggest cluster in the sampled data has not disappeared; it just has gone to a less
popular cluster, not in the top 10.

FB clustering. As Tables 5.9 and 5.10 indicate, sampling does not change the order
of the most popular patterns with FB clustering. We have checked the first 50 popular
patterns with sampled and full data and have found only one difference. The ranks
change only slightly, by 2 positions at most, and they usually remain the same.

Overall, sampling is useful when clustering an SQL query log. If a query log is huge
and requires a lot of time to process, sampling can give way to quick insights. However,
AABcl is less robust in this respect.

90

5.2 Experimental evaluation

5.2.6.5 Feedback from a Domain Expert: Clustering Interpretation

As mentioned, a good clustering must be interpretable. Here, this means that each
cluster should relate to particular user interest. In astronomy, this means that a
cluster may contain several astronomical objects. Still, they all must form a single
astronomic category, like "North galactic pole" or "Lockman hole", i.e., represent one
research trend. To investigate how successful our clustering has been, and whether it
reflects user interests, we have asked a domain expert to inspect our results. He is an
astronomer from the Max Planck Institute for Astronomy in Heidelberg, Germany.
At the same time, to ease the process of cluster interpretation and ensure a complete
representation of the interests of the astronomical community, we have made use of
another important astronomical data source, the Simbad astronomical database. We
use it as a reference point. Simbad provides information on astronomical objects
which have been studied in scientific publications in astronomy. It has 12 tables and
contains 9.3 million astronomical objects outside of our solar system and 340 thousand
bibliographic references. There are some characteristics common for each astronomical
object:

(1) Basic data: object types, coordinates and other astronomical features;
(2) General bibliography for the object, including references to all published papers

from the journals, regularly scanned, currently about 80 titles.

Naturally, two astronomical databases, SkyServer and Simbad, are expected to have
a big overlap of the objects they contain. That also holds for attributes like special
coordinates, object types etc. However, they are constructed very differently and partly
based on different data, so they are quite independent at the same time. With the help
of the domain expert, we have mapped our clustering result to the Simbad database.
Almost every cluster from our results filters spatial coordinates right ascension "ra"
and declination "dec". We have plotted the clusters on the ra-dec plane and have
mapped them to the ra-dec density map of astronomical publications.

Of course, one cannot expect a perfect overlap. Not every astronomer looks at the data
from SkyServer when writing an article. And vice versa – some data from SkyServer
may have been queried for by laymen or high school students, without the publication
of a paper. However, both our clusters and Simbad data should reflect hot spots
in astronomy. Thus, a relatively high correlation is better as an experiment result,
according to our perception. As we have pointed out earlier, our clustering results
consist of around 1000 clusters. Identifying user interest in each of them is a daunting
task for any domain expert. Such an identification takes our expert 10 minutes on
average per cluster, mainly depending on the number of astronomical objects in the
cluster. To make manual inspection feasible, we have selected the top 15 clusters
from each approach (AABovlFull, AABovlSampled, AABclFull, AABclSampled and
WB) which have the most overlap with Simbad data, i.e., clusters which ’repeat’ the
high-density areas of Simbad.

91

5 SQL-Query-Similarity Measures

We assume that these clusters are the most interesting ones for domain experts: There
is a high number of publications on the astronomical objects from these particular
parts of the sky. Figure 5.7 graphs them together with Simbad data. We have mapped
the queries in the various clusters to Simbad data of published papers in the ra-dec
plane. A query in the figure is a rectangle which includes admissible ra-dec values.
Note that the number near a cluster indicates its’ rank: the biggest cluster (in terms of
number of queries) has Rank 1. The sixth figure is the pure density map of publications
(Simbad). Dark grey areas stand for a high amount of publications; for light grey,
the picture is different. One can see that queries from the clusters indeed repeat the
distribution of Simbad data: The clusters are located in the grey areas of the Simbad
map.

For each cluster, we plot the overlap of the individual query areas on the map with all
the Simbad entries. That allows the domain expert to estimate whether the cluster
contains one or several astronomic categories of well-studied objects. Having inspected
the clusters obtained with DBSCAN, our domain expert has concluded that they are
quite different. From his point of view, there are:

(1) Large clusters, each covers more than 3% of the sky or several hundreds or
thousands of square degrees. According to our expert, none of them can be
associated with a specific scientific goal or type, i.e., there is no corresponding
single user interest. In what follows, we refer to these clusters as LwoUI clusters
(Large clusters WithOut User Interest). Other large clusters consist of several
very small areas, each of which contains a single Simbad entry. For these clusters,
our expert has identified a specific user interest. We call these clusters LwUI
clusters (Large clusters With User Interest).

(2) Intermediate clusters, each covers less than 3% of the sky. As before, we call them
IwUI (Intermediate clusters With User Interest) if they contain user interests
and IwoUI (Intermediate clusters WithOut User Interest) otherwise. The domain
expert has observed that these clusters have a size so that they likely correspond
to a specific scientific goal or type.

(3) Extremely small clusters, which typically consist of several queries referring to
the same individual object and cover around 0.01% of the sky. We consequently
dub these clusters ESwoUI and ESwUI.

Table 5.11 reveals how many clusters of each category the five approaches (AABovlFull,
AABovlSampled, AABclFull, AABclSampled and WB) identify. The table also lists
the astronomical objects from the various clusters.

For each scheme, the domain expert has ranked each cluster among the 15 most
populated ones according to the probability that it properly covers a region of the
sky of particular interest. We have then averaged the grades to rank the five schemes.
They take values from one to ten, with ten being the highest interest. AABovlFull has
the highest average score, followed by AABclFull, AABovlSampled and AABclSampled.
WB is last, see Table 5.11.

92

5.2 Experimental evaluation

Figure 5.7: Mapping clustering results to Simbad data

93

5 SQL-Query-Similarity Measures

One can observe that sampling worsens the clustering results for AABovl. Some
clusters disappear, not having enough objects as neighbours. Decreasing minPts value
will not always help; the following example shows this:

Example 5.30 Consider the three queries q1, q2 and q3 with the following pairwise
distances:

D(q1, q2) = 0.5, D(q1, q2) = 0.8, and D(q1, q3) = 1. eps = 0.9, minPts = 2.

All three queries end up in the same cluster. We now sample the log and exclude q2.
Setting minPts to 1 does not yield a cluster of queries q1 and q3 because they do not
overlap. Setting eps to 1 does not make any sense because then all queries go to the
same cluster.

Based on this, we hypothesize that WB, which also is overlap-based, would have given
better results if it had taken place on the full data. We conclude that an analytical
calculation of overlap, i.e., AABovl, is useful. It provides sufficient accuracy and is
scalable. In consequence, one does not have to do sampling, which bogs down the
clustering results.

On the other hand, sampling has helped to obtain better results with the closeness
approach, AABcl: Clusters have become smaller and, hence, more focused. Thus,
sampling allows identifying user interests than clustering on the original data better.

5.3 Conclusions

Knowing user interests in data space is essential for database owners and domain
experts. Clustering the query log can yield interesting insights to this end. In this
chapter, we have studied the clustering of SQL query logs. In particular, we have
established the design space, i.e., which query representations, which algorithms, which
distance measures. Next, we have looked at possible instantiations from the literature
systematically and have discussed our expectations for each alternative. We also have
proposed new alternatives as well, since the existing proposals have not been fully
satisfying. Our new approaches, which we had offered to do away with the weaknesses
of existing methods, have turned out to be better in most respects. Finally, we have
carried out several studies, one with a domain expert to arrive at a ground truth, a
feature which we have not observed in any previous work on analyses of database-query
logs. The study with the domain expert, in particular, has revealed the usefulness of
clustering when user interests need to be identified.

Our new approach captures query similarity on the data level. Unlike other methods,
“witness based” in particular, it scales relatively well with the size of the log.

The next chapter will focus on SQL query recommendation. We plan to leverage
our new insights regarding query similarity to find similar user sessions from which

94

5.3 Conclusions

Table 5.11: Results of the study with the domain expert
A
p
p
ro
ac
h

Avg.
score L

w
oU

I

L
w
U
I

Iw
oU

I

Iw
U
I

E
S
w
oU

I

E
S
w
U
I

Astronomical objects

AABcl
Sampled 6.62 0 0 5 10 0 0

Pollux, dwarf galaxy Leo;
M77 galaxy; Virgo galaxy
cluster:
M87 (AGN);
ELAIS N1 extragalactic;
Cosmos deep field;
extragalactic deep field:
XMM Deep, CFHT,
ESO/VIMOS, Galex;
North galactic pole;
Lockman hole;
Hercules galaxy cluster.

AABovl
Sampled 5.53 0 0 10 5 0 0

IC1613; Tadpole galaxy;
3FGL J0008.3+1456;
GRB 160410A;
Groth-Westphal Strip;
M13; Stripe 82.

WB 4.93 0 0 4 7 3 1

IC1613; stripe 86;
ELAIS N1 deep field;
ClG 0021+0406; Cosmos field;
Groth stripe.

AABcl
Full 5.4 1 0 5 7 1 1

Cosmos field; ELIAS N1deep
field; Lockman hole;
Extended Groth Strip;
Cross (gravitational lensing).

AABovl
Full 7.46 0 0 10 3 0 2

IC1613; Omega Cen
(famous giant star),
Subaru/XMM-Newton
Deep Survey;
ELAIS N1; Cosmos deep field;
stripe 86; M13;
Groth-Westphal Strip;
NGC 2419; IRS 1;
XMM-LSS deep field; M33.

query suggestions are generated. While SQL query recommendation has already been
investigated earlier [Eir+14], [Ali+15], revisiting the topic based on this current study
might reveal new insights.

95

6 Scalable and Data-Aware SQL
Query Recommendations

SQL query recommendation suggests an SQL query to a user, based on his submitted
queries and the ones of other users stored in a query log. In this chapter, we reused our
corresponding work [AB], including figures, tables and algorithms. As we formulated
and motivated in Section 1.3, a good SQL query recommendation system (SQL QRS)
(1) recommends full and data-aware queries, (2) supports comparison operators and
various logical operators, (3) is scalable and has low response times (4) provides
recommendations of high quality.

To meet these challenges we have developed DASQR, a data-aware and scalable SQL
query recommendation system. Existing approaches introduce several quality metrics
to evaluate SQL recommendations. They rely on how an SQL query is represented
internally. In our experimental study we not only make use of the existing metrics,
but also introduce our own. Our approaches outperform the competing ones according
to all metrics both regarding quality and runtime.

6.1 Our Approaches

We now propose new approaches to recommend queries based on a log US as a set
of user sessions. We offer both collaborative filtering (CF) and content-based (CB)
recommendations. To maximize recommendation quality, we also propose hybrid
approaches, combining the two principles. As we mentioned in Example 3.10, the
existing WB QueRIE hybridization have specific issues. We will pursue a different
approach. The objective will always be that hybridization should take place later on
the query level, not on the level of query representation, as with [CEP09] or [Eir+14].
The idea is that recommended queries do not mix, but suggestions from alternative
approaches appear according to the ranks (priorities) of the respective methods, as we
will explain later in Section 6.1.5.

6.1.1 DASQR CF (Collaborative Filtering)

In our context, CF identifies users (user sessions) with similar search preferences
(queries). Queries from these user sessions then are recommended. The difficult

97

6 Scalable and Data-Aware SQL Query Recommendations

question is what to recommend if a user has a unique query history. In this case, there
are no ’recommendable’ queries from the past. With classical recommenders, this is
known as the latency problem [SF02]. To overcome it, we propose to construct queries
in this case. All in all, we offer two CF schemes, which are independent from each
other:

(1) Thick query similarity, no fitting (TkS), (Algorithm 6.1). The method utilizes
data-aware query similarities. The similarity of user sessions is obtained by
combining similarities of queries contained in them. Finally, we recommend
queries from similar user sessions and rank these queries by similarity.

(2) Thin query similarity, thick fitting (TnS) (Algorithm 6.2). We first choose query
templates, i.e., the structure of the queries to be recommended. We retrieve
queries satisfying these templates from the log US. We then transform these
queries to a suitable data space – i.e., we construct new filtering conditions.

Section 6.1.2 describes TkS CF, Section 6.1.3 TnS CF.

6.1.2 Thick Query Similarity, no Fitting (TkS)

We first list query similarity measures we deploy or have found in the literature and
then present our similarity measure for user sessions.

Algorithmus 6.1: TkS
Data: us0, n, US – user sessions in a query log
Result: recQs = {} – recommended queries, sorted by rank

1 simUS = GetTopNSimilUserSessions(us0,n,US)
2 foreach us ∈ simUS do
3 qri = us.GetNextQuery(US)
4 recQs.Add(qri);
5 return recQs

Algorithmus 6.2: TnS
Data: us0, n, US – user sessions in a query log
Result: recQs = {} – recommended queries, sorted by rank

1 q0
n = us0.GetLastQuery()

2 pwp = GoT.Where(Parrent = template(q0
n))

3 foreach p ∈ pwp do
4 (q1, q2) = US.Where((template(q1), template(q2)) = p)
5 qri = Fitting((q1, q2), q0

n)
6 recQs.Add(qri);
7 return recQs

98

6.1 Our Approaches

6.1.2.1 Finding Similar Queries

A data-aware query similarity function, needed for TkS, must set q1 and q2 from
Example 1.6 apart, since they access different data. That is a topic we have studied
in Chapter 5. We have proposed two access-area based similarities, AABovl and
AABcl. Another data-aware similarity function we utilize is WBBin (binary) similarity
(Section 3.3.3.2), which encapsulates witness-based query representation. We have
chosen it since in the original experiment it appeared to outperform the result-based
alternative WBRes. Thus, we have three alternatives in calculating query similarity
for TkS: WBBin, AABovl and AABcl.

6.1.2.2 Identifying Similar User Sessions

For the following discussion the user session we compare the current user session us0 to
is us1. We take |us0|= n+1, |us1|=m+1. Thus, q0

n+1 is an unseen query, and q1
m+1

is its possible prediction. Although q1
m+1 has been already submitted, while q0

n+1 is
not, we keep this numbering scheme. So we only compare user sessions upto q0

n and q1
m,

and there will be no confusion later. A user session similarity function USS(us0,us1)
quantifies the similarity of two user sessions. We require symmetry of USS(us0,us1),
i.e., USS(usi,usj) = USS(usj ,usi). Otherwise it is not clear which similarity to use.
To test whether the order of queries in session matters, we first propose ordered, then
unordered user session similarity (USS) schemes. In the experiments we will compare
which approach succeeded.

1. Ordered USS Schemes An ordered USS(us0,us1) perceives two user sessions
as two sequences of queries. We first introduce the simple measures, where two sessions
are compared by pairwise similarities. Later we study existing complex measures
which cope with parts of the sequences that do not match.

1.1. Simple Measures With the terminology used here, a simple measure is
one that compares two sequences by calculating pairwise query similarities S(q0

i , q
1
j),

S(q0
i+1, q

1
j+1), etc. and sums them up.

The different lengths issue. When applying simple ordered USS, one faces the issue of
different lengths of two sequences, |us0| 6= |us1|. In this case, some queries, q0

i or q1
i ,

will not be part of a query pair: Let us assume that n >m, i.e., |us0|> |us1|. If we
compare q0

1 with q1
1 , q

0
2 with q1

2 , etc. – i.e., compare two sessions from the beginning –
there is no q1

n+1 to recommend for unseen query q0
n+1. So we compose pairs from the

end and compare q0
n with q1

m, q0
n−1 with q1

m−1, etc. Thus, q
1
m+1 is a recommendation

for q0
n+1. Yet we need to decide what to do when a query is not part of a pair, having

in mind that USS(us0,us1) is symmetric.

99

6 Scalable and Data-Aware SQL Query Recommendations

Example 6.1 Let us consider two user sessions: us0 = (q0
1 , q

0
2), us1 = (q1

1 , q
1
2 , q

1
3 , q

1
4);

S(q0
1 , q

1
1) = 0,S(q0

1 , q
1
2) = 0,S(q0

1 , q
1
3) = 1. q0

2 is an unseen query, and q1
4 is its possible

prediction. If we take only S(q0
1 , q

1
3) = 1 into account when calculating USS(us0,us1),

we overestimate the similarity of us0 and us1: They are not identical.

Instead, we ’complement" the shortest user session us0 from the beginning, so |us0|=
|us1|= 4 in the example, and set S(q0

−2, q
1
1) = 0 and S(q0

−1, q
1
2) = 0. Now all three query

similarities contribute to USS(us0,us1), and the similarity function is symmetric.

The weighting schemes. We hypothesize that the importance of query similarity
increases from the beginning of the sessions to the end. In other words, it may not be
so vital for a prediction whether the first queries of two sessions are different, but it is
much more significant if the last SQL requests are not alike. To test this hypothesis,
we introduce weighting schemes of ordered user session similarity (USS WS). Here,
the similarity of the two queries is multiplied with the position of these two queries
in the corresponding user sessions. Having said this, we now present the weighting
schemes:

(1) Flat scheme, where all query similarities S(q0
i , q

1
i) have the same impact on

USS(us0,us1):

USSflat(us0,us1) = 1
k
·
i=k∑
i=1

S(q0
i−l0 , q

1
i−l1) (6.1)

Here, k =max(|us0| , |us1|), l0 = k−|us0|, l1 = k−|us1|.

(2) Geometric progression (GP) scheme, where similarities of queries close to the
end of the session have a high weight:

USSGP (us0,us1) =
i=k∑
i=1

S(q0
i−l0 , q

1
i−l1) ·a1 · ri−1 (6.2)

Here, r < 1. a1 and r are chosen so that the sum to infinity of a GP ai = a1 ·ri−1

is 1: S∞ = a1/(1− r) = 1.

(3) Only Last Query (OLQ) scheme, where one considers only the last queries of
two user sessions:

USSOLQ(us0,us1) = S(q0
|us0|, q

1
|us1|) (6.3)

1.2. Complex measures Simple ordered USS(us0,us1) does not cope with parts
of the sequences that do not match. There are dynamic distance measures designed
to overcome this. The Smith-Waterman algorithm (SWA) [SW+81] searches for
similar subsequences in two sequences. Another algorithm, dynamic time warping
(DTW) [Sak+90], quantifies the similarity of two temporal sequences which may vary

100

6.1 Our Approaches

in speed. Both algorithms have a complexity of O(m ·n), where m and n are the
lengths of the sequences. We will test if complex measures outperform simple ones in
recommendation quality.

2. Unordered USS Scheme. The unordered USS scheme perceives a user session
as a set of queries. According to it, USSunord(us0,us1) is the sum of pairwise
similarities, no order is considered:

USSunord(us0,us1) = 1
|us0| · |us1|

·
i=|us0|,j=|us1|∑

i=1,j=1
S(q0

i , q
1
j) (6.4)

6.1.2.3 Recommending Queries

The final step, when providing recommendations for a given user session, picks the
next queries from similar sessions (Algorithm 6.1, Line 3).

Note that USS(us0,us1) = 0 occurs quite frequently. Next, there may not be suf-
ficiently many similar user sessions: |simUS| < nr where simUS consists of only
non-zero similarities.

6.1.2.4 Limitation of TkS

TkS limits the recommendations to the queries in the log. Naturally, if the information
need of a user does not correspond to any query in the log, recommendations are not
generated. The approach proposed next, TnS, aims to overcome this problem: We
construct a recommended query instead of getting it from a log.

6.1.3 Thin Query Similarity, thick Fitting (TnS)

TnS is another new technique to suggest queries. It first finds FB queries (templates)
to recommend. Then these templates are instantiated with filtering conditions and
become recommended queries. In what follows, we describe this process step by step.

6.1.3.1 Recommending Templates

FB QueRIE template recommendation (FB QueRIE TR) Our literature
review has featured an approach recommending templates, FB QueRIE [Eir+14]. It
relies on feature similarity and computes the prediction summary Spred0 , a vector of
features. The method recommends the templates most similar to Spred0 .

101

6 Scalable and Data-Aware SQL Query Recommendations

Graph-based template recommendation (GBTR) We wonder if there are sim-
pler and more effective ways to suggest templates. In line with classical recommender
systems, we use Markov chains, similarly to recommendations of query fragments in
SnipSuggest [Kho+10]. Algorithm 6.3 illustrates the principle. The approach makes
use of our previous work in Chapter 4. In a nutshell, the method analyzes patterns
(Definition 4.3) in a query log and suggest the most popular continuation to a given
query template (Definition 4.5). Algorithm 6.3 illustrates the principle.

Definition 6.2 A graph of templates GoT is a directed graph. A vertex is a template.
The weight of an arrow weight(ti, tj) is the probability of having tj immediately after
ti in a query log US.

To build a GoT, one first extracts features from queries and assigns the template to
each SQL request. See Algorithm 6.3. Line 7 sets the probabilities:

GoT.weight(ti, tj) = GoT.weight(ti, tj)∑
a∈GoT.TailsOf(ti)GoT.weight(ti, ta) (6.5)

As intermediate result, one gets a set of patterns with corresponding probabilities
pwp = GoT.Where(Head = template(q0

n)). Note that all patterns from pwp start with
template(q0

n). To derive pwp for FB QueRIE recommendation, we set pi depending on
how similar Spred0 is to ti:

pi = SFB(ti,Spred0)∑
t∈T SFB(t,Spred0)

(6.6)

Here, T is the set of all templates present in the log US. SFB is either Jaccard or cosine
similarity, depending on the FB weighting scheme used. Again, the sum of all pi’s is 1.
Having p1 ≥ p2 ≥ ·· · ≥ pk, the index i of pi in pwp ranks the recommendation.

6.1.3.2 Fitting

Recall that one wants to generate nr query recommendations. The fitting step
instantiates filtering conditions of recommended queries {qr1, . . . qrnr}. It takes pwp
as input. To get {qr1, . . . qrnr}, we first retrieve nri = i · trunc(nr ·pi) instances of each
pattern (template(q0

n), ti) present in pwp. Each instance (q1, q2) of a pattern then must
pass the fitting step. Algorithm 6.4 specifies the steps. The purpose of fitting is to
generate recommended query qri. Note that (q0

n, qri) and (q1, q2) are instances of the
same pattern.

The fitting procedure Fitting((q1, q2), q0
n) described in Algorithm 6.4 modifies query

q0
n depending on the difference of the access areas of queries q1 and q2. Each attribute
in filtering conditions of q2, Ints(q2), is processed independently (Line 1). To generate
filtering conditions of Attribute a in qri (Ints(qri)) we need to have Attribute a in
Ints(q0

n) and in Ints(q1) or a related attribute:

102

6.1 Our Approaches

Definition 6.3 Attributes a′ and a are related iff (a′.name = a.name)∧ (a′.type =
a.type).

The definition refers to the case of attributes in different tables. If a′ and a belong to
the same table, a′ = a. Thus, a is related to itself. One could extend the definition
of related attributes by considering, for instance, the semantic of the tables. This,
however, would require domain knowledge separately for each individual database. In
the use case of our study, the Sky Server database, it would mean to examine over
180 tables and views with around 50-100 attributes in each table. By introducing a
simple notion of related attributes, we wanted to study how far one gets in the most
prominent cases and to avoid any manual intervention.

Setting the filtering conditions of a depends on the attribute type, which may be
ordinal or nominal.

1. Fitting for an ordinal attribute For an ordinal attribute a, fitting preserves
the transformation of an access area from q1 to q2 (Algorithm 6.4, line 4). More
specifically, to set an interval ari (an interval of attribute a in qri), fitting adjusts two
values:

(1) The shift arshift is a distance between two centers of intervals ari and a′n. a′n is
an interval of attribute a′ in q0

n.

(2) The width of an interval width(ari) indicates how big is the access area of a
query qri on attribute a.

Algorithmus 6.3: BuildGoT
Data: US – user sessions in a query log
Result: GoT = {} – a directed acyclic graph of tempaltes

1 foreach us ∈ US do
2 prevQ = null
3 foreach q ∈ us do
4 if prevQ 6= null then
5 GoT.weight(template(prevQ), template(q))++
6 prevQ = q

7 GoT.SetProbabilities()
8 return GoT

In essence, we keep the proportions of the query intervals of the pair (q1, q2) and
translate them to intervals of the pair (q0

n, qri):

width(ari) = width(a2) ·width(a′n)/width(a′1) (6.7)

arshift = ashift ·width(a′n)/width(a′1) (6.8)

103

6 Scalable and Data-Aware SQL Query Recommendations

Algorithmus 6.4: Fitting
Data: (q1, q2), q0

n
Result: qri – a recommended query

1 foreach a ∈ Ints(q2) do
2 a′ = GetRelatedAttribute(a)
3 if a′ is ordinal then
4 qri.SetIntervalForAttribute(a′, q1, q2, q

0
n)

5 else
6 if Sovl(q1, q

0
n).a 6= 1 then

7 (q1, q2) = US.Where(Sovl(q1, q
0
n).a = 1)

8 if (q1, q2) 6= null then
9 qri.CopyValuesForAttribute(a′, q2)

10 else
11 (q1, q2) = US.Where(Sovl(q1, q2).a = 1)
12 if (q1, q2) 6= null then
13 qri.CopyValuesForAttribute(a′, q0

n)

14 return qri

Example 6.4 q1, q2 and q0
n are as follows:

q1 SELECT name, population FROM Countries Cs WHERE Cs.latitude BETWEEN 30 AND 50

q2 SELECT name, population FROM Cities C WHERE C.latitude BETWEEN 40 AND 50

q0
n SELECT name, population FROM Countries Cs WHERE Cs.latitude BETWEEN 30 AND 60

Attributes Cs.latitude and C.latitude are related by Definition 6.3. We now derive the
filtering conditions of qri:

width: width([C.latitude]ri) = (50−40) · (60−30)/(50−30) = 15

shift: ashift = 45−40 = 5;arshift = 5 · (60−30)/(50−30) = 7.5

Hence, qri is: SELECT name, population FROM Cities C WHERE C.latitude BETWEEN 45 AND 60

2. Fitting for a nominal attribute With nominal attributes, one cannot shift
values in the same way as with ordinal attributes. Hence, we try to get the pair (q1, q2)
from a query log US so that Sovl(q1, q

0
n).a= 1 (Algorithm 6.4, Line 7). Then we can

copy filtering conditions for a of q2 to qri (Line 9). If there is no such pair, we see if
there is a query in US where Sovl(q1, q2).a= 1. If so, we copy filtering conditions for a
of query q0

n to query qri (Line 13). If not, TnS cannot provide a recommendation.

6.1.3.3 Limitation of TnS

The ranked list of recommendations (q′1, . . . q′nr) can also contain fewer queries than nr.
We foresee the following situations when TnS cannot produce recommendations:

104

6.1 Our Approaches

(1) All instances of template t = template(q0
n) belong to the current user session.

In this case, graph-based template recommendation GBTR cannot suggest a
template.

(2) There are no related attributes in interests of q1 and q2.

We will study how often this occurs with a real-world log.

6.1.4 DASQR CB (Content-Based)

The content-based recommendation suggests queries similar to the ones a user has
issued. Here we use three data-aware query similarity functions, WBBin, AABovl and
AABcl. That gives way to three CB recommendation schemes: CB WB, CB AABovl
and CB AABcl.

6.1.5 Hybrid Approaches

With new hybrid approaches, we intend to maximize the utility of our methods: CF TkS,
CF TnS and CB. We propose to go away from a hybridization on a query representation
level (as in WB QueRIE). We hypothesize that each possible recommendation carries
one and only one user interest. We will validate this later on by comparing our hybrid
approaches to those from WB QueRIE, where queries (their tuples) are blended.

Our procedure is the following one: CF Tks, CF TnS and CB all take place, each
approach trying to come up with nr recommendations. For a particular hybridization
scheme, we establish an order of the algorithms. To illustrate, think of (1) CF Tks,
(2) CF TnS, (3) CB. If due to its limitations, CF TkS does not produce (enough)
recommendations, we resort to suggestions from CF TnS. If the combined number of
recommendation is not enough, smaller than nr, we take suggestions from CB. So the
results of each hybrid method will be at least as good as the algorithm that is first.

This method, albeit simple, is in line with the design objective of having only one
user interest within a suggested query. In the experimental section, we will study if it
outperforms the hybridization of WB QueRIE.

6.1.6 Summary

Figure 6.1 summarizes the various DASQR methods. ’+’ states that the methods
of this part of the hierarchy do not exclude each other, but can be applied together.
For example, TnS performs both recommending templates and fitting. In contrast,
a subhierarchy without ’+’ means that one must choose one method from it. For
instance, one can use only one query similarity at a time.

All the approaches we propose satisfy the requirements from Section 2.5:

105

6 Scalable and Data-Aware SQL Query Recommendations

DASQR

+ CF (collaborative filtering), Section 6.1.1

• +TkS (Thick similarity), Section 6.1.2

• + Query similarity, Section 612.2.1

• WB/AABovl/AABcl

• + User session similarity, Section 6.1.2.2

• Ordered

• DTW/SWA/flat/GP/OLQ

• Unordered

• +TnS (Thin similarity), Section 6.1.3

• + Recommending templates, Section 6.1.3.1

• FB QueRIE binary TR

• FB QueRIE weighted TR

• GB TR

• + Fitting, Section 6.1.3.2
+ CB (content-based), Section 6.1.4

• Query similarity

• WB/AABovl/AABcl

Figure 6.1: The design decisions of DASQR

(1) They recommend full and data-aware queries: Our new approaches either search
for queries/user sessions that are similar in the given data space (CF TnS in
Section 6.1.2, CB in Section 6.1.4), or they construct filtering conditions of the
recommended query (CF TnS in Section 6.1.3).

(2) DASQR recommends queries with comparison operators, including range queries.
When we deploy the AAB query-similarity measure, our methods inherit the
AAB restriction of not having an arithmetic operation in filtering conditions
[Arz+19]. Having arithmetic operations in SQL is bad practice anyway. ∗

(3) Scalability of DASQR depends in many ways on the query similarity function in
use. An earlier study of similarity functions reveals that WB tends to be slower
than AAB [Arz+19]. However, even with WB similarity, DASQR is faster than
WB QueRIE, which uses the WB representation as well.

∗See https://www.red-gate.com/products/sql-development/sql-prompt/entrypage/code-smells?v=1
under the heading "Including complex conditionals in the WHERE clause".

106

6.2 Experiments

6.2 Experiments

This section features experiments. We proceed as follows:

(1) Define quality metrics for SQL query recommendations. We base our metrics on
corresponding SQL query similarity metrics, WB, AABcl, and AABovl.

(2) Compare the quality of the various approaches on the SkyServer query log
according to those metrics;

(3) Measure the response times of approaches. Conclude which ones are best overall
in terms of speed and accuracy.

In Section 3.4.3, we have reviewed techniques to recommend SQL queries and their
compliance with the requirements. None of them meets all requirements. WB QueRIE,
however, has only one downside – scalability. So one can at least select a relatively
small data set to bring down runtime problems when testing it. We have chosen
WB QueRIE (Bin and Weig) as our reference point. The other approaches cannot
be compared with ours experimentally since they either (1) do not provide full and
data aware queries [YPS09], [Kho+10], [Eir+14] or (2) do not support range queries
[Ali+15] or (3) run on a database instance and rely on query plans [KBGM09].

6.2.1 Experiment Setup

We evaluate the predictions made by all DASQR approaches and competitors offline,
i.e., without users [RRS11b]. Doing online experiments is a huge task, which is out of
the scope of this thesis.

6.2.1.1 The Query Log

Sloan Digital Sky Survey (SDSS, or SkyServer), is a project targeting at a map of the
universe. Professionals and hobby astronomers are participating. The data is available
online. There also is an SQL command line to the SDSS database server, allowing to
compose queries of any complexity.

According to [GS09], choosing the data for offline experiments should be done in a way
that it would be most similar to the online application. Thus, the log must be cleaned
from sliding window search (SWS) queries issued by robots.†. We have utilized the
same log (cleaned from SWS), as for clustering (Section 5.2.2.2), but we had to exclude
user sessions, where not all queries have their corresponding query representations
(WB, FB and AAB). We have made the log publicly available‡.

†We have discussed the procedure in Chapter 4
‡https://anonymous.4open.science/r/5f6d2410-83b8-463a-8113-f517d9a49e6e/

107

6 Scalable and Data-Aware SQL Query Recommendations

The log (FullLog) is of 79,151 queries. It touches 179,611,275 tuples in the SkyServer
database. This log is too big to be processed by WB QueRIE. To compare with WB
QueRIE to some extent and to study the influence of sampling on recommendation
quality, we have randomly chosen 1/10 of the user sessions from FullLog to form what
we call SampledLog.

6.2.1.2 Algorithms to Compare

Have a look at Figure 6.1 again. The variety of DASQR algorithms is wide due to several
design options on each level. The first distinction is on the general recommendation
approach: CF or CB. For CF, one goes with TkS or TnS. When it comes to TkS,
one must decide on user sessions and query similarities. With TnS the options lie in
choosing an algorithm to recommend templates.

Table 6.2 lists the DASQR algorithms, which have performed best in the experiments.
The first part of the name of the algorithm points to the query similarity function, if
applicable. The second part indicates which user session similarity is used. Then there
are identifiers of additional parameters if needed. For instance, "CF AABovlGp03"
is a CF TkS approach which utilizes AABovl query similarity and the geometric
progression weighting scheme with r = 0.3 when it comes to computing user sessions
similarity. For hybrid methods, we list the algorithms applied in their order. For
example, H (1) + (8) + (9) from Table 6.2 takes the recommendations from (1). If
this is not enough, it continues with (8), then with (9).

6.2.2 Evaluation Protocol

We perform the experiments offline, predicting the next query for a given user session.
We apply 10-fold cross-validation, dividing users sessions into ten groups. Each
time nine of them serve as the training set, one as the input set. We treat a user
session us0 = (q0

1 , . . . q
0
n) as n user sessions us0[1;1], . . . ,us0[1;n], trying to predict

queries from q2 to qn. We do the same with the other user sessions: We perceive
us1 = (qi1, . . . , qm+1i) as a set of m user sessions {usi[1;2], . . . ,usi[1;m+1]}. usi[1;k]
is obtained from the original usi by taking only the first k queries, k ≤m+1. Thus,
any query from qi2 to qim+1 can be a possible prediction.

108

6.2 Experiments

6.2.3 Evaluation Metrics

To evaluate predictions, one often uses precision and recall, defined as follows for
singleton items:

P = |tp|/(|tp|+ |fp|);R= |tp|/(|tp|+ |fn|), (6.9)

where |tp| is the number of true positive items (items both recommended and of
interest), |fp| is the number of false positive items (recommended, but not of interest)
and |fn| is the number of items not recommended, but of interest (false negatives).

6.2.3.1 Data-aware metrics

As mentioned, SQL queries are different from "items" like movies or tangible goods.
The literature explains that quality metrics for SQL query recommendation are specific
to the query representation and query similarity function. For example, with WB
QueRIE [CEP09], precision and recall are defined based on tuples:

PWB =
∣∣τQU

∩ τQR

∣∣/ ∣∣τQR

∣∣ , RWB =
∣∣τQU

∩ τQR

∣∣/ ∣∣τQU

∣∣ (6.10)

where τQU
stands for the witnesses of the unseen query qU and τQR

for the witnesses
of the recommended query qR. The accuracy metric in WB should then be:

AWB =
∣∣τQU

∩ τQR

∣∣/ ∣∣τQU
∪ τQR

∣∣ (6.11)

Formula (6.11) is an instantiation of Jaccard similarity. The similarity is the relative
size of the intersection of two query results. For precision, the denominator changes
from the union of the tuples (τQU

∪ τQR
) to the tuples of the recommended query

alone (τQR
), for recall to the tuples of the unseen query (τQU

). Following this practice,
we redefine precision and recall from AABovl and AABcl similarities.

AABovl Precision and Recall Let qU denote an unseen query and qR a recom-
mended one. Transforming AABovl similarity for an ordinal attribute (Formula (5.4))
to precision and recall, we get:

PAABovl.a
OA = comWidth(aOAU.1,aOAR.1)/width(aOAR.1) (6.12)

RAABovl.a
OA = comWidth(aOAU.1,aOAR.1)/width(aOAU.1) (6.13)

For a nominal attribute, the formulas are identical for the closeness and the overlap
approach:

PAABcl.a
NA = PAABovl.a

NA =
∣∣ANA
U ∩ANA

R

∣∣/ ∣∣ANA
U

∣∣ (6.14)

RAABcl.a
NA =RAABovl.a

NA =
∣∣ANA
U ∩ANA

R

∣∣/ ∣∣ANA
R

∣∣ (6.15)

109

6 Scalable and Data-Aware SQL Query Recommendations

AABcl Precision and Recall With closeness precision and recall, things are more
complicated. Obviously, we cannot change Formula (5.2) of AABcl similarity by
replacing the denominator with width(aOAR.j)) or width(aOAU.i): We would get PAABcl > 1
and RAABcl > 1 in some cases. Instead, we perceive "the average interval" aOAavg.ij of
aOAU.i and aOAR.j as one whose width is an average of width(aOAU.i) and width(aOAR.j) and
whose center is the "mass center" of aOAU.i and a

OA
R.j . Consequently, the precision and

recall is a closeness similarity (Formula (5.10)) of this interval and aOAU.i or aOAR.j . The
attribute-wise Precision and Recall then are:

PAABcl.a
OA = Scl(aOAU ,aOAavg) (6.16)

RAABcl.a
OA = Scl(aOAR ,aOAavg) (6.17)

Overall Precision and Recall of AABcl and AABovl.

The final formulas result from changing accuracy to precision and recall:

PattrFull(qU , qR) =min(PattrExcl(qU , qR),PattrCom(qU , qR)) (6.18)

PattrCom(qU , qR) = min
i=1,...,|comInts(qU ,qR)|

P (qU , qR).ai (6.19)

PattrExcl(qU , qR) = min
i=1,...,|exclInts(qU ,qR)|

Povl(qU , qR).ai (6.20)

P (qU , qR) = reductCoefftable ·PattrFull(qU , qR) (6.21)

RattrFull(qU , qR) =min(RattrExcl(qU , qR),RattrCom(qU , qR)) (6.22)

RattrCom(qU , qR) = min
i=1,...,|comInts(qU ,qR)|

R(qU , qR).ai (6.23)

RattrExcl(qU , qR) = min
i=1,...,|exclInts(qU ,qR)|

Rovl(qU , qR).ai (6.24)

R(qU , qR) = reductCoefftable ·RattrFull(qU , qR) (6.25)

So we now have definitions for WB, AABovl and AABcl precision and recall metrics.

6.2.3.2 Metrics for query templates

We also want to evaluate the quality of giving template recommendations of FB
QueRIE and our graph-based approach (GBTR) for TnS (Section 6.1.3). To calculate
Precision and Recall for query templates, we have used the formulas from the original
FB QueRIE article.

110

6.2 Experiments

6.2.4 Experimental Evaluation

In this section, we present the results of our experiments. First, we report on the
quality of recommending templates for TnS. Then we report on characteristics of
DASQR and WBQueRIE.

6.2.4.1 Quality of Recommending Templates

As we have said earlier (see Section 6.1.3.1), TnS works with any method which
recommends templates. We have introduced a new graph-based approach (GBTR)
and described the existing ones, FB QueRIE binary and weighted. We have obtained
template recommendations of all three approaches. Table 6.1 shows the average
maximum recall and the subsequent precision characteristic. Since GBTR appears to
be best, we have used it for TnS query recommendations.

As pointed out in Section 6.1.3.3 (Case (1)), GBTR cannot recommend a template if
all instances of template t= template(q0

n) belong to the current user session. Due to
10-fold cross-validation, one cannot provide a template recommendation after template
t iff all instances of t belong to the test set. That occurred in 1.7 % of the cases for
FullLog and in 9.3 % of the cases for SampledLog.

6.2.4.2 Quality of Recommending SQL Queries

Tables 6.2 and 6.3 report average maximum recall and average precision on maximum
recall on FullLog and SampledLog. We show only the best pure and hybrid algorithms.
To get the values, we first take the maximum recall for each unseen query and obtain
the corresponding precision. We then report averages of these precision and recall
values. For each algorithm, we have set nr = 10. Figures 6.2 and 6.3 feature with
respective inverse CDFs.

We have performed experiments where only five, three and one recommendations are
get as well. To save space, we do not present the outcomes here. The results, as
expected, get worse with fewer recommendations. The order of the algorithms with
respect to prediction quality changes only slightly.

Table 6.1: Average maximum Recall (R) and Average Precision on Maximum
Recall (P) for recommending templates

hhhhhhhhhhhMethod
Value PFB

Full
RFB
Full

PFB
Sampled

RFB
Sampled

FB QueRIE binary 0.368 0.317 0.349 0.312
FB QueRIE weighted 0.289 0.275 0.273 0.278
GBTR 0.944 0.873 0.843 0.789

111

6 Scalable and Data-Aware SQL Query Recommendations

Table 6.2: Average maximum Recall (R) (in percent) and Average Precision on
Maximum Recall (P) (in percent), dataset - Full

Method Povl Rovl Pcl Rcl PWB RWB

(1) CF AABovlGp03 26.6 21.6 25.5 28.5 20.8 19.2
(2) CF AABovlOLQ 27.7 23.2 26.6 28.8 23.4 21.7
(3) CF AABovlDTW 23.4 18.9 22.5 25.1 19.2 18
(4) CF AABclOLQ 28.1 23.1 29.5 35.1 24 22
(5) CF AABclDTW 20.7 20.1 22.1 22.2 20.6 19.3
(6) CF WBOLQ 12.4 12.1 14.1 14.2 22.2 20.4
(7) CF WBDTW 12.8 12.2 14.7 15.1 20.6 19.2
(8) CF TnS 14.9 14.9 15.1 15.7 18.8 26.5
(9) CF CB AABcl 19.8 12.9 21.5 30.1 16.5 14.4
(10) (1) + (8) + (9) 28.9 23.9 28.9 32.6 23.4 22.7
(11) (2) + (8) + (9) 33.5 28.7 33.2 36.9 30.8 31.8
(12) (2) + (9) + 8) 31.9 26 31.9 38.5 25.8 24.2
(13) (8) + (1) + (9) 23.3 20.3 15.8 20.1 19.8 7.1
(14) (8) + (2) + (9) 22.5 19.8 23.2 26.4 26.1 32.6
(15) (9) + (1) + (8) 23.3 20.3 23.3 26 26.1 32.4
(16) WB QueRIEWeig - - - - - -
(17) WB QueRIEBin - - - - 7 -
(18) Best possible 77.5 63.7 72.6 88.5 39.8 39.7
(19) Baseline 0.4 0.4 1 1.1 0.3 0.3

Table 6.3: Average maximum Recall (R) (in percent) and Average Precision on
Maximum Recall (P) (in percent), dataset - Sampled

Method Povl Rovl Pcl Rcl PWB RWB

(1) CF AABovlGp03 9.2 8.3 9.2 9.9 9.2 9.3
(2) CF AABovlOLQ 9.5 8.4 8.8 9.1 8.9 8.9
(3) CF AABovlDTW 9.1 8 9.2 10.3 9.6 9.6
(4) CF AABclOLQ 9.5 8.4 11.2 15.9 9.3 9.3
(5) CF AABclDTW 8.1 7 10.4 16.1 8.8 8.5
(6) CF WBOLQ 4.8 4.4 4.9 5 8.4 8.6
(7) CF WBDTW 5.7 5.2 6.2 6.7 10.3 10
(8) CF TnS 12.5 12 11.7 12.3 16.6 2.8
(9) CF CB AABcl 7.2 5.4 10.7 19.9 7.7 7.4
(10) (1) + (8) + (9) 17.4 15.9 18.7 23.1 18.9 11.8
(11) (2) + (8) + (9) 19.5 18 23 26.9 22.3 12.1
(12) (2) + (9) + 8) 16.1 14.4 19.6 28.3 20 11.9
(13) (8) + (1) + (9) 15 14 15.8 20.1 19.8 7.1
(14) (8) + (2) + (9) 15.2 14.1 16.4 20.9 17.6 7.2
(15) (9) + (1) + (8) 16.6 14.2 19.7 28.3 16.2 9.6
(16) WB QueRIEWeig 7.2 6.8 8.5 8.9 7.2 6.9
(17) WB QueRIEBin 7.1 6.7 8.3 8.8 7 6.8
(18) Best possible 30.6 27.8 46.9 54.9 18.8 19.2
(19) Baseline 0.2 0.2 0.4 0.7 0.1 0.2

We now explain the last two columns in Tables 6.2 and 6.3. ’Best possible’ is as follows:
For each unseen query qU , we choose the query q′ from the corresponding proximity
matrix (WBBin, AABovl or AABcl) with maximal recall and retrieve precision and
recall values for it. Theoretically, TnS and hybrid methods can surpass it, since their
recommendations are not limited to queries from the log. ’Baseline’ recommends a
random query from the log.

112

6.2 Experiments

Low precision and recall values when recommending data-aware queries are not
unexpected. First, as ’Best possible’ values show, 1 is not achievable. Second, the
baseline values indicate that the performance of the methods is not a result of chance.

In what follows, we describe the effects of various design decisions (see Figure 6.1),
report on general patterns of quality metrics and compare our approaches with the
reference points:

(1) General patterns of quality metrics. Results are stable, irrespective of the
query representation the quality metric is built upon. For instance, almost
all metrics identify CF AABclOLQ as the best CF algorithm. The pair-
wise Spearman correlations of average maximum precision and correspond-
ing recall are: ρs(Povl,Pcl) = 0.95, ρs(Rovl,Rcl) = 0.76, ρs(Povl,PWB) = 0.63,
ρs(Rovl,RWB) = 0.38, ρs(Pcl,PWB) = 0.57,ρs(Rcl,RWB) = 0.2. AABovl and
AABcl metrics correlate strongly since they both use the AAB query representa-
tion. WB correlates more with AABovl because these two metrics target at the
overlap in the data space. AABovl does this analytically, WB literally.

(2) Comparison with reference points. Our best hybrid algorithms are much better
than WB QueRIE. Considering their low runtimes in addition (see Table 6.4),
they are clear winners.

(3) WB QueRIE hybridization vs our hybridization. We compare the results of WB
QueRIE to the ones of any of our hybrid algorithms, which use WB representation,
on sampled data (see Table 6.3). Our hybrid algorithms performed around two
times better regarding Precision and Recall. Thus, our objective of not mixing
queries has turned out to be meaningful.

(4) Applicability of CB. CB methods performed moderately well. Since CB rec-
ommends items similar to the ones a user has already asked for, this indicates
that, as in e-commerce, a database user is interested in queries similar to ones
he has just submitted. We recommend utilizing CB query recommendation in
combination with CF.

(5) TnS and TkS. TnS is worse than TkS with the FullLog. With SampledLog, TkS
gets worse much faster than TnS. That is because TkS requires similar queries,
whereas TnS does not. In other words, TnS is less sensitive to scaling the size of
the log down.

(6) TnS performance. As explained in Section 6.1.3.3 (Case (2)), if the last query of
a current session and a predicted query do not have related attributes in their
filtering conditions, TnS cannot recommend a query. That has happened in 18.1
% of the cases for FullLog and in 16.9 % of the cases for SampledLog.

(7) Unordered vs ordered user session similarity. Taking the order of queries into
account when calculating session similarity is important: ’Ordered’ approaches
always perform better.

(8) Complex ordered USS. Complex measures of computing ordered user session
similarity (DWT and SWA, see Section 6.1.2.2) are not clear winners. With
SampledLog, CFWBDTW has been best only regarding PWB andRWB , whereas
user session similarity with SWA yields results close to the worst. Moreover, CF

113

6 Scalable and Data-Aware SQL Query Recommendations

WBDTW even did not make it as a part of the best hybrid algorithm: The best
combination turns out to be with CF AABovlGp03.

(9) Simple ordered USS. When generating 10 recommendations per query, there is
no difference in precision-recall of Flat and the GP ordered weighting schemes
with r = 0.3 and r = 0.5. Gp03 (r = 0.3) is slightly better when one takes only
the top 1.

(10) The simplest ordered USS. Somewhat surprisingly, the simplest approach (OLQ)
often outperforms the ones considering all queries: The best CF TkS method
according to PAABovl, RAABovl and PAABcl for SampledLog is CF AABclOLQ.

(11) Benefit of hybridization. As discussed, TnS and hybrid approaches can surpass
the ’Best possible’.Some combinations do. For instance, CF AABovlGp03 with
CF TnS and CB AABcl has a PWB (0.198) on SampledLog. That is higher than
what one can expect when retrieving recommendations only from the log (0.188).
However, TnS alone did not win over ’the best possible’. Thus, one should use
all proposed methods to achieve the best results in combination.

6.2.4.3 Runtime Characteristics

To quantify the runtime of the algorithms, we have measured average and maximum
runtimes of giving recommendations for a user session. The preprocessing steps
such as (1) computing WB representations, i.e., re-querying, and (2) getting AAB
representations and computing proximity matrices, are excluded. These steps take
place only once before running the recommendation engine. Table 6.4 reports the
outcomes. As expected, the runtimes of the OLQ approaches are best. The unordered
schemes and complex ordered ones (DTW, SWA) are noticeably slower than simple
ordered methods. Indeed, their complexity of comparing two user sessions is O(m×n),
where m and n are the lengths of corresponding user sessions. With WB QueRIE, the
runtime is already high, even on the sampled data. For simple ordered USSs (Float
and GP) the complexity is O(min(m,n)), whereas the complexity of OLQ is O(1).

6.2.5 Discussion

The highest quality is achieved with hybridization. When using a hybrid combination,
one should choose the one with the highest quality and acceptable response time. For
instance, CF AABovlOLQ is the best CF TkS method according to most precision
and recall values. In cases where it is not best, it is second. Taking its low runtime
into account, it is a clear winner. CB AABcl has been the best CB method according
to all precision and recall values. Thus, our best combination is CF AABovlOLQ +
CF TnS + CB AABcl.
‡Flat, Gp05 and Gp03 always yield the same top 10 recommendations per query as Flat. This also
is the case for Sampled log, with AABcl and WB query similarities.

114

6.3 Conclusions

Table 6.4: Average and maximum waiting time, in ms
````````Method

Value tavg
Full

tmax
Full

tavg
Sampled

tmax
Sampled

CF AABovlGp03§ 21 25,422 3.8 18,715.2
CF AABovlDTW 64.7 237,30 7.5 23,730.9
CF AABovlSWA 275.2 176,80 17.9 19,194
CF AABovlOLQ 1.3 1.5 0.1 0.2
CF AABovlUn 84.7 27,053 5.3 19,386.2
CF AABclGp03 372.5 124,590 144.2 99,437.1
CF AABclDTW 1,551 129,029 258 879,58.1
CF AABclSWA 1,424 85,741 402.7 95,854.6
CF AABclOLQ 1.5 1.5 0.2 0.2
CF AABclUn 1,665 143,22 228.3 100,082.5
CF WBGp03 8.7 13,295 4.3 15,826.7
CF WBDTW 19.4 14,155 3.4 10,250.6
CF WBSWA 81.3 14,010 9.9 10,839.8
CF WBOLQ 0.7 1.5 0.1 0.2
CF WBUn 14.9 10,385 3.3 11,842.7
CF TnS 890.3 12,444 82.7 1,309.7
CB AABovl 0.8 2 0.2 0.3
CB AABcl 0.9 2.2 0.3 0.5
CB WB 0.7 1.6 0.1 0.2
WB QueRIEWeig 14,081 805,106.8
WB QueRIEBin 14,081 805,106.8

6.3 Conclusions

We have developed approaches for data aware SQL query recommendation. Such
approaches must be scalable and data-aware, i.e., a recommendation system should
provide a query which can be issued directly. We have classified the existing approaches
and have developed our owns by combining good design decisions with new ideas. We
address the issue of quality metrics for query recommendations and have come up
with metrics depending on the similarity function. We have tested our approaches
against the SkyServer query log. Both performance and runtime experiments indicate
that our methods outperform their competitors. To facilitate reproducibility, the data
for experiments is available online.

§Runtimes of hybrid methods are the sums of runtimes of the pure methods. The runtimes of -Gp05
and -Gp03 are always very close to -Flat.

115



6 Scalable and Data-Aware SQL Query Recommendations

 

 

 

0

0.5

1

0 20 40P
re

ci
si

o
n

 a
t 

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es AABovl 

BP QueRIEWeig
QueRIEBin baseline
(1)+(8)+(9) (2)+(8)+(9)
(2)+(9)+(8) (8)+(1)+(9)
(8)+(2)+(9) (9)+(1)+(8)

0

0.5

1

0 20 40

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es AABovl 

BP QueRIEWeig
QueRIEBin baseline
(1)+(8)+(9) (2)+(8)+(9)
(2)+(9)+(8) (8)+(1)+(9)
(8)+(2)+(9) (9)+(1)+(8)

0

0.5

1

0 20 40 60 80P
re

ci
si

o
n

 a
t 

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es AABcl 

BP QueRIEWeig
QueRIEBin baseline
(1)+(8)+(9) (2)+(8)+(9)
(2)+(9)+(8) (8)+(1)+(9)
(8)+(2)+(9) (9)+(1)+(8)

0

0.5

1

0 20 40 60 80

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es AABcl 

BP QueRIEWeig
QueRIEBin baseline
(1)+(8)+(9) (2)+(8)+(9)
(2)+(9)+(8) (8)+(1)+(9)
(8)+(2)+(9) (9)+(1)+(8)

0

0.5

1

0 20 40P
re

ci
si

o
n

 a
t 

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es WB 

BP QueRIEWeig
QueRIEBin baseline
(1)+(8)+(9) (2)+(8)+(9)
(2)+(9)+(8) (8)+(1)+(9)
(8)+(2)+(9) (9)+(1)+(8)

0

0.5

1

0 20 40

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es WB 

BP QueRIEWeig
QueRIEBin baseline
(1)+(8)+(9) (2)+(8)+(9)
(2)+(9)+(8) (8)+(1)+(9)
(8)+(2)+(9) (9)+(1)+(8)

Figure 6.2: Inverse CDF of recall and precision at maximum recall, SampledLog

116



6.3 Conclusions

 

 

 

0

0.5

1

0 20 40 60 80 100P
re

ci
si

o
n

 a
t 

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es AABovl 

BP baseline

(1)+(8)+(9) (2)+(8)+(9)

(2)+(9)+(8) (8)+(1)+(9)

(8)+(2)+(9) (9)+(1)+(8)

0

0.5

1

0 20 40 60 80 100

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es AABovl 

BP baseline

(1)+(8)+(9) (2)+(8)+(9)

(2)+(9)+(8) (8)+(1)+(9)

(8)+(2)+(9) (9)+(1)+(8)

0

0.5

1

0 20 40 60 80 100P
re

ci
si

o
n

 a
t 

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es AABcl 

BP baseline

(1)+(8)+(9) (2)+(8)+(9)

(2)+(9)+(8) (8)+(1)+(9)

(8)+(2)+(9) (9)+(1)+(8)

0

0.5

1

0 20 40 60 80 100

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es AABcl 

BP baseline

(1)+(8)+(9) (2)+(8)+(9)

(2)+(9)+(8) (8)+(1)+(9)

(8)+(2)+(9) (9)+(1)+(8)

0

0.5

1

0 20 40 60P
re

ci
si

o
n

 a
t 

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es WB 

BP baseline

(1)+(8)+(9) (2)+(8)+(9)

(2)+(9)+(8) (8)+(1)+(9)

(8)+(2)+(9) (9)+(1)+(8)

0

0.5

1

0 20 40 60

M
ax

im
u

m
 R

ec
al

l 

Percentage of Sessions 

es WB 

BP baseline

(1)+(8)+(9) (2)+(8)+(9)

(2)+(9)+(8) (8)+(1)+(9)

(8)+(2)+(9) (9)+(1)+(8)

Figure 6.3: Inverse CDF of recall and precision at maximum recall, FullLog

117





7 Conclusion

SQL query logs analysis studies user interactions with databases. It applies to various
scenarios: finding antipatterns in a log, clustering queries, SQL query recommenda-
tions.

First, we have performed a meta-analysis of the log and have identified patterns in it.
Among them, we have distinguished antipatterns and sliding window search (SWS).
This work was a necessary step before performing any other query log analysis.

Secondly, we have studied various SQL query representations and corresponding query
similarity functions. When clustering with a particular similarity function, we have
aimed to achieve excellent precision (match ground truth) and interpretability. We
have motivated the necessity of proposing new data-aware similarity, which does
not utilize the "heavy" witness-based (WB) approach. Our experiments show that
our proposed AAB similarities outperform the competitors in both precision and
interpretability.

Thirdly, we have proposed a new scalable and data-aware SQL query recommendation
system (DASQR). We have highlighted the difference between standard and SQL
query recommendations. Being aware of this difference, we have analyzed which design
decisions are needed to create such a system. For each design decision, we have listed
existing variants and proposed our own. The experiments indicate that our DASQR
algorithms outperform the competitors in quality and runtime.

119





121





List of Algorithms

6.1 TkS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 TnS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 BuildGoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

123





List of Figures

4.1 Processing Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 The most popular patterns before and after cleaning the log . . . . . . 54
4.3 Frequency and User Popularity of the Patterns . . . . . . . . . . . . . 55
4.4 Possible and real CTH antipatterns . . . . . . . . . . . . . . . . . . . . 57
4.5 Results of an experiment on query clustering . . . . . . . . . . . . . . 59
4.6 DS-Clusters’ sizes for cleaned and raw log. Threshold = 0.9 . . . . . . 59

5.1 Access areas of attribute Cities.latitude for queries q1, q2 and q3 from
Example 5.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Access areas of attribute Cities.latitude from Example 3.8. . . . . . . 68
5.3 Clustering result for closeness or overlap approach . . . . . . . . . . . 69
5.4 Access areas of queries with multiple occurrence of an attribute from

Example 5.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 Similarity distributions, SinSD – Share in Similarity Distribution . . . 87
5.6 Clustering results, DBSCAN algorithm . . . . . . . . . . . . . . . . . . 88
5.7 Mapping clustering results to Simbad data . . . . . . . . . . . . . . . . 93

6.1 The design decisions of DASQR . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Inverse CDF of recall and precision at maximum recall, SampledLog . 116
6.3 Inverse CDF of recall and precision at maximum recall, FullLog . . . . 117

125





List of Tables

1.1 A series of statements from one user . . . . . . . . . . . . . . . . . . . 1
1.2 Queries in a log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Queries q1 and q2 submitted in a row . . . . . . . . . . . . . . . . . . . 5
1.4 The recommended q1 and the unseen q2 queries . . . . . . . . . . . . . 6

3.1 Query representations of q1 from Example 3.3 . . . . . . . . . . . . . . 28
3.2 Similarity functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Three user sessions from a query log . . . . . . . . . . . . . . . . . . . 32
3.4 Compliance with the requirements . . . . . . . . . . . . . . . . . . . . 34

4.1 A series of statements from one user . . . . . . . . . . . . . . . . . . . 37
4.2 A series of statements from one user . . . . . . . . . . . . . . . . . . . 38
4.3 Original query log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Query log without duplicates . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Table of templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Table of patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Parsed query log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8 A clean query log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.9 Experiments with threshold parameter for deleting duplicates . . . . . 51
4.10 Results overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.11 The most popular antipatterns . . . . . . . . . . . . . . . . . . . . . . 53
4.12 The most popular patterns . . . . . . . . . . . . . . . . . . . . . . . . 54
4.13 SWS coverage depending on frequency and user popularity thresholds 55
4.14 CTH candidate 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.15 CTH candidate 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Description of the GtDbCourseLog data . . . . . . . . . . . . . . . . . 78
5.2 Description of the SkyServer Log data . . . . . . . . . . . . . . . . . . 79
5.3 Description of the WB sampled data (SampledLog) . . . . . . . . . . . 80
5.4 Overview of the data actually used in the experiments . . . . . . . . . 81
5.5 The results of the experiments with ground truth, dataset GtDb-

CourseLog, clustering algorithm k-medoids, k = 4 . . . . . . . . . . . 83
5.6 Values of Average Silhoette coefficient . . . . . . . . . . . . . . . . . . 87
5.7 Values of BetaCV coefficient . . . . . . . . . . . . . . . . . . . . . . . . 87
5.8 The parameter values for the clustering algorithms . . . . . . . . . . . 87
5.9 Top clusters of DBSCAN, dataset SampledLog . . . . . . . . . . . . . 89

127



List of Tables

5.10 Top clusters of DBSCAN, dataset FullLog . . . . . . . . . . . . . . . . 90
5.11 Results of the study with the domain expert . . . . . . . . . . . . . . . 95

6.1 Average maximum Recall (R) and Average Precision on Maximum
Recall (P) for recommending templates . . . . . . . . . . . . . . . . . 111

6.2 Average maximum Recall (R) (in percent) and Average Precision on
Maximum Recall (P) (in percent), dataset - Full . . . . . . . . . . . . 112

6.3 Average maximum Recall (R) (in percent) and Average Precision on
Maximum Recall (P) (in percent), dataset - Sampled . . . . . . . . . . 112

6.4 Average and maximum waiting time, in ms . . . . . . . . . . . . . . . 115

128



List of Theorems, Lemmas and
Definitions

Definition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Definition 2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Definition 2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Definition 2.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Definition 2.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Definition 2.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Definition 2.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Definition 2.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Definition 2.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Definition 2.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Definition 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Definition 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Definition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Definition 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Definition 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Definition 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Definition 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Definition 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Definition 4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Definition 4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Definition 4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Definition 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Definition 4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Definition 4.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Definition 4.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

129



List of Tables

Definition 4.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Definition 4.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Definition 4.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Definition 4.28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Definition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Definition 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Definition 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Definition 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Definition 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Definition 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Definition 5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Definition 5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Definition 5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Definition 5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Definition 5.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Definition 5.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Lemma 5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Lemma 5.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Lemma 5.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Lemma 5.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Lemma 5.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Lemma 5.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Lemma 5.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Lemma 5.26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Lemma 5.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Definition 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Definition 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

130



Bibliography

[AB] Natalia Arzamasova and Klemens Böhm. “Scalable and data-aware SQL
query recommendations”. [see pages 97, 145]

[Agg+99] Charu C Aggarwal et al. “Horting hatches an egg: A new graph-theoretic
approach to collaborative filtering”. In: ACM SIGKDD. 1999. [see page 29]

[Ali+14] Julien Aligon et al. “Similarity measures for OLAP sessions”. In: KAIS
39.2 (2014). [see pages 16, 34]

[Ali+15] Julien Aligon et al. “A collaborative filtering approach for recommending
OLAP sessions”. In: Decision Support Systems 69 (2015).

[see pages 5, 13, 34, 95, 107]

[AM+09] Ratish Agarwal, Dr Motwani, et al. “Survey of clustering algorithms for
MANET”. In: arXiv preprint arXiv:0912.2303 (2009). [see page 62]

[Arz+19] Natalia Arzamasova, Klemens Böhm, Bertrand Goldman, Christian Saaler,
and Martin Schäler. “On the Usefulness of SQL-Query-Similarity Measures
to Find User Interests”. In: IEEE Transactions on Knowledge and Data
Engineering (2019). IEEE. [see pages 8, 61, 106, 145]

[ASB18] Natalia Arzamasova, Martin Schäler, and Klemens Böhm. “Cleaning an-
tipatterns in an SQL query log”. In: IEEE Transactions on Knowledge and
Data Engineering 30.3 (2018), pages 421–434. IEEE. [see pages 37, 145]

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. “Toward the next genera-
tion of recommender systems: A survey of the state-of-the-art and possible
extensions”. In: IEEE TKDE 6 (2005). [see page 29]

[BG06] Stefan Brass and Christian Goldberg. “Semantic errors in SQL queries:
A quite complete list”. In: Journal of Systems and Software 79.5 (2006),
pages 630–644. Elsevier. [see page 17]

[BS97] Marko Balabanović and Yoav Shoham. “Fab: content-based, collaborative
recommendation”. In: Communications of the ACM 40.3 (1997).

[see page 29]

[Cao+08] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen,
and Hang Li. “Context-aware query suggestion by mining click-through
and session data”. In: Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 875–883. ACM.
2008. [see page 15]

131



Bibliography

[CEP09] Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. “Query
recommendations for interactive database exploration”. In: SSDBM. 2009.

[see pages 6–8, 13, 16, 22, 28, 30, 31, 33, 34, 97, 109]

[Cha+15] Bikash Chandra, Bhupesh Chawda, Biplab Kar, KV Reddy, Shetal Shah,
and S Sudarshan. “Data generation for testing and grading SQL queries”. In:
The VLDB Journal—The International Journal on Very Large Data Bases
24.6 (2015), pages 731–755. Springer-Verlag New York, Inc.. [see page 78]

[Che+14] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan, Mo-
hamed Nasser, and Parminder Flora. “Detecting performance anti-patterns
for applications developed using object-relational mapping”. In: Proceedings
of the 36th International Conference on Software Engineering, pages 1001–
1012. ACM. 2014. [see page 17]

[Che+16] Tse-Hsun Chen, Weiyi Shang, Ahmed E Hassan, Mohamed Nasser, and
Parminder Flora. “Detecting problems in the database access code of large
scale systems-an industrial experience report”. In: 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C),
pages 71–80. IEEE. 2016. [see page 17]

[CL07] Zhiyuan Chen and Tao Li. “Addressing diverse user preferences in SQL-
query-result navigation”. In: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 641–652. ACM.
2007. [see page 16]

[Def77] Daniel Defays. “An efficient algorithm for a complete link method”. In: The
Computer Journal 20.4 (1977), pages 364–366. Oxford University Press.

[see page 77]

[Dud+03] Bill Dudney, Stephen Asbury, Joseph K Krozak, and Kevin Wittkopf.
J2EE antipatterns. John Wiley & Sons, 2003. [see pages 1, 38]

[Ees15] Erki Eessaar. “On query-based search of possible design flaws of SQL
databases”. In: Innovations and Advances in Computing, Informatics,
Systems Sciences, Networking and Engineering. Springer, 2015, pages 53–
60. [see page 17]

[Eir+14] Magdalini Eirinaki et al. “Querie: Collaborative database exploration”. In:
IEEE TKDE 26.7 (2014).

[see pages 3, 13, 21, 22, 28, 31, 33, 34, 40, 95, 97, 101, 107, 137, 138]

[Est+96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. “A
density-based algorithm for discovering clusters in large spatial databases
with noise.” In: Kdd. Volume 96. 34, pages 226–231. 1996. [see page 77]

[Fow97] Martin Fowler. “Refactoring: Improving the design of existing code”. In:
11th European Conference. Jyväskylä, Finland. 1997. [see pages 1, 17]

[GS09] Asela Gunawardana and Guy Shani. “A survey of accuracy evaluation
metrics of recommendation tasks”. In: MLR 10.Dec (2009). [see page 107]

132



Bibliography

[HBV01] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. “On clustering
validation techniques”. In: Journal of intelligent information systems 17.2-3
(2001), pages 107–145. Springer. [see page 3]

[HBV02] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. “Cluster
validity methods: part I”. In: ACM Sigmod Record 31.2 (2002), pages 40–
45. ACM. [see page 81]

[II08] Aminul Islam and Diana Inkpen. “Semantic text similarity using corpus-
based word similarity and string similarity”. In: ACM Transactions on
Knowledge Discovery from Data (TKDD) 2.2 (2008), page 10. ACM.

[see page 20]

[KA10] Bill Karwin and SQL Antipatterns. “Avoiding the Pitfalls of Database
Programming”. In: The Pragmatic Bookshelf (2010), pages 15–155.

[see page 48]

[KBGM09] Georgia Koutrika, Benjamin Bercovitz, and Hector Garcia-Molina.
“FlexRecs: Expressing and Combining Flexible Recommendations”. In:
Proceedings of the 2009 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’09, pages 745–758. isbn: 978-1-60558-551-2.
Providence, Rhode Island, USA: ACM, 2009. [see pages 32, 34, 107]

[Kho+10] Nodira Khoussainova et al. “SnipSuggest: Context-aware autocompletion
for SQL”. In: VLDBJ 4.1 (2010).

[see pages 3, 5, 8, 16, 21, 28, 33, 34, 40, 102, 107, 138]

[Kul+18] Gokhan Kul, Duc Thanh Anh Luong, Ting Xie, Varun Chandola, Oliver
Kennedy, and Shambhu Upadhyaya. “Similarity metrics for sql query
clustering”. In: IEEE Transactions on Knowledge and Data Engineering
30.12 (2018), pages 2408–2420. IEEE. [see page 78]

[Mat+10] Sunu Mathew, Michalis Petropoulos, Hung Q Ngo, and Shambhu Upad-
hyaya. “A data-centric approach to insider attack detection in database
systems”. In: International Workshop on Recent Advances in Intrusion
Detection, pages 382–401. Springer. 2010. [see page 22]

[Ngu+15] Hoang Vu Nguyen et al. “Identifying User Interests within the Data Space-a
Case Study with SkyServer.” In: EDBT. 2015.

[see pages 3, 4, 7, 16, 23, 24, 28, 57, 58, 66]

[PJ09] Hae-Sang Park and Chi-Hyuck Jun. “A simple and fast algorithm for
K-medoids clustering”. In: Expert systems with applications 36.2 (2009),
pages 3336–3341. Elsevier. [see page 77]

[Rad+14a] M Jordan Raddick, Ani R Thakar, Alexander S Szalay, and Rafael DC
Santos. “Ten years of SkyServer I: Tracking web and SQL e-science usage”.
In: Computing in Science & Engineering 16.4 (2014), pages 22–31. IEEE.

[see page 16]

133



Bibliography

[Rad+14b] M Jordan Raddick, Ani R Thakar, Alexander S Szalay, and Rafael DC
Santos. “Ten years of SkyServer II: How astronomers and the public have
embraced e-science”. In: Computing in Science & Engineering 16.4 (2014),
pages 32–40. IEEE. [see page 16]

[Rou87] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis”. In: Journal of computational and applied
mathematics 20 (1987), pages 53–65. Elsevier. [see page 81]

[RRS11a] Francesco Ricci, Lior Rokach, and Bracha Shapira. “Introduction to rec-
ommender systems handbook”. In: Recommender systems handbook. 2011.

[see pages 5, 29]

[RRS11b] Francesco Ricci, Lior Rokach, and Bracha Shapira. “Introduction to recom-
mender systems handbook”. In: Recommender systems handbook. Springer,
2011, pages 1–35. [see page 107]

[Sak+90] Hiroaki Sakoe et al. “Dynamic programming algorithm optimization for
spoken word recognition”. In: Readings in speech recognition 159 (1990).

[see pages 8, 100]

[SBM96] Michael Stal, Frank Buschmann, and Regine Meunier. Pattern-oriented
Software Architecture—A System of Patterns. 1996. [see page 19]

[SF02] Mikael Sollenborn and Peter Funk. “Category-based filtering and user
stereotype cases to reduce the latency problem in recommender systems”.
In: European Conference on Case-Based Reasoning. 2002. [see page 98]

[Sil+09] Fabrizio Silvestri et al. “Mining query logs: Turning search usage data into
knowledge”. In: Foundations and Trends® in Information Retrieval 4.1–2
(2009), pages 1–174. Now Publishers, Inc.. [see page 15]

[Sin+07] Vik Singh, Jim Gray, Ani Thakar, Alexander S Szalay, Jordan Raddick, Bill
Boroski, Svetlana Lebedeva, and Brian Yanny. “Skyserver traffic report-the
first five years”. In: arXiv preprint cs/0701173 (2007). [see pages 16, 30, 53]

[SW00] Connie U Smith and Lloyd G Williams. “Software performance antipat-
terns.” In: Workshop on Software and Performance. Volume 17, pages 127–
136. Ottawa, Canada. 2000. [see pages 17, 19]

[SW+81] Temple F Smith, Michael S Waterman, et al. “Identification of common
molecular subsequences”. In: Journal of molecular biology 147.1 (1981).

[see pages 8, 34, 100]

[TK11] Catia Trubiani and Anne Koziolek. “Detection and solution of software
performance antipatterns in palladio architectural models”. In: ACM
SIGSOFT Software Engineering Notes 36.5 (2011), pages 36–36. ACM.

[see pages 18, 19]

134



Bibliography

[Wer+14] Alexander Wert, Marius Oehler, Christoph Heger, and Roozbeh Farahbod.
“Automatic detection of performance anti-patterns in inter-component
communications”. In: Proceedings of the 10th international ACM Sigsoft
conference on Quality of software architectures, pages 3–12. ACM. 2014.

[see pages 17–19]

[WMW17] Xiaolan Wang, Alexandra Meliou, and Eugene Wu. “QFix: Diagnosing
errors through query histories”. In: Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, pages 1369–1384. ACM. 2017.

[see pages 15, 18]

[WW07] Silke Wagner and Dorothea Wagner. Comparing clusterings: an overview.
Universität Karlsruhe, Fakultät für Informatik Karlsruhe, 2007.

[see page 81]

[YPS09] Xiaoyan Yang, Cecilia M Procopiuc, and Divesh Srivastava. “Recom-
mending join queries via query log analysis”. In: IEEE ICDE. 2009.

[see pages 16, 32–34, 107]

[ZMJM14] Mohammed J Zaki, Wagner Meira Jr, and Wagner Meira. Data mining
and analysis: fundamental concepts and algorithms. Cambridge University
Press, 2014. [see page 81]

135





List of Notations

Notation Description The first mention
DB A relational database Definition 2.1, page 11
S A database schema Definition 2.2, page 11
T A database state Definition 2.3, page 11
q An SQL query Definition 2.5, page 11
a An attribute a Section 2.1
dom(a) A domain of an attribute a Definition 2.6, page 11
U The universal relation Definition 2.7, page 11

U(q) The universal relation Section 2.2, Definition 2.8,
page 11

P (q) Filtering conditions of a
query q

Section 2.2, Definition 2.9,
page 11

Ints(q) The interest of a query q Section 2.2, Definition 2.10,
page 12

operators(q) The operators of a query q Section 2.2, Definition 2.12,
page 12

operators(q)[ints]
or operators(q)[i]

Operators of the interest
ints

Section 2.2, Definition 2.14,
page 12

P (q)[ints]
or P (q)[i]

Filtering conditions of the
interest

Section 2.2, Definition 2.16,
page 12

usi A user session 2.18

US A query log Section 2.3, Definition 2.19,
page 13

QRS A query representation
scheme

Section 2.4, Definition 2.20,
page 13

QR(q) A query representation of a
query

Section 2.4, Definition 2.21,
page 13

us0 The current user session Section 2.5, Definition 2.23,
page 13

q0
n+1 An unseen query Section 2.5, Definition 2.24,

page 13

nr
A number of recommendations
an SQL recommendation system
should provide

Section 2.5

φj
A feature in DB allowed by
schema S Section 3.3.2

φi

A FB-query from [Eir+14]:
a vector of features
(φi1, . . . ,φ

i
k) whose cell φij

contains a weight if
the feature φj appears in qi

Section 3.3.2

τj A tuple in DB of state T Section 3.3.4

τ i

A WB-query: a vector of
tuples (τ i1, . . . , τ

i
k) whose

cell τ ij represents the
importance of thetuple τj
as a witness for qi

Section 3.3.2

(U,T )P The result set of query q Section 3.3.4
(U\t},T )P t is removed from U Section 3.3.4

σP (q)(U(q)) The access area of a
query q

Section 3.3.4, Definition 3.6,
page 23

137



List of Notations

dtables(q1.FROM,
q2.FROM)

The distance of tables in
q1 and q2

Section 3.3.4, Definition 3.7,
page 24

dconj(b1;b2)

distance of conjunctions
of two queries q1 and q2
with predicates b1 and
b2 (in CNF)

Section 3.3.4, Definition 3.8,
page 24

ddisj(o1;o2) distance of disjunctions,
each oi ∈ bi

Section 3.3.4, Definition 3.9,
page 24

dpred(p1,p2)
distance of two atomic
predicates p1 and p2,
p1 ∈ o1

Section 3.3.4

S(q1, q2) Query similarity Section 3.3
USS(us1,us2) User session similarity Section 3.3

us0

A current user session
(one, we need to have
a prediction for)

Definition 2.23, Section 2.5

Si
A WB or FB summary of
a user session usi

Section 3.4.3.1 or 3.4.3.5

Spred0
The predicted summary
(WB or FB) of us0

Section 3.4.3.1 or 3.4.3.5

USSWB(Si,Si)
WB user session similarity
(Jaccard or cosine
similarity)

Section 3.4.3.1

sφi

FB-query according to
[Kho+10]: a sequence of
features

Section 3.4.3.5

sim(ρ,ψ) Similarity of two features
ρ and ψ Section 3.4.3.5

Fρ

A vector (wρ1 , . . . ,w
ρ
n) of

the presence of feature ρ
in all user sessions
{S1, . . . ,Sn}

Section 3.4.3.5

t
A template of a query q:
a FB query representation
[Eir+14] of q

Section 4.1.1.2, Definition 4.5,
page 40

p
A pattern as a sequence
of query templates
(t1, . . . , tn)

Section 4.1.1.2, Definition 4.3,
page 39

tSELECT
All features of a query q,
which start from fSELECT

Section 4.1.1.2, Definition 4.6,
page 40

tFROM
All features of a query q,
which start from fFROM

Section 4.1.1.2, Definition 4.7,
page 40

tWHERE All features of a query q,
which start from fWHERE

Section 4.1.1.2, Definition 4.8,
page 40

tGROUPBY
All features of a query q,
which start from
fGROUPBY

Section 4.1.1.2, Definition 4.9,
page 40

u = user(q) A user, who has run q Section 4.1.1.3, Definition 4.10,
page 40

time(q) A moment in time, when q
was requested.

Section 4.1.1.3, Definition 4.11,
page 40

(q1, . . . , qn) An instance of a
pattern p = (t1, . . . , tn)

Section 4.1.1.3, Definition 4.12,
page 40

frequency The frequency of a pattern Section 4.1.1.3, Definition 4.13,
page 41

userPopularity The userPopularity of
a pattern

Section 4.1.1.3, Definition 4.14,
page 41

Stifle A Stifle antipattern Section 4.1.2.1, Definition 4.15,
page 42

138



DW-Stifle A DW-Stifle antipattern Section 4.1.2.1, Definition 4.17,
page 42

DS-Stifle A DS-Stifle antipattern Section 4.1.2.1, Definition 4.20,
page 43

DF-Stifle A DF-Stifle antipattern Section 4.1.2.1, Definition 4.23,
page 43

CTH candidate A CTH antipattern
candidate

Section 4.1.2.2, Definition 4.25,
page 44

D(q1, q2)
A distance of q1 and q2
D(q1, q2) ∈ [0;1];
D(q1, q2) = 1−S(q1, q2)

Section 5.1.1

D(q1, q2).a
The distance of two
queries q1, q2 with respect
of Attribute a

Section 5.1.3, Definition 5.3,
page 63

OA An ordinal attribute Section 5.1.3, Definition 5.4,
page 63

NA A nominal attribute Section 5.1.3, Definition 5.5,
page 63

comInts(q1, q2) The common interest of
two queries q1 and q2

Section 5.1.3, Definition 5.6,
page 63

exclInts(q1, q2) The exclusive interest of
two queries q1 and q2

Section 5.1.3, Definition 5.7,
page 63

AOAi

A set of intervals of a
query qi with an
ordinal Attribute a

Section 5.1.3, Definition 5.8,
page 63

width(ai.k) The width of interval aOAi.k
Section 5.1.3, Definition 5.11,
page 64

ANAi
The set of valid values
with a nominal Attribute a

Section 5.1.3, Definition 5.12,
page 64

Scl(q1, q2).a
The similarity of two
queries with the same
attribute

Section 5.1.5.1, Definition 5.14,
page 66

comWidth
(aOA1.1 ,a

OA
2.1 )

The with of an overlap
interval two queries q1 and
q2 with the only occurrence
of an Attribute a have

Section 5.1.5.2, Formula 5.5,
page 68

allWidth
(aOA1.1 ,a

OA
2.1 )

The width of interval
two queries q1 and q2
with the only occurrence
of an Attribute a have

Section 5.1.5.3, Formula 5.6,
page 68

overallComWidth
(a1,a2)

The overall width of
overlap interval two queries
q1 and q2 with an Attribute
a have

Section 5.1.6.1, Formula 5.8,
page 70

overallAllWidth
(a1,a2)

The overall width of
interval two queries q1 and
q2 an Attribute a have

Section 5.1.6.1, Formula 5.9,
page 70

SattrCom(q1, q2)
Similarity for common
interests of queries q1 and
q2

Section 5.1.7.1, Formula 5.11,
page 72

SattrExcl(q1, q2)
Similarity for exclusive
interests of queries q1 and
q2

Section 5.1.7.2, Formula 5.12,
page 73

SattrFull(q1, q2) Overall attribute
similarity

Section 5.1.7.3, Formula 5.13,
page 74

reductCoefftable
Reduction table
coefficient

Section 5.1.8, Formula 5.16,
page 75

TkS CF thick query similarity,
no fitting (TkS) Section 6.1.2

139



List of Notations

TnS CF thin query similarity,
thick sitting (TnS) Section 6.1.3

us1
The user session we
compare us0 to Section 6.1.2.2

|us0|= n+ 1 The length of us0 Section 6.1.2.2
|us1|= m+ 1 The length of us1 Section 6.1.2.2
q0
n+1 An unseen query Section 6.1.2.2

q1
m+1

A possible prediction for
q0
n+1

Section 6.1.2.2

USSflat(us0,us1) Flat user session
similarity

Section 6.1.2.2, Formula 6.1,
page 100

USSGP(us0,us1) Geometric progression
user session similarity

Section 6.1.2.2, Formula 6.2,
page 100

USSOLQ(us0,us1) "Only last query"
user session similarity

Section 6.1.2.2, Formula 6.3,
page 100

SWA The Smith-Waterman
algorithm Section 6.1.2.2

DTW Dynamic time warping
algorithm Section 6.1.2.2

USSunord(us0,us1) Unordered user
session similarity

Section 6.1.2.2, Formula 6.4,
page 101

FB QueRIE TR FB QueRIE
recommendation Section 6.1.3.1

GBTR Graph-based template
recommendation Section 6.1.3.1

GoT Graph of templates Section 6.1.3.1, Formula 6.2,
page 102

weigth(ti, tj)

The weight of an arrow
indicates the probability
of having tj immediately
after ti in a query log US

Section 6.1.3.1

tswp

A set of template
sequences (patterns)
with corresponding
probabilities

Section 6.1.3.1

qri A recommended query Section 6.1.3.2

Fitting((q1, q2), q0
n) The fitting procedure Section 6.1.3.2, Algorithm 6.4,

page 104

a′ A related attribute Section 6.1.3.2, Definition 6.3,
page 103

arshift
The shift of an interval
in qri for an attribute a Section 6.1.3.2

width(ari)
The width of an interval
in qri for an attribute a Section 6.1.3.2

P Precision Section 6.2.3
R Recall Section 6.2.3

PWB WB precision Section 6.2.3.1, Formula 6.10,
page 109

RWB WB recall Section 6.2.3.1, Formula 6.10,
page 109

PAABovl.a
OA AABovl precision for

an OA a
Section 6.2.3.1, Formula 6.12,
page 109

RAABovl.a
OA AABovl recall for

an OA a
Section 6.2.3.1, Formula 6.13,
page 109

PAABovl.a
NA AABovl precision for

a NA a
Section 6.2.3.1, Formula 6.14,
page 109

RAABovl.a
NA AABovl recall for

a NA a
Section 6.2.3.1, Formula 6.15,
page 109

PAABcl.a
OA AABcl precision for

an OA a
Section 6.2.3.1, Formula 6.16,
page 110

RAABcl.a
OA AABcl recall for

a OA a
Section 6.2.3.1, Formula 6.17,
page 110

140



PattrFull(qU , qR)
AAB precision for all
attributes in the filtering
conditions of qU and qR

Section 6.2.3.1, Formula 6.18,
page 110

PattrCom(qU , qR)

AAB precision for
common attributes in the
filtering conditions
of qU and qR

Section 6.2.3.1, Formula 6.17,
page 110

PattrExcl(qU , qR)

AAB precision for
exclusive attributes in
the filtering conditions
of qU and qR

Section 6.2.3.1, Formula 6.20,
page 110

RattrFull(qU , qR)
AAB recall for all
attributes in the filtering
conditions of qU and qR

Section 6.2.3.1, Formula 6.22,
page 110

RattrCom(qU , qR)

AAB recall for
common attributes in the
filtering conditions
of qU and qR

Section 6.2.3.1, Formula 6.23,
page 110

RattrExcl(qU , qR)

AAB recall for
exclusive attributes in
the filtering conditions
of qU and qR

Section 6.2.3.1, Formula 6.24,
page 110

P (qU , qR) AAB precision Section 6.2.3.1, Formula 6.21,
page 110

R(qU , qR) AAB recall Section 6.2.3.1, Formula 6.25,
page 110

ρs The Spearman correlation Section 6.2.4.2

141





Curriculum Vitae

Personal Data
Birth on 18th of January, 1989 in Cheboksary, Russia

Nationality Russian

University Education
2013-2019 PhD student in computer science at the Karlsruhe Institute of Technology in the

research group for Program Structures and Data Organisation of
Prof. Dr. Klemens Böhm

2005-2010 Master diploma of computer science at Chuvash State University (Cheboksary,
Russia).

143





List of Publications

In Journal Proceedings
Natalia Arzamasova, Martin Schäler, and Klemens Böhm. “Cleaning antipatterns in an SQL query log”.
In: IEEE Transactions on Knowledge and Data Engineering 30.3 (2018), pages 421–434. IEEE

Natalia Arzamasova, Klemens Böhm, Bertrand Goldman, Christian Saaler, and Martin Schäler. “On
the Usefulness of SQL-Query-Similarity Measures to Find User Interests”. In: IEEE Transactions on
Knowledge and Data Engineering (2019). IEEE

Natalia Arzamasova and Klemens Böhm. “Scalable and data-aware SQL query recommendations”

145


	Table of Contents
	1 Introduction
	1.1 Cleaning SQL query log as general pre-processing step
	1.1.1 The influence of SQL query log cleaning to finding user interests via clustering
	1.1.2 The influence of SQL query log cleaning to SQL query recommendations

	1.2 Identifying User Interests via clustering
	1.3 SQL Query Recommendation
	1.4 Main Contributions
	1.5 Outline

	2 Preliminaries
	2.1 Common Definitions
	2.2 SQL Query
	2.3 SQL Query Log
	2.4 SQL Query Representations
	2.5 SQL query recommendations

	3 Related Work
	3.1 General SQL Query Log Analysis
	3.2 Review of Database Antipatterns
	3.2.1 Stifle Antipattern
	3.2.2 Circuitous Treasure Hunt (CTH)

	3.3 SQL Query Representations and Similarity Functions
	3.3.1 Query as a String
	3.3.2 Query as Features
	3.3.3 Query as Result Tuples
	3.3.4 Query as an Access Area
	3.3.5 Summary

	3.4 Recommender systems and their Application to SQL QRS
	3.4.1 "Classical" Recommender Systems (RSs)
	3.4.2 SQL Query Recommendations – Applying Conventional Approaches
	3.4.3 An Overview of SQL QRS
	3.4.4 Resume


	4 Cleaning Antipatterns in an SQL Query Log
	4.1 Patterns and antipatterns: formal definitions, detection rules and solving solutions
	4.1.1 Definitions for a Database Pattern
	4.1.2 Definitions for Antipatterns

	4.2 Implementation of Solving Antipatterns in an SQL Query Log
	4.2.1 Original Query Log
	4.2.2 Deleting Duplicates
	4.2.3 Parsing Statements and Parsed Query Log
	4.2.4 Query Templates and Patterns
	4.2.5 Solving Antipatterns, Clean Query Log and Statistics

	4.3 A case Study With SkyServer
	4.3.1 Appropriateness of the SkyServer Log for a Case Study
	4.3.2 Choosing the Duplicate Time Threshold
	4.3.3 General Results
	4.3.4 Effects of SQL Log Cleaning
	4.3.5 Interpretation of Patterns
	4.3.6 CTH Detection
	4.3.7 Feedback from Domain Experts
	4.3.8 Effects on Downstream Analysis

	4.4 Conclusions

	5 SQL-Query-Similarity Measures
	5.1 Our AAB similarity functions
	5.1.1 Requirements to an SQL query similarity function
	5.1.2 Requirements to an SQL query
	5.1.3 Definitions
	5.1.4 Corner cases of SQL query similarity
	5.1.5 The simplest case: two approaches of AAB similarities.
	5.1.6 Multiple Occurrences of an Attribute in Filtering Conditions
	5.1.7 Several Distinct Attributes in Filtering Conditions
	5.1.8 Similarity in the Presence of Joins
	5.1.9 The Overall AAB Similarity Function
	5.1.10 Discussion

	5.2 Experimental evaluation
	5.2.1 Experiment Settings
	5.2.2 The Data Sets
	5.2.3 Evaluation Techniques
	5.2.4 Implementation
	5.2.5 Experiments with Supervision
	5.2.6 Experiments with SkyServer

	5.3 Conclusions

	6 Scalable and Data-Aware SQL Query Recommendations
	6.1 Our Approaches
	6.1.1 DASQR CF (Collaborative Filtering)
	6.1.2 Thick Query Similarity, no Fitting (TkS)
	6.1.3 Thin Query Similarity, thick Fitting (TnS)
	6.1.4 DASQR CB (Content-Based)
	6.1.5 Hybrid Approaches
	6.1.6 Summary

	6.2 Experiments
	6.2.1 Experiment Setup
	6.2.2 Evaluation Protocol
	6.2.3 Evaluation Metrics
	6.2.4 Experimental Evaluation
	6.2.5 Discussion

	6.3 Conclusions

	7 Conclusion
	Appendix
	List of Algorithms
	List of Figures
	List of Tables
	List of Theorems
	Bibliography
	List of Notations
	Curriculum Vitae
	List of Publications


