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Abstract

Up to this day, general relativity is widely accepted as the relevant theory of classical gravity
and has been well tested by many experiments. Despite this success, general relativity does
not provide answers to many remaining open questions related to gravity. The ultimate fate
of apparent spacetime singularities is one of these open questions.

Possible solutions to spacetime singularities are reviewed in this thesis. For these particular
solutions, singularities are replaced by spacetime defects: the black hole singularity is replaced
by a space defect and the big bang singularity is replaced by a time defect.

In this thesis, we investigate certain effects which the spacetime defects could produce. We
calculate the geodesics of the spacetime defects. For the space defect, we discuss its lensing
properties and the corresponding image formation. For the time defect, we investigate the
corresponding nonsingular bouncing cosmology. We also present some possible observable
effects related to these spacetime defects.

Zusammenfassung

Bis zum heutigen Tag ist die allgemeine Relativitätstheorie weithin als die relevante Theorie
der Gravitation anerkannt und wurde durch viele Experimente bestätigt. Trotz dieses Er-
folges liefert die allgemeine Relativitätstheorie keine Antwort auf viele offene Fragen, die mit
Gravitation zusammenhängen. Das endgültige Schicksal scheinbarer Raumzeit-Singularitäten
ist eine dieser offenen Fragen.

Mögliche Lösungen für Raumzeit-Singularitäten werden in dieser Arbeit diskutiert. In diesen
speziellen Lösungen werden Singularitäten durch Raumzeitdefekte ersetzt: Die Singularität
des Schwarzen Loches wird durch einen Raumdefekt und die Urknall-Singularität wird durch
einen Zeitdefekt ersetzt.

In dieser Arbeit untersuchen wir bestimmte Effekte, die Raumzeitdefekte verursachen kön-
nten. Wir berechnen die Geodäten der Raumzeitdefekte. Für den Raumdefekt diskutieren
wir seine Linseneigenschaften und die entsprechende Bilderzeugung. Für den Zeitdefekt un-
tersuchen wir die entsprechende nicht singuläre prallende Kosmologie. Wir präsentieren auch
einige mögliche beobachtbare Effekte im Zusammenhang mit den Raumzeitdefekten.
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Conventions

In this thesis, we work in reduced-Planckian units with G = c = ~ = 1, where G is Newton’s
gravitational constant, c the speed of light in vacuum and ~ the reduced Planck constant.

In what follows, we consider a four-dimensional spacetime manifold with the metric gµν . We
use metric signature (−, +, +, +). The covariant derivative operator is the one compatible
with the metric tensor, i.e., ∇ρ gµν = 0. The affine connection is given by the following
(torsion-free) Christoffel symbol:

Γλµν =
1

2
gλρ
(
∂gνρ
∂xµ

+
∂gµρ
∂xν

− ∂gµν
∂xρ

)
, (0.1)

where repeated indices are summed over.

The Riemann curvature tensor is

R σ
µνρ =

∂

∂xν
Γσµρ −

∂

∂xµ
Γσνρ + Γαµρ Γσαν − Γανρ Γσαµ . (0.2)

With our conventions, the Einstein field equation (without cosmological constant) is given by

Rµν −
1

2
Rgµν = 8π Tµν , (0.3)

where Tµν is the energy-momentum tensor of matter field.
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CHAPTER 1

Introduction

It was argued by Wheeler [1] that spacetime over small length scales could have large fluc-
tuations of the metric. The resulting large metric fluctuations might lead to a topological
change of spacetime [1,2]. These results suggest a foam-like structure of spacetime [1, 3–5].

In Ref. [6], a simple model of a classical spacetime foam was considered, which consists of
identical static defects embedded in Minkowski spacetime. One type of defect discussed in
Ref. [6] is obtained by removing the interior of a ball from R3 and identifying antipodal points
on its boundary. Several investigations on this particular defect of spacetime have been carried
out [7–9]. Interestingly, it has been shown in Ref. [7] that the black hole singularity can be
removed if we consider the Einstein field equations over the particular defect of spacetime.
Recently, the big bang singularity has also been removed [10] by a procedure similar to the
regularization of the black hole singularity but with a different spacetime defect.

The main goal of this thesis is to review these two kinds of spacetime defects [7,8,10] and to
investigate certain novel effects that these defects produce [11–13].

In Chapter 2, we will review two physical singularities in general relativity: the black hole and
the big bang singularities. The black hole singularity appears in the extended Schwarzschild
solution, and the big bang singularity appears in the Friedmann solution for a homogeneous
and isotropic universe. Singularity theorems will also be briefly reviewed in this chapter.

In Chapter 3, a nontrivial topological structure of spacetime will be discussed. Specifically,
we will consider a defect in 3-space aimed at regularizing the black hole singularity in general
relativity. This particular spacetime defect will lead to a new type of gravitational lensing
and may prevent a black hole from complete evaporation.

In Chapter 4, we will consider a defect in time. This defect replaces the singular Friedmann–
Lemâıtre–Robertson–Walker (FLRW) universe by a nonsingular bouncing universe, i.e., a
universe which goes from a contraction phase to an expansion phase with a nonvanishing
cosmic scale factor at the moment of the bounce. Geodesics and the modified Hubble diagrams
of the nonsingular bouncing universe will be presented in this chapter. Then, we will consider
cosmological perturbations of the nonsingular bouncing cosmology. Specifically, we will check
that the bounce is stable under small perturbations of the metric and matter. Lastly, we
will consider a particular nonsingular bouncing universe that could lead to a scale-invariant
power spectrum of cosmological perturbations.



2 1. Introduction

In Chapter 5, we present the conclusions of our work, as well as an outlook over possible
future work.

The original work of this thesis appears in Sec. 3.1.2, in Sec. 3.2, in part of Sec. 4.2.2, in
Sec. 4.2.3, and in part of Sec. 4.3.



CHAPTER 2

Singularities in General Relativity

General relativity (GR), proposed by Albert Einstein in 1915, is a (classical) theory of gravity.
It has been well tested by many experiments, e.g., perihelion precession of Mercury, deflection
of light by the Sun, gravitational redshift of light, binary pulsars, gravitational lensing [14],
and detection of gravitational waves [15]. Although general relativity has achieved great
success, many problems remain unsolved. For instance, we do not know what dark energy(ies)
is (are), what dark matter is made of, what is at the center of a black hole, and what happened
at the beginning of the Universe (if it has a beginning). The last two problems listed above
may be related to the black hole singularity and the big bang singularity.

2.1. Black hole singularity

2.1.1. Schwarzschild solution

In 1916, Karl Schwarzschild [16] found a solution of the vacuum Einstein equation for a static,
spherically symmetric spacetime. The Schwarzshild solution can be written as follows:

ds2
∣∣∣Schwarzschild metric

= −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) , (2.1a)

t ∈ R , (2.1b)

r ∈ (0,+∞) , (2.1c)

θ ∈ [0, π] , (2.1d)

φ ∈ [0, 2π) . (2.1e)

M in (2.1a) is a free parameter, and it can be interpreted as the total mass of the Schwarzschild
field.

From the Schwarzschild solution (2.1), we can see that the metric components become singular
at both r = 2M and r = 0. r = 2M corresponds to a coordinate singularity, which can be
removed by doing a proper coordinate transformation (see Sec. 2.1.2.) However r = 0 is a
spacetime singularity, which is a true singularity with divergent physical quantities [17] (see
Sec. 2.1.3).
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2.1.2. Extended Schwarzschild–Kruskal–Szekeres solution

The extended Schwarzschild–Kruskal–Szekeres (SKS) solution has a metric given by [18,19]

ds2
∣∣∣SKS metric

=
32M3e−r/(2M)

r
(−dv2 + du2) + r2(dθ2 + sin2 θdφ2) , (2.2a)

u ∈ R , (2.2b)

v ∈ R , (2.2c)

θ ∈ [0, π] , (2.2d)

φ ∈ [0, 2π) . (2.2e)

The relation between the coordinates (r, t) and the coordinates (u, v) is as follows:1( r

2M
− 1
)
e

r
2M = u2 − v2 , (2.3a)

t

2M
= ln(

u+ v

u− v
) . (2.3b)

Notice that u and v need to satisfy

u2 − v2 > −1 , (2.4)

which is required by r > 0.

The extended Schwarzschild–Kruskal–Szekeres solution (2.2a) is well defined at r = 2M
(u = 0 or v = 0), so the coordinate singularity appearing in Schwarzschild solution no longer
exists here. However, the spacetime singularity at r = 0 still remains in the Schwarzschild–
Kruskal–Szekeres solution.

2.1.3. Black hole singularity

The Kretschmann scalar 2 (defined in terms of the Riemann curvature tensor) is given by

K ≡ RµνρσRµνρσ , (2.5)

and for the Schwarzshild solution,

K
∣∣∣
SKS

= 48
M2

r6
, (2.6)

which is divergent as r → 0.

2.2. Big bang singularity

2.2.1. Robertson-Walker metric

In standard cosmology, a spatially homogeneous and isotropic universe is described by the
so-called Robertson–Walker (RW) metric:3

1Notice that the new coordinates in the SKS metric are usually denoted by (T,X) instead of (u, v) in the
literature. We use (u, v) here, as (T,X) will be used in the coming chapters.

2The Ricci tensor and Ricci scalar vanish identically for the Schwarzshild solution.
3Sometimes the metric (2.7) is also called the Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric.
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ds2
∣∣∣RW

= −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.7)

which can be written in the following form:

ds2
∣∣∣RW

= −dt2 + a2(t)


[dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)] , k = 1

[dψ2 + ψ2(dθ2 + sin2 θdφ2)] , k = 0

[dψ2 + sinh2 ψ(dθ2 + sin2 θdφ2)] , k = −1

, (2.8)

with

r =


sinψ , k = 1

ψ , k = 0

sinhψ , k = −1

. (2.9)

The function a(t) is the cosmic scale factor. It is dimensionless for k = 0, and it has the
dimensions of length for k = ±1. The different values of k in the RW metric correspond to
different spatial geometries: k = 1 for a three-dimensional sphere; k = 0 for three-dimensional
flat space; k = −1 for a three-dimensional hyperboloid. Note that for k = 1, the universe is
“closed”, i.e., it has a finite volume at any time but has no boundary [20].

In this thesis, we will only consider the spatially flat universe (k = 0).

2.2.2. Standard FLRW universe

As far as we know, the main content of our universe can be described by one or more perfect
fluids. (In the ΛCDM model, which is known as the standard model of big bang cosmology,
the three major components of our universe are: the cosmological constant, cold dark matter,
and ordinary matter. All of these can be viewed as perfect fluids.)

The energy-momentum tensor for a homogeneous perfect fluid (with energy density ρ and
pressure P ) reads

Tµν = ρUµUν + P (gµν + UµUν) , (2.10)

where Uµ is the four-velocity vector.

The dynamical evolution of a homogeneous and isotropic universe can be obtained from the
Einstein equation, together with the RW metric. For a spatially flat universe (k = 0), the
0− 0 component of the Einstein equation gives

1

a2(t)

(
da(t)

dt

)2

=
8π

3
ρ(t) , (2.11)

which is known as the Friedmann equation [21]. The i−j components of the Einstein equation
reduce to

1

a(t)

d2a(t)

dt2
+

1

2

(
1

a(t)

da(t)

dt

)2

= −4π P (t) . (2.12)

Standard radiation-dominated universe

For a radiation-dominated universe, we have the equation-of-state parameter

w ≡ P (t)

ρ(t)
=

1

3
. (2.13)



6 2. Singularities in General Relativity

From (2.11) and (2.12), we get the solution of a(t) and ρ(t) for a radiation-dominated universe:

a(t) =

√
t

t0
, (2.14)

ρ = ρ0
1

t2
, (2.15)

where the cosmic scale factor a(t) has been normalized to 1 at a given time t = t0 > 0 and
where the boundary condition is ρ(t0) = ρ0 > 0.

Standard matter-dominated universe

For a matter-dominated universe, we have

w = 0 . (2.16)

The solution of a(t) and ρ(t) is given by:

a(t) = 3

√
t2

t20
, (2.17)

ρ = ρ0
1

t2
, (2.18)

with normalization a(t0) = 1 at t = t0 > 0 and boundary condition ρ(t0) = ρ0 > 0.

2.2.3. Big bang singularity

For both the radiation- and matter-dominated universe, we have

lim
t→0+

a(t) = 0 , (2.19)

i.e., the distance between all space points at t = 0 is zero.

Moreover, physical quantities are divergent at t = 0. For example, the Ricci curvature scalar
and energy density for the matter-dominated universe are given by

R ∝ 1

t2
, (2.20a)

ρ ∝ 1

t2
, (2.20b)

which are divergent at t = 0. So, t = 0 is referred to as the big bang singularity.

2.3. Singularity theorems

There are several singularity theorems in general relativity [17,22–25]. These theorems suggest
that the black hole and big bang singularities as discussed in Sec. 2.1 and Sec. 2.2, are quite
general in general relativity if some standard conditions are assumed.

In this thesis, we will consider defects in space and time that may circumvent the singularity
theorems. In particular, we will focus on the theorem that relates to the big bang singularity
and show how a defect in time may circumvent the singularity theorem. (In principle, we
are able to “see” the big bang singularity but not the black hole singularity, as the black hole
singularity is, in general, inside an event horizon.) The singularity theorems in a spacetime
with nontrivial topology (related to the black hole singularity) have already been discussed
in Refs. [26, 27], so we will only give a brief discussion in Chapter 3.

Before stating the singularity theorems, we first briefly introduce some definitions and equa-
tions.
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2.3.1. Raychaudhuri’s equation

Consider a spacetime manifold (M, gµν) and an open subset O ⊂ M . A congruence in O
is a family of curves such that through each point p ∈ O there passes only one curve of
this family [17]. Let ξµ be the four-velocity vector field which is tangent to a congruence of
timelike geodesics. We can define the following “spatial” tensor field [17]

Bµν = ∇νξµ , (2.21)

and “spatial” metric
hµν = gµν + ξµξν . (2.22)

With (2.21) and (2.22), we can define the expansion θ, the shear σµν and the twist ωµν as
follows

θ = Bµνhµν , (2.23a)

σµν =
1

2
(Bµν +Bνµ)− 1

3
θ hµν , (2.23b)

ωµν =
1

2
(Bµν −Bνµ) . (2.23c)

With (2.23), Bµν can be written as

Bµν =
1

3
θ hµν + σµν + ωµν . (2.24)

The change of Bµν along each geodesic is given by [17],

ξρ∇ρBµν = −Bρ
ν Bµρ +R α

ρνµ ξρ ξα . (2.25)

Contracting the µ , ν indices of (2.25) gives

ξρ∇ρθ =
dθ

dτ
= −1

3
θ2 − σµνσµν + ωµνω

µν −Rµνξµξν , (2.26)

where τ is the proper time of the geodesic in the congruence. Equation (2.26) is known as
the Raychaughuri equation [17,28].

For the case
ωµν = 0 , (2.27)

and the assumption
Rµν ξ

µξν = 0 , (2.28)

(2.26) reduces to
dθ

dτ
+

1

3
θ2 5 0 , (2.29)

which gives [17]

θ−1(τ) = θ−1
0 +

1

3
τ , (2.30)

with θ0 = θ(0).

To get (2.29), we have used
− σµνσµν 5 0 , (2.31)

as the σµν are purely spatial. With the Einstein equation, assumption (2.28) is equivalent
to [17]

Tµν ξ
µξν = −1

2
gµνTµν , (2.32)
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with Tµν being the energy-momentum tensor for matter. Equation (2.32) is known as the
strong energy condition.

Note that if the congruence is initially converging, i.e., θ0 < 0 in (2.30), we have θ(τ)→ −∞
within a proper time τ 5 3/|θ0|. The singularity in θ plays an important role in the proofs
of the singularity theorems [17, 29]. In Sec. 4.2.3, we will show explicitly that θ is divergent
at the big bang singularity for the standard FLRW universe.

For a spacetime manifold (M, gµν), an edgeless spacelike hypersurface Σ is a Cauchy surface
if every causal curve (timelike or lightlike curve) in M intersects Σ. A spacetime (M, gµν) is
globally hyperbolic if it has a Cauchy surface [17].

If ξµ in (2.21) is (locally) orthogonal to a spacelike hypersurface Σ, the extrinsic curvature of
Σ is given by

Kµν = ∇µξν = Bνµ . (2.33)

In this case, it can be proved that the expansion of the geodesic congruence is equal to the
trace of the extrinsic curvature [17],

θ = K ≡ hµνKµν . (2.34)

Conjugate points

Consider a geodesic γ, ηµ is called a Jacobi field on γ if it satisfies the following geodesic
deviation equation [17]

vµ∇µ(vν∇νηρ) = −R ρ
µνα ηνvµvα , (2.35)

where vµ is the tangent vector along the geodesic γ.

For two points p, q ∈ γ, if there exists a Jacobi field ηµ (not identically zero) vanishing at p
and q,

ηµ(p) = ηµ(q) = 0 , (2.36)

then p and q are conjugate.

For a spacetime manifold, a necessary condition for a timelike geodesic being a local maximum
length curve between two points p and q is that no point on the geodesic (between p and q)
is conjugate to p or q (see Ref. [17] for a proof of this statement.)

For later discussion, we introduce the definition of a point p being conjugate to a surface
Σ [17]: given a geodesic γ that belongs to a timelike geodesic congruence orthogonal to Σ, a
point p (on γ) is conjugate to Σ if there exists a Jacobi field of the congruence that is nonzero
on Σ but zero at p.

It can be proven [17] that the sufficient and necessary condition for a point p to be conjugate
to Σ is that the expansion of the conjugate must go to −∞ at p,

θ(p)→ −∞ . (2.37)

With this observation, we can make the following remark (Proposition 9.3.4 in Ref. [17]):

Remark 1. Let (M, gµν) be a spacetime with Rµν ξ
µξν = 0 for all timelike ξµ. Let Σ be a

spacelike hypersurface with K = θ < 0 at a point q ∈ Σ. Then with proper time τ 5 3/|K|
there exists a point p conjugate to Σ along the geodesic γ orthogonal to Σ and passing through
q, assuming that γ can be extended that far.

For a spacetime manifold, a necessary condition for a timelike geodesic γ to be a local maxi-
mum length curve between point p and spacelike hypersurface Σ is that γ must be a geodesic
orthogonal to Σ and no point on γ (between p and Σ) can be conjugate to Σ.
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2.3.2. Singularity theorems

Now, we introduce the following singularity theorem relevant to cosmology (Theorem 9.5.1
in Ref [17]).

Theorem 1. Let (M, gµν) be a globally hyperbolic spacetime with Rµν ξ
µξν = 0 for all timelike

ξµ. Suppose that there exists a smooth spacelike Cauchy surface Σ for which the trace of the
extrinsic curvature (for the past-directed normal geodesic congruence) satisfies K 5 C < 0
(with a constant C) everywhere. Then no past-directed timelike curve from Σ can have length
greater than 3/|C|. In particular, all past directed timelike geodesics are incomplete.

A quick proof of Theorem 1 runs as follows:

Suppose that a past-directed timelike curve λ from Σ can have a length greater than 2/|C|.
For a point p lying beyond length 1/|C| from Σ, we can have a maximum length curve γ
between the point p and the Cauchy surface Σ. Then, on the one hand, γ must be a geodesic
orthogonal to Σ with no point conjugate to Σ between p and Σ. On the other hand, we know
from Remark 1 that there exists a point on γ that conjugates to Σ. These two conclusions
are contradictory, so the curve λ cannot exist, which finalizes the proof of Theorem 1

A rigorous proof of Theorem 1 and a more generalized theorem can be found in Ref. [17].

The timelike geodesic incompleteness could reveal the existence of a singularity. In Chapter 4,
we will give some more details on how Theorem 1 predicts the big bang singularity in the
standard FLRW universe, and we will also show how nonsingular bouncing cosmologies may
circumvent this singularity theorem.

Penrose’s singularity theorem and Gannon’s singularity theorem

The first singularity theorem in GR was proposed by Penrose in 1965 [22]. This theorem is
relevant to gravitational collapse. It shows geodesic incompleteness for a spacetime that is
globally hyperbolic with a noncompact Cauchy surface, has a trapped surface, and satisfies
Rµνk

µkν for all null vector kµ.

In 1970, Hawking and Penrose [24] generalized this theorem to a more general spacetime.
Five years later, Gannon [30] strengthened the theorem of Hawking and Penrose by showing
that a non-simply connected spacetime could also develop a singularity.





CHAPTER 3

Nontrivial topological structure of spacetime

3.1. Nontrivial topological structure of spacetime

3.1.1. Regularized black hole solution (brief review)

In this section, we will introduce a possible regularization of the Schwarzschild solution, which
was first proposed in Ref. [7]. The basic idea of this regularization is to properly “remove” a
small region at the singularity (r = 0) in Schwarzschild spacetime.

Instead of the manifold R4, we will consider a noncompact, orientable, non-simply connected
manifoldM = R×M3 in this section. To constructM3, we consider first a three-dimensional
Euclidean space, remove the interior of a ball with radius b, then identify antipodal points
on the defect surface (two-sphere with radius b) of the ball. The first step is to remove the
potential singular point in the final manifold, and the second step is to remove the boundary.

Actually, M3 has the topology:

M3 ' RP 3 − point , (3.1)

with RP 3 the three-dimensional real projective plane.4 Also, the defect surface has the
topology S2/Z ∼ RP 2.

Because of the nontrivial spatial topology, it is impossible to cover the manifold by using
only one chart. As suggested in [7], a relatively simple coordinate system is to use three
overlapping charts. In this thesis, we will focus on the chart-2 coordinates. The results
and discussions based on the chart-2 coordinates are general and also hold in the other two
coordinate systems.

Next, we will show a solution to the Einstein equation over the manifold M.

4Note that RP 3 is topologically equivalent to a three-sphere with antipodal points identified.
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The general spherically symmetric Ansatz for the metric over manifold M is given by the
following line element [7, 8]:

ds2
∣∣∣
chart-2

= −M(W ) (dT )2 +N(W ) (dY )2 +W
[
(dZ)2 + sin2 Z (dX)2

]
, (3.2a)

W ≡ b2 + Y 2 , (3.2b)

M(W ) ≡
[
µ(W )

]2
, (3.2c)

N(W ) ≡ (1− b2/W )
[
σ(W )

]2
, (3.2d)

where b > 0 corresponds to the defect length scale and Y = 0 gives the position of the
defect surface. The functions µ(M) and σ(W ) are determined by the field equations and the
boundary conditions. Note that we only show the chart-2 coordinates. The chart-2 spatial
coordinates have the following ranges:

X ∈ (0, π) , (3.3a)

Y ∈ (−∞,∞) , (3.3b)

Z ∈ (0, π) , (3.3c)

where X and Z are angular coordinates and Y is a quasi-radial coordinate.

Considering the vacuum Einstein equation and the metric Ansatz (3.2), the nonsingular black
hole solution has been obtained in Ref. [7] and can be written as follows:

ds2
∣∣∣Schwarzschild form

chart-2
= −

(
1− 2M√

b2 + Y 2

)
dT 2 +

(
1− 2M√

b2 + Y 2

)−1 Y 2

b2 + Y 2
dY 2

+ (b2 + Y 2)
(
dZ2 + sin2 ZdX2

)
,

(3.4)

with parameters
2M > b > 0 . (3.5)

Notice that the metric (3.4) takes precisely the same form as the standard Schwarzshild metric
if Y 2 + b2 and r2 are identified.

In a similar way as for the Schwarzschild solution, the coordinate singularity in metric (3.4)
can be removed by introducing Kruskal-Szekeres-type coordinates.

The Kretschmann scalar for the metric(3.4) is given by

K = 48
M2

ζ6
, (3.6)

with ζ ≡
√
b2 + Y 2. For a nonvanishing b, it is clear that the Kretschmann scalar remains

finite at Y = 0. The black hole singularity that appears in the Schwarzschild metric no longer
exists in the metric (3.4). The degenerate metric with nontrivial topology is the key to evade
the singularity theorem; cf. Sec. 3.1.5 in Ref. [27]. As a matter of fact, there exist certain
geodesics that are ambiguous, i.e., they cannot be extended uniquely (we will show this in
detail in Sec. 3.2).

3.1.2. Massive remnant from regularized black hole

As mentioned before, the metric (3.4) takes precisely the same form as the standard Schwarzschild
metric if Y 2 + b2 and r2 are identified. With this observation, the derivation of Hawking ra-
diation [31–33] is expected to be valid for the regularized black hole solution.
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The event horizon of the regularized black hole is

YH ≡
√

4M2 − b2 . (3.7)

Considering the region outside the event horizon, in the metric (3.4), we can introduce a new
coordinate Ỹ , which measures proper distance from the event horizon. This new coordinate
is defined as follows:

Ỹ ≡
∫ Y

YH

√
gY Y (Y ′)dY ′

=
[√

ζ(ζ − 2M) +M ln
(√

ζ(ζ − 2M) + ζ −M
)] ∣∣∣∣∣

ζ

2M

. (3.8)

Near the event horizon, we have

Ỹ ≈ 2
√

2M(ζ − 2M) . (3.9)

With (3.9), we can have the following line element near the horizon

ds2
∣∣∣Near horizon

chart-2
' − Ỹ 2

16M2
dT 2 + dỸ 2 + ζ2(dZ2 + sin2 ZdX2) , (3.10)

where we have used the approximation

1− 2M

ζ
'

(
Ỹ

4M

)2

(3.11)

for Ỹ � 4M .

Recall that the angular coordinates can be written as Cartesian coordinates locally. For
example, near (Z,X) = (π/2, π/2), we have

ds2
S2 = ζ2(dZ2 + sin2 ZdX2)

= ζ2(dZ̃2 + cos2 Z̃dX̃2)

= ζ2
(
dZ̃2 + [1 + O(Z̃2)]dX̃2

)
' dζ2

1 + dζ2
2 , (3.12)

where

Z̃ = Z − π

2
, (3.13)

X̃ = X − π

2
, (3.14)

ζ1 = ζZ̃ , (3.15)

ζ2 = ζX̃ . (3.16)

Using (3.12) and taking into account that ζ ' 2M near the event horizon, the metric (3.10)
takes the following form:

ds2
∣∣∣Local, near horizon

chart-2
' −Ỹ 2dω2 + dỸ 2 + dζ2

1 + dζ2
2 , (3.17)
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with

ω =
T

4M
. (3.18)

In fact, (3.17) gives the so-called Rindler coordinates [33]. The Unruh temperature given in
terms of Rindler coordinates is

TU =
1

2πỸ
, (3.19)

from which we can get the Hawking temperature

TH = lim
Ỹ→0, Y ′→YH, Y→+∞

TU

√
1− 2M√

b2+Y ′2√
1− 2M

b2+Y 2

=
1

8πM
. (3.20)

Notice that √
1− 2M√

b2+Y ′2√
1− 2M

b2+Y 2

in (3.20) is the gravitational redshift factor.

So, for the nonsingular black hole, the Hawking temperature takes the same value as the
one for the standard (singular) black hole. However, something different will happen if we
consider the evaporations of singular and nonsingular black holes.

First, let us review the standard (singular) black hole evaporation process. Consider the
Hawking radiation of a Schwarzschild black hole with an initial mass M0. The black hole
will lose mass by the negative energy flux going into the event horizon, and the horizon will
shrink. It is expected [17] that the black hole will totally disappear at the end of this process.

However, the nonsingular black hole evaporation may give a different picture.

Consider a nonsingular black hole with initial mass M0 and constant nonvanishing length
defect scale b. The black hole will lose mass through Hawking radiation and the horizon will
shrink. Assuming that the mass of the black hole decreases continuously, the nonsingular
black hole will cease to shrink when its mass is equal to b/2. The reason for this is as follows.

As the mass goes to b/2, i.e.,

M(T )→ b

2
, (3.21)

the horizon YH will approach the defect surface, i.e.,

YH ≡
√

4M2 − b2 → 0. (3.22)

If M < b/2, there will be no event horizon in (3.4) and the “black hole” will no longer lose
mass by Hawking radiation.

Hence, the defect may prevent a black hole from complete evaporation and give a remnant
with mass Mre = b/2. A black hole remnant with positive gravitational mass may be of
interest for several reasons. It could be a candidate for dark matter [34, 35], and it can also
be considered as a solution for the black hole information paradox [36,37].

3.1.3. Stealth defect of spacetime (brief review)

By considering an SO(3) matter field over the manifoldM, the authors of Refs. [38,39] have
constructed a new type of Skyrmion classical solution. Depending on the boundary condi-
tions, a Skyrmion spacetime defect could have positive or negative or vanishing asymptotic



3.2. Lensing by a stealth defect of spacetime 15

gravitational mass [38,39]. For a defect with negative gravitational mass, a distant test par-
ticle would suffer a repulsive force, which can be understood as an anti-gravity phenomenon.
While a vanishing gravitational-mass defect cannot be detected by a distant test particle
(assuming that there are no long-range interactions between the defect and the test particle.)
From this point of view, the defect with zero asymptotic gravitational mass can be called a
“stealth defect.”

For the rest of this chapter, we will work in the dimensionless chart-2 coordinates. All
lengths being measured in units of 1/(ef) > 0 with f (which has dimensions of length)
and e (dimensionless) being two parameters in the action of the Skyrme-type scalar [38, 39].
Specifically, the dimensionless version of the quasi-radial coordinate Y will be denoted by y,
and the dimensionless version of the defect length scale b will be denoted by y0.

In general, the metric of a particular defect-type solution of the vacuum Einstein equation
has been found in Ref. [39], which reads as follows:

ds2
∣∣∣(vac. sol.)

chart-2
= −

(
1− l/

√
w
)

(dt)2 +
1− y2

0/w

1− l/
√
w

(dy)2

+ w
[
(dz)2 + sin2 z (dx)2

]
, (3.23a)

w ≡ y2
0 + y2 , (3.23b)

where the angular coordinates X and Z have been denoted by x and z, respectively.

For a globally regular solution, the real constant l in (3.23a) takes the following values:

l ∈ (−∞, y0) . (3.24)

3.2. Lensing by a stealth defect of spacetime

In this section, we will demonstrate a new type of gravitational lensing, by investigating the
geodesics in a stealth defect of spacetime. The main content of this section follows [11].

3.2.1. Geodesics of flat-spacetime stealth defect

From Sec. 2.4 and Fig. 5 in Ref. [39], the simplest stealth-defect solution is given by l = 0 in
(3.23). Hence, we get the metric for the stealth defect of spacetime

ds2
∣∣∣(vac. sol. l=0)

= −(dt)2 +A(y) (dy)2 + w
[
(dz)2 + sin2 z (dx)2

]
, (3.25a)

with

A(y) =
y2

y2
0 + y2

(3.25b)

and w defined by (3.23b).

Two remarks on (3.25) are in order. First, for a nonvanishing defect length scale b (y0 is
nonzero), the metric from (3.25) is degenerate: det gµν = 0 at y = 0. With a degenerate
metric, tensor contraction may not be well defined at the defect surface.

Second, away from the stealth defect, the Riemann curvature tensor is zero, i.e.,

R σ
µνρ = 0 , (3.26)

for y 6= 0. With this observation, the metric (3.25) actually represents a flat-spacetime stealth
defect.
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Next, we will find how particles move in the flat spacetime with a stealth defect. Our calcu-
lation follows Sec. 8.4 of Ref. [14].

The nonvanishing Christoffel symbols are [11]

Γyyy =
A′

2A
, (3.27a)

Γyzz = − w
′

2A
, (3.27b)

Γyxx = −w
′ sin2 z

2A
, (3.27c)

Γzyz = Γzzy =
w′

2w
, (3.27d)

Γzxx = − sin z cos z , (3.27e)

Γxyx = Γxxy =
w′

2w
, (3.27f)

Γxzx = Γxxz = cot z , (3.27g)

where the prime stands for differentiation with respect to y.

Notice that the first three Christoffel symbols are divergent at the defect surface, but our
results will show that the motion of a particle can still be regular.

The geodesic equation [14] with affine parameter λ is given by

d2xα

dλ2
+ Γαµν

dxµ

dλ

dxν

dλ
= 0 . (3.28)

For our flat-spacetime stealth defect, (3.28) gives

0 =
d2t

dλ2
, (3.29a)

0 =
d2y

dλ2
+ Γyyy

(
dy

dλ

)2

+ Γyzz

(
dz

dλ

)2

+ Γyxx

(
dx

dλ

)2

, (3.29b)

0 =
d2z

dλ2
+ 2Γzyz

dy

dλ

dz

dλ
+ Γzxx

(
dx

dλ

)2

, (3.29c)

0 =
d2x

dλ2
+ 2Γxyx

dy

dλ

dx

dλ
+ 2Γxzx

dx

dλ

dz

dλ
. (3.29d)

We can choose the normalization of λ so that the solution of (3.29a) has

dt

dλ
= 1 . (3.30)

With the normalization (3.30), λ can be replaced by t in (3.29b), (3.29c), and (3.29d).

Since the metric is spherically symmetric, to simplify the calculations, we need only consider
the case z = π/2.

First, consider the general case with dx/dt 6= 0. For this case, divide (3.29d) by dx/dt and
use the Christoffel symbols from (3.27). We obtain the following relation between angular
coordinate x and quasi-radial coordinate y:

d

dt

(
ln
dx

dt
+ lnw

)
= 0 , (3.31)
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which gives a real constant (up to a sign),

J ≡ w dx

dt
. (3.32)

With (3.27), (3.32), and multiplying (3.29b) by 2Ady/dt, we find

d

dt

[
A

(
dy

dt

)2

+
J2

w

]
= 0 . (3.33)

Hence, we arrive at the following constant of motion:

E ≡ A
(
dy

dt

)2

+
J2

w
. (3.34)

By elimination of t from (3.32) and (3.34), we get y as a function of x,

A

w2

(
dy

dx

)2

+
1

w
=

E

J2
. (3.35)

From (3.32), (3.34), and z = π/2, the metric (3.25) along the geodesic can now be written as

ds2 = (−1 + E)(dt)2 . (3.36)

With our notation, we have from (3.36) that

E = 1 , for a massless particle , (3.37a)

E ∈ [0, 1) , for a massive particle . (3.37b)

Radial geodesics

Now, let us consider the case with dx/dt = 0. In particular, we want to obtain the geodesic
equation for a particle moving in the negative y direction (going from right to left in Fig. 3.1).
From the definition of J in (3.32), it follows immediately that J = 0, even though J was
initially defined as a nonzero quantity [see the sentence at the start of the paragraph above
(3.31)].

The corresponding energy-type constant of motion is

E =
y2

y2
0 + y2

(
dy

dt

)2

. (3.38)

The solutions of (3.38) are

y = ±
√
−y2

0 +
(

+
√
E t+ C1

)2
, (3.39a)

y = ±
√
−y2

0 +
(
−
√
E t+ C2

)2
, (3.39b)

with C1 and C2 being real constants which depend on the initial conditions. An example of
a radial geodesic is shown in Fig. 3.2

Two remarks are in order. First, by making appropriate time shifts (or setting C1 = C2 = y0)
and defining B ≡

√
E/y0, the solutions (3.39) reproduce the results of Sec. 3 in Ref. [7].

Second, we find a constant y solution, i.e., the particle is at rest in (t, y, x, z) coordinates,
for E = 0 in (3.39).
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Figure 3.1.: Radial geodesic for the stealth defect (3.25). Part of the 3-dimensional space
manifold is indicated by the shaded area, and antipodal points (dots) on the defect surface
are identified.

Nonradial geodesics

We have shown that particles moving exactly in the radial direction can pass through the
defect. Next, we will show the geodesics of particles that move in the nonradial direction.

Nonradial geodesics actually exist in two types, those that reach the defect and those that do
not.

As we have mentioned before (see (3.26)), outside the defect surface, the spacetime (3.25) is
Minkowskian. So, geodesics that do not cross the defect surface should be straight lines with
standard Cartesian coordinates. Next, we will show this explicitly.

From (3.35), we find the following relation between angular coordinate x and quasi-radial
coordinate y ∫

dx = ±
∫

y dy

(y2
0 + y2)

√
(E/J2) (y2

0 + y2)− 1
. (3.40)

Define the quasi-radial coordinate y1 corresponding to the point on the line closest to the
defect surface (cf. Fig. 3.3 with y1 > 0), so that |y1| can be understood as an “impact
parameter.”

Since d
√
w/dx and dy/dx must vanish at y1, (3.35) reduces to

1

y2
0 + y2

1

=
E

J2
. (3.41)

Then, (3.40) can be written as

x(y) = x(∞)±
∫ ∞
y

y dy

(y2
0 + y2)

√
(y2

0 + y2)/(y2
0 + y2

1)− 1
. (3.42)

At y = y1, (3.42) gives
|x(y1)− x(∞)| = π/2 , (3.43)

i.e., the angular coordinate x has changed by an amount π/2 when the particle moves from
infinity to the point closest to the defect surface. The result (3.43) shows that geodesics,
which are nonradial and nonintersecting with the defect surface, are indeed straight lines.
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Figure 3.2.: Null radial geodesic for the stealth defect (3.25). The geodesic is given by (3.39)
with a plus sign in (3.39a) and a minus sign in (3.39b). Also, we have set C1 = C2 = y0 = 1,
and E = 1 in (3.25).

Now, we will consider nonradial geodesics that cross the defect surface.

If we use in (3.35) the replacement

dy

dx
=

1

2y

dy2

dx
, (3.44)

we find the following two solutions for y2:

y2 =
tan2(x1 + x) + 1

E/J2
− y2

0 , (3.45a)

y2 =
tan2(x2 − x) + 1

E/J2
− y2

0 , (3.45b)

where x1 and x2 are real constants.

Recall that the metric (3.25) has a spherically symmetric form and the corresponding “radial”
coordinate is given by √

w ∈ [y0,∞) . (3.46)

After a shift of the constants, the solutions (3.45) can be written as

√
w sin(x1 − x) = ± J√

E
, (3.47a)

√
w sin(x2 + x) = ± J√

E
, (3.47b)

with
√
w ≥ y0. Three comments on the solutions (3.47) are in order:

(i) mathematically, the solutions are straight lines or straight-line segments in polar-type
coordinates (

√
w, x);

(ii) the solutions are regular at the defect surface,
√
w = y0 ;

(iii) to find the complete geodesic of a given particle among these solutions, we must re-
member the antipodal identifications at the defect surface

√
w = y0.
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Figure 3.3.: Nonradial geodesic that does not cross the defect surface and defines the quasi-
radial coordinate y1 > 0.

Figure 3.4.: Ingoing line (3.48) lying in the domain of the chart-2 coordinates. The dashed line
shows the x3 Cartesian axis, which does not belong to the domain of the chart-2 coordinates.

For a nonradial ingoing line, it is convenient to choose coordinates so that the end of the
ingoing line has x = π/2 (Fig. 3.4). In these coordinates, the ingoing line is given by

√
w sin(x0 − x) = −y0 cosx0 , (3.48a)

with

0 < x0 < x ≤ π/2 . (3.48b)

Notice that we have included the end point of the ingoing line, i.e., x = π/2, in (3.48b). It is
easy to see that the formula (3.48) indeed corresponds to one of the solutions (3.47).

For the ingoing line (3.48), there will exist, among the solutions (3.47), a unique outgoing
line (Fig. 3.5) if the following two conditions are met:

1. the beginning of the outgoing line and the end of the ingoing line must be antipodal
points at the defect surface (these points are identified);
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Figure 3.5.: Nonradial geodesic crossing the defect surface.

Figure 3.6.: Family of geodesics crossing the defect surface.

2. the complete geodesic must be a straight line if y0 = 0.

Observe that with a nonradial ingoing line as in Fig. 3.5, the quantity J will change sign after
crossing the defect surface (see Ref. [40] for further discussion of the anomalous angular-
momentum behavior of scattering solutions).

Based on the above discussion, Fig. 3.6 shows three geodesics from a continuous family of
geodesics crossing the defect surface: the family ranges continuously from a radial geodesic
(dot-dashed line in Fig. 3.6) to a tangent geodesic (dotted line in Fig. 3.6).

Now, consider a tangent ingoing line (solid line in Fig. 3.7). On the one hand, according to
the dotted line in Fig. 3.6, we have a “shifting tangent outgoing line” (dotted line in Fig. 3.7).
On the other hand, from the limiting case of the geodesic in Fig. 3.3 with y1 → 0+, we could
obtain an “ongoing tangent line” (dot-dashed line in Fig. 3.7). With this observation, we
conclude that “certain geodesics at the defect surface y = 0 cannot be continued uniquely,”
as mentioned in the second remark of Sec. VI in Ref. [38] (further discussion can be found in
Sec. 3.1.5 of Ref. [27]).
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Figure 3.7.: Geodesic at the defect surface that cannot be continued uniquely.

Image formation by a flat-spacetime stealth defect

Fig. 3.5 has actually presented a crucial effect caused by the spacetime stealth defect: for
a nonradial geodesic reaching the defect surface, the defect can make a parallel shift of the
geodesic in the ambient space (i.e., the Euclidean 3-space away from the defect surface). In
this subsection, we will show that this nontrivial effect can lead to the phenomenon of image
formation.

To show the image formation explicitly, we consider first the geodesics that start from a point
P at one side of the defect (see Fig. 3.8, where the point P is on the right-hand side of the
defect). For geodesics that cross the defect surface, according to the parallel shift shown in
Fig. 3.5, there will be an intersection point P ′ at the other side of the defect (see the left-hand
side of Fig. 3.8). In fact, P and P ′ are reflection points about the “center” of the defect. The
different paths connecting P and P ′ have, in general, different values for the time-of-flight.5

Similarly to Fig. 3.8, a permanent luminous object on one side of the defect will have a real
image on the other side of the defect (Fig. 3.9).

Five remarks on Fig. 3.8 and the image formation are in order.

(i) The image is inverted and the image and object have the same size. Note that this is
also the case if an object in Minkowski spacetime is located at a double focal length of
a standard thin double-convex lens (see Ref. [41]).

(ii) If we consider the image from a static luminous source, then the irradiance of the image
depends on both the defect scale b and the location of the source (the irradiance is
defined as the power per unit receiving area; cf. Secs. 5.3.2 and 5.3.5 in Ref. [42]). The
irradiance will be larger if b is increased for an unchanged source position (larger “white
disk” in Fig. 3.9) or if the source is brought closer to the defect for an unchanged defect
scale (object and image closer to the “white disk” in Fig. 3.9): in both cases, the flux
captured and transmitted by the defect is larger.

(iii) Returning to the analogy with standard lenses in Minkowski spacetime as mentioned
in the first remark, recall the standard lens equation 1/dobject + 1/dimage = 1/f in

5Taking into account the particle–wave duality, we can interpret the three geodesics crossing the defect surface
in Fig. 3.8 as coherent light emitted from the source P . Then, due to the different values for the time-of-flight,
these coherent-light bundles will have a constant (time-independent) phase difference at P ′, which leads to
stationary interference. In this sense, the defect resembles some types of interferometers.



3.2. Lensing by a stealth defect of spacetime 23

Figure 3.8.: Geodesics with intersection points P and P ′.

Figure 3.9.: Image formation by a stealth defect.

Minkowski spacetime [41]. The defect actually has an effective focal length feff given
by

2 feff =
√
b2 + (Yobject)2 ∈ (b, ∞) , (3.49)

where Yobject ≡ yobject/(ef) 6= 0 is the dimensional chart-2 quasi-radial coordinate of a
small object away from the defect surface.

(iv) Consider the case that a permanent pointlike light source is located at point P of
Fig. 3.8. Then what an observer at point P ′ will see is not a point but a luminous disk.
This phenomenon is of course different from the Einstein ring [43–47].

(iv) Needless to say, the unusual ingredient for the lensing behavior is the spacetime defect
(i.e., the nontrivial topological structure of spacetime). Then, it would be interesting
to compare the above results with the lensing results from wormholes (see Refs. [48–51]
and references therein). For the case of the wormholes, the unusual ingredient is the
exotic matter.
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So far, we have shown the geodesics of a flat-spacetime stealth defect, and the corresponding
lensing behavior. In the following subsection, we will show the geodesics of a curved-spacetime
stealth defect.

3.2.2. Geodesics of curved-spacetime stealth defect

The logic of this subsection is as follows.

First, we will start with a general spacetime defect. Then, calculations will show that the
lensing behavior can still hold in a general spacetime defect. At last, we will show the geodesics
of a given curved-spacetime stealth defect and the corresponding lensing behavior.

General results

Recall that the general spherically symmetric Ansatz for the spacetime of defect is given by
(3.2). (Based on (3.2), the following calculations are quite general and do not depend on the
explicit form of µ(w) and σ(w).)6

Without loss of generality, the spherical symmetry allows us to consider the particle moving
in the equatorial plane, i.e., z = π/2.

In this case, the nonvanishing Christoffel symbols are given by

Γtty = Γtyt = − 1

2M

dM

dy
, (3.50a)

Γytt = − 1

2N

dM

dy
, (3.50b)

Γyyy =
1

2N

dN

dy
, (3.50c)

Γyxx = − 1

2N

dw

dy
, (3.50d)

Γxxy = Γxyx =
1

2w

dw

dy
. (3.50e)

With the procedure we have used in Sec. 3.2.1, the geodetic equation gives

dt

dλ
= M , (3.51a)

w
dx

dλ
= J̃ , (3.51b)

N

(
dy

dλ

)2

+
J̃ 2

w
− M3

3
= Ẽ , (3.51c)

where J̃ and Ẽ are real constants and λ is the affine parameter.

By elimination of λ from (3.51b) and (3.51c), we have

J̃ 2N(w)

w2

(
dy

dx

)2

+
J̃ 2

w
− [M(w)]3

3
= Ẽ . (3.52)

6The functions µ(w) and σ(w) are determined by the field equations and the boundary conditions.
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With the the help of (3.44), (3.52) can be written as

J̃ 2N(w)

4y2w2

(
dy2

dx

)2

+
J̃ 2

w
− [M(w)]3

3
= Ẽ , (3.53)

with the constants J̃ and Ẽ from (3.51).

The orbit of a particle moving in the equatorial plane z = π/2 is described by (3.53). Observe
that N(w) and M(w) are functions of w and, hence, functions of y2. If the solution of (3.53)
exists, x must be a function of y2: x = x(y2). Recall that the chart-2 coordinate ranges are
given by

x ∈ (0, π) , y ∈ (−∞,∞) , z ∈ (0, π) . (3.54)

For a particular solution x = x(y2) in the z = π/2 plane of the chart-2 domain, there will
exist two branches of this solution: one branch with y ≥ 0 and the other one with y ≤ 0. To
be specific, the lines that correspond to these two branches of the solution are symmetrical
about the “center” of the defect surface. If the orbit of a given particle which does not cross
the defect surface, then this orbit is usually described by only one of these two branches. But,
if the particle crosses the defect surface, then we argue that the ingoing and outgoing lines
are given by two different branches. Note that, in flat spacetime, this argument is consistent
with the two conditions for the existence of a unique outgoing line as discussed in Sec. 3.2.1.

Based on the above discussion, a defect in a curved spacetime has the same lensing behavior
as discussed in Sec. 3.2.1 for the flat-spacetime case. Still, there is one exception: a black
hole may occur for this defect spacetime [7]. Then, the metric (3.2) is not globally regular
and (3.53) cannot properly describe the orbit of the particle reaching the defect surface. In
fact, the particle will be confined within the black-hole horizon once it crosses the horizon.
(It may be of interest to consider null geodesics in the spacetime with a massive black hole
remnant discussed in Sec. 3.1.2. Then, the lensing behavior discussed above could be a
possible observable effect for the black hole remnant.)

Next, we will give an explicit example of the geodesics in a curved-spacetime stealth defect
for illustrative purposes.

Explicit calculation

The numerical stealth-defect solution from Fig. 4 of Ref. [39] has metric functions σ(w) and
µ(w) in (3.2) with approximately the following form:

σ(w) = 1− 1

2w
, (3.55a)

µ(w) = 1 , (3.55b)

for y0 = 1 (giving w ≡ 1 + y2).

Now, we will give the analytic solutions of (3.51) and (3.53) from the explicit choice of
functions in (3.55).

For the radial geodesic (J̃ = 0), the general solutions of (3.51c) are given as follows:

2w(2w + 1)
√

(−2w + 1)2/w3

2w − 1
= +4 t

√
Ẽ + 1/3 + C̃1 , (3.56a)

2w(2w + 1)
√

(−2w + 1)2/w3

2w − 1
= −4 t

√
Ẽ + 1/3 + C̃2 , (3.56b)
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Figure 3.10.: Null radial geodesic for the stealth defect (3.2) with metric functions (3.55).
The geodesic is given by (3.56) with C̃1 = C̃2 = 6, y0 = 1, and Ẽ = 2/3.

where C̃1 and C̃2 are real constants. An example of the null radial geodesic is shown in
Fig. 3.10.

For a nonradial geodesic, the solutions of (3.53) are

±x =
1

4

(
(4−D) arctan(

√
Dw − 1)−

√
Dw − 1

w

)
+ x̃4 , (3.57a)

with the definition

D ≡ Ẽ + 1/3

J̃ 2
(3.57b)

and a real constant x̃4.

As the spacetime is curved, geodesics that do not cross the defect surface will not be straight
lines in general. In this case, we can calculate the change in x (as we have done in Sec. 3.2.1),

∆x ≡ |x(y1)− x(∞)| = π

2

(
1− 1/4

1 + y2
1

)
, (3.58)

where y1 corresponds to the point on the line closest to the defect surface. For small y1 (i.e.,
the line coming close to the defect surface), (3.58) shows that the line is bent away from the
defect surface. This observation agrees with the fact that the effective mass near the defect
surface is negative (for more details, see the l(w) panel in Fig. 4 of Ref. [39]).

Note that (3.57) can be rewritten in the following way:

± 1√
D

=
√
w cos

[
4(x− x4) +

√
Dw − 1/w

4−D

]
, (3.59a)

± 1√
D

=
√
w cos

[
4(−x+ x5) +

√
Dw − 1/w

4−D

]
, (3.59b)

with real constants x4 and x5. As a concrete example, we first consider the solution corre-
sponding to the upper sign on the left-hand side of (3.59a), that is,

1√
D

=
√
w cos

[
4(x− x4) +

√
Dw − 1/w

4−D

]
. (3.60)
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For given values of D and x4, the solution (3.60) has, in general, two branches: one branch
lies in the upper half-plane (y > 0) and the other in the lower half-plane (y < 0). The solid
lines in Fig. 3.11 correspond to the orbits of two different particles, while the dotted line
corresponds to the orbit of a third particle. Even though the points on the solid lines which
are closest to the defect surface have x = π/2, these solid lines are not symmetrical about
the line x = π/2 for w ∼ 2, as can be verified in (3.60) with x′ = π − x and w(x′) 6= w(x).

Fig. 3.12 shows a family of geodesics to illustrate the lensing property of the curved-spacetime
defect (cf. Fig. 3.8 for the lensing of the flat-spacetime defect).
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Figure 3.11.: Geodesics in polar coordinates (
√
w, φ). The geodesics are given by (3.60).

With the chart-2 coordinates x and y, the azimuthal angle φ is defined by φ = x if y > 0
and φ = x + π if y < 0. The defect surface is given by the circle w = 1 and part of the
3-dimensional space manifold (3.2) (with metric functions (3.55)), is indicated by the shaded
area. The solid lines have constants D = 0.25 and x4 = π/2, and the dotted-line segments
have constants D = 1.25 and x4 = π/2. The points on the solid lines that are closest to the
defect surface have polar coordinates (2, π/2) and (2, 3π/2), corresponding to the original
coordinates (y, x) = (±

√
3, π/2).
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Figure 3.12.: Family of geodesics in polar coordinates (
√
w, φ), where the geodesics are given

by (3.59) with plus signs on the left-hand sides. The defect surface is given by the circle
w = 1. The parameters of the six curved geodesics in the upper half-plane are, from left
to right, (D = 1, x4 = 2.57258), (D = 1.2, x4 = 2.5408766), (D = 1.5, x4 = 2.4784766),
(D = 1.5, x5 = π−2.4784766), (D = 1.2, x5 = π−2.5408766), and (D = 1, x5 = π−2.57258).
In terms of the original (y, x) coordinates, the focal points P and P ′ are given by (y, x)P =
(
√

8, π/2) and (y, x)P ′ = (−
√

8, π/2).





CHAPTER 4

Nonsingular bouncing cosmology

4.1. Bouncing cosmologies (brief review)

By bouncing cosmologies, we mean universes that go from a contraction to an expansion,
with or without a big bang singularity. The history of bouncing cosmologies dates back to
the work of Friedmann [21], who introduced the possibility of a closed cyclic universe. (By
cyclic universe, we mean the cosmic scale factor a(t) that oscillates between some minimal
value (zero or nonzero) and some large finite value.)

In the scientific literature of bouncing cosmologies [52], a regular bounce can be derived either
from general relativity (with unusual energy condition of matter) or from the theories beyond
general relativity, e.g., modified gravity, loop quantum gravity, and string theory.

General features of bouncing cosmologies are given as follows:

1 avoid the big bang singularity by having a nonvanishing cosmic scale factor at the
bounce;

2 solve the horizon problem by having an infinite past particle horizon;

3 solve the flatness problem;

4 make timelike and lightlike geodesics complete.

For different bouncing cosmologies, there may exist other advantages. For example, the
matter bounce scenario [53] may produce a scale-invariant power spectrum for cosmologi-
cal perturbation, and the Ekpyrotic scenario [54] can avoid the anisotropy problem (a brief
introduction to the anisotropy problem will be given in App. C.)

4.2. Nonsingular bouncing cosmology

Actually, most of the bouncing models in the context of general relativity require the violation
of the strong energy condition [52]. In this section, we will introduce a bouncing model [10,12]
without violation of the strong energy condition for matter. This new nonsingular bouncing
model is based on general relativity but allows for degenerate metrics.
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4.2.1. Regularized big bang singularity

The new nonsingular bouncing model discussed in this chapter actually comes along with
a particular regularization of the big bang singularity. So, before we start to present the
nonsingular bouncing cosmology, we first review the regularized big bang singularity.

The particular regularization of the big bang singularity is based on the following Ansatz for
the metric [10,12,55] :

ds2
∣∣∣
mod. RW

≡ gµν(x) dxµ dxν
∣∣∣
mod. RW

= − T 2

b2 + T 2
dT 2 + a2(T ) δij dx

i dxj , (4.1a)

b2 > 0 , (4.1b)

T ∈ (−∞, ∞) , (4.1c)

xi ∈ (−∞, ∞) , (4.1d)

where the spatial indices i, j run over {1, 2, 3}.

In fact, (4.1a) is a modified version of spatially flat RW metric (2.7). First, it precisely gives
the standard spatially flat RW metric if b = 0. Second, for a nonvanishing b (as required
by (4.1b)), by defining the new coordinate

t(T ) =

+
√
b2 + T 2 , for T ≥ 0 ,

−
√
b2 + T 2 , for T ≤ 0 ,

(4.2)

we can write the line element (4.1a) in a standard spatially flat RW metric form:

ds2
∣∣∣
mod. RW

= −dt2 + ã2(t)δijdx
idxj , (4.3a)

t ∈ (−∞,−b] ∪ [b,+∞) . (4.3b)

Two remarks are in order. First, the coordinate transformation from T to t is not a diffeo-
morphism,7 so that the differential structure of the metric (4.1) is different from the standard
spatially flat RW metric (4.3).

Second, the t domains (−∞,−b] and [b,+∞) are disconnected and t is multivalued at T = 0,
so the boundary conditions at t = ±b require special care if we do calculations in t coordinate
(see Ref. [40] for a related discussion.)

With the metric (4.1) and taking the energy-momentum tensor of a homogeneous perfect
fluid (2.10), the Einstein gravitational field equation leads to the following modified spatially
flat Friedmann equation and unmodified energy-conservation equation:(

1 +
b2

T 2

)(
1

a(T )

da(T )

dT

)2

=
8π

3
ρ(T ) , (4.4a)

d

da

[
a3 ρ

]
+ 3 a2 P = 0 . (4.4b)

Remark that (4.4a) is singular at T = 0, but, as we will show soon, it can have nonsingular
solutions.

7A diffeomorphism is, by definition, an invertible function that maps one manifold to another manifold such
that the function and its inverse function are C∞ functions.
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In general, the solutions a(T ) of (4.4) could be even or odd in T [10]. The T−odd solution
could be of interest for a CPT−symmetric universe [56]. The T−even solution, with positive
definite cosmic scale factor, naturally gives a nonsingular bouncing universe. So, in this
chapter, we will focus on the T−even solution.

For a radiation-dominated universe (w = P/ρ = 1/3), we have the following solutions for
a(T ) and ρ(T ):

a(T )
∣∣∣(w=1/3)

mod. FLRW
= 4

√
b2 + T 2

b2 + T 2
0

, (4.5)

ρ
∣∣∣(w=1/3)

mod. FLRW
= ρ0

b2 + T 2
0

b2 + T 2
, (4.6)

where the cosmic scale factor a(T ) has been normalized to unity at T = T0 > 0 and where
the boundary condition ρ(T0) = ρ0 > 0.

For a matter-dominated universe (w = 0), we have

a(T )
∣∣∣(w=0)

mod. FLRW
= 3

√
b2 + T 2

b2 + T 2
0

, (4.7)

ρ
∣∣∣(w=0)

mod. FLRW
= ρ0

b2 + T 2
0

b2 + T 2
, (4.8)

with boundary conditions a(T0) = 1 and ρ0 > 0 at T = T0 > 0.

The energy density ρ(T ) for both radiation-dominated and matter-dominated universe take
the same expression, which is finite at T = 0 for finite boundary condition and nonvanishing
b. The curvature of these two universes are also finite at T = 0. For example, the Ricci
curvature scalar R and the Kretschmann curvature scalar K for matter-dominated universe
are

R(T )
∣∣∣(w=0)

mod. FLRW
∝ 1

b2 + T 2
, (4.9a)

K(T )
∣∣∣(w=0)

mod. FLRW
∝ 1

(b2 + T 2)2
, (4.9b)

which are finite at T = 0, provided b 6= 0. Hence, the big bang curvature singularity has been
removed.

Historically, the above regularization of the big bang singularity is motivated by the method
of regularizing Schwarzschild singularity that we discussed in Sec. 3.1.1 [10]. Specifically, in
Sec. 3.1.1, we have introduced a (three-dimensional) space defect [10]. While a defect in time
(one dimension) has been introduced in this section. To see this defect in time, we can consider
a co-moving observer in the spacetime manifold (4.1), then the proper time parameter of this
observer would have a “jump” at T = 0; see (4.3b) for the range of coordinate t.

4.2.2. Nonsingular bouncing cosmology

As we can see from (4.5) or (4.7), the bouncing behavior of the positive scale factor is manifest:
a(T ) decreases for negative T approaching T = 0−, the bounce occurs at T = 0 with a
minimal value of the cosmic scale factor (nonvanishing), and a(T ) increases for positive T
moving away from T = 0+. The bouncing solutions for a radiation-dominated universe and
a matter-dominated universe are shown in Fig. 4.1 and Fig. 4.2, respectively.
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Figure 4.1.: Cosmic scale factor (full curve) of the modified, spatially flat FLRW universe
with relativistic matter, as given by (4.5) with b = 1 and T0 = 4

√
5. Also shown is the cosmic

scale factor (dashed curve) of the standard FLRW universe with an extended cosmic time
coordinate T , as given by (2.14) with t0 = 4

√
5.

4.2.2.1. Geodesics

In a standard matter-dominated or radiation-dominated universe, null geodesics and timelike
geodesics are incomplete in the past direction because of the presence of a big bang singular-
ity.8 In this section, we will show that the null geodesic can be extended uniquely at T = 0
in the nonsingular bouncing cosmology. Similar conclusions can also be obtained for timelike
geodesics; the discussion is given in App. B.

For the metric (4.1), we have the following remark.

Remark 2. Particles travel on straight lines in the coordinate system {T, x1, x2, x3} .

The proof of this remark is given in App. A. Without loss of generality, we can consider
geodesics that start at T = T1 < 0 and end at T = T0 > 0, while moving in the x1 ≡ X
direction.

For massless particles, e.g., photons and gravitons, the reduced metric is

0 = ds2
∣∣∣(light)

mod. RW
= − T 2

b2 + T 2
dT 2 + a2(T ) dX2 . (4.10)

For relativistic matter, the cosmic scale factor a(T ) is given by (4.5). With boundary condition
X(0) = 0, we have the following solution for null geodesic from (4.10):

X(T ) =


+2 4

√
b2 + T 2

0

[
4
√
T 2 + b2 −

√
b

]
, for T > 0 ,

−2 4

√
b2 + T 2

0

[
4
√
T 2 + b2 −

√
b

]
, for T ≤ 0 .

(4.11)

A plot of this null geodesic is given in Fig. 4.3.

8It has been shown in [57] that inflationary spacetimes are also incomplete in null and timelike past directions.
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Figure 4.2.: Cosmic scale factor (full curve) of the modified, spatially flat FLRW universe
with nonrelativistic matter, as given by (4.7) with b = 1 and T0 = 4

√
5. Also shown is the

cosmic scale factor (dashed curve) of the standard FLRW universe with an extended cosmic
time coordinate T , as given by (2.17) with t0 = 4

√
5.

4.2.2.2. Past particle horizon

The particle horizon at cosmic time T0 > 0 reads

dhor(T0) = a(T0) lim
t1→−∞

[∫ −b
t1

dt′′

a(t′′)
+

∫ t(T0)

b

dt′

a(t′)

]
, (4.12)

where t(T0) ≡ t0 is given by (4.2) and a(t) = a(t(T )).

For positive and finite values of b and t0, the particle horizon for radiation-dominated universe
is

dhor(T0) = 2 a(T0) lim
t1→−∞

(√
−t1 t0 − 2

√
b t0 +

√
t t0

)
= 2 a(T0) lim

t1→−∞

√
−t1 t0 . (4.13)

Similarly, the particle horizon for matter-dominated universe is given by

dhor(T0) = 3 a(T0) lim
t1→−∞

3

√
−t1 t20 . (4.14)

In general, for a bouncing universe with

a(T ) =

(
T 2 + b2

T 2
0 + b2

)q/2
, (4.15)

where 0 < q < 1. We have the following expression for past particle horizon (for positive and
finite values of b and t0):

dhor(T0) =
1

1− q
a(T0) lim

t1→−∞
(−t1)1−q tq0 , (4.16)
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Figure 4.3.: Null geodesic (4.11) with b = 1 and T0 = 4
√

5. Recall that X is the co-moving
coordinate, the physical length is given by a(T )X . For timelike geodesics, see Fig. B.1 in
App. B.

which goes to +∞.

The result of (4.16) implies that, the past particle horizon at a finite positive time T0 diverges
for the nonsingular bouncing cosmologies with cosmic scale factor (4.15).

An infinite past particle horizon provides an alternative solution to the horizon and flatness
problems. This solution, of course, is different from the solution provided by inflation [58–60].

4.2.2.3. Modified Hubble diagram

With the evolution of the cosmic scale factor, we can calculate the luminosity distance dL
and dA for the nonsingular bouncing universe.

First, for bouncing cosmologies, we need to distinguish the following two cases:

1. the light is emitted by a co-moving galaxy in the expanding phase of the universe
(T1 > 0);

2. the light is emitted by a co-moving galaxy in the contracting phase of the universe
(T1 ≤ 0).

Notice that, in both cases, the light is detected by a co-moving observer in the expanding
phase at cosmic time T0 > 0 with T0 > T1.

In what follows, we will use the auxiliary time coordinate t from (4.2) to simplify calculations.

Assume that light is emitted at cosmic time t = t1 (with t1 > b for case 1 and t1 ≤ −b for
case 2) and observed at t = t0 > b > 0 with t0 > t1. Then, the luminosity distance (for the
definition of luminosity distance, see Secs. 14.4 and 14.6 of Ref. [14]) is given by

dL(t1, t0)
∣∣∣case 1

=
a2(t0)

a(t1)

∫ t0

t1

dt′

a(t′)
, (4.17a)

dL(t1, t0)
∣∣∣case 2

≡ d(pre)
L (t1) + d

(post)
L (t0) ≡ a2(−b)

a(t1)

∫ −b
t1

dt′′

a(t′′)
+
a2(t0)

a(b)

∫ t0

b

dt′

a(t′)
. (4.17b)
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The corresponding expression for the angular diameter distance dA is given by

dA(t1, t0)
∣∣∣case 1

=
a2(t1)

a2(t0)
dL(z)

∣∣∣case 1
, (4.18a)

dA(t1, t0)
∣∣∣case 2

≡ a2(t1)

a2(−b)
d

(pre)
L (t1) +

a2(b)

a2(t0)
d

(post)
L (t0) . (4.18b)

Define the redshift as

z ≡
√
a2(t0)/a2(t1)− 1 = a(t0)/a(t1)− 1 . (4.19)

With (4.19) and (4.17), the luminosity distance for radiation-dominate nonsingular bouncing
universe is given by (see Fig. 4.4)

dL(z)
∣∣∣case 1

= 2 t0 z , for z ∈ [0, zmax) , (4.20a)

dL(z)
∣∣∣case 2

= 2 b
zmax − z
1 + zmax

+ 2 t0 zmax , for z ∈ (−1, zmax] , (4.20b)

with definition

zmax ≡ a(t0)/a(b)− 1 =
√
t0/b− 1 . (4.20c)

With (4.19) and (4.20), (4.18) gives the following expression for the angular diameter distance
of a radiation-dominate nonsingular bouncing universe:

dA(z)
∣∣∣case 1

= 2 t0
z

(1 + z)2
, for z ∈ [0, zmax) , (4.21a)

dA(z)
∣∣∣case 2

= 2 t0

(
1

(1 + z)2
− 1

(1 + zmax)2
+

1

1 + zmax

z

1 + z

)
, for z ∈ (−1, zmax] .

(4.21b)

Values of dA as a function of z is plotted in Fig. 4.5.

In App. C, we present a nonsingular bouncing cosmology with w = 1 (the reason for this
choice of w is discussed there). The corresponding geodesics and modified Hubble diagrams
are also presented in this appendix.

Several remarks are in order.

First, in order to display the main characteristics of the modified Hubble diagrams, we have
given a relatively small value of zmax in Figs. 4.4 and 4.5. If a cosmic bounce has really
occurred, zmax must be much larger than the value given in Figs. 4.4 (Recall that the cosmic
microwave background has a redshift of z ≈ 1100). It was calculated in Ref. [12] that in order
to reproduce the hot-big-bang model with Tev temperature, zmax must be larger than 1015.

Second, observe that there exists nonsmooth behavior for luminosity distance dL or angular
diameter distance at z = zmax (see modified Hubble diagram Figs. 4.4 and 4.5.) These cusp-
type nonsmooth behavior are caused by the sharp change in the slope of a(t) between t ≤ −b
and t ≥ b, which traces back to the “jump” of the proper time for a co-moving observer
at T = 0 (See the last paragraph in Sec. 4.2.1). These nonsmooth behaviors are direct
manifestations of the defect.
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Figure 4.4.: Hubble diagram with the luminosity distance dL from (4.20) for b/t0 = 1/9 and
zmax = 2. With an observer in the expanding phase, the full curve corresponds to case 1
(light emitted by a co-moving galaxy in the expanding phase of the universe) and the dashed
curve to case 2 (light emitted by a co-moving galaxy in the contracting phase). Note that
that the luminosity distance dL(z) has a cusp-type behaviour around z = zmax.

Third, our description of the luminosity distance and angular diameter distance is complete,
which, to the best of our knowledge, has not yet been obtained in other bouncing models.
For example, the authors in Ref. [61] did calculate the luminosity distances for different
contracting phases but not the complete description, from contraction to expansion.

Fourth, the dashed lines in Figs. 4.4 and 4.5 are supposed to represent the signals emitted
by luminous standard candles in the contracting phase. These light signals would inevitably
come across the hot plasma in the standard hot big bang phase. Any light from the standard
candles would be strongly scattered by the hot plasma. That is to say, images of these
luminous standard candles are impossible to obtain for observers in the post-bounce phase.
But, it may very well be that the required standard candles emit gravitational waves [15,61]
instead of electromagnetic waves. In this sense, the dashed lines in Figs. 4.4 and 4.5 concern
gravitational standard candles.

4.2.3. Circumventing the singularity theorem

In this subsection, we will show how the nonsingular bouncing cosmology discussed in Sec. 4.2.2
can circumvent the singularity theorem (Theorem 1 of Sec. 2.3, in particular).

Consider the curves given by the world lines of all co-moving observers in the modified RW
metric (4.1a). A family of these curves is, of course, a congruence of timelike geodesics.

Then, the vector field ξµ that is tangent to the congruence is given by

ξ0 = −
√
b2 + T 2

T 2
, (4.22a)

ξi = 0 . (4.22b)

Notice that ξµ is actually opposite to the four-velocity of the co-moving observers, as we are
interested in the past-directed normal geodesic congruence.
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Figure 4.5.: Same as Fig. 4.4, but with the angular diameter distance dA from (4.21).

With (4.22), it is straightforward to calculate Bµν and hµν from (2.21) and (2.22), respectively.
The nonvanishing components of Bµν and hµν are as follows:

Bij = −a da
dT

√
b2 + T 2

T 2
, (4.23a)

hij = gij . (4.23b)

Finally, we have the expression for the expansion of the congruence

θ = Bµν hµν (4.24)

= Bij h
ij

= −3

√
b2 + T 2

T 2

1

a

da

dT
.

For radiation-dominated universe (a(T ) given by (4.5)) and matter-dominated universe (a(T )
given by (4.7)), we have

θ(T )
∣∣∣(w=1/3)

mod. FLRW
= −3

2

T/|T |√
b2 + T 2

, (4.25a)

θ(T )
∣∣∣(w=0)

mod. FLRW
= −2

T/|T |√
b2 + T 2

. (4.25b)

Notice that, in both (4.25a) and (4.25b), θ are negative for positive T .

Four remarks are in order.

First, the expansion of the congruence for the standard FLRW universe is given by (4.25) with
b = 0. Then, (4.25) (with b = 0) implies that θ → −∞ when T → 0+. For a given constant
T = T1 > 0 hypersurface Σ, the “point” T = 0+ is conjugate to Σ ; see the paragraph above
(2.37). Hence, no past-directed co-moving observer’s curve from Σ can have length greater
than −3/θ(T1). So, we have incomplete timelike geodesics, and the singularity theorem cannot
be avoided.

Second, for a nonsingular bouncing cosmology (b 6= 0), θ(T ) from (4.25) is always finite.
Then, for a given constant T = T1 > 0 hypersurface Σ, the point conjugate to Σ does not
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exist. The length of the past-directed co-moving observer’s curve could have no upper bound.
The singularity theorem would be circumvented.

Third, for nonsingular bouncing cosmology (b 6= 0), θ, as a function of T , is discontinuous at
T = 0. This discontinuity is a direct manifestation of the spacetime defect.

Fourth, even though we have only shown that the co-moving timelike geodesics in nonsingular
bouncing cosmologies can be extended indefinitely in the past direction, the results should
also hold for general timelike geodesics. For general timelike geodesics in the nonsingular
bouncing cosmology, see App. B.

As the last part of this subsection, we would like to compare the nonsingular bouncing
cosmology discussed in Sec. 4.2.2 with other bouncing cosmologies.

In the context of general relativity, most bouncing cosmologies [52] in the literature require
a violation of the strong energy condition.9 The violation of the strong energy condition10

directly invalidates (2.30), so that the expansion θ can remain finite and the singularity
theorem is avoided.

In short, the singularity theorem 1 can be circumvented by a finite expansion θ along timelike
geodesics. A finite expansion can be realized by a violation of the strong energy condition or
by a spacetime defect.

4.3. Cosmological perturbations

Having obtained nonsingular bouncing cosmologies in Sec. 4.2.2, we now turn to analyze
the stabilities of the bouncing models. Specifically, we will focus on the linear cosmological
perturbations of the metric and matter.

4.3.1. Scalar metric perturbations

In this section, the background metric (4.1) will be called the unperturbed metric. The
perturbed metric can then be written as

gµν(x)
∣∣∣(perturbed)

mod. RW
= gµν(T ) + hµν(x) , (4.26)

where hµν = hνµ is a small perturbation compared to the unperturbed metric gµν from (4.1a).
Henceforth, a bar over a quantity denotes its unperturbed value.

We know that the spatially isotropic and homogeneous background allows us to decompose
the metric perturbations into scalars, divergenceless vectors, and divergenceless traceless sym-
metric tensors [63,64].

For the modified spatially flat RW unperturbed metric (4.1a), the Ansatz for the perturbed
metric with scalar perturbations is taken as follows [13]

ds2
∣∣∣(scalar pert.)

mod. RW
=

−
(
1 + E

) T 2

b2 + T 2
dT 2 + 2 a

∂F

∂xi
dxidt+ a2

[(
1 +A

)
δij +

∂B2

∂xi∂xj

]
dxidxj , (4.27a)

where the perturbationsE,F,A andB are functions of all spacetime coordinates {T, x1, x2, x3}
and the background scale factor a is a function of only T .

9For perfect fluids, the strong energy condition implies ρ+ P ≥ 0 and ρ+ 3P ≥ 0.
10The violation of strong energy condition may lead to instabilities and problems, as regards microcausality

[52,62].
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4.3.1.1. Newtonian gauge

Consider the following transformation of the spacetime coordinates:

xµ → x̃µ = xµ + εµ , (4.28)

where the parameters εµ ≡ εµ(x) are infinitesimal functions of the spacetime coordinates. By
decomposing the spatial part of εµ into the gradient of a spatial scalar and a divergenceless
vector [63,64],

εi = ∂i εS + εiV , (4.29a)

∂i ε
i
V = 0 , (4.29b)

we have the following transformations of the metric functions from (4.27a) under the change
of coordinates (4.28):

Ẽ = E − 2 b2

T
ε0 − ∂ε0

∂T
, (4.30a)

F̃ = F − a

2

∂εS
∂T

+
T 2

b2 + T 2

ε0

2 a
, (4.30b)

Ã = A− 2 ȧ

a
ε0 , (4.30c)

B̃ = B − 2 εS , (4.30d)

where the overdot stands for the partial derivative with respect to T . Note that only ε0 and
εS contribute to the transformations of scalar metric perturbations.

Following Sec. 7.1.2 of Ref. [63], we can construct the following gauge-invariant quantities:

2 Φ ≡ E − ∂

∂T

[
2 a

b2 + T 2

T 2

(
F − a

4
Ḃ

)]
− 2 b2

T

[
2 a

b2 + T 2

T 2

(
F − a

4
Ḃ

)]
, (4.31a)

2 Ψ ≡ A− 4 ȧ
b2 + T 2

T 2

(
F − a

4
Ḃ

)
. (4.31b)

In this section, we will use the Newtonian gauge (the origin of the name will become clear
later on),

F = B = 0, (4.32)

which can be reached by, first, choosing an appropriate εS in (4.30d) and, then, an appropriate
ε0 in (4.30b).

In the Newtonian gauge, the line element (4.27a) reduces to

ds2
∣∣∣(scalar pert. Newtonian-gauge)

mod. RW
= −

(
1 + 2 Φ

) T 2

b2 + T 2
dT 2 + a2

(
1 + 2 Ψ

)
δij dx

idxj . (4.33)

Note that, after choosing the Newtonian gauge, there is no further freedom to make coordinate
transformations, while remaining within the Ansatz (4.33).
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4.3.1.2. Hydrodynamic matter perturbations

Now, consider a perfect fluid with the energy-momentum tensor given by (2.10).

With the perturbed metric (4.33), the first-order perturbations of the 00 and ij components
of the energy-momentum tensor are given by

δT00 = 2
T 2

b2 + T 2
ρΦ +

T 2

b2 + T 2
δρ , (4.34a)

δTij = 2 a2 P Ψ δij + a2 δP δij . (4.34b)

From (4.34), together with (4.33), we obtain

δT 0
0 = −δρ , (4.35a)

δT ij = δP δij . (4.35b)

After a straightforward calculation of the perturbed Einstein tensor from the perturbed metric
(4.33), together with (4.35), we can get the following perturbed Einstein equations (up to
first-order perturbations):

8π
(
ρ+ 2 Φ ρ+ δρ

)
= 3

b2 + T 2

T 2

ȧ
2

a2 + 6
b2 + T 2

T 2

ȧ

a
Ψ̇− 24Ψ

a2 , (4.36a)

8π
(
P̄ + 2 Ψ P̄ + δP

)
δij =

[
2 b2

T 3
Ψ̇− 2

b2 + T 2

T 2
Ψ̈− 6

b2 + T 2

T 2

ȧ

a
Ψ̇ + 2

b2 + T 2

T 2

ȧ

a
Φ̇

+ 2

(
b2

T 3

ȧ

a
− b2 + T 2

T 2

ä

a

) (
1 + 2 Ψ− 2 Φ

)
+
4
(
Φ + Ψ

)
a2

− b2 + T 2

T 2

ȧ
2

a2

(
1 + 2 Ψ− 2 Φ

)]
δij −

1

a2

∂2

∂xi∂xj
(
Φ + Ψ

)
,

(4.36b)

where 4 is the Laplace operator in three-dimensional Euclidean space.

From (4.36b) for i 6= j, we obtain

∂2

∂xi∂xj
(
Φ + Ψ

)
= 0 . (4.37)

For plane-wave metric perturbations, (4.37) leads to

ki kj
(
Φk + Ψk

)
= 0 , (4.38)

where Φk and Ψk are amplitudes of the plane-wave scalar metric perturbations. The only
way to get (4.38) is to have

Φk + Ψk = 0 , (4.39)

from which we obtain

Ψ = −Φ . (4.40)

For more details on obtaining (4.40), see Sec. 5.2 in [65].
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Without perturbations, the leading order terms in (4.36) give(
1 +

b2

T 2

)(
ȧ

a

)2

=
8π

3
ρ , (4.41a)

(
1 +

b2

T 2

)[
2 ä

a
+
ȧ

2

a2

]
− 2 b2

T 3

ȧ

a
= −8π P . (4.41b)

Equation (4.41a) is just (4.4a), while (4.41b) can be derived from energy-conservation equation
(4.4b) with the help of (4.4a) .

From the first-order perturbations in (4.36), together with the background equations (4.41)
and the result (4.40), we get the following equations of motion for scalar metric perturbations:

4π δρ =
4Φ

a2 − 3
ȧ

2

a2

b2 + T 2

T 2
Φ− 3

ȧ

a

b2 + T 2

T 2
Φ̇ , (4.42a)

4π δP =
b2 + T 2

T 2
Φ̈ +

b2 + T 2

T 2

(
ȧ

2

a2 +
2 ä

a

)
Φ + 4

ȧ

a

b2 + T 2

T 2
Φ̇− 2

b2

T 3

ȧ

a
Φ− b2

T 3
Φ̇ .

(4.42b)

Note that (4.42a) for constant a(T ) reproduces the Poisson equation of Newtonian gravity,
which explains the name of the gauge [63].

Consider adiabatic perturbations,

δP = c2
s δρ , (4.43)

where c2
s is the square of the speed of sound [63].

Combining (4.42) and (4.43), we get the following equation of motion for the gravitational
potential Φ(T, x):

b2 + T 2

T 2
Φ̈− c2

s

4Φ

a2 +
b2 + T 2

T 2

[
ȧ

2

a2

(
1 + 3 c2

s

)
+

2 ä

a

]
Φ +

ȧ

a

b2 + T 2

T 2

(
4 + 3 c2

s

)
Φ̇

− 2
b2

T 3

ȧ

a
Φ− b2

T 3
Φ̇ = 0 , (4.44)

which is the basic equation for adiabatic perturbations.

Equations (4.42) and (4.44) are singular differential equations (the singularity appears at
T = 0), but they have nonsingular solutions that will be presented shortly.

Note that, for nonrelativistic matter (w = 0), background solution are given by:

P = c2
s = 0 , (4.45a)

ρ(T ) ∝
[
a(T )

]−3
, (4.45b)

a(T ) = 3

√
b2 + T 2

b2 + T 2
0

, (4.45c)

where a(T ) has been normalized to unity at T = T0 > 0 .
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In this case, (4.44) has the solution

Φ(T, x) = C1(x) +
b5/3C2(x)(
b2 + T 2

)5/6 , (4.46)

where C1(x) and C2(x) are arbitrary dimensionless functions of the spatial coordinates x
(The second term on the right hand side of (4.46) does not vanish if b = 0, this is because of
the fact that the dimensionless function C2(x) also depends on b.)

Remark that both modes in (4.46) are nonsingular at T = 0 , which is different from the
result obtained from standard FLRW universe [63].

As a special case of (4.46), consider a plane-wave perturbation with a single comoving wave
vector k,

C1,2(x) = Ĉk, 1,2 exp (ik · x) , (4.47)

where Ĉk, 1 and Ĉk, 2 are the dimensionless amplitudes. The amplitude of such a plane-wave
scalar metric perturbation is given by

Φk(T ) = Ĉk, 1 +
b5/3 Ĉk, 2(
b2 + T 2

)5/6 . (4.48)

From (4.42a), the corresponding energy density perturbation has the following amplitude:

δρk(T )

ρ(T )
= −

[
2 +

3

2
k2
(
b2 + T 2

0

)2/3 (
b2 + T 2

)1/3]
Ĉk, 1

+

[
3− 3

2
k2
(
b2 + T 2

0

)2/3 (
b2 + T 2

)1/3] b5/3 Ĉk, 2(
b2 + T 2

)5/6 , (4.49)

with k ≡ |k|. The perturbation results for different wave vectors k can be superposed, in
order to obtain localized wave packets.

The results of (4.46) and (4.49) show that the scalar metric perturbations and the plane-wave
adiabatic density perturbations are always finite (for finite C1(x) and C2(x)), in particular,
they remain finite at the moment of the bounce, T = 0. But, the metric perturbations
and density perturbations δρ/ρ are required to be much less than unity, so as to keep the
background metric essentially unchanged. (For the metric perturbations larger than 1, the
calculations of first-order perturbations make no sense.)

For T 6= 0 and a physical wavelength much larger than the Hubble horizon (1/H ≡ a/ȧ),

a2

k2
� 1

H2
>
T 2/(b2 + T 2)

H2
, (4.50)

we have from (4.49)

δρk(T )

ρ(T )

∣∣∣∣(long-wavelength)

∼ −2 Ĉk, 1 +
3 Ĉk, 2(

1 + T 2/b2
)5/6 . (4.51a)

For a short physical wavelength, we get

δρk(T )

ρ(T )

∣∣∣∣(short-wavelength)

∼ −3

2
k2 (T0 + b2)2/3

[
Ĉk, 1

3
√
b2 + T 2 +

b2/3 Ĉk, 2√
1 + T 2/b2

]
. (4.51b)

Observe that, as happens for the standard matter-dominated FLRW universe (see Eq. (7.56)
of Ref. [63]), the growing mode in (4.51b) is proportional to the cosmic scale factor a(T ).
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4.3.2. Cosmological perturbations with conformal coordinates

In Sec. 4.3.1, we have shown directly that matter-dominated nonsingular bounce could have
regular behavior under scalar metric perturbations. In this section, we will present more
results on the cosmological perturbations of nonsingular bouncing cosmologies.

To simplify calculations, we will use the so-called conformal coordinates in this section.

In terms of conformal coordinates, the modified spatially flat RW metric (4.1a) can be written
as the following form:

ds2
∣∣∣
mod. RW

= g̃µνdx̃
µdx̃ν = Ω2(η)

(
− dη2 + δij dx

idxj
)
, (4.52a)

Ω(η) dη ≡
√

T 2

b2 + T 2
dT , (4.52b)

with η being the conformal time and where Ω2(η) is the conformal factor.

Cosmological perturbations of the conformally flat metric (4.52a) have been widely studied
in the literature; see, in particular, Ref. [63].

For the nonsingular bouncing cosmologies discussed in Sec. 4.2.2, the metric perturbation
solutions take the same form as in the standard FLRW model but with the conformal time η
given by (4.52b).

4.3.2.1. Scalar metric perturbations

For scalar metric perturbations, the perturbed metric in conformal-Newtonian gauge is given
as follows [63]:

ds2
∣∣∣perturbed

mod. RW
= Ω2(η)

[
−(1 + 2Φ̃)dη2 + (1 + 2Ψ̃)δijdx

idxj
]
, (4.53)

with η given by (4.52b).

For nonrelativistic hydrodynamic matter, the solution for gravitational potential is

Φ̃(η,x) = C̃1(x) +
C̃2(x)sgn(η)

η5
, (4.54)

with C̃1(x) and C̃2(x) are arbitrary functions of the spatial coordinates x (the extra sign
factor multiplying C̃2(x) is needed to get the correct boundary conditions at the spacetime
defect, as will be explained below).

The corresponding plane-wave adiabatic energy density perturbations have the following so-
lutions [63]:

δρk(η)

ρ(η)

∣∣∣∣(long-wavelength)

∼ −2 C̃k, 1 + 3 C̃k, 2 sgn(η) η−5 , (4.55a)

δρk(η)

ρ(η)

∣∣∣∣(short-wavelength)

∼ −k
2

6

(
C̃k, 1 η

2 + C̃k, 2 sgn(η) η−3
)
, (4.55b)

with k ≡ |k| and constants C̃k, 1,2.

Notice that
Ω2(η(T )) = a2(T ) . (4.56)
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Inserting the scale factor for the nonrelativistic matter-dominated universe (4.45c) into (4.56)
and using (4.52b), we obtain

Ω(η) =
1

9

η2

b2 + T 2
0

, (4.57a)

η =

+3 3

√
b2 + T 2

0
6

√
b2 + T 2 , for T ≥ 0 ,

−3 3

√
b2 + T 2

0
6

√
b2 + T 2 , for T ≤ 0 ,

(4.57b)

η ∈ (−∞, η−] ∪ [η+, ∞) , (4.57c)

η± ≡ ± 3 3

√
b
(
b2 + T 2

0

)
. (4.57d)

The coordinate transformation (4.57b) is not a diffeomorphism, as happens for the coordinate
transformation between t and T (see (4.2)). There are different values η± for the single point
T = 0. For the nonsingular bouncing cosmologies, T from (4.1) is a good coordinate, but
η from (4.57b) is not. Still, η appears to be a useful auxiliary coordinate. First, it is well
defined away from the spacetime defect at η = η±. Second, with correct boundary conditions
at η = η±, the results calculated in η coordinate can agree with the results calculated in T
coordinate (we will show this point in the coming paragraph).

Actually, the extra minus signs for the C̃2 terms in (4.58) are responsible for correct boundary
conditions at η = η±. Inserting the η expression from (4.57b) into the perturbations (4.58),
the final expressions for gravitational potential is

Φ̃(η,x) = C̃1(x) +
1

35 (b2 + T 2
0 )5/3

C̃2(x)

(b2 + T 2)5/6
, (4.58)

in agreement with our previous result (4.46).

For completeness, we also present here the scalar metric perturbations for relativistic hydro-
dynamic matter.

The amplitude of a plane-wave gravitational potential for adiabatic perturbations is given
by [65],

Φ̃k(η) =
1

η3
{Bk ,1 [ωη cos(ωη)− sin(ωη)] +Bk ,2 [ωη sin(ωη) + cos(ωη)]} , (4.59)

with ω ≡ k/
√

3 and constants Bk, 1, 2.

The corresponding energy density perturbations are

δρk
ρ

(η) =
4Bk ,1

η3

{[
(ωη)2 − 1

]
sin(ωη) + ωη

[
1− 1

2
(ωη)2

]
cos(ωη)

}
(4.60)

+
4Bk ,2

η3

{[
1− (ωη)2

]
cos(ωη) + ωη

[
1− (ωη)2

]
sin(ωη)

}
.
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The conformal factor Ω2 and the conformal time η are given by

Ω2(η) =
1

4

η2

b2 + T 2
0

, (4.61a)

η =

+2 4

√
b2 + T 2

0
4

√
b2 + T 2 , for T ≥ 0 ,

−2 4

√
b2 + T 2

0
4

√
b2 + T 2 , for T ≤ 0 ,

(4.61b)

η ∈ (−∞, η−] ∪ [η+, ∞) , (4.61c)

η± ≡ ± 2 4

√
b2
(
b2 + T 2

0

)
, (4.61d)

where the points η = η− and η = η+ are identified.

For long-wavelength perturbations (ωη � 1), we have

Φ̃k(η) =
1

η3

[
−
Bk ,1 ω

3

3
η3 +Bk ,2

]
, (4.62)

and
δρk
ρ

(η) =
4

η3

(
Bk ,1 ω

3

6
η3 +Bk ,2

)
. (4.63)

During an expansion phase, we should see that the nondecaying modes of Φ̃ and δρ/ρ are
constants in the long-wavelength limit,

δρ/ρ ' −2Φ̃ ' constant . (4.64)

Notice that the gravitational potential Φ̃ could take different values at different spatial loca-
tions.

4.3.2.2. Vector and tensor metric perturbations

For the discussion of vector and tensor perturbations, we can follow Sec. 7 in Ref. [63].

For vector perturbations, the perturbed metric is given as follows [63]:

ds2
∣∣∣vector perturb.

mod. RW
= Ω2(η)

[
−dη2 − 2Si dx

i dη +

(
δij −

∂Hi

∂xj
− ∂Hj

∂xi

)
dxidxj

]
, (4.65)

where the perturbations Si and Hi are 3-vectors on spacetime coordinates satisfying

∂ (δij Sj)

∂xi
= 0 , (4.66a)

∂ (δij Hj)

∂xi
= 0 . (4.66b)

So, there are four independent functions for vector perturbations. Only two of them have
physical importance; the other two are gauge redundancy (coordinates freedom), as happens
for scalar perturbations.

The gauge-invariant variable for vector perturbations is

Vi = Si −
∂Hi

∂η
. (4.67)
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For a perfect fluid, the solution for vector perturbations are given by (cf. Eq. (7.93) in
Ref. [63])

Vi ∝ a−2(T ) , (4.68)

which decay for an expanding phase.

Turning to tensor perturbations, the perturbed metric is given as follows

ds2
∣∣∣tensor perturb.

mod. RW
= Ω2(η)

[
−dη2 + (δij −Dij)dx

idxj
]
, (4.69)

with Dij satisfying

δijDij = 0 , (4.70a)

∂ (δikDjk)

∂xi
= 0 . (4.70b)

From (4.70), we can see that there are only two independent functions for tensor perturba-
tions. Recall that the tensor perturbations actually describe gravitational waves (with two
polarizations).

The solution of plane-wave tensor metric perturbations for the radiation-dominated case is
as follows (see Eq. (7.98) in Ref. [63]):

Dij
k =

1

η

[
C̃k, 4 sin(k η) + C̃k, 5 sgn(η) cos(k η)

]
eijk , (4.71a)

η =

+2 4

√
b2 + T 2

0
4

√
b2 + T 2 , for T ≥ 0 ,

−2 4

√
b2 + T 2

0
4

√
b2 + T 2 , for T ≤ 0 ,

(4.71b)

η ∈ (−∞, η̃−] ∪ [η̃+, ∞) , (4.71c)

η̃± ≡ ± 2 4

√
b2
(
b2 + T 2

0

)
, (4.71d)

with k ≡ |k| and constant polarization tensor eijk (the polarization may be different for

different wave vectors k). The sign factor to the coefficient C̃k, 5 in (4.71a) is added to get
the correct boundary conditions at η = η̃±.

From (4.71a), we see that the evolution for the gravitational wave is regular at the bounce
moment (T = 0). In other words, the gravitational wave originating from cosmological
perturbations in the pre-bounce phase can safely cross the bounce.

4.3.3. Cosmic microwave background radiation

The cosmic microwave background (CMB), discovered in 1964 by Arno Penzias and Robert
Wilson [66], is landmark evidence for the standard big bang theory.11 The spectrum of the
CMB can be described by a blackbody radiation with temperature T = 2.725 K [67]. The
universe described by the CMB is almost isotropic. The anisotropies are at the level of about
one part in 10−5. However, these anisotropies give important constraints on cosmological
parameters and lead us to a deep understanding of our universe. The primordial anisotropies,
i.e., anisotropies at the scale which spans much larger than 1° on the sky of today, imply a
nearly scale-invariant power spectrum of gravitational potential [63,67,68].

11The other two crucial pieces of evidence for the standard big bang theory are Hubble’s law (expansion of the
Universe) and the abundance of primordial elements [64].
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In this section, we will discuss two mechanisms that can produce a scale-invariant power
spectrum, namely inflation and matter contraction. In both of the two scenarios, primordial
perturbations originated from quantum fluctuations at small scales. For a brief review of
the CMB primordial anisotropies, see App. E. In the same appendix, we will also show how
primordial anisotropies imply a scale-invariant power spectrum.

The background (unperturbed) metric is considered to be the modified spatially flat RW
metric (4.1). As regards inflation, we mean an exponential expansion of the cosmic scale
factor which starts at T > 0. As for matter contraction, we mean a bouncing model with a

matter contraction phase, i.e., a(T ) ∝ 3
√
T 2 + b2 for T < 0.

Assuming that we are working in the region far from the “defect”, we have

H ≡ ȧ

a
≡ da/dT

a
=
√
T 2/(T 2 + b2)

da/dt

a
∼=
da/dt

a
. (4.72)

So in the later discussion in this chapter, the overdot will stand for differentiation with respect
to t.

To simplify the calculations, we will be working in the conformal coordinates as we introduced
in Sec. 4.3.2.

To discuss the origin of cosmological fluctuations, we consider a scalar field with the following
action:

Sϕ =

∫ √
−g̃dx4

[
−1

2
g̃µν∂µϕ∂νϕ− V (ϕ)

]
, (4.73)

where g̃µν is given by the metric (4.52). By varying the action with respect to the metric
tensor, we can get the energy-momentum tensor for the scalar field

Tµνϕ = −g̃µν
[

1

2
g̃αβ∂αϕ∂βϕ+ V (ϕ)

]
+ g̃µαg̃νβ∂αϕ∂βϕ . (4.74)

By comparing (4.74) and the energy-momentum tensor of a perfect fluid (2.10), we can get
the energy density and pressure for the scalar field as follows:

ρϕ = −1

2
g̃µν∂µϕ∂νϕ+ V (ϕ) , (4.75)

pϕ = −1

2
g̃µν∂µϕ∂νϕ− V (ϕ) . (4.76)

4.3.3.1. Background fields

For scalar perturbations, we consider the metric background to be (4.52), where the homo-
geneous universe is characterized completely by the conformal factor Ω2(η) (remember that
Ω(η) = Ω(η(T )) = a(T ) ).

For the scalar field, the homogeneous Ansatz is

ϕ(η,x) = ϕ̄(η) . (4.77)

The background equations of motion for Ω and ϕ are the Klein–Gordon equation, Friedmann
equation and the energy-momentum conservation

ϕ ′′ + 2Hϕ′ + Ω2 ∂V

∂ϕ
= 0 , (4.78a)

8π

3
Ω2 ρϕ = H2 , (4.78b)

−3H (ρϕ + Pϕ) = ρϕ
′ , (4.78c)
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where the prime stands for differentiation with respect to the conformal time η and where

H ≡ Ω′/Ω . (4.79)

4.3.3.2. Perturbed fields

The perturbed metric is given by (4.53) with Ω given by (4.52b). The scalar field is assumed
to be decomposed into two parts,

ϕ = ϕ(η) + δϕ(η,x) , (4.80)

with δϕ(η,x) being a small perturbation satisfying |δϕ(η,x)| � ϕ(η). The equations of
motion for the gravitational potential and the perturbation of the scalar field are [63]

−3H(Φ̃′ +HΦ) +4Φ̃ = 4πΩ2 (ρϕ + Pϕ)

[(
δϕ

ϕ′

′)
− 2H δϕ

ϕ′
− Φ̃

]
, (4.81a)

HΦ̃ + Φ̃′ = 4πΩ2 (ρϕ + Pϕ)
δϕ

ϕ′
, (4.81b)

where the background equations of motion (4.78) have been used and where we have also
used

Ψ̃ = −Φ̃ , (4.82)

as follows from the perturbed off-diagonal spatial Einstein equation.

Following Sec. 8.3.1 of [63], we can define the following two variables

u(η,x) ≡ Φ̃

4π
√
ρϕ + Pϕ

, (4.83a)

v(η,x) ≡ Ω

(
δϕ+

ϕ′

H
Φ̃

)
. (4.83b)

As we will see later, the v variable introduced here is to make the action of the cosmological
perturbations to have canonical kinetic terms. While the u variable is proportional to the
gravitational potential Φ̃ for a given conformal time. Using (4.83), together with (4.78), (4.81)
can be written as

4u = z
(v
z

)′
, (4.84a)

v = θ
(u
θ

)′
, (4.84b)

with definitions

z(η) ≡
Ω2
√
ρϕ + Pϕ

H
, (4.85a)

θ(η) ≡ 1

z
. (4.85b)

Adding 4 on both sides of (4.84b) and using (4.84a), we obtain

v′′ −4v − z′′

z
v = 0 . (4.86)
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Recall that 4 in (4.86) is the Laplace operator in three-dimensional Euclidean space.

It can be shown that, up to total derivative terms, the action that could reproduce the
equations of motion (4.86) is [63]

Sv =
1

2

∫
dηd3x

[
v′

2
+ v4v +

z′′

z
v2

]
. (4.87)

Equation (4.87) is the action for the cosmological perturbations; as we mentioned before, this
action has canonical kinetic terms. The canonical variable v evolves like a scalar field with a
time-dependent mass in Minkowski space.

The canonical quantization of cosmological perturbation with action (4.87) can be found in
Sec. 8.3.3 of Ref. [63]. The resulting operator v̂ can be written in the following form:

v̂(η, x) =
1√
2

∫ [
v∗k(η)eikxâ−k + vk(η)e−ikxâ+

k

] d3k

(2π)3/2
, (4.88)

with â+
k and â−k being creation and annihilation operators. More details can be found in

Ref. [63].

The mode functions vk(η) in (4.88) satisfy

v′′k +

(
k2 − z′′

z

)
vk = 0 . (4.89)

The initial conditions for vk are given by [63]

vk(η0) =
1
√
ωk

, (4.90a)

v′k(η0) = i
√
ωk . (4.90b)

Considering the initial quantum fluctuations originate on small scales, i.e., k2 � z′′/z, we
have

ωk ' k . (4.91)

With (4.90) and (4.91), the initial conditions for uk can be obtained from (4.84)

uk(η0) ' − i
2
√
k3
, (4.92a)

u′k(η0) ' 1√
k
. (4.92b)

Assume that the equation of state of the background field is constant, i.e.,

w ≡ P

ρ
= constant . (4.93)

With (4.78b) and (4.93), (4.85a) reduces to

z(η) =
3

8π
ρ

√
1 + P/ρ ∝ Ω(η) . (4.94)

With (4.93) and (4.78b), we also have√
ρϕ + Pϕ ∝

|Ω′|
Ω2
∝ |H| . (4.95)
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4.3.3.3. Scale-invariant power spectrum from inflation

In this section, we will briefly discuss the scale-invariant power spectrum from inflation. A
more complete and rigorous derivation of cosmological perturbations from inflation can be
found in Ref. [63].

We know that during inflation, H is almost constant,

0 ≈ Ḣ =
ä

a
− ȧ2

a2
. (4.96)

Then, we have
z′′

z
=

Ω′′

Ω
≈ 2H2 , (4.97)

where (4.96) has been used.

Notice that
a2

k2
� 1

H2
(4.98)

is equivalent to
k2 � H2 . (4.99)

So, for a physical wavelength much smaller than the Hubble horizon, (4.86) gives

v′′k + k2vk = 0 . (4.100)

The solution of (4.100) is
vk(η) = ei k (η−η0) vk(η0). (4.101)

With (4.100), the solution for u can be obtained from (4.84a). In small-wavelength limit, the
solution for uk is

uk(η)
∣∣∣(short-wavelength)

' − i
k
ei k (η−η0) vk(η0). (4.102)

For a physical wavelength much larger than the Hubble horizon, (4.86) reduces to

v′′k −
z′′

z
vk = 0 , (4.103)

which has the solution
vk(η) ∝ z(η) . (4.104)

With (4.94), (4.84b) reduces to

v = u′ +
Ω′

Ω
u . (4.105)

From (4.84b) and(4.104), together with (4.104), we have the evolution of uk for a physical
wavelength much larger than the Hubble horizon

uk

∣∣∣(long-wavelength)
∝ Ω2

Ω′
∝ 1

H
. (4.106)

The power spectrum of the gravitational potential is given by the following dimensionless
quantity [63]

δ2
Φ̃

(η, k) ≡ |Φ̃k|2 k3

2π2
. (4.107)
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The initial quantum fluctuations originating beyond the Hubble horizon are given by (4.90).
Then, from (4.101), we find that vk will undergo oscillations with constant amplitude on
sub-Hubble scales. Equation (4.104) implies that vk will stop to oscillate after the length
scale crosses the Hubble horizon. The time tH(k) when the mode with wavenumber k crosses
the Hubble horizon is given by

a(tH)

k
=

1

H(tH)
. (4.108)

Notice that for different modes, tH is different in general.

Finally, the power spectrum of the gravitational potential at a very late time η is

δ2
Φ̃

(η, k) =
|Φ̃k|2 k3

2π2

' k3

2π2
|4πH(η)uk(η)|2

' k3

2π2
|4πH(η)|2

∣∣∣∣uk(ηH)

H(η)
H(ηH)

∣∣∣∣2
' k3

2π2
|4πH(η)|2 k−3H

2(ηH)

H2
, (4.109)

where we have used

uk(ηH) ' − i
k
ei k ηH−η0 vk(η0) . (4.110)

With the approximation that H is almost constant during inflation, we have

δ2
Φ̃

(η, k) ∝ H2 , (4.111)

which is independent of k. So, the exponential expansion of the inflationary scenario can
actually lead to a scale-invariant power spectrum of the gravitational potential.

4.3.3.4. Scale-invariant power spectrum from matter contraction

Inflation may not be the only theory that can lead to a scale-invariant power spectrum of the
cosmological perturbations. Several bouncing cosmological models are also able to produce
scale-invariant perturbations [53, 62, 69, 70]. In this section, we will show that a matter-
contraction phase may also lead to a scale-invariant power spectrum [62].

Before we start, we have two remarks in order.

First, do not confuse the matter contraction discussed here with a contracting phase domi-
nated by nonrelativistic hydrodynamic matter. The latter cannot convert quantum fluctua-
tion into a scale-invariant power spectrum of cosmological perturbations.

Second, the fact that a matter-contracting phase can be realized by a scalar field with an
exponential potential was already noted in Ref [53]. But in that work [53], a bounce cannot
occur with the exponential potential. The new result presented here is that we can have
a matter contraction (which produces a scale-invariant power spectrum) and a nonsingular
bounce in a single model. The details of a nonsingular bounce from a scalar field with a
positive exponential potential are given in App. D.

For matter contraction, we have

Ω(η) ∝ η2 (4.112a)

H =
2

η
. (4.112b)
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Figure 4.6.: The evolution of the Hubble horizon (full curve) and a physical wave (dashed
curve) in the modified, spatially flat FLRW universe. The scale factor is given by (D.5a) with
b = 1 and T0 = 1. The Hubble horizon RH is defined by RH ≡ 1/|H| = a(T )/(|da(T )/dT |).
The physical wave is specified by a wavelength λ = a/k with k = 0.3 .

Assume that the lengths of physical waves are smaller than the Hubble horizon 1/|H| at
T → −∞. Remark that this assumption is easy to be satisfied for matter contraction because

1

|H|
∝ (−T )1/3 a(T ) (4.113)

is larger than a/k at T → −∞ for nonvanishing k. See Fig. 4.6 and Fig. 4.7 for the evolution
of the Hubble horizon and physical waves in the modified, spatially flat FLRW universe.

From (4.112), we have
z′′

z
=

Ω′′

Ω
=

2

η2
=
H2

2
. (4.114)

So, for a physical wavelength much smaller than the Hubble horizon, z′′/z in (4.89) is negli-
gible compared to the k2 term. Hence, (4.89) reduces to (4.100). The corresponding solution
is also given by (4.101). The solution for uk is given as (4.102) in short wavelength limit.

For a physical wavelength much larger than the Hubble horizon, (4.86) reduces to

v′′k −
2

η2
vk = 0 . (4.115)

The solution for vk(η) from (4.115) are given by

vk(η) = ck,7 η
2 + ck,8 η

−1 , (4.116)

where ck,7 and ck,8 are constants and need to be determined by the initial conditions given
at the time of horizon crossing.

Notice that the first mode in (4.116) is decaying during contraction, as it is proportional to
the scale factor a. The second term, which is proportional to 1/

√
a, is the growing term12

during the contracting phase.

12In this case, |ck,8 η−1|2 is growing during contraction.
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Figure 4.7.: Same as Fig. 4.6, but the physical wave is specified by a larger wave number
k = 2 . This figure shows the case in which the physical wave is always smaller than the
Hubble horizon. This case is not of interest here, as it cannot contribute to super-horizon
perturbations.

In the following discussion, we will neglect the decaying mode and focus on the growing mode,
i.e., we take

vk(η) = ck,8 η
−1 . (4.117)

The constant ck,8 is given by

vk(ηH) = ei k (ηH−η0)vk(η0) '
ck,8
ηH

, (4.118)

which gives
ck,8 ' ηH ei k (ηH−η0)vk(η0) . (4.119)

Then, ηH(k) can be found by solving

H2(ηH) = k2 , (4.120)

which gives

ηH(k) = −2

k
. (4.121)

For vk = ck,8η
−1, (4.84b) gives to

ck,8η
−1 ' u′k +

2

η
uk , (4.122)

where we have used

θ ≡ 1

z
∝ 1

Ω(η)
. (4.123)

The solution of (4.122) is

uk(η) =
ck,8
2

+
ck,9
η2

, (4.124)
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where ck,9 is constant. In (4.124), the first mode is time-independent, while the second mode
is growing during contraction.

To calculate the power spectrum of cosmological perturbations, we use the approximation
that uk(η) is given by (4.102) before crossing the Hubble horizon. At the time of crossing the
Hubble horizon, we have from (4.106)

uk(ηH) ' − i
k
ei k (ηH−η0)vk(η0) . (4.125)

With ck,8 given by (4.119) and (4.125), from (4.124), we have the evolution of uk after crossing
the Hubble horizon (up to an irrelevant phase factor)

uk(η) ' 1

k3/2
, (4.126)

where ck,9 has been set to zero to match the boundary condition at the horizon crossing.

From (4.83a), we can get the power spectrum of the gravitational potential for a matter
contracting universe

δ2
Φ̃

(η, k) ≡ |Φ̃k|2 k3

2π

=

∣∣∣4π√ρ+ P uk(η)
∣∣∣2 k3

2π2

' 8(ρ+ P )

∝ H2 , (4.127)

where (4.95) and (4.126) have been used.

Even though the final result in (4.127) has the same expression as the result in (4.111), the
Hubble parameter H in (4.127) behaves like 1/t2, while H is almost constant in (4.111). In
a matter contracting universe, the initial vacuum fluctuation at sub-Hubble scales early in
the contracting phase can actually be converted into a scale-invariant power spectrum of the
gravitational potential, and the amplitude of the spectrum increases in proportion to a−3 .



CHAPTER 5

Conclusion and Outlook

In this thesis, we have reviewed possible solutions to certain apparent singularities of general
relativity. Specifically, the regularized Schwarzschild solution and the regularized Friedmann
solution were discussed. The theory involved here is standard general relativity but allowing
for degenerate metrics. More precisely, the metrics obey the standard Einstein equation but
have a vanishing determinant over a spacetime defect. (Mathematically, the spacetime defect
is a submanifold of the spacetime manifold.)

For the regularized black hole solution, we are actually dealing with general relativity in a
spacetime manifold with a nontrivial topological structure. An RP 3 defect in space is respon-
sible for the nontrivial topological structure of spacetime. Through the study of geodesics
for this space defect, we obtained a new type of gravitational lensing. Different from the
standard gravitational lensing, which is due to the nonvanishing curvature of spacetime, the
lensing from a flat-spacetime defect (Fig. 3.8) is entirely due to the nontrivial topology from
the defect.

The second effect brought about by the space defect is a massive black hole remnant. For
a singular black hole solution, by emitting Hawking radiation, a black hole would totally
disappear at the end. However, for the regularized black hole solution, the defect could
prevent a black hole from complete evaporation leaving a remnant with mass b c2/(2G),
with b being the length scale of the defect, c the speed of light in vacuum and G Newton’s
gravitational constant. These massive remnants could be a candidate for dark matter and
may or may not provide a solution for the black hole information paradox.

Motivated by the method of regularizing the black hole singularity, the big bang singularity
was regularized by introducing a defect in the time coordinate of the standard Robertson–
Walker metric. More precisely, a defect was introduced in the classical proper time of the
co-moving observer of the standard Robertson–Walker metric. This defect replaced the big
bang singularity by a nonsingular bounce. This particular nonsingular bounce modified the
Hubble diagram by presenting a cusp-type behavior at the bounce, which could lead to
observable effects. The calculations of Sec. 4.3.1 indicated that the nonsingular bounce could
be regular under small perturbations of the metric and matter.

For any cosmological model aiming to describe the evolution of the very early universe, it
is crucial to be able to produce a scale-invariant power spectrum of cosmological perturba-
tions. In the thesis, we have presented a particular bouncing model that might do the job
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(details are given in App. D and Sec. 4.3.3.4). For this particular bouncing model, the matter
contraction generated the scale-invariant power spectrum of the gravitational potential and
the nonsingular bounce (produced by the spacetime defect) transferred this spectrum to the
expansion phase giving the initial conditions for temperature fluctuations.

For most of the bouncing cosmologies in the scientific literature, the singularity theorem is
avoided by the violation of strong energy condition. However, for the nonsingular bouncing
cosmology discussed in Sec. 4.2, the energy condition for matter is entirely standard. The
degenerate-metric bounce scenario circumvented the singularity theorem in a particular way:
the spacetime defect guarantees the absence of conjugate points over the spacetime manifold,
which results in the absence of an upper bound on the length of timelike geodesics.

The nonsingular bouncing cosmologies we presented in this thesis are far from perfect. For
example, a nonsingular bouncing cosmology with a matter contraction could produce a scale-
invariant power spectrum of cosmological perturbations but cannot avoid the shear problem
(anisotropy problem). Needless to say, to get a complete bounce scenario, which could not
only predict the correct cosmological observations but also be free of any problems, is far
from trivial. The nontrivial result from the degenerate-metric scenario is that it gives a new
mechanism to produce a regular bounce.

In this thesis, the length scales of the two different spacetime defects are both represented
by the parameter b, but they may or may not take the same value. For the time defect, we
have qualitative bounds: lplanck . b . 10−3 m. The upper bound is necessary to reproduce
the hot big-bang model with temperatures T . TeV and the lower bound is demanded to
make classical Einstein theory applicable. As regards a single space defect, little is known
for sure about its length scale. It might be possible that the spacetime defects trace back to
the underlying (unknown) theory of “quantum spacetime”. In loop quantum gravity [71, 72],
there does exist something like a “quantum of space” (space has a discrete spectrum of area
and volume) and a “quantum of cosmic time” (cosmological evolution is discrete), but the
classical limit of the theory is not yet well understood. It is rather interesting that spacetime
may emerge from the master field of a nonperturbative formulation of string theory [73], and
the emerging spacetime may be described by the degenerate metric discussed in Chapter 4.
The physical origin of the spacetime defects remains an interesting topic for future research.



APPENDIX A

Proof of Remark 2 in Sec. 4.2.2.1

We will prove that, for the background (4.1), particles travel on straight lines in the coordinate
system {x0 ≡ T, x1, x2, x3}.

The geodesic equation is given by (3.28), which we copy here:

d2xα

dλ2
+ Γαµν

dxµ

dλ

dxν

dλ
= 0 , (A.1)

with λ being the proper time for massive particle or λ being the affine parameter for massless
particle. (Note that that the proper time for a massless particle is not well defined; the
parameter λ should be understood as the time told by some other freely falling clock. See
Appendix B of Ref. [64] for more discussion about proper time.)

Defining a four-velocity vector

Uµ ≡ dxµ

dλ
, (A.2)

for a massive particle (for a massless particle, Uµ should be understood as an energy-
momentum four-vector [64],) (A.1) gives

dUα

dλ
+ Γαµν U

µUν = 0 . (A.3)

Notice that

dUα

dλ
=
d(gαβUβ)

dλ
(A.4)

= gαβ
dUβ
dλ

+ Uβ
dgαβ

dλ
.

With (A.4), (A.3) can be written as

gαβ
dUβ
dλ

+ Uβ
dgαβ

dλ
+ Γαµν U

µUν = 0 . (A.5)
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Contracting (A.5) with gαρ, we have

dUρ
dλ
− Uαdgαρ

dλ
+

1

2
(gρν,β + gρβ,ν − gνβ,ρ)UνUβ = 0 , (A.6)

where we have the definition of Christoffel symbol

Γµνρ =
1

2
gµσ(gσν,ρ + gρσ,ν − gνρ,σ) (A.7)

and where

0 =
dδασ
dλ

= gµα
dgνσ
dλ

+ gµσ
dgµα

dλ
(A.8)

has been used.

Notice that

gρν,βU
β ≡ ∂gρν

∂xβ
dxβ

dλ
(A.9)

=
dgρν
dλ

.

With the help of (A.9), (A.6) reduces to

dUρ
dλ
− 1

2

∂gνβ
∂xρ

UνUβ = 0 . (A.10)

Recall that

g00 =
−T 2

T 2 + b2
, (A.11a)

gij = a2(T )δij , (A.11b)

which are independent of spatial coordinates. Hence, from the geodesic equation (A.10), we
have

dUi
dλ

= 0 , (A.12)

i.e., spatial components of Uµ are constants along the geodesic in the coordinate system
{T, x1, x2, x3}. For later discussion, we write these constants as

U1 ≡ c1 , U2 ≡ c2 , U3 = c3 . (A.13)

From the definition of U i, we have

dx1

dλ
=

c1

a2(T )
, (A.14a)

dx2

dλ
=

c2

a2(T )
, (A.14b)

dx3

dλ
=

c3

a2(T )
, (A.14c)

from which we can get
dxi

dxj
=
dxi/dλ

dxj/dλ
=
ci
cj
. (A.15)

From (A.15), we can get the following parametric representation of a straight line

x1 = x1 , (A.16a)

x2 =
c2

c1
x1 + b2 , (A.16b)

x2 =
c3

c1
x1 + b3 , (A.16c)

with x1 being the parameter and b2, 3 real constants.



APPENDIX B

Geodesics for massive particles in nonsingular bouncing cosmology

In Sec. 4.2.2.1, we have presented the null geodesics in nonsingular bouncing cosmology. In
this appendix, we will calculate the timelike geodesics.

As particles travel on straight lines in the coordinate system {T, x1, x2, x3} (see proof of this
statement in App. A), we can consider timelike geodesics that start at T = T1 < 0 and end
at T = T0 > 0, while moving in the x1 ≡ X direction. So, we take c2 = c3 = 0 and c1 = v > 0
in (A.16a).

Notice that

dX

dT
=
dX/dλ

dT/dλ
=
U1

U0
. (B.1)

For a massive particle, we have

gµνU
µUν = −1 , (B.2)

which gives

(U0)2 =

(
1 +

v2

a2

)
b2 + T 2

T 2
. (B.3)

Taking into account that U1 = g11 U1 = v/a2 and (B.3), (B.1) gives

dX =
v/a2√

1 + v2/a2

√
T 2

b2 + T 2
dT . (B.4)
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Figure B.1.: Timelike geodesic (B.5) with b = 1, T0 = 4
√

5, v = 1, and c4 =

−18 tanh−1
(

1/
√

10
)

= −c5.

For radiation-dominated universe, a(T ) is given by (4.5), the solution of (B.4) is as follows

X(T ) =



+ 2

v

√√
b2+T 2

b2+T 2
0

+ v2 tanh−1

 4

√
b2+T2

b2+T2
0√√

b2+T2

b2+T2
0

+v2


√

1
b2+T 2

(
b2+T 2

b2+T 2
0

)3/4√
v2√
b2+T2

b2+T2
0

+ 1

+ c4 , for T > 0 ,

− 2

v

√√
b2+T 2

b2+T 2
0

+ v2 tanh−1

 4

√
b2+T2

b2+T2
0√√

b2+T2

b2+T2
0

+v2


√

1
b2+T 2

(
b2+T 2

b2+T 2
0

)3/4√
v2√
b2+T2

b2+T2
0

+ 1

+ c5 , for T ≤ 0 ,

(B.5)

where c4 is an arbitrary real constant and where

c5 = 4b

v

√√
b2

b2+T 2
0

+ v2 tanh−1

 4

√
b2

b2+T2
0√√

b2

b2+T2
0

+v2


(

b2

b2+T 2
0

)3/4√
v2√
b2

b2+T2
0

+ 1

+ c4 . (B.6)

The energy of a particle with mass m as determined by a co-moving observer with 4-velocity
uµ is

E = −mUµuµ , (B.7)

In the rest frame of the co-moving observer, the spatial components of the 4-velocity vanish

ui = 0 , (B.8)

and we have
gµνu

µuν = g00u
0u0 = −1 , (B.9)
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which gives

u0 =
1√
−g00

. (B.10)

Finally, we have

E = −mU0u
0 = m

√
1 +

v2

a2
. (B.11)

From (B.11), we could find that the energy of a particle measured by a co-moving observer
is always finite in the nonsingular bouncing cosmology.





APPENDIX C

Nonsingular bounce with w = 1

C.1. Basic equations

Consider now that the equation-of-state parameter W (T ) satisfies

W (T ) ≡ P (T )

ρ(T )
= w = 1 , (C.1)

and we have the T -even bounce-type solution a(T ) from (4.4) with normalization a(T0) = 1
at T0 > 0

a(T )
∣∣∣(w=1, T -even sol.)

mod. FLRW
= 6

√(
b2 + T 2

)/(
b2 + T 2

0

)
, (C.2)

which is perfectly smooth at T = 0 as long as b 6= 0 (see Fig. C.1 for a comparison with the
singular solution). The corresponding Kretschmann curvature scalar K ≡ Rµνρσ Rµνρσ and
matter energy density ρ are then finite at T = 0, provided b 6= 0,

K(T ) ∝
(
b2 + T 2

)−2
, (C.3a)

ρ(T ) ∝
(
b2 + T 2

)−1
. (C.3b)

The particular value w ≥ 1 is to avoid instabilities in the prebounce phase (see the third
and fourth paragraphs of Sec. 4 in Ref. [54]). In particular, a contracting phase with w ≥ 1
can avoid the anisotropy problem (shear problem). The idea is that, if an initial classical
shear is present, the shear (anisotropic part in a homogeneous universe) will be about a−6.
During a contracting phase, the shear could dominate over matter (a−3) or radiation (a−4)
near the bounce, which may ruin the RW metric. However, a slow contraction with w ≥ 1
could overcome the anisotropy and preserve the RW metric approximation.13 See Sec. 5.4 in
Ref [62] for more details on the anisotropy problem.

In terms of the auxiliary coordinate t from (4.2), the bounce solution reads

a(t)
∣∣∣(w=1, t-even sol.)

mod. FLRW
= 6

√
t2/t20 , (C.4)

with t20 ≡ b2 + T 2
0 .

13Recall that, the energy density for a component with equation of state w is about ρ ∝ a−3(1+w).



66 C Nonsingular bounce with w = 1

-6 -4 -2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

T

a

Figure C.1.: Cosmic scale factor (full curve) of the modified spatially flat FLRW universe
with w = 1 matter, as given by (C.2) with b = 1 and T0 = 4

√
5. Also shown is the cosmic

scale factor (dashed curve) of the standard FLRW universe with an extended cosmic time
coordinate T , as given by (C.2) with b = 0 and T0 = 4

√
5.

C.2. Null geodesics

Consider geodesics of light that start at T = T1 < 0 and end at T = T0 > 0, while moving
in the x1 ≡ X direction. With boundary condition X(0) = 0, we have the following geodesic
solution X = X(T ) from the reduced metric (4.10) and the cosmic scale factor (C.2):

X(T ) =


+

3

2
6

√
b2 + T 2

0

[
3
√
T 2 + b2 − 3

√
b2
]
, for T > 0 ,

−3

2
6

√
b2 + T 2

0

[
3
√
T 2 + b2 − 3

√
b2
]
, for T ≤ 0 .

(C.5)

A plot of this null geodesic is given in Fig. C.2.

C.3. Past particle horizon

For this particular bounce-type universe, the particle horizon at T0 > 0 reads as

dhor(T0) = a(T0) lim
t1→−∞

[∫ −b
t1

dt′′

a(t′′)
+

∫ t(T0)

b

dt′

a(t′)

]
, (C.6)

where t(T0) ≡ t0 is given by (4.2) and a(t) by (C.4). For positive and finite values of b and
t0, we get

dhor(T0) =
3

2
a(T0) lim

t1→−∞

(
3

√
t21 t0 − 2

3
√
b2 t0 + t0

)
=

3

2
a(T0) lim

t1→−∞
3

√
t21 t0 , (C.7)

which goes to +∞.
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Figure C.2.: Null geodesic (C.5) with b = 1 and T0 = 4
√

5.

C.4. Modified Hubble diagrams

Taking the positive function a(t) from (C.4), the integrals in (4.17) give

dL(z)
∣∣∣(case 1)

z∈[0, zmax)
= 3 t0

1

2

[
1 + z − 1

1 + z

]
, (C.8a)

dL(z)
∣∣∣(case 2)

z∈(−1, zmax]
= 3 t0

1

2

[
1 + zmax −

1

1 + zmax
+

1

(1 + zmax)2

(
1

1 + z
− 1 + z

(1 + zmax)2

)]
,

(C.8b)

with the definition

zmax ≡ a(t0)/a(b)− 1 = 3
√
t0/b− 1 . (C.8c)

The corresponding angular diameter distance dA is

dA(z)
∣∣∣(case 1)

z∈[0, zmax)
= 3 t0

1

2

1

(1 + z)2

[
1 + z − 1

1 + z

]
, (C.9a)

dA(z)
∣∣∣(case 2)

z∈(−1, zmax]
= 3 t0

1

2

[
1

(1 + z)3
− 1

(1 + zmax)3
+
zmax + z (1 + zmax)

(1 + zmax)2(1 + z)

]
. (C.9b)

The modified Hubble diagram with the luminosity distance dL(z) is plotted in Fig. C.3 and
the one with the angular diameter distance dA(z) in Fig. C.4.
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Figure C.3.: Hubble diagram with the luminosity distance dL from (C.8) for b/t0 = 1/27 and
zmax = 2. With an observer in the expanding phase, the full curve corresponds to case 1
(light emitted by a co-moving galaxy in the expanding phase of the universe) and the dashed
curve to case 2 (light emitted by a co-moving galaxy in the contracting phase).
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Figure C.4.: Same as Fig. C.3, but with the angular diameter distance dA from (C.9).



APPENDIX D

Nonsingular bounce from a scalar field with a positive exponential potential

In Sec. (4.3.3.4). we showed that a matter contraction can lead to a scale-invariant power
spectrum. In this appendix, we will show one realization of the matter contraction, namely
a single scalar field with a positive exponential potential.

Before we start, we remark that a positive exponential potential that can lead to a contracting
universe dominated by cold matter was already discussed in Ref. [53]. However, that model
itself [53] cannot produce a nonsingular bounce. It is assumed in Ref. [53] that modifications
to general relativity are supposed to yield a bounce. In our case, the bounce is given by the
defect and we still remain within the domain of general relativity (but allow for degenerate
metrics).

We will use the t coordinate to simplify the calculations. The final results can be easily
represented in terms of the T coordinate by using the coordinate transformation (4.2).

For a single scalar field ϕ with potential V (ϕ), the equations of motion are given by (4.78).
In terms of the t coordinate, the equations of motion are as follows:

d2ϕ

dt2
+

3

a

da

dt

dϕ

dt
+
∂V

∂ϕ
= 0 , (D.1a)

8πG

3

[
1

2

(
dϕ

dt

)2

+ V (ϕ)

]
=

(
1

a

da

dt

)2

, (D.1b)

−3
1

a
(ρϕ + Pϕ)

da

dt
=
dρϕ
dt

, (D.1c)

with

ρϕ =
1

2

(
dϕ

dt

)2

+ V (ϕ) , (D.2a)

Pϕ =
1

2

(
dϕ

dt

)2

− V (ϕ) . (D.2b)

Notice that Newton’s gravitational constant G has been restored in (D.1b).
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A self-consistent system that satisfies (D.1) is as follows

a(t) = 3

√
t2

t20
, (D.3a)

ρϕ(t) =
1

6πG

1

t2
, (D.3b)

Pϕ(t) = 0 , (D.3c)

V (ϕ) =
1

12πG
e∓2

√
6πGϕ , (D.3d)

ϕ(t) = ± 1√
6πG

ln |t| , (D.3e)

with
t ∈ (−∞, b] ∪ [b, +∞) (D.4)

and where a(t) is normalized to unity at t0 > 0.

As ρϕ ∝ a−3 and Pϕ = 0 from (D.3), the scalar field ϕ behaves like nonrelativistic matter.

In terms of the T coordinate, (D.3) can be written as

a(T ) = 3

√
T 2 + b2

T 2
0 + b2

, (D.5a)

ρϕ(t) =
1

6πG

1

T 2 + b2
, (D.5b)

Pϕ(t) = 0 , (D.5c)

V (ϕ) =
1

12πG
e∓2

√
6πGϕ , (D.5d)

ϕ(t) = ± 1

2
√

6πG
ln(T 2 + b2) , (D.5e)

with
T ∈ R (D.6)

and where a(T ) is normalized to unity at T0 > 0.

Notice that the cosmic scale factor evolution for a universe filled by a scalar field (given by
(D.5a)) is exactly the same as it for a hydrodynamic matter-dominated nonsingular bouncing
universe (given by (4.7)). However, these two systems are not equivalent to each other,
especially when we consider cosmological perturbations. For example, the speed of sound for
the scalar field ϕ is unity, but it vanishes for nonrelativistic matter.



APPENDIX E

Primordial anisotropies and initial conditions

In this appendix, we will review the primordial anisotropies in the CMB spectrum and show
how the observed CMB spectrum implies a scale-invariant power spectrum of gravitational
potential. Our discussion follows Chapter 9 of Ref. [63].

E.1. Boltzmann equation

The collisionless Boltzmann equation reads [63,74]

0 =
df(xi(η) , pi(η) , η)

dη
≡ ∂f

∂η
+
dxi

dη

∂f

∂xi
+
dpi
dη

∂f

∂pi
, (E.1)

where f is the distribution function which gives the number density in one-particle phase
space. Equation (E.1) says that the number of particles in a given phase volume does not
change with time. Recall that the physical distance is given by Ω(η)|x| .

Consider a photon which is characterized by a 4-momentum pµ. The spatial direction of the
photon is given by [17]

li ≡ pi
p
, (E.2)

where

p ≡
√∑

i

pi pi . (E.3)

The frequency measured by an observer with 4-velocity uµ is equal to

ω = −pµuµ . (E.4)

Then, the distribution function for a photon is given by [63,74]

f =
2

exp
[

ω
T (xi ,li ,η)

]
− 1

, (E.5)

where T is the effective temperature from the blackbody radiation. The factor 2 in the
numerator of (E.5) accounts for the two possible polarizations of the photon. The temperature
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T depends on xi and li, which implies we are considering an inhomogeneous and anisotropic
universe.

Note that in the rest frame of an observer, we have

ui = 0 , (E.6)

and

u0 =
1√
−g00

. (E.7)

For scalar metric perturbations
g00 = −Ω2(1 + 2Φ̃) , (E.8)

gij = Ω2(1− 2Φ̃)δij , (E.9)

we have
ω = −p0u

0 = − p0√
−g00

. (E.10)

Notice that, for massless particles, we have

0 = gµνp
µpν (E.11a)

= −Ω2(1 + 2Φ̃)p0p0 +
1

Ω2(1− 2Φ̃)

∑
i

pipi

= −Ω2(1 + 2Φ̃)p0p0 +
(1 + 2Φ̃)

Ω2
p2 ,

where in the last line, we have neglected a term proportional to the second-order metric
perturbations (Φ̃2).

From (E.11), we can express p0 and p0 in terms of p

p0 =
p

Ω2
, (E.12a)

p0 = −(1 + 2Φ̃)p . (E.12b)

For a nearly homogeneous and isotropic universe, the temperature can be written as [63,74]

T (xi , li , η) = T0(η) + δT (xi , li , η) , (E.13)

with T0 � δT .

Now we will decompose the distribution function into two parts [74]

f = f + δf , (E.14)

where f and δf are the zero-order and first-order distribution function, respectively.

Notice that

ω

T
= − p0

T
√
−g00

(E.15)

=
−(1 + 2Φ̃)p

T Ω
√

1 + 2Φ̃

=
p

Ω T0
·

√
1 + 2Φ̃

1 + δT /T0
.



E.1. Boltzmann equation 73

For Φ̃� 1 and δT /T0 � 1, we have √
1 + 2Φ̃ ' 1 + Φ̃ , (E.16a)

1

1 + δT /T0
' 1− δT

T0
, (E.16b)

from which we get √
1 + 2Φ̃

1 + δT /T0
' 1 + Φ̃− δT /T0 . (E.17)

Considering (E.17), (E.15) can be written as

ω

T
= − p

Ω T0
(1 + Φ̃− δT /T0) . (E.18)

By taking Φ̃ = 0 and δT = 0, we have the following zero-order distribution function

f =
2

exp
[

p
ΩT0

]
− 1

. (E.19)

The first-order distribution function is given by

δf =
df

d(Φ̃− δT /T0)

∣∣∣∣∣
Φ̃−δT /T0=0

(Φ̃− δT /T0) . (E.20)

From (E.5) and (E.18), we have

δf =
AeA

2 f
(Φ̃− δT /T0) , (E.21)

in which A ≡ p

Ω T0
.

Considering the geodesic of a photon with affine parameter λ, we have

dxi

dη
=
dxi/dλ

dη/dλ
(E.22)

=
dpi

dp0

=
pi/[Ω

2 (1− 2Φ̃)]

p/Ω2

= li(1 + 2Φ̃) ,

where (E.3) and (E.12a) have been used.

From geodesic equations

dpα
dλ
− 1

2

∂gµν
∂xα

pµpν = 0 , (E.23)
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we have

dpα
dη

=
dpα/dλ

dη/dλ
(E.24)

=
1

2

∂gµν
∂xα

pµpν
1

p0

=
1

2 p0

(
∂g00

∂xα
p0p0 +

∂gij
∂xα

pipj
)

= −2p
∂Φ̃

∂xα
,

where second-order perturbations have been neglected.

With (E.22) and (E.24), we can write (E.1) as14

∂f

∂η
+ li(1 + 2Φ̃)

∂f

∂xi
− 2p

∂Φ̃

∂xi
∂f

∂pi
= 0 . (E.25)

The zero-order terms in (E.25) give
∂f

∂η
= 0 , (E.26)

from which we can get
∂(Ω T )

∂η
= 0 . (E.27)

Note that Ω(η) = a(t) for a given η = η(t). So, (E.27) tell us that, for a homogeneous and
isotropic universe, the temperature of the background radiation is inversely proportional to
the cosmic scale factor.

The first-order terms in (E.25) gives

0 =
∂δf

∂η
+ li

∂δf

∂xi
− 2 p

∂Φ̃

∂xi
∂f

∂pi
(E.28)

=

(
∂

∂η
+ li

∂

∂xi

)(
δT
T0

+ Φ̃

)
− 2

∂Φ̃

∂η
,

where (E.19) and (E.21) have been used.

Keep in mind that in deriving the zero-order and first-order equations, xi and pi are inde-
pendent variables in the distribution function.

E.2. Sachs–Wolfe effect

After recombination, photons start to travel freely through space and the universe is mainly
dominated by nonrelativistic matter. As we have discussed in Sec. 4.3, the main mode of the
gravitational potential Φ̃ is time independent (see (4.46)) for the matter-dominated universe.
Taking this into account, (E.28) reduces to(

∂

∂η
+ li

∂

∂xi

)(
δT
T0

+ Φ̃

)
= 0 . (E.29)

14The Boltzmann equation in terms of cosmic time coordinates t can be found in Sec.4.2 of Ref. [74], where a
physical interpretation can be easily observed.
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Note that

li =
1

1 + 2Φ̃

dxi

dη
. (E.30)

So, up to first-order metric perturbations, the operator on the left-hand side of (E.29) is
equivalent to a total derivative in time. Then, (E.29) reduces to

δT
T0

+ Φ̃ = constant . (E.31)

The temperature fluctuation due to the gravitational potential at last scattering is known as
the Sachs–Wolfe effect (SW) [75].

For the real case, the gravitational potential changes slowly between the time of last scattering
and the present [63]. The temperature fluctuation due to the time-dependent gravitational
potential is known as the integrated Sachs–Wolfe effect (ISW). Compared with SW, ISW has
a minor contribution to the temperature fluctuation.

E.3. Temperature fluctuations

Consider our earth as a given observer, with
δT
T0

(l) representing the temperature fluctuations

in the direction l ≡ (l1 , l2 , l3). The temperature autocorrelation function is defined as [63]:

C(θ) ≡
〈
δT
T0

(l1)
δT
T0

(l2)

〉
, (E.32)

with 〈 〉 representing the average over all directions, and where θ satisfies

cos θ = l1 · l2 . (E.33)

With (E.32), we have〈(
δT
T0

(θ)

)2
〉
≡

〈(
T (l1)− T (l2)

T0

)2
〉

(E.34)

=

〈(
T (l1)− T0

T0
− T (l2)− T0

T0

)2
〉

=

〈(
δT
T0

(l1)

)2
〉

+

〈(
δT
T0

(l2)

)2
〉
− 2

〈
δT
T0

(l1)
δT
T0

(l2)

〉
= 2C(0)− 2C(θ) .

C(θ) can be expanded as a sum of multipole moments Cl

C(θ) =
1

4π

∞∑
l=2

(2l + 1)ClPl(cos θ) , (E.35)

where Pl(cos θ) are the Legendre polynomials. Notice that, in (E.35), the component l = 0
(monopole) and l = 1 (dipole) are not been taken into account.15

15The monopole component gives the background temperature, and the dipole is interpreted to be the result of
the solar system motion relative to the nearly isotropic blackbody field [67].
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From (E.31), we have, along the geodesic of a photon

δT
T

(η, xi(η), , li) =
δT
T

(ηr, x
i(ηr), , l

i) + Φ̃(ηr, x
i(ηr))− Φ̃(η, xi(η)) , (E.36)

where ηr denotes the conformal time of last scattering (recombination). The temperature fluc-
tuations observed at a given time after recombination are determined by the initial conditions
(temperature fluctuations and initial gravitational potential at the time of last scattering) and
the gravitational potential at the time of observation.

Now, the key step is determining the temperature fluctuations at ηr. Approximately, we could
use the following matching conditions. Before decoupling, the energy-momentum tensor for
photon is given by the hydrodynamic one and after decoupling, the energy-momentum tensor
is given by the kinetic one. For a plane-wave scalar metric perturbation, the temperature
fluctuations at recombination are given by [63](

δT
T0

)
k

(l, ηr) =
1

4

(
δρk
ργ

+
3i

k2
(ki l

i)

(
δρk
ργ

)′)
, (E.37)

where
δρ

ργ
is the density perturbation for photons.

It can be shown [63] that Cl can be expressed in terms of Φ̃ and
δρ

ργ
as

Cl =
2

π

∫ ∣∣∣∣(Φ̃k(ηr) +
δρk
4ρ

)
jl(kη0)− 3 [δρk/ρ(ηr)]

′

4k

djl(kη0)

d(kη0)

∣∣∣∣2 k2dk , (E.38)

where jl(k η) are the spherical Bessel functions.

The Hubble horizon at the time of last scattering is about 0.87°, so the above discussion is
valid for l� 200 . For adiabatic scalar metric perturbations, we have [63]

δρk
ργ

(ηr) ' −
8

3
Φ̃k(ηr) , (E.39a)

[δρk/ρ(ηr)]
′ ' 0 , (E.39b)

which hold in the super-horizon region.

Then, for a scale invariant power spectrum with

|Φ̃k(ηr)|2k3 = B(ηr) , (E.40)

we have [63]

l(l + 1)Cl '
9B

100π
= constant , (E.41)

for l � 200 . So, the Sachs-Wolfe effect predicts a flat plateau of l(l + 1)Cl for small l if the
initial power spectrum is scale invariant. For the real case, the ISW also should be considered,
so the spectrum is not completely flat [67]. The temperature power spectrum measured in
astronomy [68,76–79] is presented in Fig. E.1.
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Figure E.1.: CMB temperature anisotropy estimates from the Planck, WMAP, ACT, and
SPT experiments. The curve shows the temperature spectrum for the best-fit Planck ΛCDM
cosmology. Figure from [80].
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