
A Hybrid Approach for Proving Noninterference of Java Programs

Ralf Küsters∗, Tomasz Truderung∗, Bernhard Beckert†, Daniel Bruns†, Michael Kirsten† and Martin Mohr†
∗University of Trier, Germany

Email: {kuesters,truderung}@uni-trier.de
†Karlsruhe Institute of Technology, Germany

Email: {bernhard.beckert,daniel.bruns,michael.kirsten,martin.mohr}@kit.edu

Abstract—Several tools and approaches for proving nonin-
terference properties for Java and other languages exist. Some
of them have a high degree of automation or are even fully
automatic, but overapproximate the actual information flow,
and hence, may produce false positives. Other tools, such as
those based on theorem proving, are precise, but may need
interaction, and hence, analysis is time-consuming.

In this paper, we propose a hybrid approach that aims at
obtaining the best of both approaches: We want to use fully
automatic analysis as much as possible and only at places in
a program where, due to overapproximation, the automatic
approaches fail, we resort to more precise, but interactive
analysis, where the latter involves the verification only of
specific functional properties in certain parts of the program,
rather than checking more intricate noninterference properties
for the whole program.

To illustrate the hybrid approach, in a case study we use
this approach—along with the fully automatic tool Joana for
checking noninterference properties for Java programs and the
theorem prover KeY for the verification of Java programs—as
well as the CVJ framework proposed by Küsters, Truderung,
and Graf to establish cryptographic privacy properties for
a non-trivial Java program, namely an e-voting system. The
CVJ framework allows one to establish cryptographic in-
distinguishability properties for Java programs by checking
(standard) noninterference properties for such programs.

Keywords-language-based security; noninterference; pro-
gram analysis; code-level cryptographic analysis

I. INTRODUCTION

The problem of checking noninterference properties of
programs has a long tradition in the field of computer
security and, in particular, in language-based security [1]. A
program is called noninterferent (w.r.t. confidentiality) if no
information from high variables, which contain confidential
information, flows to low variables, which can be observed
by the attacker or an unauthorized user. Several tools and
approaches exist in the literature for checking noninterfer-
ence. Some approaches, such as type checking [2], [3],
[4], [5], [6], [7], abstract interpretations [8], and program
dependency graphs (PDGs) [9], with tools including JIF
[10], TAJ [11], Joana [9], as well as tools described in
[8] and [12], have a high degree of automation, but they
overapproximate the actual information flow, and hence, may
produce false positives. Other approaches—such as those
based on theorem proving—allow for precise analysis, but

need human interaction, and hence, the analysis is often
time-consuming (see, e.g., [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24]).

Fully automated tools are often preferable over interactive
approaches since with such tools program analysis is typi-
cally less time-consuming and might require less expertise.
However, if automated tools fail due to false positives and
the analysis cannot further be refined by these tools, because,
for example, the tools do not allow this or run into scalability
problems, the only option for proving noninterference so
far is to drop the automated tools altogether and instead
turn to fine-grained but interactive, and hence, more time-
consuming approaches, such as theorem proving. This “all
or nothing” approach is unsatisfying and problematic in
practice.

Contributions. In this paper, we therefore propose a tool-
independent hybrid approach, which allows one to use (fully)
automated verification tools for checking noninterference
properties as much as possible and only resort to more fine-
grained, but possibly interactive verification tools (typically
theorem provers) at places in a program where necessary.
The latter verification requires checking specific functional
properties in (parts of) the program only, rather than check-
ing the more involved noninterference properties.

Our hybrid approach is stated and proven for the language
Jinja+ [25], [26], a rich fragment of Java. The simple
but powerful idea underlying this approach is as follows.
If the verification of noninterference of a program using
an automated tool fails due to (what we think are) false
positives (i.e., the automated tool falsely claims some illegal
flow of information), then, following rules of our approach,
additional code is added to the program in order to make
it more explicit and more clear for the automated tool that
there is no illegal information flow, and by this, avoid false
positives. If the automated tool now establishes that the
extended program enjoys the desired noninterference prop-
erty, it remains to show that the extended program is what
we call a conservative extension of the original program.
Intuitively, this means that the additional code did not change
the behavior of the original program in an essential way.
Proving that an extension is conservative requires to prove
functional properties of (parts of) the program and will

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/382464460?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

typically be carried out by an (interactive) theorem prover.
The key property that we show for the hybrid approach to
work is that if the extended program is noninterferent and
is a conservative extension of the original program, then
the original program is noninterferent as well. We note that
in this work we are concerned with termination-insensitive
noninterference since this suffices to prove cryptographic
properties for Java programs (see below). However, the
basic idea should also be applicable to termination-sensitive
noninterference.

While our hybrid approach should be widely applicable—
it is not tailored to specific tools or specific applications, and
the basic idea is quite independent of a specific programming
language—, our main motivation stems from the problem
of checking, on the code level, cryptographic properties of
programs (that use cryptography), where here we consider
Java programs. This has become an active field of research
in the last few years (see, e.g., [25], [27], [28], [29], [30],
[31] for some of the recent works). More specifically, we
use the CVJ framework (cryptographic verification of Java
programs) proposed by Küsters, Truderung, and Graf [25]
for this purpose. This framework enables tools that can check
(standard) noninterference properties for Java programs, but
a priori cannot deal with cryptography, to establish cryp-
tographic indistinguishability properties for Java programs.
The CVJ framework combines techniques from program
analysis and universal composability [32], [33], [34]. Given
a Java program (that uses cryptography), the idea is to first
check noninterference for this program where cryptographic
operations (such as encryption) are performed within so-
called ideal functionalities, in the sense of universal com-
posability. The cryptographic framework then guarantees
that the actual Java program, where the ideal functionalities
are replaced by the actual cryptographic operations, enjoys
cryptographic indistinguishability properties.

In order to illustrate our hybrid approach, in a case
study we use this approach and the CVJ framework to
establish cryptographic privacy properties for a non-trivial
Java program, namely an e-voting system. In addition to
human actors (voters, auditors, clerks), the system involves
a voting machine, which gathers all votes and calculates
the election result, and a bulletin board on which the result
and other information of the election is published. Now, in
order to establish cryptographic privacy properties for this
Java system it suffices, according to the CVJ framework,
to verify that this system (when run using ideal function-
alities for public-key encryption and digital signatures) is
noninterferent. To establish noninterference, we use the fully
automated tool Joana [9]. However, this tool produces a false
positive. (Since establishing noninterference for our case
study requires quite intricate reasoning, it seems that all fully
automated tools would fail.) We therefore extend the system
to avoid the false positive following our hybrid approach,
have Joana prove that this extension indeed is noninterferent,

and finally prove that the extension is conservative, using
the software verification system KeY [35], which is based
on theorem proving for dynamic logics. By our hybrid
approach, this implies that the system (running with ideal
functionalities) is noninterferent. The CVJ framework then
immediately yields cryptographic privacy of the Java system
when the ideal functionalities are replaced by the actual
cryptographic implementations.

Structure of the paper. We first briefly recall some prelim-
inary definitions in Section II, before we present the hybrid
approach in Section III. For our case study, we also briefly
recall the CVJ framework in Section IV and, in Section V,
provide some more background on the tools Joana and KeY
that we use. The case study, including the description of
the e-voting system and the verification process, is then
presented in Section VI. We conclude in Section VIII. Some
more details and proofs are provided in the appendix. The
source code of the e-voting system, all proofs scripts, and
machine generated proofs are available online [36].

II. PRELIMINARIES

We briefly recall the notion of noninterference and also
present the Java-like language Jinja+, for which the hybrid
approach as well as the CVJ framework [25] are stated and
proven.

Jinja+. The Java-like language Jinja+ [25] is based on Jinja
[26] and extends this language with some additional features
that are relevant in practical applications.

Jinja+ covers a rich subset of Java, including classes,
inheritance, (static and non-static) fields and methods, the
primitive types int, boolean, and byte (with the usual op-
erators for these types), arrays, exceptions, and field/method
access modifiers, such as public, private, and protected.
It also includes a primitive randomBit() that returns a
random bit each time it is called.

A (Jinja+) program/system is a set of class declarations.
A class declaration consists of the name of the class, the
name of its direct superclass, a list of field declarations, and
a list of method declarations. A program/system is closed if
it uses only classes/methods/fields declared in the program
itself. A program is deterministic if it does not use the
randomBit() primitive. Note that in fact if randomBit() is
not used in a program, then up to reference renaming the
run of a program is deterministic. (Names of references do
not have any effect on the behavior of the program.) For the
reader’s convenience, we recall the syntax and semantics of
Jinja+ programs in Appendix B.

All Java programs considered in this paper, including
the systems considered in our case study as well as the
ideal functionalities and their realizations, fall into the Jinja+
fragment.

Noninterference. The (standard) noninterference notion for
confidentiality [37] requires the absence of information flow

from high to low variables within a program. Here, we define
noninterference for closed deterministic (Jinja+) programs
where some static variables of primitive types are labeled as
high and some other static variables of primitive types are
labeled as low. We denote such programs by P[~x] where ~x
is a vector of the variables that are labeled as high in P. For
simplicity of notation, the variables in P[~x] that are labeled
as low are omitted in the notation. By P[~a] we denote the
program P where the high variables~x are initialized with the
values ~a and the low variables are initialized as specified in
P.

Now, noninterference for a closed deterministic program
is defined as follows: Let P[~x] be a program as above. Then,
P[~x] is noninterferent/has the noninterference property if the
following holds true: for all ~a1 and ~a2 (of appropriate type),
if P[~a1] and P[~a2] terminate, then at the end of their runs, the
values of the low variables are the same. Recall that variables
marked low or high are assumed to be static variables of
primitive types and note that the above defines termination-
insensitive noninterference.1 This is sufficient for applica-
tions concerned with cryptographic security properties (see
Theorem 3). More general definitions of non-interference
can for example be found in [38].

III. A HYBRID APPROACH FOR PROVING
NONINTERFERENCE

In this section, we present our hybrid approach. As al-
ready mentioned in the introduction, this approach provides
a method to leverage the precision of certain tools, such as
theorem provers (e.g., KeY), in order to allow less precise,
but automated tools, such as Joana, to prove noninterference
of programs which otherwise they would not be able to deal
with.

A. Outline of the Approach

The hybrid approach can be used when an automated tool
is employed to prove noninterference of a given program P
but the tool reports (as we believe) a false positive, i.e.,
illegal information flow in a point of a program where (again,
as we believe) there is no such illegal flow. Clearly, at this
point, one option could be to try to use a more precise, but
interactive tool, and drop the automated tool altogether. This
would, however, typically involve a substantial, potentially
unacceptable amount of work. Our hybrid approach opens
up another possibility which combines the advantages of
i) automated, but imprecise, and ii) precise, but interac-
tive tools. When applying our approach, one still uses the
automated tool as much as possible and resorts to other,
more interactive tools only at places in the program where
necessary, namely where the automated tool failed.

1Also note that in this definition we do not consider low input. However,
such low input will be captured in the stronger notion of I-noninterference,
where we consider and universally quantify over arbitrary environments
(adversaries). These environments provide arbitrary low input.

Our hybrid approach works as follows. Given a program
P as above, for which an illegal information flow is reported
by the automated tool, we first provide an extension P′ of P.
We do this following the rules (explained below) of our
approach in such a way that (a) it is made (more) explicit for
the automated tool that there is no illegal information flow
in P′ and (b) P′ extends P in what we call a conservative
way. Now, one uses the automated tool to verify that P′ is
noninterferent. If the automated tool should still fail to prove
noninterference for P′, because of another (as we believe)
false positive, one can further extend P′ in a conservative
way, and so on. Once, noninterference of P′ is established,
it remains to verify that P′ is in fact a conservative extension
of P′. As we will see below, being a conservative extension
is a specific functional property. To prove this property,
we typically need support of a more precise, but possibly
interactive tool, e.g., a theorem prover. However, this should
typically involve analyzing only a smaller fragment of the
overall program. Being a functional property, this approach
is more practical than to prove noninterference properties
(of the complete program). If now noninterference and
conservatism of P′ is established, our hybrid approach (see
Theorem 1) implies noninterference of the original program
P.

In a nutshell, to construct a (conservative) extension of
a program P, one adds an additional component M to the
program P. This component is constructed in such a way
that its state is isolated from the state of P. The component
M is then used to collect some low data and explicitly “kill”
potential illegal information flow paths, as explained below.

B. Formalizing the Hybrid Approach

In the following definition, we consider a deterministic
and closed program P[~x], with the variables ~x labeled as
high, as in the definition of noninterference. In what follows,
we first define the notion of an extension of such a program
and then the notion of a conservative extension. We then
state the main theorem, which says that if the conservative
extension of a program enjoys noninterference, then so does
the original program.

Definition 1 (Extension). Let P = P[~x] be a deterministic
and closed (Jinja+) program. An extension of P is a program
P′=P′[~x] obtained from P in the following way. First, a new
component M is added to P consisting of some number of
classes with the following properties:

(i) the methods and fields of the classes in M are static,
(ii) the arguments and the results of the methods of M are

of primitive types,
(iii) the methods of M do not refer to classes defined in P

(in particular, no methods and fields of P are used in
M),

(iv) all potential exceptions are caught inside M,
(v) all methods of M always terminate.

Second, P is extended by adding statements of the following
form in arbitrary places within methods of P:
(a) (output to M)

C. f (e1, . . . ,en) (1)

where C is a class in M with a (static) method f and
e1, . . . ,en are expressions without side effects.

(b) (input from M)

r =C. f (e1, . . . ,en), (2)

where C is a class in M, C. f is a (static) method with
some (primitive) return type τ , e1, . . . ,en are expres-
sions as above, and r is an expression that evaluates
without side effects to a reference of type τ . (Such
an expression can, for example, be a variable or an
expression of the form o.x, where o is an object with
field x.)

The property of being an extension of a program typically is
easy to verify. Conditions (i) to (iii) can easily be checked
syntactically. As for Condition (iv), typically M should be a
quite simple class, and hence, it should be easy to see that
methods cannot throw exceptions. If there are potentially
problematic operations, one can explicitly catch them inside
M. Whether this is done can, again, be checked syntactically.
Similarly, for Condition (v) there are simple syntactical
criteria such as a lack of loops and recursion. These criteria
seem to suffice for the typical ways in which conservative
extensions are constructed, as we expect them to be simple.

Note that an extension is defined in such a way that
the state of the added component M is separated from the
state of P (these components do not share references; see
Appendix A for a formal definition of state separation).
Moreover, additional statements of the form (1) do not
change the state of P. Only statements of the form (2)
could potentially change the state of P. We call an extension
conservative if this, however, is not the case:

Definition 2 (Conservative extension). An extension P′[~x]
of P[~x] is called a conservative extension of P[~x], if for all
initial values ~a of high variables ~x the following is true in
the run of P′[~a]: Whenever a statement of the form (2) is
executed, it does not change the value of r. That is, the value
of r right before the execution of the assignment coincides
with the value returned by the method call C. f (e1, . . . ,en).
As such, statement (2) is redundant.

The intuition behind the above definitions is the following.
In a conservative extension P′ of P, not only the state of
M is disjoint from the state of the original program P, but
additionally all the added statements preserve the state of P
(and hence are redundant). Altogether, P and its conservative
extension P′ are equivalent in that they produce the same
runs up to calls to M and up to the state of M.

Being a conservative extension obviously is a functional
property. Proving this property requires a (possibly non-

trivial) proof. For such a proof one would typically use
an (interactive) theorem prover. However, for the hybrid
approach it clearly does not matter by what means conser-
vatism is established. If this property can be established by
some automated tool (probably a different tool than the one
used for proving noninterference of P′), then one can of
course use such a tool.

As illustrated by our example below and our case study
in Section VI, proving conservatism will typically be some-
thing that one implicitly would have to prove even if one
tried to prove noninterference directly for the original pro-
gram P: In the conservative extension P′ certain information
flows are canceled out explicitly. This will typically be
one of the “puzzle pieces” for the noninterference of P
anyway. So, the hybrid approach typically will not add proof
obligations.

Now, following the intuition that the runs of a program
P and a conservative extension of P produce the same runs
up to calls to M and the state of M, we prove the following
theorem (see Appendix A for the full proof). The theorem
says that if a conservative extension of a program with high
and low variables is noninterferent, then so is the program
itself. Note that part of the proof of the theorem is that the
conditions for M in Definition 2 in fact guarantee that M
does not change the state of a program.

Theorem 1. Let P[~x] be a program with the variables ~x
labeled as high and variables ~y labeled as low. Let P′[~x] be
a conservative extension of P[~x] such that in P′[~x] again the
variables in ~x are labeled as high and those in ~y are labeled
as low. Then, if P′[~x] is noninterferent, then so is P[~x].

Proof sketch: Let P′[~x] be a conservative extension
of P[~x]. Recall that the high variables ~x, as well as the
low variables ~y, are assumed to be static and of primitive
types. Notice also that these variables do not occur in M
(the additional class of P′).

Now, suppose that the program P′[~x] is noninterferent,
whereas the original program P[~x] is not. This means that
there exist values ~a1 and ~a2 such that P[~a1] and P[~a2]
terminate and for the final values ~b1 and ~b2, respectively,
of the low variables ~y we have that ~b1 6=~b2.

Clearly, the variables ~y are part of the state of the
original program P. Therefore, one can show that, due to
the separation of states of the original program P and the
state of M and because the additional statements added to P
do not change the state of P, the programs P′[~a1] and P′[~a2]
(1) terminate as well and, moreover, (2) terminate with the
same final values of the low variables ~y, namely with ~b1
and ~b2, respectively. Since ~b1 6=~b2, this, however, means—
contrary to what we have assumed—that the program P′[~x]
is not noninterferent. Hence we have reached a contradiction
and proven that P[~x] is noninterferent. We refer the reader
to Appendix A for the full proof.

We refer the reader to our technical report for the full

proof.
The definitions and results stated above do not say how one
can come up with a conservative extension of a program.
This process is not automatic and requires some understand-
ing of the analyzed program and the automated tool that is
used.2 We now explain this process.

C. Constructing a Conservative Extension

As sketched above, the approach to come up with a
conservative extension of a program is as follows: For
the sake of the discussion, say that some potentially high
information flows into some variable v and from this point
this information flows to some low variables. If the value
assigned to v does not actually depend on high variables, the
conservative extension should make this more explicit. For
this purpose, the component M should be provided with low
data that is sufficient to compute the value for v. This is done
by adding statements of the form (1) in Definition 1 (output
to M) in such a way that it is apparent for the automated
tool that the data given to M is low. Then, at the problematic
point in the program (typically after the point in the original
program where v is assigned a value) an assignment to v of
the form (2) in Definition 1 (input from M) is added to the
program to make it more explicit for the automated tool that
v depends on low data only. In other words, the assignment
explicitly “kills” potential dependencies from high data.

We illustrate this general idea by a toy example, with
a more interesting and complex case study presented in
Section VI. More specifically, by the example presented
below we illustrate the process of running into a false
positive with an automated tool, extending the code, proving
that this extension has the desired noninterference property
(using some automated tool), and proving that the extension
is conservative (by some interactive theorem prover). The
example also demonstrates that the hybrid approach can be
very beneficial, compared to giving up on automated analysis
altogether and switching to an interactive theorem prover for
checking noninterference for (the whole) program.

Example. We consider the following Java program, where
secret is declared to be a high variable and result is low.

1 class Example {

2 static public int result;

3 static private int a;

4 public static void main(int secret) {

5 a = 42;

6 bar(secret);

7 int b = foo(secret);

8 result = b;

2Note that proving noninterference properties for the whole program,
rather than functional properties for parts of the program, with an interactive
tool would typically require much more understanding of the program and
human interaction. Also, and importantly, as explained, typically proving
conservatism would implicitly be part of the proof of noninterference of
the original program anyway.

9 }

10 static int foo(int secret) {

11 int b = a;

12 // M.set(a);

13 if (secret==0) b+=secret;

14 // b = M.get();

15 return b;

16 }

17 static void bar(int secret) {

18 ...

19 }

20 }

21

22 /*
23 class M {

24 static int x;

25 public static void set(int n) { x=n; }

26 public static int get() { return x; }

27 }

28 */

We applied the fully automated tool Joana for checking
noninterference for Java programs to this example (see
Section V-A for more information about Joana), where bar

was some piece of code on which Joana did not report
an illegal information flow. Joana reported in method foo,
line 13 a potential information flow from the variable secret

to the variable b, the value of which is then returned and
assigned to the low variable result. This flow is, however,
not real, as can easily be seen: the value of b is in fact not
altered in line 13 and it only depends on the low variable a.
We can easily make this nondependency explicit by adding
(uncommenting) the class M and uncommenting lines 12 and
14. Now, Joana establishes noninterference for this extended
program without problems.3 Note that, in particular, Joana
tells us that the method bar does not cause a, and hence,
result to depend on high information.

It remains to prove that the extension is conservative, i.e.,
that before executing line 14 the variable b carries the value
returned by M.get() (= a). This is merely a functional
property which can easily be verified using the theorem
prover KeY (see Section V-B for more background on KeY).
Note that in order to prove this property, KeY has to analyze
only the code of the method foo and the class M. In particular,
it does not have to touch the potentially large method bar

or other methods or classes that might be contained in
the program. So the analysis one has to perform with the
theorem prover, KeY in this case, is relatively simple in
that for checking the functional property only part of the
program has to be touched (rather than the whole program)
and checking the functional property would be part of a
full-fledged noninterference proof anyway.

Now, by the results of Joana and KeY, Theorem 1 implies
that our original example program (with the class M and

3We note that for this the fact that Joana is flow sensitive is important.
Without this property, Joana would not see that line 14 overwrites the value
of b in line 13.

lines 12 and 14 commented out) enjoys the noninterference
property, a fact that with Joana alone could not have been
established.

We note that even in complex applications, M will often
be very simple. Therefore, to ease the notation, one can
often safely inline the code of methods of M. In the above
example, one could replace lines 12 and 14 by M.x = a and
b = M.x, respectively. In some cases, one can even move
static fields of M to the original program and get rid of M
completely. In our example, we could obtain an equivalent
variant by declaring x to be a static field of class Example and
replace lines 12 and 14 by x = a and b = x, respectively.

IV. FRAMEWORK FOR CRYPTOGRAPHIC VERIFICATION
OF JAVA PROGRAMS

As already mentioned in the introduction, while the hybrid
approach should be widely applicable (it is not tailored
to specific tools or applications), our main motivation for
devising methods for proving noninterference properties
comes from the problem of establishing cryptographic guar-
antees, in particular, cryptographic indistinguishability, for
Java programs.

In [25], a framework, which is referred to as the CVJ
framework, for cryptographic verification of Java programs,
has been proposed which enables tools that can check
(standard) noninterference properties for Java programs, but
a priori cannot deal with cryptography (probabilities, poly-
nomially bounded adversaries), to establish cryptographic
indistinguishability properties of Java programs. For this
purpose, the framework combines techniques from program
analysis and universal composability. Given a Java program
that uses cryptographic operations, the framework shows that
in order to verify that the program enjoys a cryptographic
indistinguishability property it suffices to prove, using the
tools, that the program enjoys a (standard) noninterference
property when the cryptographic operations are replaced by
so-called ideal functionalities. The reason for using ideal
functionalities is that they often do not involve probabilistic
operations and are secure even for unbounded adversaries,
which are the kind of adversaries considered for standard
noninterference properties. The framework has been stated
and proven in [25] for the language Jinja+ (see Section II).

In this section, we briefly recall the CVJ framework. The
definitions and theorems stated here are somewhat simplified
and informal, but should suffice to follow the rest of the
paper. We refer the reader to [25] for full details.

Indistinguishability. An interface I is defined like a (Jinja+)
system but where (i) all private fields and private methods
are dropped and (ii) method bodies as well as static field
initializers are dropped. A system S implements an interface
I, written S : I, if I is a subinterface of the public interface of
S. We say that a system S uses an interface I, written I ` S, if,
besides its own classes, S uses at most classes/methods/fields
declared in I. We write I0 ` S : I1 for I0 ` S and S : I1.

For two systems S and T , we denote by S ·T the composi-
tion of S and T which, formally, is the union of (declarations
in) S and T . Clearly, for the composition to make sense, we
require that there are no name clashes in the declarations
of S and T . Of course, S may use classes/methods/fields
provided in the public interface of T , and vice versa.

A system E is called an environment (or adversary) if
it declares a distinct private static variable result of type
boolean with initial value false. Given a system S : I, we
call E an I-environment for S if there exists an interface
IE disjoint from I such that IE ` S : I and I ` E : IE . Note
that E · S is a closed program. The value written by E to
result at the end of a run of E ·S is called the output of the
program E ·S; the output is false for infinite runs. If E ·S is
a deterministic program, we write E ·S true if the output
of E ·S is true. If E ·S is a randomized program, we write
Prob{E ·S true} to denote the probability that the output
of E ·S is true.

We assume that all systems have access to a security
parameter (modeled as a public static variable of a class
SP). We denote by P(η) a program P running with security
parameter η .

To define computational equivalence and computational
indistinguishability between (probabilistic) systems, we con-
sider systems that run in (probabilistic) polynomial time in
the security parameter, referred to as probabilistic polyno-
mially bounded systems. We omit the details of the runtime
notions used in the CVJ framework, but note that the
runtimes of systems and environments are defined in such a
way that their composition results in polynomially bounded
programs.

Let P1 and P2 be (closed, possibly probabilistic) programs.
We say that P1 and P2 are computationally equivalent, writ-
ten P1 ≡comp P2, if |Prob{P1(η) true}−Prob{P2(η)
true}| is a negligible function in the security parameter η .4

Let S1 and S2 be probabilistic polynomially bounded
systems. Then S1 and S2 are computationally indistinguish-
able w.r.t. I, written S1 ≈I

comp S2, if S1 : I, S2 : I, both
systems use the same interface, and for every polynomially
bounded I-environment E for S1 (and hence, S2) we have
that E ·S1 ≡comp E ·S2.

Simulatability and Universal Composition. We now de-
fine what it means for a system to realize another system, in
the spirit of universal composability. Security is defined by
an ideal system F (also called an ideal functionality), which,
for instance, models ideal encryption, signatures, MACs, key
exchange, or secure message transmission. A real system
R (also called a real protocol) realizes F if there exists a
simulator S such that no polynomially bounded environment
can distinguish between R and S · F . So, intuitively, the

4As usual, a function f from the natural numbers to the real numbers is
negligible, if for every c > 0 there exists η0 such that f (η) ≤ 1

ηc for all
η > η0.

simulator tries to make S ·F look like R for the environment.
To provide some intuition, consider, for example, public-

key encryption. When instructed to encrypt a message m,
the ideal functionality F would instead encrypt the message
0|m| and it would store the pair (m,c), where c is the
ciphertext resulting from encrypting 0|m|. So, by definition
of F , the ciphertext c does not contain any information
about the plaintext m, except for its length. If later F is
asked to decrypt c, it would look up the corresponding
plaintext in its table and return this plaintext, m in this case.
Conversely, in R the actual message would be encrypted
and for decryption one would simply apply the decryption
algorithm to the given ciphertext. One can show that if the
cryptographic algorithms used in R are IND-CCA2-secure
(a standard security assumption for public-key encryption
schemes), then R in fact realizes F . Such a result has been
proven in [30] for Java implementations of R and F , both
for public-key encryption and digital signatures (with public-
key infrastructures). We use these results in our case study
in Section VI.

To define the notion of realization more formally, let
F and R be probabilistic polynomially bounded systems
which implement the same interface Iout and use the same
interface, except that in addition F may use some interface
provided by a simulator. Then, we say that R realizes F
w.r.t. Iout , written R≤Iout F or simply R≤ F , if there exists a
probabilistic polynomially bounded system S (the simulator)
such that R ≈Iout

comp S ·F . As shown in [25], ≤ is reflexive and
transitive. It also enjoys composability, i.e., one can analyze
a system using ideal functionalities (such as F) and later
replace these functionalities by their realizations (such as
R); see also Theorem 3.

I-noninterference. The standard notion of (termination-
insensitive) noninterference (see Section II) deals with
closed programs/systems. For the CVJ framework, this
notion is generalized to open systems as follows: Let I
be an interface and let S[~x] be a (not necessarily closed)
deterministic system with high variables ~x such that S : I.
Then, S[~x] is I-noninterferent if for every deterministic I-
environment E for S[~x] and every security parameter η ,
noninterference holds for the system E ·S[~x](η), where the
variable result declared in E is considered to be the only
low variable in the system E ·S[~x](η). Note that here neither
E nor S are required to be polynomially bounded.

Tools for checking noninterference consider only a single
closed program. However, I-noninterference is a property
of a potentially open system S[~x], which is composed with
an arbitrary I-environment. Therefore in [25] a technique
was developed which reduces the problem of checking I-
noninterference to checking noninterference for a single
(almost) closed system. More specifically, it was shown that
to prove I-noninterference for a system S[~x] with IE ` S : I it
suffices to consider a single environment ẼI,IE

~u only (simply

denoted by Ẽ~u), which is parameterized by a sequence ~u of
values.5 The output produced by Ẽ~u to S[~x] is determined by
~u and is independent of the input it gets from S[~x]. To keep
Ẽ~u simple, the analysis technique assumes some restrictions
on the interfaces between S[~x] and E. For example, S[~x]
and E should interact only through primitive types, arrays,
exceptions, and simple objects.

Theorem 2 (simplified, [25]). I-noninterference, for I = /0,
holds true for S[~x] if and only if for all sequences ~u
noninterference holds true for Ẽ~u ·S[~x].

Analysis tools often ignore or can ignore specific values
encoded in a program, such as an input sequence ~u. So,
if such an analysis establishes noninterference for E~u ·S[~x],
with some vector ~u, the theorem implies I-noninterference
for S[~x].

From I-Noninterference to Computational Indistin-
guishability. In [25], it was shown that the problem of
verifying cryptographic privacy of the secret (high) input
given to a system S[~x] can be reduced to the simpler problem
of verifying I-noninterference for S[~x] where the crypto-
graphic operations performed by S[~x] are replaced by ideal
functionalities.6 This enables tools that can check (standard)
noninterference properties but cannot deal with cryptography
(probabilities, polynomially bounded adversaries) to estab-
lish strong cryptographic privacy properties. Note that such
tools assume unbounded adversaries, which can easily break
basically all cryptographic operations, such as encryption.
The result in [25] avoids this problem by replacing the
cryptographic operations by ideal functionalities, which are
secure even w.r.t. unbounded adversaries. More specifically,
the following theorem immediately follows from results
proven in [25].

Theorem 3 (simplified, [25]). Let I and J be disjoint inter-
faces. Let F, R, P[~x] be systems such that R≤J F, P[~x] ·F is
deterministic, and P[~x] ·F : I (and hence, P[~x] ·R : I). Now,
if P[~x] · F is I-noninterferent, then, for all ~a1 and ~a2 (of
appropriate type), we have that P[~a1] ·R ≈I

comp P[~a2] ·R.

The intuition is that the cryptographic operations that P
needs to perform are carried out using the system R (a cryp-
tographic library). The theorem says that to prove privacy
of the secret inputs (∀ ~a1, ~a2: P[~a1] · R ≈J

comp P[~a2] · R)
it suffices to prove I-noninterference for P[~x] ·F , i.e., the
system where R is replaced by the ideal counterpart F .
To prove I-noninterference for P[~x] · F , one can in turn
use Theorem 2 to reduce the problem further to checking
standard noninterference, which in turn can be done using
the hybrid approach if an automated tool alone would fail.

5The sequence ~u can be seen as low input to Ẽ.
6The result in [25] is actually more general and considers general

cryptographic indistinguishability properties, but here we need privacy
properties only.

P R

E
untrusted libraries
(networking,. . .)

∀

P F

E
untrusted libraries

(networking,
cryptographic

operations, . . .)

∀

P F

Ẽ

Non-interference of P[b] ·F · Ẽ~u
(proven by tools, using e.g. the hybrid approach)

I-non-interference of P[b] ·FP[false] ·R ≈I
comp P[true] ·R ⇐⇐

Figure 1. By Theorems 2 and 3, tools for proving noninterference can be used to prove cryptographic privacy of a program P that uses some cryptographic
operations (real cryptographic functionalities) R and is connected to untrusted libraries subsumed by the environment E (see the left-most system above).
For simplicity of presentation, in this figure we assume P to have only one high boolean variable. By these theorems, to prove cryptographic privacy
of this system (that is P[false] ·R ≈I

comp P[true] ·R), it is enough to show (classical) noninterference of the system P[b] ·F · Ẽ, where F are the ideal
functionalities corresponding to R and Ẽ~u is the specific environment given in Theorem 2. Note that F often uses cryptographic libraries. However, the
cryptographic guarantees are established by F itself (e.g., F might call an encryption function, but with 0|m| instead of the actual message m, and hence, by
the definition of F and independently of the encryption function, the ciphertext will not reveal information about m, except for the length of m). Therefore,
the cryptographic libraries that F uses can be untrusted, and hence, provided by the environment. Conversely, the cryptographic library implemented in R
is supposed to realize F . So, this library cannot be subsumed by the environment.

The overall approach is illustrated in Figure 1.
Jumping ahead, in our case study (see Section VI), the

Java system P[~x] · R (and P[~x] · F) describes an indistin-
guishability or privacy game for an e-voting system, where
the adversary has to guess a bit b ∈ {true,false}. Hence,
the high input ~x is simply b, and we want to prove that
P[false] ·R ≈I

comp P[true] ·R. This means that the environ-
ment/adversary cannot distinguish whether the secret bit is
false or true.

V. TOOLS

While our hybrid approach does not depend on any
specific tools, for the analysis of concrete systems one has
to choose tools to perform the analysis (based on the hybrid
approach). In our case study and in the toy example from
Section III we use the tools Joana and KeY. In this section,
we provide some background about these tools.

A. Joana

Joana7 [9], [39] is a tool for the fully automatic analysis
of noninterference properties of Java programs. A user
needs to only specify the high and low variables of a
program. Joana is based on the program analysis framework
WALA.8 It computes a conservative approximation of the
information flow inside the program in form of a program
dependence graph (PDG). Then, the PDG is checked for

7The sourcecode of Joana and additional information is available at
http://joana.ipd.kit.edu/.

8http://wala.sf.net/

illegal information flows using advanced dataflow analysis
based on slicing. If no illegal flow is found in the PDG, the
program is guaranteed to be noninterferent. The correctness
of this implication has been verified with a machine-checked
proof [40] which includes formal specifications of PDGs and
the slicing algorithm [41], [42].

The fully automatic analysis performed by Joana comes
at the cost of potential false alarms due to overapproxi-
mation. Joana leverages sophisticated flow-, context-, field-
and object-sensitive analysis techniques that help to reduce
such false alarms, but it does not consider actual values of
variables. For example, whenever a high variable is used in
an expression, the value of the expression is considered to
contain high information—even if the value of the high vari-
able does not actually influence the result (this phenomenon
is also illustrated by the example in Section III and our case
study in Section VI).

B. The KeY Verification System

KeY9 [43], [35], [44] is an integrated program verifi-
cation system, which targets sequential Java. At its core
lies an interactive theorem prover for first-order dynamic
logic (JavaDL) [45]. Program specifications can be given in
the Java Modeling Language (JML) [46], [47]. KeY provides
both a stand-alone graphical user interface, intended for in-
teractive proofs, and an integration into the Eclipse platform,

9KeY is free software and can be downloaded (in source or binary) from
http://key-project.org/, the current stable version is 2.4.

http://key-project.org/

intended for push-button proofs hiding the underlying prover
architecture [48].

In dynamic logic [49], [50], programs π give rise to
modal operators [π] and 〈π〉. For instance, the formula
φ → 〈π〉ψ intuitively means “if started in a state in which
formula φ holds, program π terminates, and in the final state,
formula ψ holds.” This means that the right-hand side of
this implication is equivalent to the weakest precondition
of π w.r.t. ψ . Replacing 〈·〉 by [·] yields the weakest liberal
precondition. Dynamic logic can be seen as a super-set
of Hoare logic [51]. In contrast to Hoare triples, however,
programs are an integral part of formulae. This allows one
to write down more elaborate formulae, e.g., formulae with
multiple programs or existential quantification ranging over
program states.

The sequent calculus for JavaDL that is built into KeY
precisely reflects the semantics of sequential Java, i.e., it
does not use approximations. Thus, analysis techniques built
on KeY are precise. They do not report any false positives.
Proofs can be automated to a certain degree, while the user
can interact with the prover at any time. KeY can generate
counter examples and unit tests from failed proof attempts.

VI. THE CASE STUDY

To illustrate that our hybrid approach can successfully be
used to verify non-trivial programs, we applied our approach
to prove that a Java implementation of an electronic voting
system provides cryptographic vote privacy.10 This system,
even if relatively simple for an e-voting protocol, is chal-
lenging from the point of view of code-level cryptographic
verification in that it appears impossible to completely verify
this system using just fully automated tools (i.e., tools that
hardly need any human input or interaction) for checking
noninterference. Also, we do not see a feasible way to
verify noninterference for this Java program directly with
a theorem proving approach given the currently available
tools. At the very least, the hybrid approach, tremendously
reduces the necessary effort.

In what follows, we first provide a brief description of the
analyzed program. We then state the cryptographic privacy
property that we verify and describe the verification process,
which is based on our hybrid approach, using the tools Joana
and KeY, and the CVJ framework. The code of the analyzed
system, as well as the proof scripts, are available under [36].

A. Description of the Analyzed System

We consider an electronic voting system where voters
cast their ballots in a polling station. The system involves a
voting machine and a bulletin board as well as human actors,
namely voters, auditors, and clerks. The voting machine and
the bulletin board are implemented in Java, including the
real/ideal cryptographic operations that they use. Since, in

10While privacy is not the only property one would require from an
e-voting system, it is a central one.

the end, we analyze Java code, the human actors will be
modeled as Java programs as well. More specifically, they
will be modeled in the privacy game which is formulated
as Java code and expresses the privacy property we are
interested in. This game is described in Section VI-B.

In what follows, we describe the expected behavior of all
components (the bulletin board, the voting machine, and the
human actors) and their interaction. Before going into more
detail, we first provide a brief overview of the actions of the
bulletin board and the voting machine, which use public-key
encryption and digital signatures.

The bulletin board allows the voting machine to publish
messages in a write-only manner (no messages can be
altered or deleted after they have been posted). The bulletin
board accepts messages only if they are signed by the voting
machine. The messages published on the bulletin board are
made public to any party. More specifically, parties can ask
the bulletin board to deliver its content to them.

The voting machine collects voters’ choices and publishes
the result and some additional data on the bulletin board. The
voting machine communicates with the bulletin board over
an untrusted network, which is controlled by the adversary.
In its internal state, the voting machine stores the current par-
tial result, i.e., for each possible election choice (candidate)
an integer representing the number of votes cast so far for
this choice. In addition, the machine maintains an operation
counter. That is, an integer which is incremented every time
the machine performs one of its critical operations, such as
a vote is collected or canceled (see below). Moreover, the
voting machine keeps an encrypted log of all critical steps.
For this purpose, the voting machine uses the public-key of
the auditors so that the log can be decrypted by them only.

Setup phase. The auditors, among whom at least one should
be honest, publish a public encryption key and share the
corresponding private decryption key in such a way that
cooperation of all the auditors is necessary to decrypt a
message. Hence, auditors can only decrypt messages col-
lectively. In our modeling, for simplicity we will assume
one auditor and this auditor should be honest.

Voting. We assume that clerks, among whom one should
be honest, check the identity of each voter and make sure
that only authorized voters can vote and that each voter votes
only once. Voters indicate their choices directly to the voting
machine.

When a voter submits her choice (candidate), the voting
machine collects this choice (that is, increases the counter
associated with this choice). Additionally, the voting ma-
chine performs the following steps, which are meant to allow
for later auditing. First, the voting machine increases its
operation counter. Then, the machine encrypts the voter’s
choice, plus some additional data (such as a time stamp and
an appropriate tag), under the public key of the auditors.
An entry that consists of the current value of the operation

counter and the ciphertext just created is then logged by the
machine in its internal log. In addition, the machine signs
this entry (using the machine’s signing key) and sends it to
the bulletin board. Finally, the voting machine returns an
operation counter to the voter.

Vote canceling. Auditors (together) can decide to vote just
like a voter. In particular, this action is logged, internally and
on the bulletin board, as described above. The auditors check
that an entry that carries the same operation counter as the
one given to the auditors when they voted is indeed added
to the bulletin board. By asking the machine to output the
internal log (as described below), the auditors can also make
sure that the voting machine logged this entry internally.

Right after voting, the auditors are supposed to indicate to
the voting machine to cancel their vote. We assume that the
canceling operation is available to auditors only (canceling
might require some physical key or password). Upon such
a canceling request, the voting machine first decrements the
counter corresponding to the election choice made by the
auditors (i.e., the last choice indicated to the machine). Also,
the machine increments the operation counter. Finally, this
action is logged internally and on the bulletin board similarly
to the action of voting.

Log publishing. At any time, the machine may be triggered
by the auditors to publish the complete internal (encrypted)
log. This may be useful, when, for instance, some of the
messages sent by the voting machine in the voting step got
lost because of network problems.

Result publishing. Finally, when the voting phase is over,
the voting machine can be triggered by the auditors (or
clerks) to publish the election result. The machine signs the
result and sends it to the bulletin board.

We note that certain entries or even the complete logs
(internal and on the bulletin board) could be decrypted by the
auditors to verify actions of the voting machine. Typically,
auditors would open entries corresponding to their voting
and cancellation actions. However, they could also decide to
open a (small) sample of other entries in the logs in order to
statistically compare this sample with the published result.
Of course this would weaken privacy. While in our analysis,
we take vote canceling operation into account, for simplicity
of the analysis we do not model the orthogonal issue of
opening of entries by auditors.

B. The Privacy Game

We want to verify that the (Java implementation of the)
above e-voting system ensures cryptographic privacy of the
votes of honest voters. For this purpose, we define a cryp-
tographic privacy game, similar to games in cryptography,
except that this game is formulated in Java. It is this game
we have to analyze, using the hybrid approach, the CVJ
framework, and the tools Joana and KeY.

To define this game, let ρ be a result function which takes
a multiset (or a vector) of choices/candidates and returns a
result vector ~v, i.e., for every choice, ~v contains an entry
with the number of occurrences of this choice in the given
multiset.

In a nutshell, in the privacy game the environment (the
adversary) can provide two vectors ~c0 and ~c1 of choices
of (honest and dishonest) voters such that the two vectors
yield the same result according to ρ , i.e., ρ(~c0) = ρ(~c1);
otherwise the game is stopped immediately. Now, the voters
vote according to~cb, where b is a secret bit. The environment
tries to distinguish whether the voters voted according to ~c0
or to ~c1. In other words, the environment tries to determine
b. We denote the Java program describing this game by
EVReal [b], with b being the only secret/high input. Note that
for the considered e-voting system there is no difference
between an honest and a dishonest voter. Just like for honest
voters, for dishonest voters the clerks check eligibility and
make sure that these voters vote at most once, then they
can only cast one vote which they have to indicate to the
machine. Hence, our analysis takes dishonest voters into
account.

More specifically, the Java program EVReal [b] contains a
setup class with the method main, which works as follows.
First, as mentioned, the environment (the adversary) is asked
by main to provide two vectors~c0 and~c1 of n (valid) choices,
one for each voter. Then, main checks that ρ(~c0) = ρ(~c1). If
this is not the case, main aborts, and hence, the privacy game
halts. Otherwise, the voting protocol is performed where the
voters vote according to ~cb. More specifically, main creates
one object for the voting machine and one object for the
bulletin board. Now, in a loop, the environment decides
which actions are executed and it also determines how long
the loop is executed. Determining the actions corresponds to
oracle queries in cryptographic security games. The actions
the environment can trigger include the following:

– triggering the next voter to vote,
– triggering the auditors to cast a vote (determined by the

environment) and then cancel it,
– triggering the voting machine to output the content of

the internal log (with encrypted entries).
– posting a message determined by the environment on

the bulletin board, and
– reading the content of the bulletin board.

If all voters have voted, main triggers the voting machine
to publish the election result on the bulletin board. As usual
(see also Section IV), the environment is supposed to output
its decision, i.e., its guess of b, in a distinct private static
(low) variable result.

In the above game, the environment controls the network.
More precisely, the network library, which all components
use, is provided by the (malicious) environment (see also
the box on the left-hand side of Figure 1). Hence, if the
network library is invoked to send a message to a party, this

message is directly given to the environment. Also, if a party
wants to read a message from the network, this message is
provided by the environment. In particular, all data that the
voting machine sends to the bulletin board, since it is sent
via the network, is given to the environment.

For public-key encryption and digital signatures, the bul-
letin board and the voting machine use Java classes proposed
in [30], which support a public-key infrastructure. As shown
in [30], under standard cryptographic assumptions (IND-
CCA2 security of the public-key encryption scheme and UF-
CMA security of the digital signatures scheme) these classes
realize suitable ideal functionalities. This is used later in our
analysis (see below).

C. The Security Property

As mentioned before, the security property we want to
verify for the e-voting system is the cryptographic privacy of
the votes of honest voters. Formally, this is expressed by the
computational indistinguishability property (see Section IV)
as follows:

EVReal [false] ≈ /0
comp EVReal [true]. (3)

This property says that a polynomially bounded environment
(adversary) is not able to distinguish whether the privacy
game EVReal for the e-voting system it interacts with uses
true or false as the initial value of the variable b. By the
definition of EVReal , this in turn means that even though
the environment dictates the two possible ways in which
the voters may vote (as long as they yield the same result),
the environment is not able to tell which one of them has
actually been used (except with negligible probability).

The computational indistinguishability relation in (3) uses
the empty interface I = /0. This means that the environment
cannot directly call methods defined in the e-voting system.
However, the environment controls the network and by
definition of EVReal (in particular, main) it can determine
which actions are taken and when.

We also note that EVReal is an open system, which
uses some classes not defined within EVReal , in particular
for the network library. These classes are provided by
the environment,11 and hence, are untrusted and controlled
by the environment. Thus, property (3) implies privacy of
honest votes no matter how such untrusted libraries are
implemented. In particular, as mentioned before, this also
means that the environment controls the network.

As already explained in Section IV and illustrated in
Figure 1, in order to prove (3), by Theorem 3 it suffices
to show that

EVIdeal [b] is I-noninterferent, (4)

11Recall from Section IV that an I-environment E for a system S provides
all classes that S needs but are not defined in S in order for the composed
system E ·S to be a closed (and hence, runnable) system.

where I = /0 and EVIdeal denotes the system which coincides
with EVReal except that the real cryptographic operations are
replaced by their ideal counterparts. More specifically, the
real cryptographic operations for public-key encryption and
digital signatures are replaced by ideal functionalities for
these primitives, as provided in [30]. The realization result
in [30] shows that the real cryptographic operations realize
the ideal functionalities. Hence, these operations can indeed
be replaced by their ideal counterparts.

Since, as can easily be seen, EVIdeal [b] satisfies the
conditions of Theorem 2, we can further reduce checking
(4) to checking the following property:

Ẽ~u ·EVIdeal [b] is noninterferent for all ~u, (5)

where the family of systems Ẽ~u, parameterized by a finite
sequence of integers ~u, is as described in Section IV.
This system can be automatically generated from EVIdeal [b].
Also note that by “noninterference” we mean standard
termination-insensitive noninterference (see Section II).

Altogether, it suffices to prove (5) in order to obtain (3).
In the following, we will refer to the system Ẽ~u ·EVIdeal [b]
by EV~u[b].

D. Verification Approach

In principle, the automated tool Joana is able to check
properties such as (5) (see, e.g., [25], [30]). However, when
applied to check (5) for our particular program, Joana reports
an information flow from the high value b to the result of the
election, and from this result to the low output.12 The reason
for this alert is the overapproximation that Joana employs.
The election result actually does not depend on b, because
main in EV~u[b] ensures that the vectors ~c0 and ~c1 produce
the same election result. If the voting machine computes the
result of the election correctly, then this result is independent
of whether the voters voted according to ~c0 or to ~c1. Hence,
to avoid this false positive, an analysis tool has to establish
that the voting machine correctly computes the result of
the election and that this result corresponds to ~c0 (and
hence, ~c1). This is a non-trivial functional property, which
— not surprisingly — is beyond what Joana and, it seems,
all other fully automated tools for checking noninterference
can achieve.

We therefore use our hybrid approach. It is straightforward
to provide an extension EV∗~u[b] of EV~u[b] which makes
it more explicit for Joana that there is no information
flow. If the voting machine indeed works as expected, the
election outcome corresponds to ~c0 (and hence, ~c1). So in
the extension EV∗~u[b] we explicitly state that the election
outcome actually is the result corresponding to ~c0.

More specifically, we obtain EV∗~u[b] from EV~u[b] as fol-
lows: The result of the election as determined by the vector

12We note that the output produced by Joana allows one to conveniently
identify potential flows of information.

~c0 is stored in an additional static array correctResult

in EV∗~u[b] which contains the number of votes for each
candidate as determined by ~c0. (This field is the only field
of extension M, as introduced in Definition 2). Moreover,
after the point in the code of the voting machine where the
number of votes for the i-th candidate is computed by the
voting machine and stored in a local variable x, we add the
assignment x = correctResult[i].

If the system is implemented correctly, then the result
computed by the voting machine (the number of votes for
each candidate) indeed is the same as the result stored in
correctResult and, therefore, the additional assignment
does not change the state of the program. In fact, we
successfully used the KeY tool to verify that in the state just
before the additional assignment, the variable x already has
the value of correctResult[i], a statement we will refer to
by (*). This means that EV∗~u[b] is a conservative extension
of EV~u[b]. (It is trivial to see that our extension M satisfies
all the conditions required by Definition 1.)

We emphasize that proving (*) would be part of every
proof of noninterference: if, for example, due to program-
ming errors the voting machine would drop or miscalculate
some of the votes, an adversary might be able to distinguish
whether the voters voted according to ~c0 or ~c1. Also (*) is
a functional property of (part of) the program rather than a
noninterference property (of the whole program). In order
to prove (*), many things, which would be important for
noninterference, do not need to be taken into account. For
example, one can prove (*) even if the voting machine
revealed votes, provided that the final result is computed
correctly.

E. Proving Noninterference with Joana

For the extension EV∗~u[b] of EV~u[b], Joana easily estab-
lished the noninterference property:

EV∗~u[b] is noninterferent for all ~u. (6)

Joana took about 18 seconds on a standard PC (Core i5
2.5GHz, 8GB RAM) to finish the analysis of the program
(with a size of 934 LoC). To conduct the analysis, we
wrote a small driver program (about 60 LoC) which sets
various configuration options of Joana, initiates the PDG
construction, identifies and annotates the appropriate nodes
in the PDG, and triggers the slicing-based information flow
analysis.

We emphasize that while EV∗~u[b] contains the ideal func-
tionalities for public-key encryption and digital signatures
that we use, and which hence, are part of the code analyzed
by Joana, and also KeY (see below), these tools do not have
to analyze the code of the untrusted libraries, namely net-
work and cryptographic libraries (see also Figure 1). These
libraries are subsumed by the (malicious) environment.

F. Proving the Conservatism Property with KeY

We have successfully used KeY to prove that

EV∗~u[b] is a conservative extension of EV~u[b] for all ~u.
(7)

Therefore, together with (6), by our hybrid approach (Theo-
rem 1), this implies (5), and hence, by the CVJ framework,
we obtain the desired cryptographic privacy property (3).

At its core, as already mentioned in Section VI-D, verify-
ing (7) involved proving that the voting machine calculates
the result correctly. However, with Java being an imperative
and object-oriented language one also has to make sure
that if one component calls another one, then this other
component does not have unexpected side effects on the
calling component. Hence, often one has to prove that
components are sufficiently separated. While KeY can prove
this, in some places it was more efficient to make use of the
PDG that Joana computed, from which the separation of
certain components can easily be read off. This information
directly implied that in order to verify (7) certain parts of the
program were provably not relevant and could be ignored by
KeY. So, interestingly, even in the “theorem proving part” of
our analysis, we could make use of the information provided
by the automated tool. However, clearly there is a limit to
what Joana can do: in our case study, Joana certainly cannot
prove (7) on its own; this, as mentioned, requires a theorem
prover, such as KeY.

To give a feel for the kind of analysis performed in KeY,
Fig. 2 displays one of the Java methods that had to be
analyzed, which checks whether two arrays of equal length
have equal integer arguments. The code to be analyzed
needs to be annotated with specifications, i.e., pre- and
post-conditions as well as loop invariants, which then need
to be proven by KeY. The latter, in general, might again
require some human interaction if the prover cannot verify
the conditions automatically.

The part of the program that needs to be analyzed in
order to prove (7) comprises 9 Java classes with 40 relevant
methods in about 359 LoC. The methods were specified
in 498 LoS (lines of specification), resulting in an overall
LoS-to-LoC ratio of 1.39. The comprehensive specification
process enabled an automated verification process (i.e., no
user interaction was necessary) in KeY 2.4.0. It comprises
39 proofs, which take 17 minutes of computation time in
total, with the longest proof taking 260s, and 25s on average
(on an Intel Core 2 Duo at 2.66GHz with 4GB RAM).
This resulted in a total of 200,843 rule applications, the
longest proof requiring 72,109 rule applications. The entire
specification and verification process took between two and
three person weeks.

We note that KeY is able to prove noninterference proper-
ties itself [21], [38], by using the technique of self compo-
sition [15]. (Though, again, we emphasize that proving (7)
does not involve proving noninterference properties.) Hence,

1 /*@ private normal_behaviour

2 @ requires r1.length == r2.length;

3 @ ensures \result == (\forall int i;

4 @ 0 <= i && i < r1.length; r1[i] == r2[i]);

5 @ strictly_pure helper @*/

6 private static boolean equalResult(int[] r1, int[] r2) {

7 /*@ maintaining 0 <= j && r1.length == r2.length;

8 @ maintaining (\forall int i; 0 <= i && i < j;

9 @ r1[i] == r2[i]);

10 @ assignable \strictly_nothing;

11 @ decreases r1.length - j;

12 @*/

13 for (int j= 0; j<r1.length; j++)

14 if (r1[j]!=r2[j]) return false;

15 return true;

16 }

Figure 2. JML annotated method to compare result vectors. JML
annotations appear as comments with the special delimiter pair /*@ @*/.
Lines 1ff. (before the method signature) state the contract. Line 2 imposes a
precondition, while Line 3 defines a postcondition. Termination and absence
of exceptions is included by default as stated by normal_behavior. The
modifiers in Line 5 additionally require the method to not change the value
of any location. Since the method contains an unbounded loop, we need
to annotate that as well in order to prove the contract. A loop invariant is
given in Lines 7ff. To prove termination, we also have a variant clause in
Line 11.

in principle, we could have used KeY to verify property (6)
directly without Joana (and the hybrid approach). However,
given our experience with KeY and other theorem proving
approaches, this would have been practically infeasible,
both because of scalability problems and the overwhelming
amount of human interaction that would have been neces-
sary. At the very least, our hybrid approach tremendously
simplified the analysis effort as it opened the way to use an
automated tool.

VII. RELATED WORK

Analysis based on type systems have been the predom-
inant information flow analysis technique until recently.
These approaches are usually sound, i.e., they are guaranteed
to find any security violations. But they are incomplete w.r.t.
sophisticated policies such as noninterference. This means
that they tend to report false positive results. There exists a
plethora of type systems for different programing languages
using different extensions to narrow (but not close) the
incompleteness gap. A widely used implementation of type-
based analysis for sequential Java programs is the Jif com-
piler [52]. Other type systems for sequential Java include [5],
[6], [7]. A related technique is explicit dependency tracking
of variables. For example, [53], [22] present approaches—
built on symbolic execution—in which for each variable a
set of variables is stored on which its value at most depends.

Amtoft and Banerjee [13] were among the first to encode
noninterference in a program logic and with that laid the

foundation for sound and complete reasoning about infor-
mation flows. Since classical Hoare logic cannot express
noninterference, they employed a dedicated extension of it
[54]. In [17], this line of research is continued, but using
dynamic logic instead which can express such properties
readily. In [21], [20], several practical improvements to this
approach were presented and implemented in KeY. To the
best of our knowledge, this is the only logic-based nonin-
terference analysis for Java. However, previous experiments
show that conducting a proof on a large system, such as the
e-voting system in our case study, is not feasible with this
approach alone.

None of the existing approaches for checking noninterfer-
ence properties (for Java programs) appear to be applicable
on their own to our e-voting case study. The hybrid approach
proposed in this paper, and hence, the combination of
automated and interactive tools, was key in tackling this
already quite complex system.

An approach for code-level cryptographic verification
similar to the CVJ framework approach has been presented
in [27], but for the language F# and using refinement types
(see [25] for a more detailed discussion).

VIII. CONCLUSION

In this paper, we have proposed what we call a hybrid
approach for checking noninterference properties of Java
program. This approach allows one to combine (fast) au-
tomated, but possibly imprecise analysis, with precise, but
typically interactive tools, and hence, more time consuming
analysis. By our approach, automated tools can be used as
much as possible and only in places of a program where the
automated tools fail, one resorts to more precise analysis.

We have successfully applied our approach to a non-trivial
Java program, an e-voting system, for which we established
noninterference. Together with the CVJ framework, our anal-
ysis implied strong cryptographic vote privacy. As explained
in Section VI, the analysis of this system seems practically
infeasible without the combination of different approaches
into a hybrid approach: it appears that for our case study all
fully automated tools which require almost no human input
or interaction would fail; checking noninterference proper-
ties directly using (interactive) theorem proving approaches
would be very complex and time consuming, and in fact,
seems to be impractical with current analysis tools for Java.

The hybrid approach does not depend on specific tools
and the basic idea should be applicable to other languages
as well. Hence, it would be interesting to apply it for
different languages—for example, functional languages for
which verification is simpler compared to imperative and
object-oriented languages—and using different tools. So far,
we have formulated the hybrid approach for sequential
programs. It would also be interesting future work to extend
the approach to deal with concurrency.

Acknowledgment. This work was partially supported by
Deutsche Forschungsgemeinschaft (DFG) under Grant KU
1434/6-3 and project DeduSec within the priority pro-
gramme 1496 “Reliably Secure Software Systems – RS3”.

REFERENCES

[1] A. Sabelfeld and A. C. Myers, “Language-Based Information-
Flow Security,” IEEE Journal on Selected Areas in Communi-
cations, special issue on Formal Methods for Security, vol. 21,
no. 1, pp. 5–19, 2003.

[2] D. E. Denning and P. J. Denning, “Certification of programs
for secure information flow,” Communications of the ACM,
vol. 20, no. 7, pp. 504–513, 1977.

[3] D. Volpano, G. Smith, and C. Irvine, “A sound type system for
secure flow analysis,” Journal of Computer Security, vol. 4,
no. 3, pp. 167–187, Dec. 1996. [Online]. Available: http://
www.cs.nps.navy.mil/research/languages/papers/atsc/jcs.ps.Z

[4] D. M. Volpano and G. Smith, “Eliminating covert flows with
minimum typings,” in 10th Computer Security Foundations
Workshop (CSFW ’97), June 10-12, 1997, Rockport, Mas-
sachusetts, USA, 1997, pp. 156–169.

[5] M. Strecker, “Formal analysis of an information flow type sys-
tem for MicroJava,” Technische Universität München, Tech.
Rep., Jul. 2003.

[6] A. Banerjee and D. A. Naumann, “Stack-based access control
and secure information flow,” J. Funct. Program., vol. 15,
no. 2, pp. 131–177, 2005.

[7] G. Barthe, D. Pichardie, and T. Rezk, “A certified lightweight
non-interference Java bytecode verifier,” Mathematical Struc-
tures in Computer Science, vol. 23, no. 5, pp. 1032–1081,
2013.

[8] M. Alba-Castro, M. Alpuente, and S. Escobar, “Abstract
Certification of Global Non-interference in Rewriting Logic,”
in Formal Methods for Components and Objects - 8th Inter-
national Symposium (FMCO 2009). Revised Selected Papers,
ser. Lecture Notes in Computer Science, F. S. de Boer, M. M.
Bonsangue, S. Hallerstede, and M. Leuschel, Eds., vol. 6286.
Springer, 2009, pp. 105–124.

[9] C. Hammer and G. Snelting, “Flow-sensitive, context-
sensitive, and object-sensitive information flow control based
on program dependence graphs,” Int. J. Inf. Sec., vol. 8, no. 6,
pp. 399–422, 2009.

[10] A. C. Myers, S. Chong, N. Nystrom, L. Zheng, and
S. Zdancewic, Jif: Java Information Flow (software release),
July 2001, http://www.cs.cornell.edu/jif/.

[11] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man, “Taj: effective taint analysis of web applications,” SIG-
PLAN Not., vol. 44, no. 6, pp. 87–97, 2009.

[12] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet,
and R. Berg, “Saving the world wide web from vulnerable
javascript,” ser. ISSTA ’11. New York, NY, USA:
ACM, 2011. [Online]. Available: http://doi.acm.org/10.1145/
2001420.2001442

[13] T. Amtoft and A. Banerjee, “Information flow analysis in
logical form,” in SAS, 2004, pp. 100–115.

[14] A. Banerjee, D. A. Naumann, and S. Rosenberg, “Expressive
declassification policies and modular static enforcement,”
IEEE Symp. on Security and Privacy, pp. 339–353, 2008.

[15] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure Information
Flow by Self-Composition,” in 17th IEEE Computer Security
Foundations Workshop, (CSFW-17 2004). IEEE Computer
Society, 2004, pp. 100–114.

[16] L. Beringer and M. Hofmann, “Secure information flow and
program logics,” in 20th IEEE Computer Security Founda-
tions Symposium, CSF 2007, 6-8 July 2007, Venice, Italy,
2007, pp. 233–248.

[17] Á. Darvas, R. Hähnle, and D. Sands, “A theorem proving
approach to analysis of secure information flow,” in Pro-
ceedings, Security in Pervasive Computing, ser. LNCS 3450,
D. Hutter and M. Ullmann, Eds. Springer, 2005.

[18] K. R. M. Leino and R. Joshi, “A semantic approach to secure
information flow,” in Mathematics of Program Construction,
MPC’98, Marstrand, Sweden, June 15-17, 1998, Proceedings,
J. Jeuring, Ed., 1998, pp. 254–271.

[19] A. Nanevski, A. Banerjee, and D. Garg, “Verification of
information flow and access control policies with dependent
types,” in Security and Privacy (SP), 2011, may 2011, pp.
165–179.

[20] C. Scheben, “Program-level specification and deductive veri-
fication of security properties,” Ph.D. dissertation, Karlsruhe
Institute of Technology, 2014, submitted.

[21] C. Scheben and P. H. Schmitt, “Verification of information
flow properties of Java programs without approximations,” in
Formal Verification of Object-Oriented Software, ser. LNCS
7421. Springer, 2012, pp. 232–249.

[22] B. van Delft, “Abstraction, objects and information flow
analysis,” Master’s thesis, Institute for Computing and Infor-
mation Science, Radboud University Nijmegen, 2011.

[23] D. von Oheimb, “Formal methods in the security business:
exotic flowers thriving in an expanding niche,” in 14th Inter-
national Symposium on Formal Methods, FM2006, J. Misra,
T. Nipkow, and E. Sekerinski, Eds., 2006, pp. 592–597.

[24] A. Nanevski, A. Banerjee, and D. Garg, “Dependent type
theory for verification of information flow and access control
policies,” ACM Trans. Program. Lang. Syst, vol. 35, no. 2,
p. 6, 2013.

[25] R. Küsters, T. Truderung, and J. Graf, “A Framework for
the Cryptographic Verification of Java-like Programs,” in
25th IEEE Computer Security Foundations Symposium (CSF
2012). IEEE Computer Society, 2012, pp. 198–212.

[26] G. Klein and T. Nipkow, “A Machine-Checked Model for a
Java-Like Language, Virtual Machine, and Compiler,” ACM
Trans. Program. Lang. Syst., vol. 28, no. 4, pp. 619–695,
2006.

[27] C. Fournet, M. Kohlweiss, and P.-Y. Strub, “Modular code-
based cryptographic verification,” in Proceedings of the 18th

http://key-project.org/DeduSec/
http://www.cs.nps.navy.mil/research/languages/papers/atsc/jcs.ps.Z
http://www.cs.nps.navy.mil/research/languages/papers/atsc/jcs.ps.Z
http://www.cs.cornell.edu/jif/
http://doi.acm.org/10.1145/2001420.2001442
http://doi.acm.org/10.1145/2001420.2001442

ACM Conference on Computer and Communications Security
(CCS 2011), Y. Chen, G. Danezis, and V. Shmatikov, Eds.
ACM, 2011, pp. 341–350.

[28] G. Barthe, C. Fournet, B. Grégoire, P.-Y. Strub, N. Swamy,
and S. Zanella Béguelin, “Probabilistic relational verification
for cryptographic implementations,” SIGPLAN Not., vol. 49,
no. 1, pp. 193–205, Jan. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2578855.2535847

[29] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P. Strub,
and S. Z. Béguelin, “Proving the TLS Handshake Secure
(As It Is),” in Advances in Cryptology - CRYPTO 2014 -
34th Annual Cryptology Conference, Proceedings, Part II,
ser. Lecture Notes in Computer Science, J. A. Garay and
R. Gennaro, Eds., vol. 8617. Springer, 2014, pp. 235–255.

[30] R. Küsters, E. Scapin, T. Truderung, and J. Graf, “Extending
and Applying a Framework for the Cryptographic Verification
of Java Programs,” in Principles of Security and Trust - Third
International Conference, POST 2014, ser. Lecture Notes in
Computer Science, M. Abadi and S. Kremer, Eds., vol. 8414.
Springer, 2014, pp. 220–239, a full version is available at
http://eprint.iacr.org/2014/038.

[31] M. Aizatulin, A. D. Gordon, and J. Jürjens, “Computational
verification of C protocol implementations by symbolic ex-
ecution,” in ACM Conference on Computer and Communi-
cations Security, T. Yu, G. Danezis, and V. D. Gligor, Eds.
ACM, 2012, pp. 712–723.

[32] R. Canetti, “Universally Composable Security: A New
Paradigm for Cryptographic Protocols,” in Proceedings of the
42nd Annual Symposium on Foundations of Computer Science
(FOCS 2001). IEEE Computer Society, 2001, pp. 136–145.

[33] B. Pfitzmann and M. Waidner, “A Model for Asynchronous
Reactive Systems and its Application to Secure Message
Transmission,” in IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2001, pp. 184–201.

[34] R. Küsters, “Simulation-Based Security with Inexhaustible
Interactive Turing Machines,” in Proceedings of the 19th
IEEE Computer Security Foundations Workshop (CSFW-19
2006). IEEE Computer Society, 2006, pp. 309–320, see
http://eprint.iacr.org/2013/025/ for a full and revised version.

[35] W. Ahrendt, B. Beckert, D. Bruns, R. Bubel, C. Gladisch,
S. Grebing, R. Hähnle, M. Hentschel, M. Herda, V. Klebanov,
W. Mostowski, C. Scheben, P. H. Schmitt, and M. Ulbrich,
“The KeY platform for verification and analysis of Java
programs,” in Verified Software: Theories, Tools, and
Experiments (VSTTE 2014), ser. Lecture Notes in Computer
Science, D. Giannakopoulou and D. Kroening, Eds., no. 8471.
Springer-Verlag, 2014, pp. 1–17. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-3-319-12154-3_4

[36] R. Küsters, T.Truderung, B. Beckert, D. Bruns, M. Kirsten,
and M. Mohr, “Code and Additional Verification Data
for a Case Study: Verification of an E-voting System
using the Hybrid Approach,” 2015, https://infsec.uni-trier.
de/download/HybridApproachEVotingCaseStudyZIP-2015/
EVotingMachine.zip.

[37] J. A. Goguen and J. Meseguer, “Security Policies and Security

Models,” in Proceedings of IEEE Symposium on Security and
Privacy, 1982, pp. 11–20.

[38] B. Beckert, D. Bruns, V. Klebanov, C. Scheben, P. H. Schmitt,
and M. Ulbrich, “Information flow in object-oriented soft-
ware,” in Logic-Based Program Synthesis and Transforma-
tion, LOPSTR 2013, ser. Lecture Notes in Computer Science,
G. Gupta and R. Peña, Eds., no. 8901. Springer, 2014, pp.
19–37.

[39] J. Graf, M. Hecker, and M. Mohr, “Using joana for infor-
mation flow control in java programs - a practical guide,”
in Proceedings of the 6th Working Conference on Program-
ming Languages (ATPS’13), ser. Lecture Notes in Informatics
(LNI) 215. Springer Berlin / Heidelberg, Feb. 2013.

[40] D. Wasserrab, “From Formal Semantics to Verified Slicing -
A Modular Framework with Applications in Language Based
Security,” Ph.D. dissertation, Karlsruher Institut für Technolo-
gie, Fakultät für Informatik, Oct. 2010. [Online]. Available:
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020678

[41] D. Wasserrab and D. Lohner, “Proving Information Flow
Noninterference by Reusing a Machine-Checked Correctness
Proof for Slicing,” in 6th International Verification Workshop
- VERIFY-2010, Jul. 2010.

[42] D. Wasserrab, D. Lohner, and G. Snelting, “On PDG-Based
Noninterference and its Modular Proof,” in Proceedings
of the 4th Workshop on Programming Languages and
Analysis for Security. ACM, Jun. 2009, pp. 31–44.
[Online]. Available: http://pp.info.uni-karlsruhe.de/uploads/
publikationen/wasserrab09plas.pdf

[43] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese,
R. Hähnle, W. Menzel, W. Mostowski, A. Roth, S. Schlager,
and P. H. Schmitt, “The KeY tool,” Software and System
Modeling, vol. 4, pp. 32–54, 2005.

[44] B. Beckert, R. Hähnle, and P. H. Schmitt, Eds., Verification
of Object-Oriented Software: The KeY Approach, ser. Lecture
Notes in Computer Science. Springer, 2007, no. 4334.

[45] B. Beckert, “A dynamic logic for Java Card,” in Proceed-
ings, 2nd ECOOP Workshop on Formal Techniques for Java
Programs, Cannes, France, 2000, pp. 111–119.

[46] G. T. Leavens, A. L. Baker, and C. Ruby, “JML: a Java Mod-
eling Language,” in Formal Underpinnings of Java Workshop
(at OOPSLA ’98), Oct. 1998.

[47] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. Cok, P. Müller, J. Kiniry, P. Chalin, D. M. Zimmerman,
and W. Dietl, JML Reference Manual, May 31 2013, draft
revision 2344. [Online]. Available: http://www.eecs.ucf.edu/
~leavens/JML/jmlrefman/jmlrefman_toc.html

[48] M. Hentschel, S. Käsdorf, R. Hähnle, and R. Bubel, “An
interactive verification tool meets an IDE,” in Proceedings
of the 11th International Conference on Integrated Formal
Methods, ser. LNCS, G. Z. Elvira Albert, Emil Sekerinski,
Ed. Springer, Sep. 2014, pp. 55–70.

[49] M. J. Fischer and R. E. Ladner, “Propositional dynamic
logic of regular programs,” Journal of Computer and System
Sciences, vol. 18, no. 2, pp. 194–211, Apr. 1979.

http://doi.acm.org/10.1145/2578855.2535847
http://eprint.iacr.org/2013/025/
http://link.springer.com/chapter/10.1007/978-3-319-12154-3_4
http://link.springer.com/chapter/10.1007/978-3-319-12154-3_4
https://infsec.uni-trier.de/download/HybridApproachEVotingCaseStudyZIP-2015/EVotingMachine.zip
https://infsec.uni-trier.de/download/HybridApproachEVotingCaseStudyZIP-2015/EVotingMachine.zip
https://infsec.uni-trier.de/download/HybridApproachEVotingCaseStudyZIP-2015/EVotingMachine.zip
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020678
http://pp.info.uni-karlsruhe.de/uploads/publikationen/wasserrab09plas.pdf
http://pp.info.uni-karlsruhe.de/uploads/publikationen/wasserrab09plas.pdf
http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_toc.html
http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_toc.html

[50] D. Harel, “Dynamic logic,” in Handbook of Philosophical
Logic, Volume II: Extensions of Classical Logic, D. Gabbay
and F. Guenther, Eds. Dordrecht: D. Reidel Publishing Co.,
1984, pp. 497–604.

[51] C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Communications of the ACM, vol. 12, no. 10, 1969.

[52] A. C. Myers, “JFlow: Practical mostly-static information flow
control,” in The 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’99). New
York: Association for Computing Machinery, Jan. 1999, pp.
228–241.

[53] R. Bubel, R. Hähnle, and B. Weiß, “Abstract interpretation
of symbolic execution with explicit state updates,” in Post
Conf. Proc. 6th International Symposium on Formal Methods
for Components and Objects (FMCO), ser. Lecture Notes
in Computer Science, F. de Boer, M. M. Bonsangue, and
E. Madelaine, Eds., vol. 5751. Springer-Verlag, 2009, pp.
247–277.

[54] T. Amtoft and A. Banerjee, “Verification condition generation
for conditional information flow,” in Proceedings of the 2007
ACM workshop on Formal methods in security engineering,
P. Ning, V. Atluri, V. D. Gligor, and H. Mantel, Eds. New
York, NY, USA: ACM, 2007, pp. 2–11.

[55] R. Küsters, T. Truderung, and J. Graf, “A Framework for the
Cryptographic Verification of Java-like Programs,” Cryptol-
ogy ePrint Archive, Report 2012/153, 2012, http://eprint.iacr.
org/2012/153.

APPENDIX A.
PROOF OF THEOREM 1

To prove Theorem 1, we first need to introduce some
notions.

Let us first recall that a configuration of Jinja+, as defined
in [25] (see also Appendix B), is of the form 〈e,s〉, where e
is a Jinja+ expression and s is a state. A state is a pair 〈h, l〉
of a heap and a store. A store is a map from variable names
to values. A heap is a map from references (addresses) to
object instances. An object instance is a pair consisting of a
class name and a field table, and a field table is a map from
field names to values. A value can be either a reference or
a value of a primitive type.

By E[·] we will denote an expression context, that is a
Jinja+ expression with a hole. E[e] will denote the expression
obtained by substituting replacing the hole in E with the
expression e.

Structure of states in a run. One particular type of
expressions is a block expression of the form

{v : t; e}C or {v : t; v := val; e}C,

where v is a local variable (whose scope is this block) of
type t and, in the second variant, with value val, e is an
expression (e can access the local variable v), and C is a
class name (denoting that the block originates from the code
of class C). Such block expressions are introduced by the

rule for the method call (33), where the block is, essentially,
the method body and C indicates the origin of the block
expression (meaning that the method is defined in class C).

In general, an expression may contain many blocks as
its subexpression. However, when we study expressions that
occur in actual runs of Jinja+, it turns out that they have
a simpler form, where all blocks are located on one path.
Formally, let

c0 = 〈e0,〈h0, l0〉〉
`→ 〈e1,〈h1, l1〉〉

`→ ···

be a run (with the initial configuration c0). By the definition
of the initial configuration [25], [55], h0 is empty and l0
bounds the static variables of the program to their initial
values (and no other variables). By inspecting the rules of
Jinja+ [55] (see Appendix B), one can see that, for every
i = 0,1, . . . ,

– li bounds only static variables,
– for every subexpression e of ei, either e contains no

block as its subexpression or e is of the form E[b],
where E contains no block and b is a block expression.
It means that e can contain, directly, at most one block
(although b can contain further, nested blocks).

The reasoning given below will apply to expressions
originating from runs of Jinja+ systems and, therefore,
having the above form.

We also can observe, again inspecting the rules of Jinja+,
that whenever a configuration (e1,s1) is reduced in one step
to (e2,s2), the reduction happens within the innermost block
expression (if any). Formally, e1 is of the form E[e′1], e2 =
E[e′2], (e

′
1,s1) reduces in one step to (e′2,s2) and, moreover,

one of the following cases happens:
– e′1 does not have block expressions,
– e′1 is of the form {V : T ; V := Val v; Val u}D or {V :

T ; Val u}D and e1 reduces (in one step) to Val u (by (34)
or (34)).
The second case describes the step when a method exe-

cutions is finished and returns value u.

Structure of a conservative extension. Let P′ be a conser-
vative extension of P. By the definition, P′ is of the form
P∗ ·M, where P∗ is obtained from P by adding statements
of the form (1) and (2). Formally, it means that some sub-
expressions e of the program P are replaced by (e∗;e), where
e∗ is of the form (1) or (2).

We will call an block expression {· · ·}D with D defined
in M, an M-block.

Pruning. We now define the pruning operations for expres-
sions originating from a run of P′. Intuitively, the pruning
of an expression e is obtained from e by leaving only those
parts of e that have originated from a particular component
of the system (such as the original program P).

Let e be such an expression. We define the P-pruning
of e, written ∆P(e), to be the expression obtained from e

http://eprint.iacr.org/2012/153
http://eprint.iacr.org/2012/153

by removing all subexpressions of e of the form (1), (2)
and all M-blocks. Formally, prunning is defined recursively
as follows. For an expression of the form e = (e1; e2),
where e1 is either of the form (1) or (2) or an M-block,
we define ∆P(e) as ∆P(e2). Otherwise, prunning is applied
recursively to direct subexpression of e, i.e. for e of the form
F [e1, . . . ,en], where F is the constructor (function symbol in
the head) of the expression e and e1, . . . ,en is the (possibly
empty) list of direct subexpressions of e, we define ∆P(e)
as F [∆P(e1), . . . ,∆P(en)]. In particular, ∆P(e) = e, if e is a
value or a variable.

As we can see, P-pruning removes the sub-expressions
that originated from P∗ or M but not from P.

We also define P-pruning ∆P(l) for a store l, by removing
from l all (static) variables declared in classes of M (and
hence only leaving those variables that are declared in the
original program P).

Given a configuration c = 〈e,〈h, l〉〉, we will write ∆P(c)
for 〈∆P(e),〈h,∆P(l)〉〉.

Analogously, we define M-pruning, ∆M(e), as the set of all
subexpressions of e which are M-blocks. M-pruning ∆M(l)
for a store l is obtained by removing from l all (static)
variables declared in classes of P (and leaving only those
static variables that are defined in M).

Reference closure. For a set of references R and a heap h,
we define the closure of R under h, as the smallest superset
R′ of R such that if r ∈ R′ and r is of some class D with a
field m of a reference type, then h(r).m ∈ R′.

Equality up to reference renaming. Let f be a bijection
on the set of references. Let R be a set of references and
h1,h2 be heaps. We write h1 ∼ f ,R h2 if for all r ∈ R

– r and r′ = f (r) are of the same class D and
– if m is a field of D of a reference type, then f (h1(r).m) =

h2(r′).m and h(r).m is in R.
Two configurations c1 = 〈e1,〈h1, l1〉〉 and

c2 = 〈e2,〈h2, l2〉〉 are equal up to reference renaming,
written c1 ∼ c2, if there exists a bijection f on the set of
references such that:
– e2 = f (e1) (here the function f , originally defined for

references, is extended by structural isomorphism to all
expressions)

– l2 = f (l1) (where f (l1) is, again, extended by structural
isomorphism to stores).

– for the closure R of the set of references occurring in e1
and in l1 under h, we have that h∼ f ,R h′.

To make it explicit which bijection f is used in the above
definition, we can also write c1 ∼ f c2.

Disjoint states. Let c = 〈e,〈h, l〉〉 be a configuration of P′.
We say that P and M have disjoint states in c, if RP and RM
are disjoint, where RP is the closure of the set of references
occurring in ∆P(e) and ∆P(l) under h and, similarly, RM and

is the closure of the set of references occurring in ∆M(e) and
∆M(l) under h.

It is easy to show that, because only values of primitive
types are exchanged between P and M, the states of these
components are separate in all configurations of P′:

Lemma 1. Let c be a configuration reachable from the
initial configuration of P′[~a], for some ~a. Then P and M
have disjoint states in c.

Proof: By the definition of the initial configuration
and by the definition of P′, it is easy to see that in the
initial configuration c0 = 〈e0,h0, l0〉 of P′[~a], P and M have
disjoint states. In particular, e0 does not contain M-blocks
and, therefore, the set RM of references, as defined above,
for c0, is empty (in the initial configuration, variables of
reference types in l0 can be only initialized with null).

Now, we can show, considering all rules of Jinja+, that
the property of P and M having disjoint states is preserved
by the application of any rule.

Note that the original code of P never writes to (static)
variables of M and, analogously, the code of m never writes
to variables of P. So the only possible rules that could break
this property are:

– the rule for method call (33) which creates an M-block
and passes some values to this block,

– the return rules (34) and (35) which reduce an M-block
to its final value,

– the expression propagation rules (57) and (58) that
propagate an exception from an M-block (deleting this
block).

For the first two cases, we note that both the arguments
of a method call and the return value are of primitive
types, and therefore these rules do not break the property
of disjoint states. One can also see that, by the definition
of a conservative extension, the last case cannot happen
(exceptions are always caught inside M).

We will write c M→ c′, if c D→ c′ with D defined in M. It
means that c reduces to c′ in one step which is taken in the
code of class D ∈M.

If two components have disjoint states, then an action
taken in one of the does not change the state of the second,
unless the action is method call or return from a method. In
particular, actions taken within M do not have any effect of
the state of P, as stated in the following lemma.

Lemma 2. Let c be a configuration of P′[~a], for some ~a, in
which P and M have disjoint states. Suppose that c M→ c′,
where this reduction is not obtained by the return rules (34),
(35). Then the state of P is not changed by this step, i.e.
∆P(c) = ∆P(c′).

Proof: The proof proceeds easily by considering all
rules of Jinja+, and by induction on the size of the reduced
expression.

We only note here that, in particular, ∆P(e) = ∆P(e′),
where c = 〈e,h, l〉 and c′ = 〈e′,h′, l′〉, as the reduction takes
place inside an M-block. Also, ∆P(l) = ∆P(l′), because (a)
the code of M (code inside an M-block) does not write
directly to static methods of P and (b) P and M have disjoint
states (no reference reachable from l is reachable from M).

Lemma 3. Let c be a configuration of P[~a], for some ~a,
and ĉ be a configuration of P′[~a] such that ĉ contains no
M-blocks and ∆P(ĉ)∼ c. Suppose that c→ c′ (i.e. c reduces
to c′ in one step).

Then ĉ ∗→ ĉ′ (i.e. ĉ reduces, possibly in more than one step,
to ĉ′) such that ĉ′ contains no M-blocks and ∆P(ĉ′)∼ c′.

Proof: Let c = 〈e,h, l〉 and ĉ = 〈ê, ĥ, l̂〉. The proof
proceeds by induction on the size of the terms in the
configurations c and ĉ. We consider, case by case, different
forms of the expression e which triggers different rules in
the reduction step of c. We present here only some chosen
cases.

The interesting case is the when ê = (ê1; ê2), where ê1 is
of the form (1) or (2). We will consider here the latter case,
i.e. ê1 = (v =C. f (d1, . . . ,dk)) (as the more interesting one;
we can deal with the former case in a very similar manner).
Note that in this case ê2 contains no M-blocks and, by the
definition of pruning,

∆P(〈ê2, ĥ, l̂〉)∼ c. (8)

Because di (for i ∈ {1, . . . ,k}) are without side effects, ĉ
reduces (in some number of steps) to

〈(v :=C. f (v1, . . . ,vk); ê2), ĥ, l̂〉

where vi are some values (without changing the state ĥ, l̂).
Further, this configuration is reduced, again without chang-
ing the state, by the method call rule (33), which introduces
an M-block, to a configuration of the form

ĉ′ = 〈(v := {. . .}D; ê2), ĥ, l̂〉,

where D is a class defined in M. This, configuration, in
turn—because we assume that methods of M terminate
and do not propagate exceptions—is reduced in some finite
number of steps labeled by M to a configuration of the form

ĉ′′ = 〈(v := {. . . ; Val u}D; ê2), ĥ′, l̂′〉

and further, by a return rule ((34) or (35)) to

〈(v := Val u; ê2), ĥ′, l̂′〉.

By the condition of a conservative extension, we know that
this assumption does not change the state of the stystem (the
variable v already contains the value Val u). Therefore, the
above configuration reduces, by rule (29) and then (36), to

ĉ′′′ = 〈ê2, ĥ′, l̂′〉.

Now, recall that the configuration ĉ′′ was obtained from
ĉ′ using only M-steps. Therefore by Lemma 2, ∆P(ĉ′) =
∆P(ĉ′′). This, together with (8), implies that ∆P(ĉ′′′) ∼ c.
Recall also that ê2, and hence also ĉ′′′, contains no M-blocks.

We can now use the inductive hypothesis to conclude that
ĉ′′′ further reduces (in some number of steps) to ĉ′′′′ such that
ĉ′′′′ contains no M-blocks and ∆P(c′′′′)∼ c′. This completes
the proof for this case.

The remaining cases are much simpler. Let us now
consider the case representative of subexpression reduc-
tion rules, where e = if (e1) e2 else e3 gets reduced to
e′ = if (e′1) e2 else e3 with state h′, l′, because 〈e1,h, l〉
reduces to 〈e′1,h′, l′〉. In this case, ê = if (ê1) ê2 else ê3
and ∆P(êi) ∼ ei for i ∈ {1, . . . ,3}. By the inductive hy-
pothesis ê1 reduces (in some number of steps) to some ê′1
changing the state from ĥ, l̂ to ĥ′, l̂′, where ê′1 contains no M-
blocks and ∆〈ê′1, ĥ′, l̂′〉 ∼ 〈e′1,h′, l′〉. Therefore, ĉ reduces to
ĉ′ = 〈ê′, ĥ′, l̂′〉 with ê′ = if (ê′1) ê2 else ê3. We conlude the
proof for this case observing that ĉ′ contains no M-blocks
and ∆P(ĉ′)∼ c′.

Similarly, we can prove the following result, concerning
the final configuration:

Lemma 4. Let c be the final configuration of P[~a], for some
~a, and c′ be a configuration of P′[~a] such that c′ contains
no M-blocks and ∆P(c′)∼ c.

Then either c′ is final or c′ ∗→ c′′ (i.e. c′ reduces, possibly
in more than one step, to c′′) such that c′′ is final, contains
no M-blocks, and ∆P(c′′)∼ c.

Proof of Theorem 1. Suppose that the program P′[~x] is
noninterferent, whereas the original program P[~x] is not. It
means that there exist ~a1 and ~a2 such that P[~a1] and P[~a2]
terminate with final values of low variables ~y, respectively,
~b1 and ~b2, where ~b1 6=~b2.

Let c0,c1, . . . ,cn be the run of P[~a1] and let c′0 be the initial
state of P′[~a1]. We can use Lemma 3 to obtain c′1, . . . ,c

′
n such

that c′0
∗→ c′1

∗→ ··· ∗→ c′n and, for each i ∈ {0, . . . ,n}

c′i contains no M-blocks and ∆(c′i)∼ ci (9)

Indeed, it is easy to see, by the construction of P′, that (9)
holds for i = 0 (that is for the initial states). Then, for i > 0,
we easily obtain (9) by induction, using Lemma 3.

Now, since cn is a final state (i.e. it cannot be further
reduced), we know by Lemma 4 that c′n reduces in zero or
more steps to c′′n such that c′′n is final, contains no M-blocks
and ∆P(c′′n) ∼ cn. The latter means, in particular, that the
values of the low variables ~y are the same in cn and in c′′n .
Therefore P[~a1] and P′[~a1] terminate with the same values
~b1 of low variables ~y.

In the same way we show that P[~a2] and P′[~a2] terminate
with the same values ~b2 of low variables ~y.

Recall that we have assumed that~b1 6=~b2. This, however,
means—contrary to what we have assumed—that the pro-

gram P′[~x] is not noninterferent. Hence we have reached a
contradiction and proven that P[~x] is noninterferent.

APPENDIX B.
JINJA+

As mentioned before, Jinja+ is based on Jinja [26] and
extends this language with some additional features. We
first shortly recall the language Jinja and then the extented
language Jinja+.

A. Jinja

Syntax. Expressions in Jinja are constructed recursively and
include: (a) creation of a new object, (b) casting, (c) lit-
eral values (constants) of types boolean and int, (d) null,
(e) binary operations, (f) variable access and variable as-
signment, (g) field access and field assignment, (h) method
call, (i) blocks with locally declared variables, (j) sequential
composition, (k) conditional expressions, (l) while loop,
(m) exception throwing and catching.

A program or a system is a set of class declarations.
A class declaration consists of the name of the class and
the class itself. A class consists of the name of its direct
superclass (optionally), a list of field declarations, and a
list of method declarations, where we require that different
fields and methods have different names. A field declaration
consists of a type and a field name. A method declaration
consists of the method name, the formal parameter names
and types, the result type, and an expression (the method
body). Note that there is no return statement, as a method
body is an expression; the value of such an expression is
returned by the method.

Jinja comes equipped with a type system and a notion
of well-typed programs. We consider only well-typed pro-
grams.

Semantics. Following [26], we briefly sketch the small-step
semantics of Jinja.

A state is a pair of heap and a store. A store is a map from
variable names to values. A heap is a map from references
(addresses) to object instances. An object instance is a pair
consisting of a class name and a field table, and a field table
is a map from field names (which include the class where a
field is defined) to values.

The small-step semantics of Jinja is given by the set of
rules of the form P ` 〈e,s〉 → 〈e′,s′〉, describing a single
step of the program execution (reduction of an expression),
given in Figures 3, 4, 5, and 6. We will call 〈e,s〉 (〈e′,s′〉)
a configuration. In this notation, P is a program in the
context of which the evaluation is carried out, e and e′ are
expressions and s and s′ are states. Such a rule says that,
given a program P and a state s, an expression e can be
reduced in one step to e′, changing the state to s′.

Following [25], [55], reduction rules are labeled. A label
D in a step

〈e,s〉 D→ 〈e′,s′〉

means, informally, that the step was executed by the code of
class D. More precisely, the expression that was selected to
be reduced by an elementary rule comes from a method of
D. We use the empty label ‘−’ if the origin of the reduced
expression is not known (because, at that point, the context
of this expression is not known; typically this empty label
is overwritten by a subexpression reduction rule for blocks,
that is rules (17)–(19)).

To define labeling of transitions, labels are also added to
blocks that are obtained from the method call rule (33) (a
block is labeled by the name of the class from which the
body of the method comes). Then, the labels of transitions
are, roughly speaking, inherited from the innermost block
within which the reduction takes place.

Subexpression reduction rules (Figure 3) describe the
order in which subexpressions are evaluated. Expression re-
duction rules (Figure 4) are applied when the subexpressions
are sufficiently reduced. Exceptional reduction and exception
propagation rules (Figure 5 and 6) describe how exception
are thrown and propagated.

Note that we do not have a rule reducing abort. That
means that, if this expression is to be reduced, the execution
gets stuck.

B. Jinja+

Jinja+ extends Jinja with: (a) the primitive type byte with
natural conversions from and to int, (b) arrays, (c) abort

primitive, (d) static fields (with the restriction that they can
be initialized by literals only), (e) static methods, (f) access
modifier for classes, fields, and methods (such as private,
protected, and public), (g) final classes (classes that cannot
be extended), (h) the throws clause of a method declaration
(that declare which exceptions can be thrown by a method).
(i) the primitive randomBit() that returns a random bit each
time it is used.

Jinja+ programs that do not make use of randomBit()

are (called) deterministic, and otherwise, they are called
randomized.

More details on these extensions can be found in [55].
Here we only discuss some of them.

For the last three extensions—access modifiers, final
classes, and throws clauses—we assume that they are pro-
vided by a compiler that, first, ensures that the policies
expressed by access modifiers, the final modifier, and throws

clauses are respected and then produces pure Jinja+ code
(without access modifiers, the final modifier, and throws

clauses). In the similar manner we can deal with construc-
tors: a program using constructors can be easily translated
to one without constructors (where creation and initialisation
of an object is split into two separate steps).

Static methods. Extending Jinja with with static methods
is straightforward. The rule for static method invocation is
very similar to the one for non-static method invocation: the

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Cast C e,s〉 `→ 〈Cast C e′,s′〉
(10)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈V := e,s〉 `→ 〈V := e′,s′〉
(11)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.F{D},s〉 `→ 〈e′.F{D},s′〉
(12)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.F{D} := e2,s〉
`→ 〈e′.F{D} := e2,s′〉

(13)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Val v.F{D} := e,s〉 `→ 〈Val v.F{D} := e′,s′〉
(14)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e� bop� e2,s〉
`→ 〈e′� bop� e2,s′〉

(15)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Val v1� bop� e,s〉 `→ 〈Val v1� bop� e′,s′〉
(16)

P ` 〈e,(h, l(V := None))〉 `→ 〈e′,(h′, l′)〉 l′ V = None ¬ assigned V e

P ` 〈{V : T ;e}D,(h, l)〉
f (l,D)→ 〈{V : T ;e′}D,(h′, l′(V := l V))〉

(17)

P ` 〈e,(h, l(V := None))〉 `→ 〈e′,(h′, l′)〉 l′ V = v ¬ assigned V e

P ` 〈{V : T ;e}D,(h, l)〉
f (l,D)→ 〈{V : T ; V := Val v;e′}D,(h′, l′(V := l V))〉

(18)

P ` 〈e,(h, l(V 7→ v))〉 `→ 〈e′,(h′, l′)〉 l′ V = v′

P ` 〈{V : T ;V := Val v;e}D,(h, l)〉
f (l,D)→ 〈{V : T ; V := Val v′;e′}D,(h′, l′(V := l V))〉

(19)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.M(es),s〉 `→ 〈e′.M(es),s′〉
(20)

P ` 〈es,s〉 [`→] 〈es′,s′〉

P ` 〈Val v.M(es),s〉 `→ 〈Val v.M(es′),s′〉
(21)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e;e2,s〉
`→ 〈e′;e2,s′〉

(22)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈if (e) e1 else e2,s〉 → 〈if (e′) e1 else e2,s′〉

(23)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e · es,s〉 [`→] 〈e′ · es,s′〉

P ` 〈es,s〉 [`→] 〈es′,s′〉

P ` 〈Val v · es,s〉 [`→] 〈Val v · es′,s′〉
(24)

Figure 3. Subexpression reduction rules. We define f (l,D) = D, if l =−; otherwise f (l,D) = l.

new-Addr h = a P `C has-fields FDT s

P ` 〈new C,(h, l)〉 −→ 〈addr a,(h(a 7→ (C, init-fields FDT s)), l)〉
(25)

hp s a = (D, fs) P ` D�∗ C

P ` 〈Cast C (addr a),s〉 −→ 〈addr a,s〉
(26)

P ` 〈Cast C null,s〉 −→ 〈null,s〉 (27)

lcl s V = v

P ` 〈Var V,s〉 −→ 〈Val v,s〉
(28)

P ` 〈V := Val v,(h, l)〉 −→ 〈unit,(h, l(V 7→ v))〉 (29)

binop (bop,v1,v2) = v

P ` 〈Val v1� bop� Val v2,s〉
−→ 〈Val v,s〉

(30)

hp s a = (C, f s) f s(F,D) = v

P ` 〈addr a.F{D},s〉 −→ 〈Val v,s〉
(31)

h a = (C, f s)

P ` 〈addr a.F{D} := Val v,(h, l)〉 −→ 〈unit,(h(a 7→ (C, f s((F,D) 7→ v))), l)〉
(32)

hp s a = (C, f s) P ` C sees M : T s→ T = (pns, body) in D |vs|= |pns| |T s|= |pns|
P ` 〈addr a.M(map Val vs),s〉 −→ 〈blocksD(this · pns, Class D ·T s, Addr a · vs, body),s〉

(33)

P ` 〈{V : T ; V := Val v; Val u}D,s〉
D→ 〈Val u,s〉 (34)

P ` 〈{V : T ; Val u}D,s〉
D→ 〈Val u,s〉 (35)

P ` 〈Val v; e2,s〉
−→ 〈e2,s〉 (36)

P ` 〈if(true) e1 else e2,s〉
−→ 〈e1,s〉 (37)

P ` 〈if(f alse) e1 else e2,s〉
−→ 〈e2,s〉 (38)

P ` 〈while(b) c,s〉 −→ 〈if(b) (c; while(b) c) else unit,s〉 (39)

Figure 4. Expression reduction rules. In the rule for method invocation, the required nested block structure is built with the help of the auxiliary function
blocks defined as follows: blocksC([], [], [],e) = e and blocksC(V ·V s,T ·T s,v · vs,e) = {V : T ; V :=v; blocks(V s,T s,vs,e)}C , (where · is the list constructor
and [] denotes the empty list).

hp s a = (D, f s) ¬ P ` D�∗ C

P ` 〈Cast C(addr a),s〉 −→ 〈THROW ClassCastException, s〉
(40)

P ` 〈null.F{D},s〉 −→ 〈THROW NullPointerException, s〉 (41)

P ` 〈null.F{D} := Val v,s〉 −→ 〈THROW NullPointerException, s〉 (42)

P ` 〈null.M(map Val vs),s〉 −→ 〈THROW NullPointerException, s〉 (43)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈throw e,s〉 `→ 〈throw e′,s′〉
(44)

P ` 〈throw null,s〉 −→ 〈THROW NullPointerException,s〉 (45)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈try e catch (C V) e2,s〉
`→ 〈try e′ catch (C V) e2,s′〉

(46)

P ` 〈try Val v catch (C V) e2,s〉
−→ 〈Val v,s〉 (47)

hp s a = (D, f s) P ` D �∗ C

P ` 〈try THROW a catch (C V) e2,s〉
−→ 〈{V : Class C; V := addr a; e2},s〉

(48)

hp s a = (D, f s) ¬ P ` D �∗ C

P ` 〈try THROW a catch (C V) e2,s〉
−→ 〈Throw a,s〉

(49)

Figure 5. Exceptional expression reduction

difference is that the variable this is not added to the context
(block) within which the method body is executed (a static
method cannot reference non-static fields and methods).

Static fields. We assume that static fields can be ini-
tialized only with literals (constants) of appropriate types.
If there is no explicit initializer, then a static variable
is initialized with the default value of its type. For
example, while static int x = 7 and static int[] t are
valid declarations, the declaration static A a = new A() and
static int y = A.foo() are not.

Extending Jinja with static filed requires only a very
little overhead: for a static field f declared in class C we
introduce a global variable C.f (note that names of this form
do not interfere with names of local variables and method
parameters). These global variables are initialized before
actual program (expression) is executed, as described in the
definition of a run below.

The additional rules of Jinja+ are listed in Figures 7 and 8.
Theres rules handle static method invocation and arrays.

Having the complete set of rules for Jinja+, we define
now a run of a system.

Definition 3. A run of a deterministic program P is a

sequence of configurations obtained using the (small-step)
Jinja+ semantics from the initial configuration of the form
〈e0,(h0, l0)〉, where e0 =C.main(), for C being the (unique)
class where main is defined, h0 = /0 is the empty heap, l0 is
the store mapping the static (global) variables to their initial
values (if the initial value for a static variable is not specified
in the program, the default initial value for its type is used).

A randomized program induces a distribution of runs in
the obvious way. Formally, such a program is a random
variable from the set {0,1}ω of infinite bit strings into
the set of runs (of deterministic programs), with the usual
probability space over {0,1}ω , where one infinite bit string
determines the outcome of randomBit(), and hence, induces
exactly one run.

P ` 〈Cast C (throw e),s〉 −→ 〈throw e,s〉 (50)

P ` 〈V := throw e,s〉 −→ 〈throw e,s〉 (51)

P ` 〈throw e.F{D},s〉 −→ 〈throw e,s〉 (52)

P ` 〈throw e.F{D} := e2,s〉
−→ 〈throw e,s〉 (53)

P ` 〈Val v.F{D} := throw e,s〉 −→ 〈throw e,s〉 (54)

P ` 〈throw e � bop� e2,s〉
−→ 〈throw e,s〉 (55)

P ` 〈Val v1 � bop� throw e,s〉 −→ 〈throw e,s〉 (56)

P ` 〈{V : T ;Throw a}D,s〉
D→ 〈Throw a,s〉 (57)

P ` 〈{V : T ;V := Val v; Throw a}D,s〉
D→ 〈Throw a,s〉 (58)

P ` 〈throw e.M(es),s〉 −→ 〈throw e,s〉 (59)

P ` 〈Val v.M(map Val vs @ (throw e · es′)),s〉 −→ 〈throw e,s〉 (60)

P ` 〈throw e; e2,s〉
−→ 〈throw e,s〉 (61)

P ` 〈if(throw e) e1 else e2,s〉
−→ 〈throw e,s〉 (62)

P ` 〈throw(throw e),s〉 −→ 〈throw e,s〉 (63)

Figure 6. Exception propagation

P ` 〈es,s〉 [`→] 〈es′,s′〉

P ` 〈D.M(es),s〉 `→ 〈D.M(es′),s′〉
(64)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e[e2], s〉 `→ 〈e′[e2], s′〉
(65)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈(Val v)[e], s〉 `→ 〈(Val v)[e′], s′〉
(66)

P ` 〈D.M(map Val vs @ (throw e · es′)),s〉 −→ 〈throw e,s〉 (67)

P ` 〈(throw e)[e′],s〉 −→ 〈throw e,s〉 (68)

P ` 〈e′[throw e],s〉 −→ 〈throw e,s〉 (69)

Figure 7. Subexpression reduction and exception propagation rules for Jinja+.

P ` D has-static M : T s→ T = (pns, body) |vs|= |pns| |T s|= |pns|
P ` 〈D.M(map Val vs),s〉 −→ 〈blocksD(pns,T s,vs, body),s〉

(70)

n≥ 0, new-Addr h = a
P ` 〈new τ[intg(n)], (h, l)〉 → 〈addr a,(h(a 7→ initArr(τ,n)), l)〉

(71)

P ` 〈null.F{D},s〉 −→ 〈THROW NullPointerException, s〉 (72)

n < 0
P ` 〈new τ[intg(n)], (h, l)〉 → 〈THROW NegativeArraySizeException, (h, l)〉

(73)

h a = (τ,m, t), 0≤ n < m, t(n) = v
P ` 〈(addr a)[intg n], (h, l)〉 → 〈Val v, (h, l)〉

(74)

h a = (τ,m, t), ¬(0≤ n < m),

P ` 〈(addr a)[intg n], (h, l)〉 → 〈THROW IndexOutOfBoundsException, (h, l)〉
(75)

h a = (τ,m, t),
P ` 〈(addr a).lenght, (h, l)〉 → 〈intg m, (h, l)〉

(76)

h a = (τ,m, t), 0≤ n < m, isOfType(v,τ), t ′ = arrayUpdate(t,n,v)
P ` 〈(addr a)[intg n] := Val v, (h, l)〉 → 〈Unit, (h(a 7→ (τ,m, t ′)), l)〉

(77)

h a = (τ,m, t), ¬(0≤ n < m),

P ` 〈(addr a)[intg n] := Val v, (h, l)〉 → 〈THROW IndexOutOfBoundsException, (h, l)〉
(78)

h a = (τ,m, t), 0≤ n < m, ¬isOfType(v,τ),
P ` 〈(addr a)[intg n] := Val v, (h, l)〉 → 〈THROW ArrayStoreException, (h, l)〉

(79)

Figure 8. (Exceptional) expression reduction rules for Jinja+, where: Function initArr(τ,n) returns an array of length n with elements initialized to the
default value of type τ . Expression P ` D has-static M : T s→ T = (pbs,body) means that in program P, class D contains declaration of static method M
with argument types T s, return type T , formal arguments pbs, and the body body.

	Introduction
	Preliminaries
	A Hybrid Approach for Proving Noninterference
	Outline of the Approach
	Formalizing the Hybrid Approach
	Constructing a Conservative Extension

	Framework for Cryptographic Verification of Java Programs
	Tools
	Joana
	The KeY Verification System

	The Case Study
	Description of the Analyzed System
	The Privacy Game
	The Security Property
	Verification Approach
	Proving Noninterference with Joana
	Proving the Conservatism Property with KeY

	Related Work
	Conclusion
	References
	Appendix A: Proof of Theorem 1
	Appendix B: Jinja+
	Jinja
	Jinja+

