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Abstract

This report presents work and results on Activity Recognition using Part Affinity
Fields for real-time surveillance applications. Starting with a short introduction
to the motivation, this report gives a detailed overview over the key idea of
the pursued approach and explains the basic ideas. In addition a variety of
experiments on various subjects are presented, like i) the impact of the number
of input frames, ii) the impact of different simple dimensionality reduction
approaches, and iii) a comparison on how multi-class and binary problem
formulation influence the performance.

1 Introduction

Anomaly detection amongst other strongly related topics like outlier and novelty
detection, plays an important role in various research fields as network traffic
monitoring, time series analysis, medical image analysis, and video surveillance.
However, when talking about anomalies in the context of video surveillance
the understanding of what an anomaly actually is can differ strongly between
applications. For instance, an anomaly can be an abandoned suitcase at a public
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place, a vehicle driving through a pedestrian zone or suspicious or salient behav-
ing people. Recent progress in the fields of classification, pattern recognition
and time series prediction has also brought the field of activity recognition
into the focus of application-oriented research for surveillance scenarios. This
report proposes a new human pose based approach on classifying the behavior
of pedestrians. It presents details of the architecture and various experiments
on different considered time horizons as well as various considerations that
were conducted in order to tackle the problem of activity recognition in such
scenarios. The presented approach is preparatory work for future activities on
human-centered abnormal behavior detection.

2 Part affinity fields for activity recognition

2.1 Human pose estimation in the wild

Human Pose Estimation describes the problem of estimating a skeletal represen-
tation of a person based on information gathered using certain types of sensors.
The skeletal representation is typically represented as a graph G = (V, E) where
V ⊂ Rn is a set of keypoints and E ⊂ V × V is a set of edges connecting
various keypoints. Depending on the chosen skeletal model the graph can be
seen as a tree. Usually the used sensors are classical video cameras or depth
cameras delivering RGB or RGB-D information respectively. This work focuses
on the 2D case using classical cameras and RGB data. This decision is driven by
the corresponding problem domain, namely video surveillance in urban setups,
where typical camera setups consist of RGB cameras. To this point, RGB-D
cameras are rarely used. As a consequence, the resulting skeletons produced by
human pose estimation algorithms consist of keypoints in a two-dimensional
space with V ⊂ R2.

2.2 Part affinity fields

For this approach, the framework OpenPose by Cao et al. [1], which belongs to
the group of bottom-up methods, is used. Contrary to top-down methods, bottom-
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Figure 2.1: Based on the Part Affinity Fields provided by the OpenPose framework body part
maps encoding the presence of a body part are constructed. This is done per frame. The resulting
body parts B for the highlighted person are shown in the lower part of the figure. For visualization
purposes the body parts are merged into a single layer image to show that they form an understandable
representation of pedestrians.

up methods first locate all keypoints in a given image, which are connected in a
subsequent step. To do so, the method proposed in [1] computes Part Affinity
Fields (PAF) that are used to connect estimated keypoints by adding further
semantic information about visible body parts. In detail, the computed PAFs
are used for constructing a bipartite keypoint graph that is subject to the final
optimization problem which is solved using the Hungarian Method [7].

2.3 Architecture

Since the aim of activity recognition in surveillance scenarios is to have a near real-
time processing of video footage, typical activity recognition frameworks are not
applicable due to their large network architectures and resulting strong hardware
requirements. As a result, the focus of this work lies on developing an approach
using a much smaller neural network. For the task of image classification
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Howard et al. [3] proposed a network architecture called MobileNet that is much
smaller, i.e. much less parameters, than most competing architectures achieving
comparable performance at the same time. Due to the promising performance
of MobileNet for the classification of single images the decision was made to
adapt it for an custom and fast activity recognition approach. This choice brings
a constraint into the considerations: Working on raw 2D keypoint coordinates
is not possible with the pre-defined architecture. However, two possibilities
come up when dealing with this problem. The first way is to transform the
keypoint coordinates into images, the second to use the body representation
already provided by the OpenPose framework. Since it is easy to obtain the
latter and is available out of the box when using OpenPose the decision was
made to adapt the Part Affinity Fields instead of the raw coordinates.

2.3.1 From part affinity fields to human body parts

In order to reduce the number of inputs semantically corresponding Part Affinity
Fields Fpart = (Fpart,x, Fpart,y) are aggregated to five body parts: torso, left arm,
right arm, left leg and right leg. The following equation shows the formula for
computing the corresponding body part using the Part Affinity Fields related to
the left leg.

BleftLeg =
√

λ · (F2
leftCalf,x + F2

leftCalf,y)+
√

λ · (F2
leftThigh,x + F2

leftThigh,y) (2.1)

where λ ∈ R+ is a scaling factor. Note that B encodes the presence of a body
part rather than its direction since this information is lost by transforming the
Part Affinity Fields into body parts. However, since the information about single
body parts is still available and no further reducing operations are performed, it
is still possible to infer the orientation of the represented person.

2.4 Training dataset

The decision to use Part Affinity Fields as input to the model architecture makes
it impossible to use a pre-trained network since the input volume has five instead
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of three channels. Furthermore, the input channels do not correspond to typical
structures like they can be encountered in RGB images. Therefore the chosen
architecture has to be trained from scratch.
In order to train the network three existing datasets were merged: INRIA Xmas
Motion Acquisition Sequences (IXMAS) [11], UT-Interaction [10] and IOSB
Multispectral Action Dataset [2]. All these datasets come with different sets of
activities AIXMAS, AUT-Interaction and AIOSB. For this work, the available activities
were merged to get a total of 19 activities from all three datasets. About 80% of
the available activities come from IXMAS, which is the most diverse dataset of
these three. Another reason to chose these datasets is motivated by the viewing
perspective and the size of the urban outdoor environment, which showed the
best fit to the field of application.
Since all datasets consist of video sequences it is possible to make use of
temporal information, which would be typical done by tracking pedestrians. For
the initial setup no tracking is considered for performance reasons as tracking
of multiple targets would introduce further expensive computations. However,
an alternative way to benefit of the available temporal information is inspired
by the anchor cuboids used in [4]. A schematic overview over this principle is
given in Figure 2.2. Given a bounding box Bt at timestep t and a window size k

an input volume is constructed by simply aggregating the spatial information at
the location of Bt over the last k timesteps

B̃t,k = Bt−k+1 � ... � Bt−2 � Bt−1 � Bt (2.2)

where � describes the concatenation operation along the channel axis. Note
that each bounding box Bi contains spatially corresponding information from
all five body part channels and hence can be written as

Bi = (BleftLeg, BleftArm, Btorso, BrightArm, BrightLeg) (2.3)

2.4.1 Multi-class approach

As mentioned in the introductory part of this section the used dataset consists of
19 activity classes with sequences taken from three different public datasets. The
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bounding
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Figure 2.2: In order to avoid further computation overhead by performing tracking of pedestrians,
temporal cuboids are build as shown in red. For a given timestamp t, a given window size k and a
bounding box Bt we merge the content of the corresponding bounding boxes Bt−k+1, ..., Bt. All
bounding boxes share the same location at different points in time.

set of available activities ranges from everyday activities like walking, sitting
down up to more unusual ones like kicking and punching. In the multi-class
approach every movement of a pedestrian is classified into one of the available
classes. For the training of the network the broadly utilized Adam optimizer [5]
was used with an initial learning rate of 10−3. As the training objective,
cross-entropy was chosen as it is the most common loss for classification tasks.
The learning rate is reduced by a factor of 0.1 after each 20 epochs without
improvement on the used validation set. The whole training was conducted
on an Nvidia DGX-1 using a single Tesla V100 card with 32 GiB of memory.
This allows to use large batches with around 500 samples per batch. The actual
number of samples contained in a single batch is chosen empirically and depends
on the regarded number of timesteps k. Figure 2.3 illustrates the overall setup of
the final architecture, which takes as input a set of k subsequent body part sets
of a given person detection B̃t,k. The input is then processed by the adapted
MobileNet model and classified as one of the 19 regarded activity classes.

2.4.2 Binary approach

In addition to the multi-class approach, a binary classification task with the aim
to distinguish between target activities and non-target activities was investigate.
As target activities a subset of activities, namely kick, punch, hit and push were
chosen, since they show quite similar and relevant activities. To encode these
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Figure 2.3: Input to the model is a volume of size 224 × 224 × 5k where k is the number of
timesteps that are taken into account. Body parts are stacked along the third axis over time. Each
detected pedestrian and its corresponding body part maps are resized to 224 × 224 as expected by
the MobileNet [3] architecture. Every row on the left corresponds to one of the five body parts Bi,
each column to a considered timestep. The number of neurons in the final classification layer is
furthermore changed to the number of activity classes c ∈ {2, 19}.

two classes, the number of output neurons was reduced to two neurons in the
model architecture.
A consequence of transforming the multi-class to a binary classification problem
is the accentuation of the imbalance between the regarded classes. To address
this problem, the imbalance was considered implicitly by changing the used
training loss. For this reason the Focal Loss [8] was adapted, which is an
extension of the classical cross-entropy loss that introduces a weighting of
samples based on the quality of their already achieved classification result.

Lfocal(pt) = −(1 − pt)γ · log(pt) with γ ∈ R+
0 (2.4)

As can be seen in the equation above, the difference to the cross-entropy loss
comes from an additional factor (1 − pt)γ that reduces the loss for well-classified
samples (pt > 0.5). The introduced variable γ ∈ R+

0 controls how strong the
influence of the well-classified samples to the overall loss can get. The higher the
value of γ the more the samples on which the regarded model already achieves
good results affect the computed gradients and hence the training process.
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Figure 3.1: In order to evaluate the impact of the presented considerations on the overall performance
of the approach a dataset was created using two cameras mounted in different heights pointing to
the same location that is only used for evaluation.

3 Evaluation

3.1 IOSB-Ka dataset

For the evaluation an eligible dataset was created that shares many properties
with typical public surveillance scenarios. The dataset was recorded at the
Fraunhofer Institute for Optronics, System Technologies and Image Exploitation
IOSB in Karlsruhe using a common video surveillance setup. It consists of six
sequences with an average duration of 56 seconds from two different cameras
both showing the same location. The cameras were mounted with different
orientations and at different heights. Each video sequence shows a group of
people performing actions from a predefined action set that comprises actions
like kicking, punching and waving. Figure 3.1 shows two randomly selected
frames each taken from one of the two cameras.

3.2 Temporal window size

The first part of our experiments were conducted to examine the influence of
the temporal window on the overall performance. Since all sequences from our
training dataset were recorded with frame rates between 25 and 30 frames per
second, the number of consecutive regarded frames has to be chosen long enough
to capture the important part of an action. Therefore a series of experiments was
performed for values of k ∈ {1, 6, 10, 14, 18, 24}. As stated earlier the input

60



Part Affinity Field based Activity Recognition

Table 3.1: The average precision on the evaluation dataset for the provided activities and the
overall mean average precision vary slightly for different values of k. The corresponding values are
indicated by the identifier PBAR-MFk. The model without temporal information, i.e. k = 1, is
referred to as PBAR-SF. The best results were achieved with a windows size of k = 10.

kick punch wave mAP
PBAR-SF 0.32 0.37 0.42 0.37

PBAR-MF6 0.34 0.37 0.51 0.40

PBAR-MF10 0.35 0.42 0.66 0.48

PBAR-MF14 0.32 0.39 0.52 0.41

PBAR-MF18 0.33 0.40 0.64 0.46

PBAR-MF24 0.30 0.45 0.59 0.45

to the model is a sequence of k consecutive 5-tuples and can be seen as five
sequences showing the temporal behavior of different body parts. Table 3.1
shows the results for different window sizes. It is obvious that all approaches
perform almost identical for both activities kick and punch. Even for a time
window of almost a second (k = 24) the results do not improve. However, the
results for wave are better and the benefit of including temporal information is
clearly visible. The reason for the results on the first two activities might be
due to very similar motions in the training dataset and the far wider variety of
forms for the same activity in the test set. Another explanation could be, that
the model could not learn to distinguish between similar activities. This has to
be investigated in future with additional experiments.

3.3 Dimensionality reduction

A major drawback that comes up when increasing the number of timesteps
and hence the size of the input volume to the neural network is the rising
computational complexity at training as well as at inference time. While the first
is not too much of a problem, the latter means a direct effect on the frame rate and
hence on the ability to be close to real-time. As a consequence the question comes
up, whether a reduction of dimensionality achieves comparable performance
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Figure 3.2: Given a timestep t and a corresponding input volume B̃t,k , each body part of the input
volume is reduced to a single channel. The illustration shows the result of the reduction exemplary
for the right leg Bi

rightLeg, where i stands for the corresponding offset to the current timestep. Given
k timesteps, the chosen reduction function freduce({Bi

rightLeg | i ∈ {0, ..., k − 1}}) is applied
merging on each pixel along the time axis. It is obvious that the max-reduction is much more
comprehensive for the human, however, the mean-reduction does not use any relevant information.
It keeps information about the velocity of the action through the amplitude of the output signal.

to the full temporal information. Hence, the network was trained on merged
inputs using two ways to reduce the dimensionality: max and mean reduction.
Furthermore, the decision was made to keep the spatial information and perform
reduction just over time dimension, i.e. fusing just the information corresponding
to the same body part. Figure 3.2 illustrates how the dimensionality reduction
works in principle and shows the corresponding outcome for our two considered
reduction functions.

Table 3.2: In order to investigate the effect of dimensionality reduction two simple approaches were
applied to the best performing model PBAR-MF10: max and mean reduction. In both cases the
resulting reduced input volumes do not carry enough information, so that the performance of the
trained model drops significantly. The last row also provides results for the non-reduced model
as comparison.

kick punch wave mAP
max 0.29 0.29 0.57 0.38

mean 0.28 0.33 0.57 0.40

without 0.35 0.42 0.66 0.48
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Applying reduction to the input decreases training time approximately about
80% from 29.5 minutes to 5.7 minutes per epoch. This effect cannot be observed
during inference time where the overall processing time stays identical. A
possible reason for this might be that the training is performed using Python.
Python is not optimized for memory efficiency and hence moving data from
RAM to VRAM might be a bottleneck. The final productive system is written in
C++ using the libtorch library provided by the PyTorch development team, which
seems to work more efficient when shifting data between devices. However,
Table 3.2 indicates that in both cases the performance decreases significantly by
a similar amount when using these simple reduction mechanisms.

Since mean and max reduction appeared to be too strict approaches according
to the results presented in Table 3.2, further investigations on the impact of
dropping intermediate frames in order to reduce the input size were performed.
The dropping is performed in an equally spaced manner using an offset s ∈ N
and hence results in timesteps t, t − s, t − 2s, ..., t − (k − 1) · s. Written in a
more compact way, a sequence of k timesteps with an offset s consists of ordered
samples Bt−i with i ∈ Ik,s and

Ik,s = { i ∈ N0 | i ≤ (k − 1) · s ∧ ∃ m ∈ N0 : i = m · s } (3.1)

This method is referred to as striding. Furthermore, for given k, s ∈ N the
function κ(k, s) describes the sampling window size.

κ(k, s) = (k − 1) · s + 1 ∀ k, s ∈ N (3.2)

For s = 1 this resembles the original set of timesteps t, ..., t − k + 1 for a given
input window size k ∈ N. Hence, the sampling window size κ equals the input
window size k. Table 3.3 shows results for a stride s = 3 on input window
sizes of k ∈ {6, 10} and compares them to results of approaches with a similar
sampling window size without striding. The decision to use a stride of 3 was
made empirically. The results indicate that the performance is almost identical
to the non-strided experiments and therefore it is possible to achieve similar
performing results on a reduced frame rate. By using a stride s = 3 the effective
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Table 3.3: Two strided approaches with an offset s = 3 and input window size of k ∈ {6, 10} are
compared with non-strided that share a similar sampling window size κ. The results show that the
sampling window size is more important than the number of actual considered frames, since the
performances does not decrease significantly when taking less frames for comparable κ.

κ kick punch wave mAP
PBAR-MF18 18 0.33 0.40 0.64 0.46

PBAR-MF6s3 16 0.32 0.44 0.54 0.43

PBAR-MF24 24 0.30 0.45 0.59 0.45

PBAR-MF10s3 28 0.28 0.41 0.65 0.45

frame rate is approximately one third of the original and hence around 10 frames
per second.

3.4 Multi-class vs. binary problem formulation

For the evaluation of the binary problem formulation PBAR-MF10 was again
chosen as baseline. As explained in Section 2.4.2, the number of classes was
reduced. The idea behind this decision was that it might be easier for the
network to distinguish between ordinary and non-ordinary activities. Splitting
the available data in such manner would lead to more samples per class and
hopefully a better performance. As Table 3.4 indicates this is the case. By

Table 3.4: For this experiment again the best performing architecture, PBAR-MF10, was chosen
and trained in binary and multi-class manner. On the presented test set the binary approach performs
approximately 18% mAP better than its multi-class counterpart.

mAP
multi-class 0.48

binary 0.66

tackling the problem using a binary problem formulation the mean average
precision could be increased on the regarded test set by about 18% mAP.
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However, a major drawback of the binary formulation is that it loses the ability
to distinguish between the kind of activity that was perceived. This makes it
more difficult to understand the decision of the model, especially when the target
class consists of a variety of different activities.

4 Conclusion

This report presents our work on Part Affinity Field based Activity Recognition.
It gives an overview over how to include the information of the Part Affinity
Fields provided by the OpenPose framework into a lightweight approach, which
is designed to work for real-time applications. Furthermore, various topics like
i) the impact of the number of input frames, ii) the impact of different simple
dimensionality reduction approaches, and iii) a comparison between multi-class
and binary problem formulation and how they influence the performance were
evaluated. Future work will address further aspects in order to improve the
performance and take a closer look on the temporal aspect of the approach:
Does the usage of tracking algorithms improve the performance compared to
the temporal cuboid approach? Can we benefit from the incorporation of Spatio-
Temporal Affinity Fields [9]? How does MobileNet with 3D convolutions [6]
perform? In addition to that, more elaborate yet fast dimensionality reduction
approaches like PCA or LDA as well as incorporating an understanding of
similarity of activities into the approach will be subject to future investigations.
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